
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

l	 /

l ^ ^ <rq k	 `n.3

A UNIFIED METHOD FOR EVALUATING REAL--TIME

COI PUTER C011VTROLLERS: A CASE STUDY'

K.G. Shin, Senior Member, IEEE:, C. M. Krishna, Studant Member, IEEE,
and Y.H. Lee, Student Member, IEEE

Computing Research Laboratory
V	 Department of Electrical and Computer Engineering
AThe University of Michigan

yr 	 Ann Arbor, Michigan 481 09

JI

v,	 ABSTRACT

A reel-time control system consists of a synergistic pair, that is, a controlled
process and a controller computer. Wn have defined new performance measures
for real-time controller computers on the oasis of the nature of this synergistic pair.

In this paper we present a case study of a typical critical controlled process in
the context of new performance measures that express the performance of both
controlled processes and real-time controllers (taken as a unit) on the basis of a sin-
gle variable: controller response time, Controller response time Is a function of
current system state, system failure rate, electrical and/or magnetic interference,
etc., and is therefore a random variable. Control overhead is expressed as a mono-
tonically non-decreasing function of the response time and the system suffers
catastrophic failure, or dynamic faalure, if the response time for a control task
exceeds the corresponding system hard deadline, if any. A rigorous probabilistic
approach Is used to estimate the performance measures.

The controlled process chosen for study is an aircraft in the final stages of des-
cent, just prior to landing. Control constraints are particularly severe during this
period, and great care must be taken in the design of controllers that handle this pro-
cess. First, the performance measures for the controller are presented. Secondly,
control algorithms for solving the landing problem are discussed and finally the impact
Of our performance measures on the problem is analyzed, showing that the perfor-
mance measures and the associated estimation method have great potential use for
designing and/or evaluating real-time controllers and controlled processes. Also, one
application for the design of controller computers, presented in detall, is checkpoint-
ing for enhanced reliability.

Index Terra- Controlled p ro, ,ess(es), controller computers, hard deadlines, response
time, performance measu, es, allowed state space, aircraft landing, checkpointilg

r4 w

r-1

SY1

C37 ...ti x" rrt

1 rhls work has been supported In part by NASA Grant No. NAG 1' -296. Any op/nlons, flndlnn1 A con-
cluslons or recommendations ex!orossed In this paper are those of the aathors and do not necessar ly r e, t
the views of the funding agency.

(NASA-CiZ-1741C$; A UN FILL NEIBOD F02	 N85-13478

]~VALUATING XiBAI L-IIMr CCNiPU1E1 GC.NIRCLLER5:
ffinn Y 1mi c h igan Univ-1	 45 pA CASE a

HL: A03/MF A01	 CSCL 09f3	 Ux^clas
G3/60 12497

1. INTP?ODUCTION

Any real-time system can be regarded as a compo.:,ite of controlled vubsystem.a

(herrceforth called controlled prouesses) and contrcllei- subsystem(s). Tradition-

ally, the performonce of real-time control romputerc hFxs been analyzed separately

om that of the corresponding controlled processes. For example, the response delay

caused by the controller Is neither studied rigorowdy nor reflected carefully Into the

design of control algorithms for the controlled processes. The design of the con-

troller Is frequently based on ad hoc requirements impos?d by control designers.

While this yields acceptable results In the control of non-critical processes, such 3n

approach needs to be improved in the design of controllers for critical processes e.g.

aircraft. What is called for Is a procedure for specifying and evaluating controller

performance, enabling systematic application and providing objective results that

lend themselves to formal validation. The use of computers as real-time controllers is

becoming increasingly attractive due to continuing advances in Zhe development of

inexpensive, powerful microprocessors and memories. However, performance meas-

ures presently used to characterize real-time computer systems are adapted ver-

sions of those employed for more conventional computers. There is a considerable

mismatch between the requirements of real-time applications and what is provided by

these measures.

To solve this problem, several contortions of the conventional measures have

been proposed. Generally, these involve representing real-time computer performance

as a vector rE:RP , made up of such traditional indices as (conventional) reliability,

throughput, survivability, availability, etc. However, it is impossible to compare two

performance vectors (and therefore the corresponding computer systems) without an

associated metric. One straightforward ap p roach is to use a linear rnetric(i.e. inner

product) to map the vector into a scalar that is then claimed to represent the perfor-

mance of the system. For example, the mapping can be carried out by assigning

weights to the various components of the performance vector and adding them to

2

}

4

produce the scalar. That Is, if the weight vector Is err = (w 1 , ... , zup), then the

mapping is f 'lt p >R with f ; p)=,v` p .

This process of ascribing weights is largely subjective and is therefore Inaccu-

rate to begin with. Even If the weight ascription were completely objective, serious 	
z

practical difficulties would remain. For example, since the components of the perfor-

mance vector are mutually dependent (sometimes in a very complex manner), the

weights (that are supposed to define the sensitivity of the scalar to the respective

vector components) must be modified by (often very complex) correction factors to

account for this coupling, 2 Furthermore, relating the resulting scalar to "real-world"

performance parameters (such as operating cost, etc.) is difficult.

The performance measures we introduced in [1] are designed to get around

these difficulties by expressing the performance objectively In terms of the

response time of the computer-controller. From the point of view of the controlled

process, the computer controlling It is a black box whose behavior is exemplified by

its response time and reliability. It is well known that controller delay has a detrimen-

tal effect on process behavior, our measures take the form of a quantification of this.

The performance measures are considered in Section 2 In some detail prior to the

presentation of an idealized case-study of their application.

The case-study is that of a real-time computer in charge of an aircraft in its

final phase of flight, just prior to touchdown. There are stringent control constraints

that must be met. These consist of Iirnits on the speed of touchdown (both horizontal

and vertical), the angle of attack, a, and the pitch angle, 0. For a definition of these

angles, see Figure 1. These constraints are variously intended to safeguard against 	 y

running out of runway, undercarriage collapse, stalling, and landing either on the air- 	 h

craft nose or tail. insofar as this is a control problem with severe constraints, the

2 This Is because the weights are supposed to represent the total derivatives of the mapped scalar to
their respective components. However, since the components of p are not orthogonal, this Is not true for
the unmodified weights. they represent the partial derivaiives which are not equal in this case to the 	 A
respective total derlvatives, 	 N

3

problem is typical of many other critical applications, such as the control of nuclear

reacrors, the generation and distribution o r alactrical power, life-support systems,

etc. Since our objective herr3 is to illustrate the use)f our performance measures and

not to solve a control problem, the aircraft system is somewhat idealized in this

paper.

Figure 2 shows the block diagram of a typical control system. The Inputs to the

controller are from sensors that provide data about the controlled process, and from

the environment. This ,s typically fed to the cornputer-controller at regular intervals.

Data rates are usually low: generally fewer than 20 words a second for each sensor.

Central to the operation of the system Is the trigger generator. In most systems,

this is physically part of the contraller itself, but we separate them here for purposes

of clarity. It is the function of the trigger generator to initiate execution of a con-

troller job (defined later). Triggers cart be classed into three categories.

(1) Rme-generated trigger: These are generated at regular Intervals, and lead to

the corresponding controller job being Initiated at re^ular intervals. In control

theoretic terms, these are open-loop triggers.

(2) State-generated trigger: These are closed-loop triggers, generated whenever

the system is in a particular set of states. For practicality, it might be neces-

sary to space these triggers by more than a specified minimum duration. If time

Is to be regarded as an implicit state var;abie, the time-generated trigger is a

special case of the state-generated trigger. One can also have combinations of

the two.

(3) Operator-generated trigger: The operator can generally over-ride the

automatic systems, generating and cancelling triggers at will.

The output of the controller i^, 'ed to the actuators and/or the display panel(s).

Since the actuators are mechanical devices and the displays are meant as a human

4

Interface, the data rates here are usually very low. Indeed, as we have pointed out

elsewhere [13], a computer control system oxhlbits a rundamental dichotomy, with

the 1/0 being carried out at rather low rates and the computations having to be car-

ried out at very high rates owing to real-time constraints on control.

The controller in our case-study is a real-time computer. It executes pre-

defined control jobs. There is a certain number of control Jobs In any control system

that are executed repeatedly.

A control system executes "missions." These are periods of operation between

successive periods of maintenance. In the case of aircraft, a mission Is usually a sin-

gle flight. The operating interval can sometimes be divided down into consecutive

sections that can be distinguished from each other. These sections are called

phases. For example, Meyer et., at [6] define the following four distinct phases in the

mission lifetime of a civilian aircraft:

(a) Takeoff/cruise until VHF Omnirange (VOR)/Distance Measuring Equipment (DME)

out of range.

(b) Cruise until VOR/DME" in range again.

(c) Cruise until landing is to be Initiated.

(d) Landing.

The phase to be considered here is landing, it takes about 20 seconds. The

controller job that we shall treat is the control of the aircraft elevator deflection dur-

ing landing.3

The specific system employed Is assumed to be organized as shown in Figure 3.

Sensors report on the four key parameters: altitude, descent rate, pitch angle, and

3 The output of the controller la assumed to be fad Into a perlpheral processor that Is dedicated to
controlling the actuator -- In this case the elevator.

5

pitch angle rate every 60 milli-seconds. n We have a time-generated triCicder, with a

time period of 60 milliseconds. Every 60 milli-seconds, the controller comautcs 'the

optimal setting for the elevator, which is the onl;r actuator used in the landing

phase.5 The execution time for the computation is nominally 20 milli -secords,

although this can vary in practice due to failures. Since the aircraft is a dynamic

system, the effects of controller delay are considerable -- aG wo shall see in this

paper.

Since. the process being controlled is critical (i.e. In which somo failures can lead

to catastrophic consequences), variations of controller delay and other abnormal

behavior by the controller must ue explicitly considered. For simplicity, we do not

allow job pipelining in the controller; in other words a controller job must be completed

or abandoned before its successor can be initiated. The following controller abnor-

malities can occur:

(1)	 The controller orders an incorrect output tc the actuator.

(ii) The controller takes substantially more than 20 milli-seconds (the nominal exe-

cution time) but less than the inter-trigger interval of 60 milli-seconds to com-

plete executing.

(iii) The controller takes more than 60 milli-seconds to complete executing. in such

a case, the abnormal job is abandoned and the new one initiated. We say that

a control trigger is "missed" when this happens.

An analysis of controller performance during the landing phase must take each of the

above abnormalities into account.

4 The sensors and actuators are assumed to have their own ded/cated processors for 1/0 purposes,
When we speak of "controller delay," we also Include the delay in these processors. Also, the perlod of 60
m1111-seconds Is arbitrary, and the chalce of th/s period does not alter the method developed here.

5 There are other actuators used aboard the aircraft for purposes of stabill ty, horl zontal speed control,
etc. We do not however consider them here, concentrating exclusluely on the c017trol of the elevator.

6

l

This paper is organized as follows. In Section < we present the performance

measures that wl!I bt;, used, and Sc otlon 3 contains a rlcscription of the controlled

system. In Section 4, we derive the measures associated with the controlled process

(the aircraft), and in Section 6 we consider one eximple of their application for tile,

design of real-time controllers. The paper concludes with Section G. 	 .'r

P. PERFORMANCE MEASURES

2.1. Review of the Performance Measures

For completeness, we review briefly in this section the performance measures to

be used, which were introduced by us In [1].

The measures are all based on a single attribute: computer controller response

time distribution. A real-time computer controller in general exhibits stochastic

behavior.a Real-time computer controllers repeatedly execute predeflned control Jobs

which are. initiated either by environmental stimuli or internally.

Central to our performance measures are the concepts of dynamic failure and

allowed or admissible state-space. Every critical process must operate within a

state-space circumscribed by given constraints. This is the allowed state-space.

Leaving this state-space constitutes dynamic, failure. ? In the example we treat

herg, the states are the altitude, the vertical speed, the pitch angle, and the pitch

angle rate. Each of these has a constraint. For example, the aircraft must not touch

down with too great a downwar velocity or the undercarriage will collapse.

The performance of the controlled process naturally depends on the speed of

the controller. if the controller takes longer than a certain duration to formulate the

control, dynamic failure becomes possible. This duration is the hard deadline,

6 Th/s Is partially because failures are assumed to occur randomly over the operating Interval. The
failure law for the components of the computer Is assumed to be known. Furthermore, execution of control
tasks Is stochastic due to the blocking at shared resources, conditional branches In task code, etc.

7 Dynamic (allure Is so termed since It is a failure that can occur as a result of the controller not
responding fast enough to the environment. it expresses the fact that slowness of the controller can be a
cause of catastrophic failure.

7

We define a cost function C,(^) associated with controller response time ^ for

controller job ". The r.Ost function taker thc following form:

_ 9aW it g ; Sr a	
(1)

Ca(.) '	O°	 if >r,;a

g	 a the-rwfse
where .9,,(-) is a suitable continuous non-decreasing function of t and rd ,, is the hard

deadllnR associated with the job a. Cleariy, since the environment influences the

quality of system performance the cost function is implicitly a function of the system

state. Also, if 'Td ,, is a finite quantity in some region of the state-space, the job is

critica in that region. The determination of the hard deadline is treated In detail in

Sections 2.2 and 2.3. .

For controller response times less than the hard deadline, the cost function in

(1) above is continuous, monotonically non-decreasing, and therefore always

bounded for finite response time. For consistency, it is assumed that the costs

accrue as the execution proceeds.

The functions (called the finita cost functions) ga can be obtained using the

performance indices of the controlled process. These performance indices are well-

known to control theory and express the consumed energy, fuel, time, or some other

physical parameter associated with the trajectory of the system as it travels from its

initial to Its final state. See, for example, [2,3], for details. The cost of running the

controlled process over, say, an interval of time [t ti ,tr], is usually expressed by:

tJ	
(2)

o = fE[.fa(x(t),u(t),t)iy(r),to	 dt
to

where Ei-j-] represents conditional expectation, f. is the instantaneous index of

performance at time t, and x(t)E:R", u(t)c-4 and y(t)ERm represent the state,

input, and measurement vectors respectively. A good representation for g a(t) is

given by:

8

t

	

a(S)
= ^a(1;)-''i'a(fJ) for 0-. t, ^ ,rda	 (3)

0	 -)lhn711live

where	 expected contribution of u„a to n If response time of that particular

execution of job a=rl, and uca = control input subvector associated with ,job a. Note

that the input vector u for Job a consists of the control Input subvector, u.a, as well
.r

as the environment (random) input subvector, uoa•

A version Is an instance of the execution of a task. Versions are numbered in

sequence of initiation: successive versions of task i being denoted by Iii, tin-

The response time associated with a version V f is denoted by .f ESP'ij).

Let q, (t) represent the number of versions executed for task 1 over the interval

rO,t), and r the number of distinct tasks. Then define

r
S(t) 	 EPt(t)

t=1

q{(9)	 t gt(t)	 i f O Gt:Stdi

where 1't _ Z h i (RESY (ij)) and IL, (t)
j=1	 l gt (tdt) if t >tdt

For an illustration, see Figure 4. Clearly, h i is the cost function Cj "hard-limited” at

gt(tdi)• Pi is essentially the finite operating cost associated with flask 1.

Remark: It might legitimately be argued that to associate a contribution to finite cost after the
hard deadline has been missed is in consistent with the notion or hard deadlines being "absolute" in
the sense that missing a hard deadline, by derinition, has catastrophic consequences (e.g., an air-
plane crasb). By this argumcnL, ht (t) =0 for all t >tdi , however, such an assignment would, while
pacifying the purists, lead to unpleasant anomalies, not the least of which is that a very poor sys-
tem which almost always misses deadliness would exhibit a smaller finite operating cast than a
counterpart that almost always fulfills them.

Also, assume that the computer system is modelled as a Markov process. This is

clearly possible. The num: • er of states$ depends on the extent to which the system

is capable of graceful degradation, Let B be the set of states where the probability

of failure is unity. These states represent the states when the extent of

8 The word "state" used here has a different connotation from the "state" discussed in the preceding
sections. The latter has a control-theoretic meaning. On the other hand, the state of controller computers
usually means the number of functioning processors, buses, memories, Jobs, etc. However, both forms of
usage conform to the essential concept of "state," as a codification of relevant system condition. for this
reason, the same word has been used for the two different purposes, following the usual practice. Its in-
terpretation should be made from the context,

9

hardware/software collapse Is so great that there is a zero probability of successful

execution of any task In finite tine, Let L(t) donotc the probability distribution of the

operating interval duration betwean two successive service stages.

Our performance measures arcs then:

Probability of Dynamic F'ailure, Pdyn : This is Cie probability that over the operating

Interval, at least one hard deadline Is missed for whatever reason. This probability

incorporates within it the probability of static; failure, which is the probability that

so massive a hardware failure has occurred that the systom utilization is greater than

unity, Static failure probability has erroneously been treated in most of the literature

as expressing the total probability of failure. This Is most decidedly not the case In

real-time systems.

W
Mean Modified Cost, M f E ^S (t) I system never enters state set B jdL (t)

0
It can be shown that, for physical systems, this Integral always exist since the life-

time Is always finite with probability 1.

The performance measures can be used to rank rival computer systems and to

help design improvements to existing systerns in the context of the control applica-

tion. Typically, the probability of dynamic failure is used as a pass/faii test for can-

didate controllers. This test can be very severe: for example, 10- 9 is the specifica-

tion for failure probability adopted by NASA for computer controllers of the next

decade handling a 10-hour civilian flight. The mean cost is then employed to rank

controllers that have passed the dynamic failure criterion. For fuller details, see [1 a.

Note that all parameters associated with these performance measures can

either be definitively estimated or objectively measured. Also, the measures specifi-

cally incorporate the controlled process into a determination of the controller's

9 There are other performance measures developed In [11, but not considered here. For our purposes,
the measures Nsted here are suffl-last,

70

capabilities. This is, as far as we know, a novel approach which ensures that tike per-

formance measures are not generally, but inetond spoc:ific.ally, indic;ativo of the 4on-

troller performance in a given application, For this reason, these measures are Intrin-

sically more rel i able than others in ► ise.

2.2. Hard Deadlines

Roughly speaking, hard deadllntis are deadlines that must be met if catastrophic

failure is to be avoided by a critical process. lr: athor words, It is the deadline that, If

met by the controller in (correctly) formulating its response, ensures that the system

remains In Its allowed state-space. Tradition It has been assumed by computer

engineers that the hard deadlines for each critical controller job are somehow

"given", Unfortunately, this presupposes a precise definition of the hard deadline

and a means for obtaining it, haither seems to exist in the literature.

At first glance, it might seem that the hard deadlines can be obtained relatively

easily from an analysis based on the state equations of the controlled process, This

is the case when Individual controller actions are decoupled from each other and the

process Is simple. for an example In which this Is the cacti, see [1]. However, when

there is a considerable coupling between Individual controller jobs, Le., when two or

more controller jobs mutually affect each other, or when no closed-form solutions are

available for the process state equations, obtaining a hard deadline for each can be

difficult. For example, in the aircraft landing problem, the controller has over the

twenty seconds or so that it takes to complete the landing, to compute the elevator

deflection a number of times (in our example about 330 times). The constraints are

on the final values (except for the angle of attack), i.e., as long as the aircraft

touches down on the runway without over- or under-shoot, with an acceptable velo-

city and at a proper pitch angle, dynamic failure has not occurred. The problem here is

that it Is not just a siragle controller action that determines whether catastrophic

failure will occur or not; it is the cumulative effect of, in this case, 330 or so distinct

.i

17

Ai
controller actions. Now then Is cna to allocate deadlines to the Individual actions?

It is clear that we need a more carefully defined framework to handle these

problems In n feasible manner. For this it Is convenient to represent the controlled

process by a state-spaco moe,tsl, Lot the state of the system at time I bo denoted

by x(t). State transitions are characteri7nd by q. mapping yo 14'xXxU > t where T C

It represents the time region, X(It" the state space, and Uf It," the input space i that

Is,

x(t 1) = ^0 (t 1, to, x(to). u)	 (4)

where uc'U ropresents the controls (inputs) applied to the process in the interval

Ito ' t l). Let (?-U be the admissible input space (i.e, the range of Inputs that it Is pos-

slble to apply), and XA (::X the allowed stato-space. Then, the hard deadline associ-

ated with controller Job a trictgercd at to when the system Is In stare x(to) is given

by

7da(%t(to)) '` `fin 7) t i q (t o +r, t o y x(t o), X1) (' XA	 (G)

Thus, for every point In the state space, we have for each critical controller Job a

corresponding hard deadline.10

It should be noted that the calculation in (5) is performed over the entire admis-

sible state and Input space and is thus difficult to achieve, One might wish to per-

form the calculation over only a subset of the admissible input or state space. To

allow for this, the notion of condlPi,nrtrsl /Lard, Aadlinns can be employed. Let us

assume that the sets wcO and Ut XA are specified, and also that x(to)CU.

a

a

t

10 Notice In this context that It Is not possible for the hard deadllr6 as dellnnd above co be negative
unless this is the first instance during the current mission that the controller fob is being executed. This Is
because 11 this were the case, failure would already have occurred on the previous execution of the con-
troller Job by definition, Also, the deadline on the first Instance of execution of the control function cannot
be negative, ulnce that would mean that the controller-process system hsd bean Improperly designed.

12

i°i

1'

The ocnditional liar ,'.	 II of jot) o,, Oenotod by ,,ja ,^, o, N defined as

rdaiw.a^ Xi t ©^^ 	 2nf ,Slip J T i^q (t o +.r . tp, X(t©), U)	 QJ	 (ba)
U(. u

For the purposes of the case-study in this paper, however, wo shall restrict cur-

series to the unconditioned hard deadlines.

As it stands, the exprossion for the hart deadline (and for the conditional dead-

lines) is not easy to obtain for the entire state-space. In fact, it Is almost Impossible

to obtain In closed form in all but 0o simpler control systems. We shall later see how

':o obtain a good approximate expression of

Also, if the environment is stochastic In character and not deterministic, the hard

deadline Is a random variable. Assuming that the environment is stochastically sta-

tionary loads to the existence of the distribution function of tho hard desdiine.

2.3. / ifs to..rr>,;i ;hate-Space and Its Decomposition

As we said above, it is difficult to dotormlite tl:e hard deadline and the finite

cost function as a function of the stata over the entire state space. To take our

present example of an aircraft, the solution of the state equations is not obtainable

In closed form when controller delay Is considered, To obtain the functional depen-

dence of the hard deadlines or the finite cost function of each controller job on the

current state vector is therefore impossible to do analytically, and prohibitively

expensive to do numerically for a large number of sample states.

To get around this problem, we divide the allowed state-space down into sub-

spacas. Subspaces are aggregates of states in which the system exhibits roughly

the same behavior. 12 In each subspace, each critical controller job has a unique hard

11 Unllke the unconditioned hard deadllne, It Is possible for the cond/tlonal hard deadllne to be nega-
tive since no specific relatlonshl p Is required between the subsets CJ and t7.

t `'Even if there do not exist clear boundaries for these subspaces, one can always force the admissl-
ble state space to be dl vlded into subspaces so that a sufficient safety margin can be provided. This Is a
designer's cholco for approximation.

13

deadline.

IZerrtmrks: in some subrpnees, n job dos; riksed in encrrtl ac "c:*:lien;° might not be c:rit _csl in the
sense that oven if the eincuLion delay associated with iL is infinity, cal:+Lrophic failure does not
occur. 'I'liut is, the uauociated hard deadline may In infinity for a parLic:i,lar subspace. Viat.does
lcsually ha .prn in these circumsLanees is that the syyt em moves into a new subspace — br at the
lewit taward the subsp,:ee boundary — in which the dangers of cataxtrophie failure are greater. Tn
this subspace, the requirements on controller delay are snore xtrinp.cat, and there m:l,ht well be u
hard deadline, ropresentinl; a critical task. Thus a "critical" job need not be truly critical in every
subspace, it only has to map into a critical tusk — defined in the tocquel -- in at least one aubspace.
Also, subspucrx arc jab•rclated, Le. the same allowed state space can divide into a different set of
subspaces for each control job.

For convenience, a controller "taste" is defined as follows.

Definition: A controller task, often abbreviated to "task", Is defined as a controller

job operating within n designated subspace of the allowed state space.

Let S,, for i=O,1,..,,s be disjoint ,subspaces of Xq with X, 1 =	 S, and let J denote a
t=1

controller job. Then, we need the projection:(J, Xti) - ((To, So), (T) , S1), ...,(7y, Ss))

where Tt is the controller task generated by executing J in S,;. With each controller

task, we may now define a hard deadline without the coupling problem mentioned

above. We denote it by tJ for critical task Tj (for convenience, however, the super-

script J will be omitted in the sequel). We will see that a critical job car) possibly

map into a non-critical task fat' one or more allowed subspace; it only needs to map

Into a critical task in at least one such subspace to be considered critical.

A. Allowed State-Space

The admissible state:-space is the set of states that the system must not leave

if catastrophic failure is not to occur. Consider the two sets of states XA and X2

defined as follows.

(1) Xf) Is the set of states that the systam must reside in if catastrophic -failure is

not to occur irn,medirytely, For example, we may define in the aircraft landing

problem, a situation in which the aircraft flies upside down as unacceptable to

the passengers and as constituting failure. Notice that terminal constraints are

riot taken into consideration here unless the task in question is executed just

14

I

prior to mission termination.

(ii) X;11 Is the set of accepi.able states given the terminal constrnintss, i.e., it is the

sot of states from which, given the constraints on the control, it becomes possi-

ble to satisfy the tormInal constraints.

Note that leaving Xj means that no matter how good our subsequent control, failure

has occurred. 13 On the other hand, changing the control available can affect the set

NJ. the admissible state space is then defined as X, =- X; r) A

Obtaining state-space 4, can be difficult in practice. The curse of dimensional-

Ity ensures that even systems with four or five state variables make unacceptable

demands on computation resource, for the accurate determination of the allowed

state-space. Howevor, while it can be very difficult to obtain the entire allowed

state-space, it is somewhat easier to obtain a reasonably large subset, X ,I c'X,t . By

defining this subset as the actual allowed state-space, (i.e., by artificially restricting

the range of allowed states), we make a conservative estimate for the allowed

state-space. Note that by making a conservative approximation, we err on the side

of safety. Also, the information we need about X, t may be determined to as much pre-

clsion as we are willing to invest in computing resources.

In what follows, to avoid needless pedantry, we shall ref ea r to the artificially res-

tricted allowed state-space,)Q., simply as the "allowed state-space."

B. On Obtaining the Subspaces

While the methods used to isolate the subspaces for each particular control

application will probably be different, the basic approach Is much the same in all

cases. Let N(x) represent a neighborhood of xc:XI , Cx(^) and t'd{(x) denote respec-

tively the cost function and the hard deadline associated with T,; where 5 represents

13 Strictly speaking, of course, there can be no subsequent control since by leaving XA' the system has
i alled catastrophically before the next control could be Implemented.

15

the controller response time, and d; XxX -+ R is a metric function. Then the sub-

spaces So, S1, ... , !a,, of XA can be, obtaineW by the following steps.

S1. Choose a setoff points, p i cXA. i= 1,2,...,1.

S2. Construct a neighborhood around each of these points, N(p,) for A, such that

(i) All W(pi)'s are disjoint and XA c; U N(p j).i
(ii) 1 td{ (x) — tdi (pt) :!5 K l for all xcN(p,;) and for -ome Kl>0.

(iii) d(Ctix(;), C	 -_,5tp{(t) 	 K2fi (^) for all xcN(A) and for some

monotonicaliy non-decreasing positive function ft (t;) and K2 > 0.

S3. if d(Cj , Ct , I) -, ff2f Q) for i=1,2,...,(1_1), some ff l > 0, and monotonically

non-decreasing positive function f () then merge N(pi) and N(pi+1) forming

subspaces S = (So, S 1 , ..., Ss).

S4. if 5 satisfies all the requirements of the application jobs then successful

decomposition else choose a different set of points and go to S2.

The job of dividing Xc Loto S = (So, S1 , ..., S,) is sometimes made easy by the

existence of natural cleavages in the state-space, when the latter Is viewed as an

influence on system behavior. In most cases, however, such conveniences do not

exist, and artificial means must be found. 'the problem then becomes one of finding

discrete subdivisions of a continuum.

The method we employ is to quantize the state continuum in much the same way

as analog signals are quantized into digital ones. Intervals of hard deadlines and

expected operating cost (i.e. the mean of the cost function conditioned on the con-

troller delay time, and using the distribution of the latter) are defit ° -1 Then, points

are allocated to subspaces corresponding to these intervals. To tak concrete

example, consider a state-space XcR" that is to be subdivided on the basis of the
x

16

hard deadlines. The first step is to define a quantization for the hard deadlines. Let

this be A. Then, define: subspace S,, as contaaling till states in which the hard dood-

line lies In the Interval [(i-1)A, iA). Alternatively, one might define a sequence of

	

numbers A,, G,! ,'%,;uch that the subspaces were defined by intervals with the A's as 	 TF

their end-points. This' would correspond to quantizing with variable step sizes. The

subspace In which the job under consideration maps into a non-critical task is a spe-

cial case and is denoted by So.

Subspaces can also be defined based on a quantization of the expected

operating cost or on both the operating cost and the hard deadlines. We provide an

example of subdivision by hard deadlines in Section 4.

The size of each subspace will depend on the process state equations, the

environment, and how much computing effort it is judged to be worth spending on

obtaining the subspaces. Naturally, all other things being equal, the smaller a sub-

space the greater the accuracy of the inherent approximation. 14

In the rest of the paper, to illustrate the derivation of the performance meas-

ures, we carry out their evaluation when the controlled process is an aircraft in the

phase of landing. Also, an optimal checkpointing is considered for the design of a reli-

able controller.

S. The CONTROLLED PROCESS

The controlled p rocess is an aircraft, in the phase of landing. The model and the

optimal control solution used are due to Ellert and Merriam 14].

The aircraft dynamics are characterized by the equations:

x1(t) = bllxl(t)+b12x2(t)+I)13w3(i)+C JIM 1(t 't)	 (6a)

x 2(t) = x 1(t)
	

(6b)

14 The error that ensues as a result of quantization of the state space can be estimated In the same way
that quantization error is estimated In signal processing theory.

17

xa(t) = b azxa(t) mb ayx a(t }	 (6c)

x t(t) = x s(t)	 (6d)

where xp is the pitch angle, x l the pitch angle rate, —, the altitude rate, and X 4 the

altitude. m 1 denotes the elevator deflection, which Is the sole control employed. The

constants bij and c 11 are given in Table 1. Recall that t denotes controller response

time.

The phase of landing takes about 20 seconds. Initially, the aircraft is at an alti-

tude of 100 feet, travelling at a horizontal speed of 256 feet/sec. This fatter velo-

city is assumed to be held constant over the antire landing Interval, The rate of

ascent at the beginning of this phase Is -20 feet/sec. The pitch angle is ideally to

be held constant at 2 1 . Also, the motion of the elevator is restricted by mechanical

stops. It is constrained to be between -35 1 and 15 1 . For linear operation, the eleva-

tor may not operate against the elevator stops for nonzero periods of time during this

phase. Saturation effects are not considered. Also not considered are wind gusts and

other random environmental effects.

The constraints are as follows: The pitch angle must lie between 0 0 and 10 0 to

avoid landing on the nose-wheel or on the tail, and the angle of attack (see Figure 1)

must be held •2o less than 18 0 to avoid stalling. The vertical speed with which the air-

craft touches dcwn must be less than around 2 feet/sec so that the undercarriage

can withstand the force of landing.

The desired altitude trajectory is given by

r
100e -t15 0pt< 15 	(7)

hd(t) ° 20—t	 15- t :5 2 0

while the desired rate of ascent is

—20e -t/5 Oc1-15	 (8)
hd(t) r	 15^t-20

The desired pitch angle is 2° and the desired pitch angle rate Is 0 0 per sec.

icy

The p prformance Index (for the aircraft) chosen by Ellert and Merriam and suit-

ably adapted here to take account of the nonzero uontroller response time ^ is ;liven

by

Olt) = ,/ e m (t ,t)dt 	(9)
t d 	 "^

where f represents time, and [to, tl] is the Interval under consideration, and where. j

em(t, t) = SOh(t) [hd(t) --x 4(t) J Zi ^h(t) L hd(t) —x 3(t) i ZT ^^ (t)(2d W"_ 2'%0]2

^^S(t) [xld(t)—xl(t)J2+1M1(t,^)]2.

where the d-subscripts denote the desired (i.e. Ideal) trajectory. To ensure that the

touch-down conditions are met, the weights rp must be impulse weighted. Thus we

define:

Ph(t) = CP 4(t) + 4441 6 (20 —t)	 00a)

ph (t) = rp 3(t) + 4os ,t,,6(20—t)	 (1 ob)

s0'0(0 = S0 2"tf (t) 6 (20 — t)	 00c)

S0 ^(t) = S0 1(0	 (10d)

where the functions 5o must be given suitable values, and d denotes the Dirac-delta

function. The values of the cp are given based on a study of the trajectory that

results. The chosen values are listed in Table 2.

The control law for the elevator deflection is given by:

77L 1(t -0 =(Js 2Ks Ts[k ll(t—) —k ll(t —)x l(t) —k 12(t—)'M2(t—S)

—k 13(t — S
t

)x 3(t —t) —k 14(t — Ox4(t —01

where the aircraft parameters are given by: X = —0.95 sec -1 , S = 2.5 sec,

ws = 1 radian sec -1 and the constants k . are the feedback p ar=eters derived (as

shown in [4]) by solving the Riccatian differential equations that result upon minirniz-

ing the process performance index. For these differential equations we refer the

reader to [4].

79

4, DERIVATION OF PERFORMANCE MEASURES

We consider here only one controller task; that of computing the elevator

deflection so as to follow the desired landing trajectory. The inputs for the controller

here are the sensed values of the four states.

We seek the following information. As the controller delay increases, how much

extra overhead is added to the performance index? Also, it Is Intuitively obvious that

too great a delay will lead to a violation of the terminal (landing) conditions, thus

resulting in a plane crash. This corresponds to dynamic failure, and we are naturally

Interested in determining the range of controller delays that permit a safe landing.

Consider first a formal treatment of the problem. The control problem is of the

linear feedback form. The state equations can be expressed as:

x(t) _ A-,c(t) + Bu(t)

where the symbols have their traditional meanings. Define the feedback matrix by

V_(t). Then, clearly,

U(t) _ ^_! (t —Ox(t —0

For a small controller delay (i.e., a small t), the above can be expanded in a Taylor

series and the terms of second order and higher discarded for a linear approximation.

By carrying out the obvious mathematical steps, we arrive at the equation:

X(t) = I!;(t'^)X(t) + (^()

as representing the behavior of the system (assuming the given initial condition,).

For further details, see Figure 5.

Given a closed-form expression for the k i (t) that appear in (t ,), we could

then proceed to study the characteristics of the system as a function of the matrix

E. However, in the absence of such closed formulations for the kid , the must take

recourse to the less elegant medium of numerical solution.

The procedures we follow for obtaining the numerical solution are as follows.

First, the feedback values are computed by solving the feedback differential

20

Y

t

i.

equations that define the kij . These are not affected by the magnitude of the con-

troller delay. Theo, the state equations -are woived cr, simultaneous differential equa-

tions, These are used to check that the terminal constraints have been satisfied, and

in the event that they are the performance functional is evaluated. This procedure
5

must be repeated for each new subspace. Since the environment is deterministic in

this case (no wind gusts or other random disturbances are permitted in the modc!(6)),

the hard deadline associated with each process subspace is a constant and not a

random variable.

The trajectory followed by the aircraft when the delay is less than about 60

milli-seconds follows the optimal trajectory closely although the elevator deflections

required would be intuitively assumed to Increase as the delay increases. Also, the

susceptibility of the process to failure In the presence of incorrect or no input Is

expected to rise with the Introduction of random environmental effects.

The control that Is required for various values of controller delay Is shown in Fig-

ure 6. Due to the absence of any random effects, elevator deflections for all the

delays considered tend to the same value as the end of the landing phase (20

seconds) Is approached, although much larger controls are needed Initially. In the

presence of random effects, the divergence between controls needed in the low and

the high delay values of controller delay Is even more marked. We present an exam-

ple of this in Figure T. The random effect considered here is the elevator being stuck

at -35 0 for 60 milli-seconds 8 seconds into the landing phase due to a faulty con-

troller order. The controlled process is assumed in Figure 8 to be in the subspace in

which the landing job maps into a non-critical process (defined in the sequel as So).

The diagrams speak for themselves. We shall show later that this demand on control

is fully represented by the nature of the derived cost function. .also, above a cer-

tain threshold value for controller, delay, we would expect the system to become

unstable. This is indeed the case in the present problem, although this point occurs

beyond a delay of 60 milli-seconds for all points in the allowed state space (obtained

t^

21

In tho next section), which cannot by definition occur here.

4.1. Allowed State Space

In this subsection, we derive the allowed state space of the aircraft system. To

do so, note that in EIlert and Merriam's model, X,'1 does not exist. The reason is that

the state equations do not take into account the angle of attack. In the idealized

model we are considering, it is implicitly assumed that the constraint on the angle of

attack is always honored, so that the only constraints to be considered are the ter-

minal constraints.

The terminal constraints have been given earlier but are repeated here for con-

venlence. The touchdown speed must be less than 2 feet/sec in the vertical direc-

tion, and the pitch angle at touchdown must Ile between 0 11 and 10°. To avoid

overshooting the runway, touchdown must occur at between 4864 and 5120 feet in

the horizontal direction from the moment the landing phase begins. The horizontal

velocity Is assumed to be kept constant throughout the landing phase at 256

feet/sec. 15 Thus, touchdown should occur between 19 and 20 seconds after the

descent phase begins. 16 The only control is the elevator deflection which must be

kept between —35" and 15".

The set of allowed states is generally found by solving the differential aqua-

tions for the system backwards from the point of landing. However, this can be com-

putationally expensive, so we Follow a cheaper alternative. The initial conditions of

the process as it enters the landing stage are known. Also known is that the con-

troller is triggered every 60 milli-seconds. It is assumed that the. computations take a

minimum of 20 milli-seconds to complete. Using these data, It becomes possible to

determine that portion of the allowed state-space that the controlled process is t

15 We do not consider here how that Is to be done, In practice this will constitute a second controller
Job. We do not treat this here.

16 This makes time an "Implicit" state variable.

full

22

likely to enter to a good approximation. in Figure 8, wa plot the range of allowed

state values that we 1 1;tain. As indeed it should be, the allowed stato-s acc is a

function of time.

4.2. Designation of Subspaces

We subdivide the allowed state-space found above using tho method described

in Section 2. The criterion used is the hard deadline, since the finite cost function

(derived in the next subsection) is found not to vary greatly within the whole of the

admissible state-space. The value of A chosen is 60 milli-seconds, in other words,

we wish to consider only the case where a trigger is "missed."

The allowed state-space in Figure 8 is subdivided into two subspaces, So and

Sl . These correspond to the deadline intervals [00, 120) and [120, m). So is the

non-critical region corresponding to the [120, -) interval. Here, even if the controller

exhibits any of the abnormalities considered in the Introduction, the airplane will not

crash. In other words, if the controllers orders an incorrect output, exhibits an abnor-

mal execution delay or simply provides no output at all before the following trigger,

the process will still survive at the end of the current inter-trigger interval If, at the

beginning of that Inter'.al, it was in $0.

On the other hand, if the process is in Sr at the beginning of a inter-trigger

Interval, it may safely endure a delay in controller response. However, if the controller

behaves abnormally in either providing no output at all for the current trigger cycle or

In ordering an incorrect output, there Is a positive probability of a air crash.

Notice that we explicitly consider only missing a single trigger, not the case

when two or more triggers might be missed In sequence. This is because dynamic

failure is treated here as a function of the state at the moment of triggering. if two

successive triggers are missed, for example, we have to consider two distinct

states, namely the states the process is in at the moment of those respective

23

i

triggers. To speak of deadline; intervals beyond 120 mil l i-seconds is theref ore mean-

Ingless in this case since the triggers or;cur once every 00 milli-seconds. Thl.a is why

the second deadilnc interval considered is r 1 20, n), not f 1,210,1180).

The hard deadline may conservatively be assumed to bo 60 milli-soconds in Sl.

By definition it is infinity in ^.

4.3. Finite Cost Functions

b

As indicated in the preceding section, the finite cost does not vary greatly

within the entire allowed state-space. It is therefore sufficient to find a single cost

function for So or St.

The determination of the cost function is carried out as a direct application of

its definition. That is, the process differential equations are solved with varying

values of ^. The value of ^ cannot be greater than the Inter-trigger Interval of 00

mllll-seconds since, by assumption, no job pipelining Is allowed and the controller ter-

minates any execution in progress upon receiving a trigger. The finite cost function

is defined as17

g (0 'PQ) ° P (0)	 (12)

This function is found by computation to be approximately the same over the entire

allowed state-space as defined in Figure S.

In Figure 9, the finite cost function is plotted. Tits', costs are in arbitrary units.

Bear in mind that these measures are the result of an Idealized model. We have, for

example, ignored the effects of wind gusts and other random effects of the environ-

ment. When these are taken into account, the demands on controller speed get even

greater, i.e. the costs increase.

17 Recall that %P(t) represents the contrlbutlon to the performance functlonal by a verslon that takes ^
units of t/me to compute. Since there Is only one controller job under conslderatlon, the subscript on 4 , has
been suppressod.	 s

J.

24

I

The reader should compare the nature of the cost function with the plots show-

ing olevator deflection in Figure G, and notice the correlation between the mar ;Inal

incroase in cost with Increased execution delay and the margiral Increase in control

needed, also as a function of the execution delay.

S. APPLICATION EXAMPLE FOR CONTROLLER DESIGN: CMECKPOINTING

With stringent requirements on the reliability of any computer controlling a

highly critical system, It becomes necessary to obtain mechanisms to identify and

correct controller errors, Two characteristics must be exhibited by any such mechan-

Ism: a high probability that errors once existing are caught In time, and a fast means

for recovering from the error, In this section, we deal with the lat,,vt,

One common recovery method is the use of the reonve rj Black or recovery

region which establishes checkpoints and saves the current job states during normal

execution. When an error is detected, the system rolls back to the state saved at

the previous checkpoint and the affected taS;C-version is reSllmed. Clearly, check-

points can enhance the reliability of execution and reduce the recovery overhead.

They can also, however, lei to increased controller overhead since the ins .rtion of

checkpoints increases controller delay. It Is therefore important to carefully check

during design If any overall benefits accrue from the installation of checkpoints, and

not to include them anyway through an ad-hoc design procedure. Checkpoints should

be regarded as useful supplementary devices to enhance reliability in certain cases,

not as a panacea for reliability problems. It is the purpose of this section to demon-

strate the use of the performance measures described above in a study of the

effectiveness of checkpointing. Specifically, we shall in this section consider (a)

whother checkpointing Is indicated in our aircraft landing problem, and (b) if so, what

the optimal number of checkpoints Is.

-w

25

6avernl methods for analyzing the rollback rneovory systom have been proposed

[8 - 1 L']. They in general compute the opiinium Intor-checkpoint interval for minhn,+m

total execution time. In [12], a complete expression for the ch^ractnriastic function

of total execution time Is given which flakes into account lulperfections In the chock-

points, the occurrence of error during recovory, and multi-step rollback. However,

when mean time between failure (MTRF) Is many orders of magnitude larger than both

the nominal task execution time (t:) and the duration of the phase (tv), the model for

solving the probability distribution of the task execution time and the probability of

dynamic fallurre with checkpoints can be simplified.

Let MTHF=1 ah hours. This is a reasonable assumption given contemporary pro-

cessors ([7], pae: Q 161). Then in the landing phase, the ratio of C to M7'YF is of the

order of 10 -10 . It is therefore an acceptable approximation to a::sume in computing

the execution time that no further errors ocr u r during error- rect very.

Let the occurrence of error be a Poto bjn process with rate X :--1/ MTIYY. Let

tb , t; , tov denote the time needed to set up rollback, restart, and checkpoint. Also,

we assume that the saved state may be contaminated with probability py which

means the system can be recovered using rollback with probability p b =1—ps , and has

to restart with probability ps . Thus, we have the total execution tl ,)e a^ one version,

^1

6 = ^ + ntov + troc
	

(1 3)

where 92 is the number of checkpoints Inserted and troc is the time overhead used for

recovery. truc Is a random variable which depends on the probability of failure, pb;

and ps.

Q	 if no error occurs
t cc = tb *-t,vil 	 iF orror occurs and the version is recovered by rollbacks 4)

ts+tslart	 it error occurs and the version re-itarts

where troll and tstarl are the computation undone b.:eause of rollback and restart,

26

respectively. I-et t im, be the interval bntween checkpoints and equal to ^/ In +? 11.

Tha density function of t,utt and tstart are given by /r^,t (t) ., Ne "t / (: — t, >tt.:^ for

t- G,t t„vI and f&tart(t) = AV ^` t / (1 	 n. 114) for t^-GO,,;), respectively.

Lot the density of total execution time solved from above e quation be / ((t).

Then the mean execution cost and the probability of dynamic failure are given by

COST' = 4'
p	

t)ht (t)dt	 C1:i)
-1 o

" 1.G--	 , Gs- «
	

t dt — ^	 C16)q_4r

where q { is the number of versions executed for t, during a phase, hRj the cost func-

tion for executing the j-th version of Tti , 14i the deadline associated with the j-th

version of Ti, and T;t is the probability of static failure for the j-th version of Tt dur-

Ing t which can be regarded as the probability of resource exhaustion, unsuccessful

recovery, succoSSIve failures during recovery, etc.

Using the cost function and hard deadlines given in the above section, and

assuming that ,P't Is the probability of having an error during recovery, the improve-

ment In the probability of dynamic failure, Pd},,, upon Insertion of checkpoints are

shown In Table 3, 18 The probability of dynamic faiiu, does indeed decrease as more

checkpoints are Inserted. Unfortunately, %;ie mean execution cost increases in as

this is done. Through the cost functions It is possible to express the precise extent

of this cost Increase, and decisions about tradeoffs can be made.

Wien the nominal execution time is 20 milli-seconds as assumed in ►he rest of

this paper, all that checkpoints do Is to increase the overhead, i.e. the mean finite

cost. No discernible drop exists In the probability of dynamic failure when check-

points are added. The marginal gain in reliability for any payment in finite operating

cost is therefore about zero. This was only to be expected sin g s the nominal execu-

tion time is one-third that of the hard deadline and the probability of dynamic failure

18 Since the landing job Is noncrltloal In So, the Issue of checl.pornting does not arlse there. Al. re-

27

without checkpoints was vanishingly small.

However, as the nominal execution time increases (the hard dead!lne being

assumed to be its ;1 value of 60 milli-seconds), the benefits of checkpointing

emerge. This Is made clear through the fourth column in Tablu 3 where we present the

marginal tradeoff ratio between the benefits gained in the form of improved reliability

and the loss In the form of increased controller overhead. As is evident from this, for

20 milli-seconds nominal execution time, the optimal number of checkpoints is zero.

For 30 milli-seconds, there is something to be gained in reliability by putting In one

checkpoint, for 40 milli-seconds, there is a gain to be "fad on adding up to two check-

points although the marginal gain falls off sharply after the first. For a nominal execu-

tion time of 60 milli-seconds, the benefits continue rather steadily until four check-

points have been added. The fifth checkpoint provides some not! sable improvement

in reliability, although the marginal gain is distinctly smaller than 'for the fi rst four. The

recommendation: for design are now rather clear: use no checkpoints if the nominal

execution time Is 20 milli-seconds, and use Table 3 to decide on the optimal number

of checkpoints for the other cases.

C. DISCUSSION

In this paper, we have presented a case-study of the determination of perfor-

mance measures introduced in [1), and considered an important application in con-

troller design.

Central to our paper is the idea that It is possible to objectively quantify the

performance of a controller. Owing to this objectivity, there are many possible exten-

slons to this work. One extension, presently under study, is the issue of distributed

control, and the cost of transmitting global status information to all the local controll-

ers. For guaranteed reliability, the local controllers require a complete knowledge of

marks In thls section are ther0cre concerned with the characteristics of the process in 51.

23
I
1,

the global state of the system. This, however, has a cost in terms of the extra

response times exhlolterl by the overall cc,ntrollor, If the !ocal controllees have less

than complete information, their actions cannot be optimal and might even be

incorrect. However, the response time of the controller could be significantly reduced,

with errors occurring rarely enough to make that an improvement. Readers will recog-

nize this formulation as an example of the application of Markov decision theory with

costly information with the cost functions for the controller jobs now providing the

cost of status information.

Other applications include the quasi-optimal allocation and reallocation of control

jobs to different processors In a multiprocessor controller, the dynamic control of

queues in controllers, and the objective ranking of rival computer systems as con-

trollers of any specific process.

ACKNOWLEDGMENT

The authors are indebted to Rick Butler and Milton Holt at NASA Langely

Research Center for their technical and financial assistance.

Rl INRE, NCES

(1] C. M. Krishna and K. G. Shin, "Performance Measures for Multiprocessor Con-
trollers," Performance '83: Ninth Intl Symp, Comp, Perf„ Meas., and
Eval„ pp. 229-250.

[2] D. E. Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs, NJ, 1970.

[3] A. P. Sage, Optimum Systems Control, Prentice Hall, Englewood Cliffs, NJ,
1970.

[4] F. J. Eilert and C. W. Merriam, "Synthesis of Feedback Controls Using Optimiza-
tion Theory -- An Example," IEEE Trans. Auto, Control, Vol. AC-8., No. 4 April
1963, pp. 89-103.

29

3

'd

[5] l„ T. Wu, "Models for Evaluating The Performability of Degradable Computing
Systems," Cornputing Fesearch Laboratory Report CWL-Ne-7 82, The Univer-
sity of Michigan, Ann Arbor, June 1982,

[6] J. F. Meyer, et, at, "Performability Evaluation of the SIFT Computer,"
Trans. Comput„ Vol. C-29, No. 6, pp, 501 - 509, June 1980,

[7] J. H. Wensley, et, at, "Design Study of Software-Implemented Fault-Tolerarice
Computer," NAS11 Contractor Report 8011, 1982.

[8] K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, "Analytic Models for
Rollback and Recovery Strategies in Data Base Systems," IEF,E Trans, Softzu,
Engg., Vol. SE-1, No, 1, March 1975, pp. 100-110.

[9] K. M. Chandy and C. V. Ramamoorthy, "Rollback and Recovery Strategies for
Computer Programs," IEEE Trans. Comvut,, Vol. C -21, No. 6, June 1972, pp.
546-556,

[10] E. Gelembe and D. Derochette, "Performance of Rollback Recovery Systems
under Intermittent Failures," Comm, of the AChi, Vol. 21, No. 6, June 1978, pp.
49G-499.

[11] J. W. Young, "A First Order Approximation to the Optimum Checkpoint interval,"
Comm, of the ACID, Vol. 17, No. 9, Sept. 1974, pp. 530-631.

[12] Y,-H. Lee and K. G. Shin, "Design and Evaluation of a Fault-Tolerant Multiproces-
sor Using Hardware Recovery Blocks," Computing Research Laboratory
Report CRL-TR-6-82, The University of Michigan, Ann Arbor, August 1982.

[13] K. G. Shin and C. M. Krishna, "A Distributed Microprocessor System for Control-
ling and Managing Military Aircraft," Proc, Distributed Data Acquisition, Com-
puting and Control Syrnp,, pp. 156-1 66, Miami, FL, December 1980.

Y

30
j.

A

v

o	 CXH

N
a	 u^'i

O	 ^
V	 ^

•	 O
U

N

U

U

^ C ^

p G,'̂-7, N

w

O

a

aa
c

xa

x a xch
a
A

^ao^,,Apv

zx0U

x

O A ^ d

^CWC-^Pa

O

H
p^^^"
a ^ ~Ly

P,

U

N

N

U
N

Q1

N
'JY
N

r-I
O

O
U

4J
44

^i
U
N.

r4
Q)

Pi

3

t

N
d
U

no

trigger	 trigger	 trigger trigger
1	 2	 3	 4

tj=RESP(ij) for j=1,2,3,4.

Mgure 4. Illustration of Cost Functions.

where

a ll = [1—c iik ii(f) a -1 [b ii —k ii() c 11 —c iiff 0,0'(t)+2b likn(t)+ki2(t)—ciik2 (t)3]

d lz = [1—c II k ti(t)ej ~1 [b 12 —, Ilk 12(t) —cii efbIlk t z(t)+b1zkii(t) +k22(t) —ciik2i(t)3^

d i3 = [1—cilkii(t)fl-1 [b13—CIlk13(0 +bi3kII(t) +k2W)—c2kii(t)ki3(t)f]

Q 14 = [1—c ilktt(t)]-1 [—k14(t)— bIIk14(t)t—k z4(t)^+ cilkII(t)k14(t)

When the execution delay is t, the approximate state equations are

a ll [k i(t) + ti go a(t) 13 a (t)+ b ilk t(t)+k2(t)—c zlk l(t)kii(t)3l
^(t) ; E(t,Ox(t) +	 o

0
0

ZSgure t5., The Approximate State Equations

k

0

TIME (SEC)

(c) t = 50 msec.

40 msec,

TIME (SEC)

(d) t = 60 msec.

fV

O

O
FY

O

F4

ea

C73

u

C3

C:3

11

O

N
ci

0
1^
Gi

C3
1

cr)

cli
,V:
ca

cn
C)
O

O

m
co
O

0

V

figure 6. Elevator Deflection.

11PC I+cW

(a)t =0

Q
co

N
O

N
+r
d

m̂
a

d
1	 .

Na0

Np9

N
O

N
O 0

q 1 i^^1 ICI

C ^.UW

O

1

N
a

O

mm
0

1	 0,00 4,00	 0.00	 12.00	 16100	 20,00

TInE ISECI

(c)	 = 50 cosec.

TIRE ISECI

(b) t = 40 cosec.

Na
O

N
O

9

H
u

N
A

Na
ci

m
0

Na

N
O

4U
C

uW

G

N
a

Q

m
ca
0
1 0.00	 4,00	 8.00	 12.00	 16.00	 20,00

TAME ISECI

(d) = 60 msec.

Mgure 7. Elevator. Deflection with Abnormality.

r

TIME (SEC)

r

figure 8(a). Allowed State Space: Altitude.

W9M
A•

Cr

t
r	 a

r

t

^l

i

.so	 e.so	 aso laso	 n.so	 tz.sa

TIME (SEC)

f
t

t

t

^

^

^

♦ ^^`	 // S p

1	 ^

I/
I^ S1

wn
H
J
Cr

j

c^
c^
LON

0
0

0N

Lu C3

^ v
L0

W
►-QX

w
w cm
o Cmn

0
cR
In

u
1

wN,.. vJ

ti
Cr

ca

a

I

! .50	 8,50	 8«A10,50 1150Desired	 /
Descent Rate	

TIME (SEC)

r
/	 r3

1	 r
t	 3

'0	 /	 33

Of	
so

i

1	 l^ 3

I

o .^

1=0,00
	

4.00	 8,00	 12.00	 16.00	 20.00
TIME (SEC)

iz.

111gure 8 (b). Allowed State Space: Descent Rate.

LO
CRC)

CY)

C\jC^
W
—j
LD
Z
cc

U

CL C=)

CRO

M0
CD

1 0,00 4.00	 8.00	 12.00	 16.00	 20.00

TIME (SEC)

Figure 13 (c). Allowed State Space: Pitch Angle.

CC)
O
O

0

N
0
0

W
Cra
wo-19
C o
z i
CC

H
0.

N
0
t7

1

et
0
0

I

CO
0
0
1 0.00 4.00	 8.00	 12.00	 16.00

TIME (SEC)
20.00

Mgure 8(d). Allowed State apace: Pitch Angle Raise.

r,

0
cq0

00
oc

c

C

H
U)
O
u

c

-^	 9u.uu	 50.00	 KOO
DELAY (NSEC)

Flgurc 9. Landing Job Cost ;'unction.

4,

Feedback Term Value

b ^—	 -0.600
b 19, -0.760

0.003
b 102.4

-0.4
-2.374

Table 1. Feedback Values

Weighting Factor Value

^p l (t) 99.0

S°2.tt (t) 20.0

93(t) (0:5t<15) 10
^o 3 (t) (15:!9t-!920)

V g ,t f

010001
1.000

(P4 0,00005
0.001

Table 2, Weighting Factors

n MEAN COST Pdyn Trade offx10"

0 0.12846 0.3086E-15 -	
-

1 0.12909 0.3086E-15 0.0
2 0.12971 0.3066E-15 0.0
3 0.13033 0.3086E-15 0.0
4 0.13095 0.30861,-15 0.0
5 0. 13 157 1	 0,3086E-15 0.0

(a). Nominal execution time 20 msec.

n MEAN COST Pdyn Tradeoffx107

0 0.26156 0.37037E-07 -
1 0.26431 0.37037E-08 121.5
2 0.26709 0.37037E-08 0.0
3 0.26991 0.37037E-08 0.0
4 0.27272 0.37037E-08 0,0
5 0.27567 1	 0.37037E-08 0.0

(b). Nominal execution time 30 msec.

n MEAN COST Pdyn Tradeoffx107

0 0,55352 0.30555E-06 (-
1 0.55472 0.43055E-07 2177.0
2 0.55586 0.30555E-07 10916
3 0,55694 0.30555E-07 0.0
4 . 0,55795 0.30555E-07 0.0
5 0.55891 0.30555E-07 0.0

(c). Nominal execution time 40 msec.

Table 3, Checkpoints

f
n Y AN COST Pdyn Tradeoffx107

0 0.89694 0.46666E-06 -
1 0.90848 0.35666E-06 --	 95.6
2 0.92025 0.26166E-06 80.6
3 0.93231 0.16666E-06	 76.7
4 0.94466 0.71666E-07	 76.9

0.95730 0.46666E-07 19. Q
'h

(d), Nominal execution time 50 cosec.

Pb =0.9, MTBF=104 hours , t,,,=0.1 msec. tb =2.0 msec. t,=2.0 cosec,

Tradeoff ratio for n checkpoints (n>_1)

COST with n chechRoints - COST with n-1 checkpoints
Pdun with n-1 checkpoints - P d^, with n checkpoints

Table 3. (Cont.) Checkpoints

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf

