
September 1984

EVALUATION OF AUTOMATED
DECISIONMAKING METHODOLOGIES
AND DEVELOPMENT OF AN
INTEGRATED ROBOTIC SYSTEM
SIMULATION

Prepared by:

Dennis C. Haley
Bonni J. Almand
Mark M. Thomas
Linda D. Krauze
Keith D. Gremban
James C. Sanborn
Joy H. Kelly
Thomas M. Depkovich

This work was performed for NASA
Langley Research Center under
Contract NAS1-16759.

The use of specific equipment or
company brand names in this report
does not in any way constitute endorsement
of those products or companies.

MARTIN MARIETTA AEROSPACE
DENVER AEROSPACE
P.O. Box 179
Denver, Colorado 80201

CONTENTS

INTRODUCTION 1
Background 1
Contract Objectives 3
Report Organization 3

MANIPULATOR SYSTEM DEFINITION 6
Arm Creation/Modification 7

Base 8
Joint/Link 8
End Effectors 11
Graphics 12

Environment Creation/Modification 12
Load Objects Creation/Modification 14
System Creation 15

ANALYSIS CAPABILITY 18
Introduction 18
Kinematic Analysis . . 21

Link Positioning 21
Link and Point Velocities 24
Link and Point Accelerations 25
End Effector Motion 26
Task-Oriented Motion Specification 29

Requirements Analysis 33
Joint Reaction Forces and Torques 33
Actuator Drive Torques 34
Presentation of Results 35

Response Simulation 35
Actuator Driving Torques . 36
Position- and Velocity-Related Torques 37
Effective Inertia Matrix 38
Joint Friction 39
Motion Constraints 40
Impact of Collision 44
Coulomb Friction at the Constraint Points 45

Modeling the ISRL Multisensor End Effector 47
Configuration of the ISRL End Effector 47
Geometry of Gripper Operation 50
Gripper Dynamics 52
Grasping a Load Object 55
End-Effector Force Sensing 57

POSTPROCESSING CAPABILITY 59
Introduction 59
Simulation Replay .. 59
Simulation vs Hardware Replay 60
Parameter Plots 60

11

MANIPULATOR CONTROL 63
Manipulator Description 63

Kinematics 64
Manipulator Dynamics 65
Performance Requirements 65

Control Algorithms 68
Linear Discrete Control 68
Resolved Acceleration Control 75
Resolved Motion Force Control 75

Adaptive Control 84
Parameter Estimation 84
Linear Adaptive Control 86
Nonlinear Adaptive Control 90
Parameter Estimation ... 91
Model-Matching Control 96

Force/Torque Control 102
Hybrid Control 105
Active Stiffness Control 108

MANIPULATOR TRAJECTORY PLANNING 112
History and Development of Path Planning Methods 114

Graph Search of Discretized Environments 114
Visibility Lines and Growing Obstacles 115
Graph Search of Representations of Free Space 116

Path Planning Research Under the ROBSIM Contract 117
The Generalized Cone Method 117
The Joint Space Method , 117
The Incremental Constrained Motion Method 121

Comparison of Current Methods and Directions for
Further Study 126

The Generalized Cone Representation of Free Space . . . 126
Modeling Physical Environments in Joint Space 127
The Incremental, Constrained Motion Method 127
Directions for Further Study 127

IMAGE PROCESSING AND VIDEO SIMULATION 129
Edge Detection 129

Detecting Edge Pixels 129
Thinning Edge Pixels 131
Linking Edge Pixels 133

SIMULATION VALIDATION 137
Planar Arm Parameter Identification 137
Simulation Comparison - Elbow 139
Simulation Comparison - Shoulder 142
Simulation Comparison - Combined Motion 143
PUMA Parameter Identification 147

CONCLUDING REMARKS 156
REFERENCES 160

111

Figure Page

1 ROBSIM Functional Blocks 4
2 Hinge, Swivel and Sliding Joints 9
3 Joint/Link Sequencing 10
4 Detailed Graphics Representation of Manipulator Arm ... 13
5 Load Local and Component Coordinate Systems 15
6 Complete System Definition 17
7 Kinematic Representation of Serial Manipulator 21
8 Constant-Acceleration Constant-Velocity Constant-

deceleration Profile 31
9 Results of Simulation Driven by Torques, Generated in

Requirements Analysis 36
10 Coulomb/Static Friction on System Response 40
11 Effect of Static Friction at Joint 41
12 Constrained Motion of End Effector 42
13 ISRL End Effector 48
14 Functional Components of the ISRL Gripper 49
15 Kinematics of the ISRL Gripper 51
16 Block Diagram Representing the Dynamics of Gripper

Operation 53
17 Location of Cylindrical Peg 56
18 Critical Contact Points Between Peg and Jaw Surface ... 56
19 Jaw Forces Resulting from an Applied Load and Gripping

Force 58
20 Simulation vs Hardware Replay 61
21 Joint Displacements 62
22 Six-Degree-of-Freedom Manipulator 64
23 Manipulator Joint Position Solution Procedure 64
24a Three-Link Planar Arm 66
24b Three-Link Planar Arm Dynamic Equations 67
25 Two-Link Planar Manipulator Definitions 68
26 General Controller Structure 69
27 Pole-zero Compensator 70
28 PID Controller 71
29 System Pole-Zero Diagram 72
30 Root Locus with Pole Cancellation 73
31 General Control Loop with Disturbances, W(Z) 74
32 General Adaptive Controller 84
33 General Parameter Estimation 85
34 Model Reference Control Structure , 88
35 Linear Adaptive Control Simulation 89
36a Three-DOF Adaptive Control Simulation Results - Joint 1 99
36b Three-DOF Adaptive Control Simulation Results - Joint 2 . . 100
36c Three-DOF Adaptive Control Simulation Results - Joint 3 . . 101
37 Compliant Control for Peg Insertion 102
38 Rigid Peg Supported Compliantly by Lateral Spring Ky

and Angular Spring KI at Distance Lg from Peg's Tip . . . 103
39 Scheinman Force-Sensing Wrist . 104
40 Conceptual Organization of Hybrid Controller 105

IV

41 Hybrid Controller Implementation 106
42 Hybrid Control Simulation Configuration 107
43 Profile of Controlled Force Component . . 107
44 Stiffness Control System 109
45 Stiffness Control System Implementation in ROBSIM 110
46 Active Compliance Control Ill
47 Discretization of the Environment 114
48 Visibility Line Method of Path Planning 115
49 Path Planning in Complex Environment 116
50 Joint Space Method of Path Planning 118
51 Visibility Line Method in Three Dimensions 119
52 Translation Functions from Physical to Angle Space 120
53 An Hierarchical Object Representation 120
54 Path Planning in Joint Space 121
55 Arm Position in Cluttered Environment 122
56 Constrained Motion of Joint 123
57 Actions of a Rule-Based Planner 125
58 Classification of Edge Types (after Shirai [1978]) 134
59 PUMA Manipulator 135
60 Planar Arm Configuration 137
61 Elbow Simulation and Hardware Positions, Sinusodal Motion . 141
62 Elbow Simulation and Hardware Positions, Trapezoidal Motion . 141
63 Shoulder Simulation and Hardware Positions 142
64 Hardware and Simulation Shoulder Position for Combined

Motion 144
65 Hardware and Simulation Elbow Positions for Combined Motion . 144
66 Shoulder Hardware and Simulation Positions after Offset , - 145
67 Shoulder Hardware and Simulation Positions, Combined Motion . 146
68 Elbow Hardware and Simulation Positions, Combined Motion . . 146
69 Kinematic Parameters of the PUMA 147
70 Locating a Point on the Joint Axis 148
71 PUMA Mass/Centroid Parameters 150
72 Static Load Measurement Configuration 151
73 PUMA Joint 3 Position Profile 154
74 PUMA Joint 3 Velocity Profile 154
75 PUMA Joint 3 Acceleration Profile 155
76 Preliminary ROSS Simulation Graphics Display 157
77 Display of robot Arm Converted from a CAD/CAM DataBase . . 158

Table

I System Definition Symbols 7
II Notation in Analysis Capabilities Discussion 19
III Nonlinear Approximations . 69
IV Notation for Manipulator Path-Planning Section 113
V Planar Arm Link Mass Properties 138
VI Motor Parameters Initially Used in Simulation 139
VII Planar Arm Motor Parameters 143
VIII PUMA Kinematics 148
IX Comparison of PUMA Characteristics 148
X Measured Friction and Gravity Forces 150
XI Joint Static Friction Torques 152

SUMMARY

Work tasks that require extensive manual labor in hazardous environments,
(e.g., NASA advanced missions) would derive great benefit from increased use of
automation technology. This report documents a NASA-sponsored activity to de-
velop the specific technologies needed for increasing the role of automation in
such missions and to implement a generic computer simulation capability for
manipulator systems.

The computer simulation developed provides the ability to perform kinema-
tic and dynamic analysis of user-defined manipulators. The user establishes a
manipulator system model, including arms, load objects and an environment, in
response to program prompts. The task profile is also specified interactively
by the user and consists of motion segments utilizing position or rate control
in joint or end-effector motion coordinates, and such nonmotion steps as GRASP
(for grasping a load object).

The kinematic analysis provides positions, velocities, and accelerations
of all parts of the system for the prescribed motion; it incorporates a robust
iterative joinc solution algorithm for generality. The dynamic analysis
procedures include requirements analysis, which calculates the system loads
for specific motions, and response simulation, which gives the motion
trajectory resulting from a prescribed set of driving torques or feedback
control law.

The analysis results can be displayed as printed tabular output or plots
of the trajectories of relevant parameters. Animated graphic display is avail-
able during system creation and analysis to verify the system configuration and
motion.

The specific automation technologies investigated include control system
design, trajectory planning and image processing. A general overview of con-
trol system design is presented, with special emphasis on adaptive control and
hybrid control of forces and positions. Computer simulation of these control
modes is available.

Three algorithms for generating collis ion-free paths through cluttered en-
vironments were implemented and compared. The algorithms include a joint space
search method, a method in which free space is represented by a collection of
generalized cones, and an incremental motion procedure in which constraints are
translated locally into joint coordinates. The benefits and drawbacks of each
method are discussed.

The literature on edge detection is reviewed in this report. An edge-
detection algorithm was implemented, along with a computer simulation of a
manipulator—mounted camera for vision sensing.

Appendices to this report describe in detail the programming and use of
the computer simulation package (available through COSMIC).

vi

INTRODUCTION

Background

This document reports the results of work performed in Tasks 9 through 20
of contract NAS1-16759, Evaluation of Automated Decisionmaking Methodologies
and Development of an Integrated Robotic System Simulation. It was prepared
by Martin Marietta Denver Aerospace for the Langley Research Center of the
National Aeronautics and Space Administration (NASA-LRC) in accordance with the
contract statement of work. These tasks constitute Phases II and III of a mul-
tiphase activity addressing the technologies relevant to design and operation
of advanced manipulator systems. Phase I of this activity concentrated on the
identification and evaluation of artificial intelligence techniques applicable
to NASA advanced missions and on developing a framework and mathematical models
for the computer simulation of manipulator systems. The results were docu-
mented in 1982 (NASA Contractor Reports 165975, 165976 and 165977).

This project is motivated by the realization that NASA advanced missions
require increasing use of automation technology for both economical and per-
formance reasons. Factors influencing this trend include:

1) . The cost of supporting man in the hostile space environment is much
greater than that of supporting an unmanned system;

2) Human strength, dexterity, reach and precision are too limited for
some applications;

3) A well-designed automated system provides more optimal control than a
human controller;

4) Many mission tasks are highly repetitive and mundane. Automation
technology is ideally suited for such applications, while humans tend
to become bored and make more mistakes;

5) Automation systems are better suited for round-the-clock operations
that more fully utilize limited resources on space missions.

Despite these drawbacks involved in direct human operation or control,
the adaptability, resourcefulness and problem-solving ability of man are still
needed for the complex dynamic environment associated with space applications.
Current robot systems are limited to relatively simple, preprogrammed tasks in
structured environments and incorporate very little machine intelligence and
external sensing. To achieve the ambitious goals of the space program in such
areas as space station and long-life reserviceable spacecraft, it is essential
to reduce direct human control of the robotic systems. This reduction can most
naturally occur over a four-phase development process.

The first phase is to develop the required system with man in the loop to
provide control and the problem-solving functions. The second phase of robotic
system evolution is to extract the man from the primary control loop to assume
a supervisory role. In this role, the operator will perform the function of
planning out a sequence of tasks to achieve a specific goal. The robotic sys-
tem will perform the tasks of trajectory planning, obstacle avoidance, and
joint control. In the third phase, the individual will be extracted one more
level. In this phase, the operator will perform the function of establishing
intermediate goals for the robotic system. The robotic system will perform the
functions associated with breaking down the specific goals into individual
tasks to be performed. The final phase of robotic system development will re-
sult in a fully autonomous robotic system.

To accomplish these goals requires dramatic improvement in some of the ma-
nipulator component technologies, especially in the fields of sensing, control
and artificial intelligence. This contract activity addressed several of these
issues; implementations were developed for image processing (edge detection),
intelligent path planning, and advanced control strategies (including adaptive
control and hybrid force/position control).

Development of the complex technologies associated with advanced automa-
tion in a timely and cost-efficient manner requires extensive use of computer
simulation tools that allow implementations to be evaluated and compared be-
fore building hardware prototypes. The capabilities that a kinematic simula-
tion (i.e., one in which motions, not forces, are considered) can provide in-
clude:

1) Find and display manipulator dexterity and workspace. This can be
used to evaluate kinematic designs, suggest workcell arrangement
(where feasible), and help design systems for maintenance and repair
by automation;

2) Verify and implement path planning, including obstacle avoidance and
singularity detection;

3) Evaluate improvement in system operation from some types of sensors
such as proximity sensors or moving video cameras;

4) Determine potential speed of operation;

5) Training for teleoperator control using the simulation instead of
hardware, and evaluate the different levels of human interaction in
the control loop.

A dynamic simulation also includes the system forces and provides addi-
tional capabilities such as:

1) Verification and evaluation of controller designs, especially those
that incorporate advanced control concepts. For example, adaptive
control schemes often involve identification of system parameters from
response information. With a dynamic simulation, the actual values
for the parameters are specified so the identification scheme can
readily be verified;

2) Verification of system performance, structural integrity, load distri-
bution and component stress levels;

3) Testing the use of force—related sensors such as a force/torque wrist
or gripper force sensors in system operation;

4) More accurate simulation for teleoperator training, including control
involving force-feedback or dynamic interactions with the environment.

A dynamic simulation package for the entire manipulator system forms an indis-
pensable tool for design and development of automation implementations for NASA
advanced missions.

Contract Objectives

The primary objectives of this contract activity are the implementation
of an integrated robotic simulation package and development of the technolo-
gies relevant to operation of advanced manipulator systems. The research per-
formed and software developed during the contract phases reported here focused
on the following capabilities:

1) Computer simulation of a robot in operation, including system kine-
matics anvi uynaiu3.cs, interactive contro.*. GJ. program execution **y <_n&
user, and graphic display of the system operation;

2) Computer simulation of multisensor grippers;

3) Control concepts for manipulators incorporating adaptive techniques
and control of force levels as well as positions;

4) Trajectory planning for manipulator motions in unstructured environ-
ments ;

5) Image processing and simulation of a manipulator-mounted video camera.

Report Organization

This report consists of a main text that describes the study results, in-
cluding the technical aspects of the robotic simulation (ROBSIM) package and of
the automation technologies investigated, along with two appendices that docu-
ment the computer implementation of ROBSIM. ROBSIM consists of three func-
tional packages (Fig. 1):

1) System definition function - Allows the user to interactively create a
manipulator system containing manipulators, load objects and an envir-
onment. This package addresses Task 12 of the contract;

2) Analysis tools function - Contains requirements analysis and response
simulation options for investigating the load/motion relationships of
a manipulator system in operation, and addresses Tasks 14, 15 and 16
of the contract;

3) Postprocessing function - Aids in interpreting the analysis results by
graphic display of results, replay of simulated motion, etc.

('Animation,
Parameter
Plots, etc

System
Definition
Function System

(Description

iAnalysis
iTools
I Function

Post-
processing
Function

iLegend:
i— — -»-. Control

Results

(Trajectories,
JLoads, etc

Figure 1.- ROBSIM functional blocks.

The following three sections of this document describe the technical ap-
proach employed in each of these functions.

The next section after these sections discusses advanced controller con-
cepts and their evaluation and simulation. It covers work performed in Tasks
13, 17 and 19 of the contract. The section after this describes trajectory
planning research performed for Tasks 9 and 18. Three methods for obstacle
avoidance were implemented and evaluated. Video simulation and image process-
ing are discussed in the following section. The video simulation module and
edge detection algorithm address the requirements of Tasks 10 and 11. The work

in Task 20, hardware vs software validation, forms the next section. This sec-
tion was addredded with cooperation from NASA-LRC. Validation efforts were
carried out on a 2 DOF planar arm at Martin Marietta and a 6 axis PUMA robot at
NASA-LRC. The final section of this text summarizes the results of this activ-
ity and describes avenues for further efforts to expand, enhance and utilize
capabilities developed during the performance of this contract.

This document has two appendices available through COSMIC.* Appendix A
is a ROBSIM User's Guide and describes the steps involved in running the pro-
gram. Appendix B provides the programmer with additional information concern-
ing program implementation. This appendix and the in-code documentation pro-
vide sufficient information to allow modification of the program for special-
purpose applications.

* Inquiries concerning the program ROBSIM, Appendix A (User's Guide), and
Appendix B (Programmer's Guide) should be directed to: COSMIC, 112 Barrow
Hall, University of Georgia, Athens, GA 30601.

MANIPULATOR SYSTEM DEFINITION

This section describes the methods implemented in the ROBSIM package for
defining a robotic manipulator system. The discussion of the system definition
is separated into four subsections:

1) Manipulator arm creation/modification;

2) Environment creation/modification;

3) Load objects creation/modification;

4) System creation.

A system is actually composed of one or more of the components listed in items
1) through 3) above.

Manipulator arm creation/modification is used to define the mass and geo-
metric properties of one robot arm. This includes properties for the base, all
joint/link pairs, and the end-effector (also called "tool" or "hand"). De-
tailed geometries may also be defined for each part of the arm. These, how-
ever, are used for the graphics displays that accompany the ROBSIM framework
and do not affect arm motions or any of the analyses methods described later.

Environment creation/modification is used to simulate immovable objects in
the workspace of the manipulator arm. Currently the usefulness of the environ-
ment definition is limited to graphic displays and does not affect or hinder
the manipulator motion in any way.

Creation/modification of load objects is very similar to that of the en-
vironment, with the exception that load objects may be moved around the work-
space by one or more manipulator arms.

System creation is used to bring together the components into one coherent
group. A system may contain as little as one manipulator arm or multiple arms,
a detailed environment, and a group of load objects. Each component is placed
in the system with respect to a reference or world coordinate system. Table 1
lists the notations used in this section.

TABLE I. - SYSTEM DEFINITION SYMBOLS

Xi

[Pi]

[jpi]
Ri

Ii
jhij

jhjj

Bi
Hi]
mi

bi

li

Ei . Eo .Ai> ^i

local coordinate system for component i

coordinate system i-to-world coordinate system
transformation matrix

coordinate system i to j transformation matrix

vector defining location of origin of local coordinate
system of component i in world coordinate system

vector defining the location of i in world coordinates

vector from the origin of joint i to origin of joint j in
the i coordinate system

vector from joint j origin to link j center of gravity in
the j coordinate system

angular displacement of joint j

inertia matrix of component i

mass of component i

radius of simple cylinder representation of component i

length of simple cylinder representation of component i

endpoints of simple cylinder representation of
component i

Note: If i or j is a b, this denotes the manipulator base; if an L it
refers to a load object.

Arm Creation/Modification

The method of manipulator arm definition implemented in ROBSIM separates
components of the arm into one of three categories:

1) Base;

2) Joint/link pairs;

3) End-effector.

The base of the arm is defined first, followed by each of the joint/ link pairs,
and finally the end-effector. Each component of the arm is defined within its
own local coordinate system, which is referenced back to the world coordinate
system.

Base. - The local coordinate system of a manipulator base is denoted Xfc.
The location and orientation of this local coordinate system with respect to
the world system is defined by the user. Rj, is the vector containing the
world system coordinates of the origin of the X^ coordinate system. Orienta-
tion of Xfo with respect to the world system is given by the matrix [P̂ l •
The columns of [P̂] contain direction cosines of each axis of Xjj with the
world coordinate system axes. This orientation transformation can be used to
locate any point of interest with respect to the world using the relation

££ = R,, + [Pblbli

where .̂£1 is the location of the point of interest in the base coordinate
system. The base itself is modeled as a simple cylinder with the centerline
along the base coordinate system x-axis.

In the current version of ROBSIM, the base is stationary once placed in a
system. For this reason, mass properties are not defined, only geometric pro-
perties are.

Joint/link. - The majority of the arm is described as joint/ link pairs.
Each joint' is defined to have a specific location and orientation. However,
all mass properties of the joint/ link pair are associated with the link. The
local coordinate system for each joint is denoted by X^ where L is the joint
number. The joints of the arm are numbered consecutively, starting with joint
1 next to the base. Three types of joints are available for ROBSIM modeling:

1) Hinge joints;

2) Swivel joints;

3) Sliding joints.

Hinge joints rotate about the joint local y-axis, swivel joints about the
x-axis, and sliding joints translate along the x-axis. Figure 2 shows each of
the joint types. The location of each joint j is specified by the vector i£i j >
the vector from the previous joint i (or base if j = 1) to the current joint j
in the X^ coordinate system. To locate this joint in the world coordinate
system, the transformation matrix [P̂] and local joint location vector ihj^
multiplied and added to the world system location vector of joint i

Rj = R£ + [Pi

or

Rj =

for sliding joints, where 0j is the linear displacement for joint j and
[Pj] is the transformation matrix from the joint j coordinate system to the
world coordinate system.

8

/\

v /
Figure 2.- Hinge, swivel and sliding joints.

Joint orientation is also defined with respect to the previous joint with
the transformation matrix liPjl. Each column contains the direction co-
sines of an axis of the Xj coordinate system to the X^ coordinate system
axes. The transformation matrix [Pj] is then calculated from

The capability for user-defined effective actuator parameters is included for
each joint. These parameters are:

1) Actuator torque constant;

2) Motor gear ratio;

3) Actuator amplifier gain;

4) Back EMF constant;

5) Motor effective inertia;

6) Motor winding resistance;

7) Motor winding inductance;

8) Coulomb friction coefficient;

9) Static friction coefficient;

10) Effective viscous damping.

The use of these parameters is discussed in detail in the Analysis Capability
section. The initial joint position '? j is the displacement of the joint
measured from its original location and orientation.

The link accompanying each joint is defined as being placed after the
joint. For example, link 2 goes from joint 2 to joint 3. The link is defined
initially as a simple cylinder with its centerline along the joint local
x-axis. Endpoints of the link are just coordinates along this axis. Figure 3
shows joint/ link sequencing and locations. ROBSIM puts the center of mass at
the geometric center of the link. The link center of mass vector jhjj
then has the coordinates.

0, Oj

Link j - 1

Figure 3.- Joint/link sequencing.

10

Multiplying by [Pj] transforms this vector to the world coordinate system.
As an alternative to this placement of the center of mass, an arbitrary center
of mass may be defined by user input of the local system coordinates of the de-
sired center of mass. The algorithm implemented in ROBSIM for calculating the
link inertia matrix uses the following equations for computing the diagonal
terms

i-3 3 = *2 2

The off-diagonal terms are set to zero as there are no cross-products of in-
ertia for the simple cylinder representation used to model the links. To spe-
cify a different inertia matrix, the user may input values directly.

Point masses may be added to each link if desired to create an arbitrary
mass distribution. The addition of point masses requires that the total mass,
center of gravity, and inertia matrix of the link be recalculated. The total
mass is simply the sum of the link mass and all associated point masses

of pts
mitotal = mi +2_)mn

n=l

The new center of gravity is determined using

\-> r

Calculating a new inertia matrix is done using

t1^ total = t1^ + "il1^

where [E] is the identity matrix and _bj is the vector from the new
composite eg to the eg of j (link or point mass).

It should be noted that in addition to the three joint types mentioned earlier,
"special joints" where the motion between adjacent joints may be constrained
are also provided for. However, the use of any special joint would require a
program modification that is not readily available at this time.

End-effectors . - The end-effector of a manipulator arm is modeled exactly
as the link of a joint/ link pair and includes the same provisions as links do
for specifying arbitrary mass distributions.

11

Graphics. - ROBSIM has the capability to define detailed shapes for any
component of the manipulator arm. Each part of the arm may be described as
one of, or a combination of, any of the following shapes:

1) Cylinder;

2) Cone;

3) Rectangular solid;

4) Symmetric trapezoid;

5) Nonsymmetric trapezoid;

6) Triangular structure;

7) Data tablet structure;

8) Fillet;

9) Nonplanar entity.

These detailed geometries are used only for the Evans and Sutherland graphics
display. All mass properties and arm motions are based on simple cylinder re-
presentations of the arm components. Figure 4 shows a detailed graphic repre-
sentation of a manipulator arm.

Environment Creation/Modification

Definition of an environment simulates the workspace or surroundings of a
manipulator system. Any components considered to be part of the environment
are completely stationary once placed in the system. Consequently, no mass
properties are ever defined and the environment is used only for the Evans and
Sutherland graphic display. There is no effect on manipulator arm motion or
any of the analysis capabilities. Environment definition is carried out by
specifying the placement of detailed geometric components in the world coor-
dinate system. The geometries available are:

1) Cylinder;

2) Cone;

3) Rectangular solid;

4) Symmetric trapezoid;

5) Nonsymmetric trapezoid;

6) Triangular structure;

7) Data tablet structure;

8) Fillet;

9) Obstacle entity.

To specify the placement of these components, each has its own local coordinate
system whose x-axis is the centerline of the component. The origin of the lo-
cal coordinate system is contained in the vector r_£. The orientation of each
component's local coordinate system is defined by a transformation matrix whose
columns contain the direction cosines of the local x, y, and z axis to the
world coordinate system axes.

12

ROBOTIC SYSTEM SIMULRTICN PROGRRM CROBSIM)

SYSTEM DEFINITION - DETOI1.ED GEOMETRY REPRESENTRTION

MARTIN MARIETTA

Figure 4. - Detailed graphics representation of manipulator arm.

13

Load Objects Creation/Modification

Load objects are similar to the environment in that they are used to sim-
ulate the workspace of a manipulator. Unlike components of the environment,
load objects are not stationary but may be moved by a manipulator arm. Similar
to arm link components, each load object is defined initially as a simple cyl-
inder with a local coordinate system XL, and with the centerline of the ob-
ject along the local x-axis. The location of the origin of the X£ coordinate
system is defined by the vector rT. The orientation of the local coordinate
system is again defined by a transformation matrix whose columns are the direc-
tion cosines of the local x, y and z axes to the world coordinate system axes.

The center of mass of each load object is determined using the method de-
scribed for manipulator links. A different center of mass may be specified by
user definition of its x, y, and z coordinates in the XL coordinate system.
Inertia matrix calculations are also the same as for the links of a manipulator
arm. Point masses may be added to a load object to create an arbitrary mass
distribution. The location of the point mass is defined by the vector
T.rrt-. The new mass properties (total mass, center of gravity, and inertia
matrix) are calculated by the same algorithms as used for the manipulator
links.

The preceding paragraphs have described the mass properties for load ob-
jects. Evans and Sutherland graphic displays are available to portray the load
objects. This capability allows the description of detailed geometries for
each object. The detailed geometry definition is done by describing each load
object as a group of one or more of the following geometry components:

1) Cylinder; 6) Triangular structure;

2) Cone; 7) Data tablet structure;

3) Rectangular solid; 8) Fillet;

4) Symmetric trapezoid; 9) Nonplanar entity.

5) Nonsymmetric trapezoid;

Each of these components has its own local coordinate system whose location and
orientation is specified with respect to the load local coordinate system.
Figure 5 shows the relation of component coordinate systems to the load local
coordinate system.

14

ZL

Figure 5. - Load local and component coordinate systems,

System Creation

Creation of a manipulator system brings together all of the items dis-
cussed up to this point—manipulator arms, an environment, and load objects.
The system is put together with respect to a reference or world coordinate sys-
tem. This is the same world coordinate system used previously for item defini-
tion. Adding an environment to the system places it at the same location and
orientation as specified during environment creation.

15

Placement of a manipulator arm in the system may be modified from the lo-
cation and orientation called out during arm creation. The new location of the
arm base is stored in the same vector R|j. Location vectors for each joint
are also updated. The new base orientation is a concatenation of the matrix
[P!J] specified during arm creation and the matrix [bPfo'l* which specifies
the new orientation with respect to the old orientation. The transformation
matrix for the new base orientation with respect to the world is found using

The orientation of each joint in the rest of the manipulator arm is revised
using the same procedure

[PI-] = [PiHbPb']
Placement of load objects in the system is identical to manipulator arm

placement. Each object may be placed in a new location and/or orientation.
Figure 6 shows an Evans and Sutherland display of a system that includes one
arm, a table as the environment, and two load objects

16

MJUUI1C SYSTEM SXMJLJPrrXON PRttgWM (ROBSXM) AT>q Ff TIN A7X1 FT/E 7TX1

CURRENT TIME (SEO « O. OOO JOINT TRRVEL STPTTUS

flRMl

JNT1

JNT2

JNT3

JNT4

JNTS

JNT6

VPLUE

Ok 00

O.OO

0.00

0.00

0.00

0,00

X MRX

O

-IS

O

O

0

Figure 6. - Complete system definition.

17

ANALYSIS CAPABILITY

Introduction

This section describes the analysis tools implemented in the ROBSIM pack-
age for investigating load and motion properties of general manipulator sys-
tems. Three types of analysis can be performed on the user-defined system:

1) Kinematic analysis;

2) Requirements analysis;

3) Response simulation.

Kinematic analysis involves determining positions and position derivatives
(motion) of the manipulator links. It is important in its own right for in-
vestigating arm reachability, workpiece placement, task sequencing, obstacle
avoidance, tool rate limits, etc; it also forms the basic step in all appropri-
ate dynamic analysis formulations.

Requirements analysis and response simulation are the two dynamic analysis
options available in the ROBSIM package. Requirements analysis, also referred
to as "inverse dynamics" or "kinematically driven analysis," involves determi-
ning the operating forces and torques for a prescribed motion state of the ma-
nipulator. This provides actuator torque and sizing criteria, component stress
.levels, load-handling limits, feedforward compensation values for control, etc.

For response simulation, or "force-driven analysis," the actuator driving
torques are specified (possibly in the form of a feedback control law) and the
resulting motion trajectory of the manipulator is calculated. This option is
especially useful for evaluating control strategies, task performance, inter-
actions with the environment, etc.

The final part of this section describes the algorithms employed in the
ROBSIM package for modeling end-effectors, in particular the parallel jaw
gripper developed and in use at the Intelligent Systems Research Laboratory
(ISRL) at NASA-LRC.

Some results obtained using these ROBSIM analysis tools are demonstrated
in subsequent sections of this report. Table II lists the notation used in
this section.

18

„ TABLE II.- NOTATION IN ANALYSIS CAPABILITIES DISCUSSION

Acceleration of Special Point i

Velocity-Related Acceleration of Special Point i, i.e., Acceleration
When Joint Accelerations Are Zero

Effective Inertia Matrix in Equations of Motion

Vector of Position- and Velocity-Related Torques in Equations of
Motion

Contact Points between Peg and Gripper, i«l, 2

Direction of Tangential Velocity of Constrained Point

Force at Contact Point c.

Gripping Force

Force at Point i

Reaction Force,at

Acceleration D^e to Gravity

Vector from Origin of Link i to the Centroid of That Link*

Vector from Origin of Link 1 to Origin of Link 1+1*

Index, Generally 1, 2, ..., N+l Indicating Link i, But Also b-Base,
L-Load, gr-Gripper, p-End-Effector Reference Point, eg -Centroid
of Link i

Effective Inertia of Motor and Drive

Effective Inertia Associated with Gripping Motion

Inertia M&trix of Second Moments of laertis about: Centroid for link i

iJJJ

4
Jacobian Matrix Relating Hand Motion to Joint Motion

Vector of Jacobian Relating Motion of Link i to Joint J

Amplifier Gain in Gripper Drive

Effective Coulomb Friction Coefficient

Effective Back-emf Constant for Motor

Effective Static Friction Coefficient

Effective Torque Constant for Motor

Effective Viscous Friction Coefficient

Matrix of Spring Constants Relating End-Effector Force to Position

Coefficient Relating Tachometer Voltage to Gripper Velocity

Length of Peg

Mass of Link i

Ratio

Vector Normal to Constraint Surface

Number of Joints

Refers to End-Effector

Matrix of Direction Cosines Specifying Orientation of ith Coordinate
System with Respect to World Coordinate System

Transfor&atiori Matrix from Coordinate System I to the Reference
Position of Coordinate System i+1

19

TABLE II. - (CONCL)

u(t)

Vector Locating a Point of Interest in World Coordinate System*

Location of Center of Gravity of Link 1 In World Coordinate System

Location of End-Effector Reference Point or End of Peg

Motor Armature Resistance

Vector Locating Origin of ith Reference

Generalised Velocity Coordinate Used in Rate Control

Generalized Momentum in Joint Coordinates

Laplace Variable

Unit Vector along Axis of Link i, Referenced to World Coordinate Syste:

Time

Reaction Torque at Joint 1

Generalized Impulse in Joint Coordinates

Scalar Representing Proportion of Motion Segment Traversed by Time t

Control Voltage Driving Gripper Operation

Velocity of Reference Point i

Voltage Driving the Meter for Joint i

Vector Transforming Constraint Friction Force to Joint Coordinates

Vector Transforming Constraint Reaction Force to Joint Coordinates

Coordinate System Associated with Component i

o^ Angular Acceleration of Body i

o^ Velocity-Related Angular Acceleration of Body i

[fip] Change In an Orientation Matrix

ir,, Change in Position of End-Effector Reference Point

Error In Position of Tool Origin Measured frotn Current to Desired
Position

Rotation Vector Representing a Change in Orientation

Small Displacement of Joints

Rotation Angle Corresponding to Change in Orientation

Relative Joint Displacements - Used As Generalized Coordinates

Relative Joint Displacement at Joint i

Gripper Displacement Angle

Coefficient of Friction at Constraint Contact Surface

Special Implicit Constraint Function

Signum Function, Equal toil

Vector of Generalized Torques

Angular Velocity of Body i

.*A subscript I preceding these vectors Indicates that the vector Is specified
relative to the local coordinate system 1.

20

Kinematic Analysis

The kinematic and dynamic analysis tools implemented in ROBSIM are based
on a rigid-link model of serial, open-loop kinematic chains with one-degree-of-
freedom joints. This subsection first describes the forward kinematics solu-
tion. This is, given the vector & of relative joint displacements and their
first and second time derivatives (£, Q) for a specified arm geometry, find the
positions, orientations, velocities and accelerations of all links and points
of interest in the device. Then methods for generating the time trajectories
of the joint displacements (j)(t), £(t), £(t)), particularly for providing task-
oriented operation of the manipulator, are discussed.

Link positioning. - Determining the position and orientation of each link
is a fundamental step in the analysis of complex mechanisms such as manipula-
tors. Figure 7 presents a simple graphical representation of a serial manipu-
lator arm. As described in the preceding section of this report, a local Car-
tesian coordinate system X^ is associated with each link of the arm. The
complete position of the link is specified by the coordinate position of one
point in the link and the orientation of the link.

Figure 7.-
Kinematic representation of a serial manipulator.-

21

The vector R£ contains the components of the location, in an inertial
world coordinate system, of the origin of the X£ reference (Fig. 7). The
orientation of the link is defined by the 3x3 rotation matrix of direction co-
sines [Pj_]. The matrix [Pf] is an orthogonal matrix; each column contains
a unit vector specifying the direction, in world coordinates, of the correspon-
ding local reference axis. Although this method for specifying orientation
contains an overabundence of parameters (nine parameters, of which only three
are independent), it is convenient for several reasons, including:

1) The [Pi] matrix forms the basis for transforming vectors from one
coordinate system to another;

2) It contains a column specifying the direction of the joint axis, which
is needed for subsequent computations;

3) It is readily determined uniquely from other orientation specifica-
t ion s .

As an example of the coordinate transform, suppose, jJL specifies the di-
rection of a vector in terms of the local coordinate system X^. The direc-
tion of this vector in the world coordinate system is given by

Recall that the preceding subscript indicates the coordinate reference for the
vector, with the default value W for the world reference. The full point
transformation is obtained by adding the vector to the origin of Xi. That
is, if ,£ specifies the local coordinates of a point fixed in link i> then
the coordinates of this point in the world reference are*

Note that since [P̂] is orthogonal,

[P.]-1 = [P±]
T

where the T superscript indicates transpose; also, successive transformations
are produced by matrix multiplication

so transformations between arbitrary sets of coordinates are readily obtained.

A recursive method is employed for finding the link positions; it is com-
putationally efficient and readily programmed. The orientation matrices for
the links are successively computed starting with the base and proceeding along
the serial chain to the free end of the manipulator. Suppose that the rotation
matrix [PjJ for link i is known. The corresponding values for link i+1 are
then given by

*This transformation is often represented in homogeneous coordinates using a
4x4 displacement matrix [A] (See [Paul 1981a])

[A] =
22 0 0 0 I 1

The orientation matrix tiPi+il between successive links i and i+1 consists
of two components: (1) a fixed link rotation matrix [jPl[ef +^1 that
defines the transformation from coordinate system i to the reference position
of system i+1 and is established during system definition, and (2) a joint ro-
tation matrix [£?!+]_] that varies with the joint displacement 0£+i for
rotating joints. Because hinge joints rotate about the local Y-axis and swivel
joints rotate about the local X-axis, the joint rotation matrices are defined
by the following

cOS0

-sine.+1

0i+1
0 1

o
(Hinge Joint i+1)

1 0

0 cos0 .

0 sine. .,

0

L -Sin9i+l
. cose. .

(Swivel Joint i+1)

1 0 0

0 1 0

0 0 1

(Sliding Joint i+1)

The only place in the formulation that trancendental functions are evaluated is
in setting up these joint rotation matrices. The full recursive relation for
reference i+1 is computed as

* T rp l r *"»̂ ® n r T* ^— I"• J I •

Successively applying this relation starting from a known position of the base,
each link's orientation matrix is obtained.

Once these rotation matrices are determined, vectors are transformed from
local to world coordinates and the locations of the coordinate origins are re-
cursively computed. For rotating joints i+1, the relation is

" (Rotating Joint i+1)

where

and .jh.; £+1 is the vector, in local coordinates, from link i to link i+1,
which is specified during system definition., If joint i+1 is a sliding joint,
an additional term for the displacement along the joint axis (local x-axis)
must be added (see Fig. 7)

23

ei+1
0

0

(Sliding Joint i+1)

Again, successive application of these recursive relations yields the location
of each local coordinate reference.

Note that once the position of each link's reference X^ is available,
the world coordinates for any point in the link can be found using the point
transformation given earlier. For example, i_£Cgi represents the local
coordinates of the centroid of link i and is established during system defi-
nition. The instantaneous location of this centroid in terms of the world re->
ference is given by

r = R. + [Pj .r
,-cgi -i i i-cgj,

Link and point velocities. - The velocity of a rigid body is conveniently
specified as the translational velocity of some point in the body along with
the angular velocity of the body. A recursive method based on classical rigid-
body kinematics is employed to calculate the velocities and accelerations of
the individual manipulator links. The method has received much attention in j
the recent literature on manipulator dynamics (e.g., see [Orin 1979], [Luh i
1980], [Walker 1982]), and was chosen for its .efficiency, simplicity, and ease]
of programming. !tf ,.|/ • •' }

Let o>£ represent the angul/ar velocity/of link i referenced to the world
coordinate system. Assuming w^ is known,/the angular velocity <^i+i of the
next link is readily given as the sum of w^ plus the angular veTocity of link
i+1 relative to link i, ̂ i+i/i- If joint i+1 is a rotating joint, then this
relative angular velocity is a vector of magnitude 0£+i about the axis of
rotation, i.e., /

-i+l/i = 9i+l ̂ i+1 (Rotating Joint i+1)

Here, £i+i is a unit vector along the joint axis and is given in terms of the
link's orientation as

/ \
0

(Hinge Joint i+1)

(Swivel or Sliding Joint i+1)

24

Therefore, starting with the specified angular velocity for the base, the angu-
lar velocity of each link is obtained by successive application of the recur-
sion relations

-i+1 = ̂ L + Vl î+1 (Rotating Joint i+1)

u. (Sliding Joint i+1)

Subsequently, the translational velocity \£i+l of the origin of the
reference can be represented in terms of the translational and rotation-

al velocities of link i. If joint i+1 is a rotational joint, the relation is

V± + u^ x (R - 1) (Rotating Joint i+1)

while an additional term must be included for the sliding joint case

= V. + at. x (R±+1 - R^ + 6i+1 S (Sliding Joint i+1)

Recall that the vector from joint i to joint i+1, which is used in the vector
crossproduct term in these equations, is given by

- R- = *L ., .1 (Rotating Joint i+1)— i — i , i+1

- *<. - h*. i+i +
 8
i+i Si+l (Sluing Joint- i+1)

In addition, if the velocity \/~ of any point P fixed in link i is desired, it
is then obtained from

Vp - ̂ + OK x (^ - R^

For a specified velocity V^ of the manipulator base, the application of these
formulas provides values for the velocities of each link and all points of in-
terest directly from the position results.

Link and point accelerations. - In a similar manner, the accelerations of
the manipulator links can be solved for by recursive application of the second-
order motion derivatives for rigid bodies. Let laj_ represent the angular ac-
celeration of link i and a.£ the translational acceleration of the correspon-
ding reference origin. The acceleration equations are as follows:

-i+1 = ̂ L + % x 9i+1 Ŝ +1 + 0±+1 S±+1 (Rotating Joint i+1)

-i+1 = % (Sliding Joint i+1)

25

a.̂ , = a. + a), x [UK x (R... - R.)] + a. x (R - - R.) (Rotating Joint i+1)
— i+1 — i — i —a. —i+1 — i — i — ITJ. — i

V] + °LL x

6i+1 S^ + 0i+1 S (Sliding Joint i+1)

Again, the accelerations ajj and ojj of the base are presumed known, and the
acceleration £p of any point of interest in link i can be readily obtained:

In particular, the acceleration £cgi of each link's centroid is calculated
for use in the subsequent dynamic analysis.

Note that all vectors used in the preceding equations are expressed in
terms of the world reference system. Any other coordinate selection is poss-
ible; the only constraint is that; a consistent set of coordinates must be used
throughout each equation.

End-effector .motion. - While the kinematics and dynamics of serial manip-
ulators are most conveniently evaluated in terms of the joint displacements and
rates, it is often more useful to prescribe the motion of the terminal link
("end-effector," "tool." or "hand") of the device, especially for task-oriented
operation. The algorithms employed in the ROBSIM package for transforming end-
effector motion specifications into joint motion states are described here.

The inverse positioning problem, that of finding a set of joint displace-
ments j) corresponding to a prescribed end-effector position can be exceedingly
complex* and analytic solution methods are not readily generalizable. However,
commercial robots generally have special geometries, resulting in much simpler
positioning solutions (e.g., see [Duffy 1979], [Paul 1981b]). Special routines
can be programmed for certain geometries or classes of geometries. For gener-
ality, an iterative positioning routine is implemented in ROBSIM; because it
involves an extension of the velocity results, it is described after the velo-
city relations are presented.

i _ -
i *For example, the solution for a six-degree-of-freedom arm can involve finding

roots to a polynomial of up to 32nd order (see [Duffy 1981], [Duffy 1980]).
Methods for analytically handling the positioning of redundant manipulators are
not even available.

26

A method for recursively computing the end-effector velocity from the
joint rates was described previously. For a given position & of the manipula-
tor, the velocity (Vjj+ĵ , OJN+I) of the end-effector link N+l can also be
written explicity in terms of the joint velocities as

[jce)i i <*)

Here, [J(9)J is the Jacobian matrix relating the end-effector motion to joint
motion. Column i of the 6xN matrix [J] is readily expressed in terms of the
position results as follows (see [Whitney 1972], [Thomas 1982]):

J. = (Rotating Joint i)

-i (sliding Joint i)

(The motion of some reference point other than the tool reference origin can
be used by replacing Vjj+̂ and Ê +i by \fp

 anc^ £n in these equations.)

For a specified end-effector velocity, Eq. (*) above represents a simul-
taneous set of six scalar equations linear in the N unknown joint velocities
0£. These equations will result in either a unique solution, an infinite
number of solutions, or no exact solutions; they can be solved by standard
techniques of linear algebra. For example, using the pseudo-inverse ~^
of the Jacob ian

[J]-i*

27

produces a solution that minimizes the quadratic norm of the error between the
desired and actual end-effector velocities (see [Lowrie 1982]). In addition,
where multiple solutions exist the quadratic norm of the joint velocities is
minimized. This method works quite well in general, although it can produce
undesirable results when the arm is near a kinematic singularity.

Kinematic singularities are special configurations of the manipulator for
which the rank of the Jacobian matrix decreases by one or more (e.g., see
[Sugimoto 1982]). In these configurations, the end-effector loses degrees of
freedom of instantaneous motion. When the manipulator approaches such configu
rations, the solution techniques previously described can result in excessive-
ly large velocity specifications for some of the joints. To prevent this, the
individual joint velocities are constrained by the limits specified during sys
tem definition

The joint velocities are scaled to satisfy this criterion. In the case of re-
dundant manipulators (including instantaneous redundancy while in a singular
configuration), linear programming is employed to minimize the magnitude of the
largest joint velocity, i.e.,

minimize (maximum (1 6.1/6)}
^ i ' i ,max

This method produces realistic values for the joint velocity specifications and
prevents the erratic behavior in the iterative positioning algorithm that can
result without these modifications.

Once the joint velocities have been obtained from the end-effector motion
specifications, the joint accelerations can be evaluated. Finite differencing
may be employed:

ei =
9i(t) ~ 8i(t " At)

At

or the joint accelerations can be determined from the end-effector motion spec-
ifications using the relations

V
•%+!
V

Here aX+i and ol+i are the velocity-related accelerations of the
end-effector. These can be obtained from the recursive kinematic method dis-
cussed previously by setting "0'i = 0 in those earlier equations. As with the
velocity transformation, the matrix of coefficients is the Jacobian, and the
same linear, equation solution procedures previously described can be applied to.

solve for 9.

28

Returning to the problem of finding the joint positions £ for a prescribed
end-effector position, an iterative method is implemented in ROBSIM. The al-
gorithm uses the solution of a set of linear equations, where the Jacobian
again forms the coefficient matrix, and is described in [Whitney 1972]. Based
on the current position and desired position of the end-effector, a six-
dimensional position error vector is obtained. This error vector is used to
solve for a vector of joint corrections ,Aj9. from

Rjy+i is the translational position error and .A $ represents a rotation
vector (the magnitude gives the angle of rotation and the direction specifies
the axis) that rotates the end-effector from the current to the desired orien-
tation. A method for solving for the vector jA^ is described in the next sub-
section. Applying the special solution methods previously discussed allows li-
mits to be placed on the size of the change (A9_£ in the joint angles. This
improves convergence of the positioning method for large initial errors or when
operating near singularities.

After solving for,A0^ the joint displacements are updated,

6 = 6 , , + A9
-new -old —

the current end-effector position is recalculatedj and the process is repeated
until the end—effector position converges to the desired value. Because this
is an iterative method, only a single position solution will result (depending
on the initial values of &), although the manipulator geometry may have multi-
ple configurations corresponding to the same end-effector position. To date,
testing has shown the method to be quite robust as long as reasonable limits
(e.g., 0.1 radian) are placed on the changes in joint displacement per iter-
ation step.

Task-oriented motion specification. - This section has presented methods
for determining link motions from joint motion states and for finding joint mo-
tions that produce end-effector trajectories. To make task programming more
convenient, a user-interface is implemented that allows interactive specifica-
tion of a sequence of operations and robot motions. The motions generated from
these specifications are described in the following paragraphs.

The overall task specification is divided into motion segments. The fol-
lowing options are available for defining the motion within each individual
time segment:

1) Rate control,
a) Joint motion,
b) End-effector motion (world coordinates and local end-effector

coordinates);

2) Position control,
a) Joint motion,
b) End-effector motion (world coordinates).

29

For rate control motion, the velocities of the individual position coordi-
nates are specified as polynominal functions of time

4 = a t + a , t + . . . + a- 1 + a~

where q is the rate of some position component and the a^ are user-specified
coefficients. For rate. control of joint motion, q corresponds to the indivi-
dual joint velocities, 0£. Therefore, the joint velocities at any time dur-
ing the segment are determined by evaluating the rate polynomials for the given
time, t. Furthermore, the polynomials can be symbolically differentiated and
the joint accelerations found by evaluating

The joint displacements are updated using Euler integration of the velocity
results*

Q± (t + At) = ei(t) + At * ê t)

When rate control of end-effector motion is specified, the q polynominals
correspond to the six components of end-effector velocity, Vp and

(A different tool reference point P can be used for each motion segment.) At
time t, the rate polynominals are evaluated to determine the end-effector ve-
locity. These velocity vectors can be defined in either world coordinates or
instantaneous end-effector coordinates. If defined in local end-effector coor
dinates, the vectors are transformed into world coordinates by premultiplying
each by [PN+]J . The joint velocities are then solved for using the Jacobian
inversion method described previously. The joint accelerations are obtained
from these velocities using the backwards finite-differencing equations, and
the joint displacements are evaluated, as before, from the Euler integration
equation.

Position control segments provide coordinated motion between user-
specified trajectory endpoints. Each position component is scaled so they all
reach their final values simultaneously. For example, for joint position con-
trol, the initial joint displacements 6_(to) are known from the manipulator's
current location and the final displacements 6(tf) are specified. The joint
positions at any intermediate time during the motion segment are then given by

£(t) = e.(tQ) + u(t) A9_

where

A = ^ >

^Although symbolic integration of the rate polynomial could be used for this
case, the Euler integration method must be employed for the end-effector rate
control specification.

30

t0 the fracti°* °f the total nation- completed

u(t0) = 0

u(tf) = 1

-*

u(t) A9

and accelerations during the motion are given

9(t) = U(t) A6

u •j

Ui

At
6

'5At SAt
! 6 l

! At
At

Figure 8.-
Constant-acceleration constant-velocity constant-
deceleration profile. 31

Position control of the end-effector motion is the most popular type of
motion specification. At the beginning of the motion segment, a six-
dimensional vector representing the change in end-effector position and orien-
tation is calculated. The first three components, .Ar_p, define the transla-
tion of the end-effector reference point during the motion, and the last three
components, A£, define an end-effector rotation that produces the desired
change in orientation. The method for calculating this rotation vector is de-
scribed in the following discussion.

Recall that each column of the orientation matrix [PN+].] defines the di-
rection of the corresponding local reference axis. The change in direction of
these unit vectors are the columns of [Ap] where

CAP1 = tPN+l(tf)] - [PN+l
(tO)]

Because the rotation axis must be perpendicular to the changes in these unit
vectors, its direction can be calculated as the crossproduct of any two
columns* of [AP]. The magnitude of the rotation is found using

A<J> = cos
-1 1 +

tr([PN+l]
[AP])

where tr () indicates the trace of the matrix. This equation has two solu-
tions; the one corresponding to the direction chosen for the rotation axis can
readily be evaluated.

As in the joint motion case, the position values at intermediate times
during the motion are determined using the scaling factor u(t):

Ct) +u(t) Ar

<Kt) = u(t) A<f>

The orientation of the end effector during the motion segment is given in terms
of 4" as

[DP(t)] =

1 0 0

0 1 0

0 0 1

sin<f>

-a2

-a3 a2

0 -al

a 0

- cos<())

l-af

1-ai

a2a3

a3a2

1-1

*The two columns of [AP] of largest magnitude are used so special cases are
handled automatically.

32

where a]_, a£ and 33 are the components, in end-effector coordinates, of
the unit vector along the rotation axis cj>. With the end-effector position de-
termined, the inverse positioning algorithm described earlier is used to find
the joint displacements 0. Then the joint velocities (J(t) can be obtained from
the end-effector velocitTes

V Ar
-P

The joint accelerations are computed by the backwards difference method.
/

The user interface also provides for the specification of such nonmotion
steps as GRASP, WAIT, etc. These are described in the ROBSIM User's Guide, Ap-
pendix A.

Requirements Analysis

Once the arm motion is established and the positions, velocities and ac-
celerations of the individual links are determined, the reaction forces and
torques throughout the manipulator structure can be readily evaluated using
classical rigid-body dynamics. As in the kinematic analysis, ROBSIM employs a
recursive method for dynamic requirements analysis because of the method's ef-
ficiency and tractability (see [Luh 1980], [Hollerbach 1981]). For this analy-
sis, the'forces and torques are successively computed starting from the termi-
nal link of the arm and proceeding back to the manipulator base.

Joint reaction forces and torques. - The reaction force ̂ and torque
J:^ at joint i are combinations of the reactions on link i at joint i+1, in-
ertial loads caused by the acceleration of link i, and any other loads applied
to the link. Assuming that the only external load applied to the intermediate
links are the gravity forces acting through their centroids, the recursive
equations for the joint reactions can be written

- RJ x f.+. + h. x m (â o + j»)

+ [I.] c^ 4- ̂ x [I±] ̂

The new symbols in these equations are:

mj^ - mass of link i^
.a. - acceleration of centroid of link i;

"Cgi
g - acceleration due to gravity;

[IL] - inertia matrix of second moments for link i about its centroid.

33

All of the vector quantities in these equations are expressed in the world
coordinate system. The inertia matrix [£!]_] in local coordinates is de-
fined during system definition, and must be converted to world coordinates
using the transformation*

[I.] = [P.] [̂ 1 I*/

The numb.er of multiplications involved in this transformation is a primary
justification for employing local coordinates in some dynamics formulations
(see [Luh 1980]).

Note that the reaction force ̂ in these equations is the force link i-1
must exert on link i for dynamic equilibrium. For the end-effector link N+l,
the same equations are used except that the applied force £ and torque ^p
at the tool reference point replace the terms ̂ i+i and ££+•[(also, Rjj+2 =

£p).

Actuator drive torques. - Each joint of the manipulator provides a single
degree of freedom of relative motion between the successive links it connects.
This relative motion is actively driven by an actuator and drive mechanism.
Therefore one component of the reaction force or torque at the joint must be
supplied by the actuator system, while the remaining components are the bearing
reactions. In addition to providing this joint reaction component, the actua-
tor must also overcome joint friction and its own inertia.

The torque (or force+) ̂\ that actuator i must supply to drive the system is
given by

T. = S. • t. + I 6, + K 6. + K a(9.) (Rotating Joint i)
i —i —i em. i ev. i ec i 6

T- = .§• f, + I 9.+K 9. + K a(0J (Sliding Joint i)
i -1 —i enu i ev.ĵ i ec± i 6

where the new terms in these equations are

Iemi ~ effective inertia of the actuator and drive system (e.g.,
gearing);

Kev£ - effective viscous friction coefficient;

Kec£ - effective coulomb friction coefficient.

The signum function is defined by a(9)

Wl* l̂ V̂ .1- J. J.V«Jk

(1 6 > 0
'in =/

(-1 e < o

*This relation is readily derived from the fact that the rotational kinetic
energy, a scalar, is invariant with respect to coordinate reference, ,so ,&<&

+If joint i is a rotating joint, ,t\ has units of torque, while for a sliding
joint i, i^ is a force. The term "torque" will be used in either case.

34

For 9 = 0, .o (9) can assume any value between -1 and 1; it is generally selected
to be zero in this case.

All of the terms previously defined are effective values referenced to
joint displacement coordinates to promote computational efficiency. Prepro-
cessing may be necessary to convert the actual values to their effective va-
lues. As an example, suppose the actual inertia of the actuator rotor is Iam
and that this motor drives the joint through a gear reduction ratio of nfl
(i.e., 9a = na 6). The effective inertia Iem of the actuator motor is
then given by

I = n2 I
em a am

The corresponding conversion for the other terms in the actuator torque equa-
tions are

K = n2 K
ev a av

K = n K
ec a ac

T = n T
a a

Presentation of results. - During execution of the requirements analysis,
print and plot files containing the significant analysis results are generated.
The print file is a formatted output file that can be viewed at a terminal or
spooled to a high-speed line printer to provide a hardcopy listing of the re-
sults, The results saved in the plot file can be displayed on an interactive
graphics terminal or plotted on a hardcopy plotter. This utility is described
in the Postprocessing Tools section of this report.

In addition, the motion of the manipulator system can be displayed on an
Evans and Sutherland graphics workstation during execution of the requirements
analysis. A display file can also be saved for subsequent replay.

Response Simulation

Response simulation involves evaluation of the motion and force trajec-
tories of the manipulator system when driven by a prescribed set of actuator
torques or a specified control law and reference command. In the ROBSIM imple-
mentation, the dynamic equations of motion are solved for the joint accelera-
tions at each processing timestep. A Runge-Kutta fourth-order integration al-
gorithm is used to numerically integrate these accelerations to obtain the
joint velocities and positions. To calculate the joint accelerations for a
specified state (position and velocity) and driving torques, the equations of
motion must be reformulated to explicitly represent these accelerations. The
appropriate form for the controlling equations is

T =

35

where _r is the vector of actuator driving torques, [A(6)j is the effective in-
ertia matrix referenced to joint coordinates, and _b(8̂ ,£) is a vector of
position- and velocity-related effective torques. The calculation of these
terms is described in the following subsections.

Actuator driving torques. - The actuator torques driving the response sim-
ulation can be generated by one of the following methods:

1) Read a file of actuator torques versus time;

2) Read a file of actuator voltages versus time;

3) Use a feedback control law.

The first of these methods can be used to determine response to specific torque
command profiles, such as a sinewave input. Alternately, an actuator torque
file generated during a requirements analysis run could subsequently be used to
drive the response simulation, thereby providing validation that the require-
ments analysis and response simulation agree.

Figure 9 illustrates some results from a simulation run of this type. A
set of joint driving torques was generated by the requirements analysis for a
motion consisting of (1) a straight-line end-effector move for the first se-
cond, (2) a 0.5-second wait, (3) a 1-second return to the original position
(joint-interpolated move), and (4) a hold in this position. Figure 9 shows the
desired trajectory 0(req) for two intermediate joints of a six-degree-of-
freedom arm, as well as the simulation results for these joints using two dif-
ferent integration timesteps, 0.01 second and 0.005 second. This figure shows
how the simulation error tends to increase with time, and that very small time-
steps are needed to accurately track desired trajectories for long motion seg-
ments. __. ,

, REQUTREMENTS/SIMULRTION COMPHRISON

, At = .005)

10 15 20
TXME [SECONDS!

30 .
«i<r'

Figure 9.- _ , . ,
Results of simulation driven by torques generated in [requirements analysis.

36

Actuation methods 2) and 3) are used with the dc torque-motor model imple-
mented in ROBSIM. The torque supplied by motor i is proportional to the arma-
ture current i^:

T. = K ^ i.
i et. i

where Ket^ is the effective torque constant of the motor. The armature cur-
rent is a function of the applied voltage Vj^

di.
__ T 3 - L - n 3 J, V ft

where L^ is the armature inductance, Ra£ is the armature resistance and
^emfi ^-s t*ie errective back-emf coefficient for the motor. In the motors mo-
deled to date, the armature inductance has been found to be so small (hence,
the electrical time constant is very short) that an unrealistically small in-
tegration timestep is required to track the electrical dynamics of the motor.
Therefore, the inductance is neglected in the current motor model and the tor
que can be related to the applied voltage by combining the above equations to
obtain

V. - K . 6.
i emf . i

In this equation, all coefficients are referenced to the joint displace-
ments coordinates <9. If, for example, the gear reduction ratio is na, the
effective values are related to the actual motor coefficients Kat and Kaemf
by

K. = n K _
et a at

; K f = n K .
emf a aemf

If a voltage file is read, equation (*) is then used to compute the actuator
driving torque at each timestep. At intermediate times for which no voltage
has been saved in the voltage file, linear interpolation is used to determine
the voltage value.

Rather than reading a previously established file of command voltages, the ,
motor drive voltages can be generated during the simulation run using a feed- ,
back control law. The implementation of feedback control models in the ROBSIM ;
program is discussed in a subsequej^_s_ectjLcin_on maniBuia.tor_..,c.ontrollers. '

. ^ j
Position- and velocity-related torques. - The vector]>(£•,£•) of position-

and velocity-related torques (see bottom of page 35) includes The effects of
static loads (such as gravity and applied forces), friction, and the velocity-
related inertia terms ("centripetal" and "Coriolis" torques). Because this :

effective torque contribution depends on the current manipulator state and in-
cludes all torque terms except the inertia torques attributable to joint accel-
erations, the vector b_ is conveniently and efficiently computed by performing

37

the requirements analysis with the joint accelerations £ set to zero. There-
fore no additional program modules need to be implemented for the evaluation of
this term.

Effective inertia matrix. - The matrix [A(4J-)] of position-dependent in-
ertia coefficients provides the relation between joint accelerations and actua-
tor torques, including dynamic crosscoupling (i.e., acceleration at joint i
produces reaction torques at the other joints). This matrix is symmetric and
positive-definite; the kinetic energy of the manipulator in motion is given by
the quadratic form

i K.E.

An efficient algorithm for calculating the inertia matrix, based on the results
in [Thomas 1982] and [Walker 1982], is implemented in the ROBSIM package. A
brief presentation of the equations used is given below.

Consider link i of the manipulator with mass m^, centroid location
£.cgi an<^ inertia distribution [Ijj (in the current configuration). The ef-
fective inertia [A1] due to this link's mass distribution is given by

[A1] -

[M±]

[J]

and where [M^l is a 3y3 diagonal matrix with the link mass M^ along the
diagonal^and where [J] can be written

*
s.-J

(Rotating Joint j<i)

J1
—J

S.
-J

0
0
0

(Sliding Joint j<i)

For j „> i, the components of J_i are zero because displacement at joint j
has no effect on the absolute motion of link i. The total inertia matrix is
obtained by summing the contributions from each link i. The efficiency of the
algorithm is further improved by using the symmetry of [A] to reduce the number
of terms calculated. Also, composite masses, centroids and inertias consisting

38

of the mass of all links from joint i to the free end of the arm are computed
for each i. This allows each term of the expression for [A] to be evaluated
for only one composite mass instead of for each individual link's mass (see
[Walker 1982]).

The mass and inertia of a load being carried by the manipulator are in-
cluded in the matrix of inertia coefficients by adding them to the mass distri-
bution of the end-effector. In addition, the effective inertia, Iemi> °f
actuator i is added to the ith diagonal term of [A].

Because the effective inertia matrix is positive-definite, the equations
of motion

T_ •= [A (6) 11 + b.(l,l)

can be solved uniquely to obtain £ in terms of the state (̂ ,̂) and driving tor-
ques _T.

Joint friction. - As discussed in the Requirements Analysis section, two
types of joint friction—viscous and coulomb—are implemented. The viscous
friction is readily included in the torque vector .b(j),j)) as is the coulomb
friction as long as the joint velocity is not zero. Special methods for hand-
ling the coulomb friction term must be employed when the velocity 0£ at some
joint is zero.

Figure 10 shows the joint coulomb friction TC as a function of joint ve-
locity. This figure illustrates that when the joint velocity is zero, the cou-
lomb friction torque value is not uniquely defined, but lies somewhere between
the minimum and maximum values -Kes and Kes, where Kes is the effective
static friction coefficient for the joint. In the case when one or more joints
have zero velocity, the set of equations to be solved for the joint accelera-
tions can be written

[A (6)]0. = jr - ;b(6,1) + T

-K < T < K
esjL- c±- es.

where T_C is the vector of joint friction torques for the zero-velocity
joints, and the selection function p has the special definition

p(c,x ,x) =

x ; c<0

+
x ; c>0

x (arbitrary); c=0

39

-K
ec
'<
es

es
IK
; ec

Figure 10.- Coulomb/static friction at joint.

A special solution procedure is implemented for solving equations of the type
given previously; it is briefly described at the end of this section of the
report. In the case represented here, a unique solution is obtained for 9 and
T_c.

The procedure previously described determines when relative motion at a
joint begins. Another special procedure must be employed to evaluate when mov-
ing joints stop because of coulomb/static friction. In the ROBSIM implementa-
tion, whenever the value of the velocity at some joint switches sign between
one integration step and the next, the joint velocity is reset to zero and the
algorithm described above is used to determine whether the joint actually con-
tinues moving or comes to rest.

Figure 11 shows the effect of static friction on the motion of a single
joint driven by a sinusoidal torque input. The response is dramatically affec-
ted by this nonlinear torque contribution.

Motion constraints. - The results considered so far assume that the joint
displacements are independent, controlled variables and that there are no ex-
ternal constraints on the motion of the end-effector. Often during system
operation, interactions with the environment constrain the motion of the tool
(e.g., consider turning a crank or inserting a peg in a hole). Several methods
exist for modeling these interactions in a computer simulation. For instance,
if the external forcing functions are known, they can be included in the vector
b_ as described in the subsection on requirements analysis.

40

;Nt
ixio

jrad/s

|xlO

-1

STHTIC FRICTION

J20-- J20--

I-20- -20--

-30 -- -Torque

TIME CSECONDS3

Figure 11.- Effect of static friction on system response.

One method for representing interactions with the environment is by a
spring between the end-effector and some reference position in the inertial
coordinate system. The ROBSIM dynamics package contains the capability for in-
cluding a general compliance element between the end-effector and the fixed re-
ference. In this implementation, the end-effector position and orientation are
computed. Then a six- dimensional error vector (Arl;, ., . is de-
termined, which represents the translational and rotational error between the
actual end-effector position and the spring reference position (in which the
spring force would be zero). A position-dependent spring force fp and a tor-
que _tp, given by ~

f
-P

t
-P

sp

Ajc

A

are applied to the end-effector. Here, [Ksp] is a 6x6 stiffness matrix.
These applied loads contribute to the reaction forces and torques at the joints
and their effects are included in the vector _b in the response simulation form-
ulation.

41

While this spring formulation is readily understood and implemented, there
are several drawbacks to using it for modeling motion constraints:

!

1) The user must specify a stiffness matrix that accurately char- |
acterizes the system interactions; :

2) It is inconsistent with the rest of the manipulator model, which |
does not include compliance; ;

i
3) The stiffness matrix often contains very large values, thus re- ,

quiring a restrictively small integration timestep to assure nu-
merical stability. i

Therefore(the ROBSIM simulation tool contains modules for incorporating j
rigid constraints on the motion of the end-effector. The basic form of the me-j
thod implemented has previously been applied for the dynamic analysis of mecha-
nisms (e.g., see [Chace 1971]), and solves for the constraint reaction forces
as well as the joint accelerations. To include the effect of contact friction,
only point constraints are considered. That is, constraints on the angular mo-
tion of the link cannot be specified directly, although such constraints can
generally be represented by more than one point constraint.

Consider, for example, that the tip of the manipulator is pressing against
the face of a rigid object as illustrated in Figure 12. The tip point r is
constrained from further motion toward the obstacle. This constraint can be,
expressed as ; '" <

nr - 0
i . where v_ is the velocity of the tip point r in contact

t • . i . • . .. * *
with the obstacle and nr is the outward pointing surface normal.

Figure 12.- Constrained motion of end-effector.

This is a single-acting constraint in that motion of the point in only one di-
rection is restricted. For a double-acting constraint, the component of motion
along nr is restricted in both directions and the constraint relation becomes

nr 0

42

This could result, for example, from a roller in a slide or a peg in a hole.
If the obstacle is moving at a constant velocity, the constraint is handled
identically, with the component of this velocity along n^ forming the right-
hand side of these equations.

Assume that the velocity constraint is instantaneously satisfied exactly.
To continue satisfying the constraint, the acceleration of point r is also re-
stricted by the condition*

From the kinematic relations previously discussed, this can be transformed into
the following constraint on the instantaneous joint accelerations:

T v

where

w-r

t a

[J]T n1 r -r

= 0

and [Jr] is the translational Jacobian for point r, and a£ is the
velocity-related acceleration of point r (i.e., for the current joint velocity
state with zero joint accelerations). The constraint on the motion of r is
provided by a reaction force fj. applied through the point (see Fig. 12).
This reaction force acts along a line parallel to the constraint direction

'f « f n-r r -r

but the magnitude fr must be determined along with the joint accelerations.
This applied force produces effective joint torques j r̂ given by (e.g., see
[Thomas 1982])

T = [J]Tf = f W• -r r -r r-r

that must be included in the dynamic equations of motion.

Consider, for example, the case in which there is one double-acting con-
straint. The above relations lead to a set^of N+l linear equations that can be
solved for the instantaneous accelerations £ and reaction force magnitude fr

[A] w

w I 0

T - b

-a • n-r -r

*For the single-acting constraint type, replace the equality sign by "greater
than or equal to" in these relations.

43

Configurations containing single-acting constraints can be handled by em-
ploying the nonlinear, partial constraint function p defined previously in the
subsection on joint friction. In this case, the equations to be solved for the
joint accelerations and reaction force are:

[A] 0 = T - b + f r wr

f
r I °

i w T 6: + a v • n > 0
-r - -r -r -

: fr = P(wr
T I + §/ ' -r' "' 0)

The implicit function p is introduced to represent the fact that the reaction
force must vanish as the point accelerates away from the constraint. (Note
that the conditional cannot be less than zero in this case.)

The solution procedure described at the end of this section is again em-
ployed to solve these equations. In general, a unique solution will exist.
However, if some joints have zero velocity and some constraints are active, the
reaction force distribution may be indeterminate, although a unique set of
joint accelerations will result. More than one motion constraint can be con-
sidered simultaneously by simply expanding the set of equations.

Impact of collision. - In the above equations, it was assumed that the
point velocity already satisfied the motion constraint. However, when the
point initially collides with the obstacle, this will not be true. In the act-
ual case, this collision will introduce oscillatory transients in the motion.
This rapid transfer of momentum can be modeled as an inelastic collision to de-
termine the velocity of the system after impact. To evaluate the joint veloci-
ties after impact, consider the generalized momenta Q, which are given by

•

Q = [Ale

where [A] is the inertia matrix defined earlier. The change A £ in generalized
momenta must equal the generalized impulse Tj that results from the impul-
sive reactive force at the constraint. If the reaction impulse has magnitude
fj, then the generalized impulse will be

Si * [J/ fl 5r - fx wr ̂

This leads to a set of linear equations for determining the change A0 in the
joint velocities during the impact:

wAQ = TZ =^ [A] ae - f

44

Combining these equations with the fact that the velocity constraint must be
satisfied after impact leads to the following set of equations for obtaining
the joint velocities after the collision

[A] I w A6 0

6 _ = e + A0
• -after -before -

where v_r is the velocity of the constraint point before impact.

Coulomb friction at the constraint points. - In addition to the normal re-
action force at the point of contact with the obstacle, there is also a fric-
tion force tangent to the restraining surface. This friction force, ̂ ff, is
proportional to the normal force and directed opposite to the tangential velo-
city, i.e.,

where /i is the coefficient of friction and e^. is a unit vector in the di-
rection of tangential motion of the constrained point relative to the surface.
The effective torque contribution at the joints is again found by premulti-
plying the friction force by the transpose of the Jacobian. For the single-
acting constraint type, the equations are the same as given earlier, except th?
term frWj- is replaced by where

| wf
 = LJ

rJ Sr

In the case of a double-acting constraint, slightly more modification is
needed because the magnitude of ̂ r can equal plus or minus fr. This case
is put into the standard form used above by replacing fr with two variables
f£ and f~, one of which is always zero depending on the sign of fr.
The joint torque contribution from the reaction normal force and friction force
can be written

-r = fr ̂ - f
r~

(-r+y-f)

The additional constraints for this case are

f/ > 0

-f > 0

p(fr
+, -, o)

where the selection function P implies that f^ = 0 if f£ > 0 and
f~ has an arbitrary value (i.e., must be solved fom other constraints)

when f = 0.

45

As discussed for the joint friction case, the real difficulty in handling
coulomb friction occurs at the singularity when the relative velocity between
the interacting surfaces is zero. However, the ability to simulate this case
is critical. For example, consider the insertion of a peg in a hole. It is
vital to determine whether the insertion will proceed in the presence of cou-
lomb friction, or whether the peg will instead jam in the hole. If jamming
does occur, will the manipulator be able to free the peg and continue inser-
tion?

To model the case of coulomb friction with zero tangential velocity, the
friction force is approximated by two mutually perpendicular forces

£f - vcc/ J/ + cr
2 e/)

where e£ and e£ are two mutually perpendicular unit vectors that are
also perpendicular to the surface n9rmal (i.e., they define the instantaneous
tangent plane). The coefficients c£ are bounded by the magnitude of the
normal force

c 1 + If I > 0
r ' r' -

t

-c ± + |f | > 0; 1=1,2

Additionally, if the contact point has nonzero tangential acceleration, the
friction force will have its limiting magnitude so

and

/. |frl. - l*rl> : 1-1.2

r1 = <wfS
T 6 + â .e/ ; i-1,2

The magnitude of the normal force for the single- and double-acting constraint
types for use in these relations is given by

. |f | = f (single-acting)

|f | = f + - f (double-acting)

This method introduces two additional unknowns (c£) and six additional
constraints (four linear inequalities, two nonlinear partial constraints), all
in the standard form developed previously. Some results using these equations
are presented in a subsequent section of the report.

46

Modeling the ISRL Multisensor End-Effector

One component of today's manipulators that is woefully inadequate compared
to the dexterity and sensitivity of its human counterpart is the manipulator
end-effector or hand. Advanced mission applications will surely require more
sensing capabilities than employed in industrial robots, which typically have
at most a single presence detector, and more handling dexterity than the uncon-
trolled opening and closing of simple pneumatic grippers. This section de-
scribes the simulation of advanced end-effectors that incorporate several types
of internal and external sensing and controlled gripping actions and discusses
a specific implementation—the microprocessor-controlled gripper/sensor system
developed for and in use at the Intelligent Systems Research Laboratory (ISRL)
at NASA-LRC. The end-effector consists of a parallel jaw gripper mechanism
with force sensors and proximity sensors mounted in the jaws and is attached to
the manipulator through a six-degree-of-freedom wrist force sensor. The simu-
lation model includes the geometry and dynamics of gripper operation, influe-
nces of load inertias on arm operation, wrist and jaw force sensors, and jaw-
mounted proximity sensors.

Configuration of the ISRL end-effector. - Figure 13 displays the ISRL end-
effector and Figure 14 illustrates the functional components of the gripper.
The end-effector mechanical design and concept for proximity detection origi-
nated at the University of Rhode Island. The body of the end-effector houses a
dc torque motor. A nylon gear on its shaft drives an incremental shaft encoder
and a dc tachometer providing position and rate feedback; the gearing provides
a 1:2.78 speed increase. The encoder output is wired directly into the micro-
processor controller and the tachometer output is summed with the position
error signal in the servoamplifier (Fig. 14). A limit sensor indicating the
.fully open configuration of the jaws provides a reference for the incremental
position encoders. A worm gear on the motor shaft drives two opposing sector
gears, each of which is attached to a link in a parallelogram mechanism that
provides translation of the corresponding jaw, keeping the jaws parallel during
opening and closing. The worm gear ratio is 100:1.

In addition to the gripping mechanism, motor and sensors, the ISRL end-
effector incorporates proximity sensors in each jaw, a crossfire presence de-
tector, multifreedom strain gage force sensors at each jaw mount, and a six-
degree-of-freedom wrist force sensor. These sensors are described in subse-
quent sections. Also, the end-effector mechanism contains a spring-loaded
mounting base with a limit sensor that provides overload protection when the
device is in operation.

47

•Counting
flange

figure 13.-

\ -proximity
"~~ Detectors

end-effector.

•Six-Degree-
Of-"Freedom
?orce Sensor

~ Overload
Device

•pq

S ^>
.0 r-l

P=5 r~
FL, CNI

1

1
1

iH
i ctf

4-1
'-H

• • 1 oo
M. - 'p

— f
»•

i

^ j

->

to
-A

n
al

o
g

i
C

o
n

v
er

te
r5

I I I I | I IT

I O 01
I r - H M O .

CO U O '\-t
S-i 'O

icn
o :H
00

I !-i
! <IJ
! P.
i P.
I-H
! (-1
! 60

i f f !

•CO
CM O
I O

M
i w
1 a)
; c
o: p.

. o
i a

, cd
: 0
: O

ii
i

-*
iH

: 0)
! 3

; a)

•49

Geometry of gripper operation. - The ISRL end-effector contains one degree
of freedom, specified by the reference angle gr shown in Figure 15. This is
the angle between the reference z-axis and the centerline of the supporting
gripper links. The motor angle, encoder angle and tachometer rate are related
to the gripper angle by

1) Motor angle = 100 0
gr;

2) Encoder angle = 278 ? ;

3) Tachometer rate = 278 J.

The end-effector reference system is chosen with the z-axis directed outward
from the gripper along the motor axis, and the y-axis in the plane of motion of
the jaws 9 (Fig. 15). The origin of this coordinate system is chosen as the
midpoint of the wrist force sensor so the reaction force computed for this
point can be used for modeling the wrist sensor results. Local reference sys-
tems are associated with each jaw of the gripper for defining the motion of
such jaw-mounted components as the proximity sensors. Because the jaws do not
rotate relative to the gripper body, their coordinate system remain parallel to
the end-effector reference. The vectors N+lliLJ an<* N+lJiRJ define the
instantaneous location of the jaw coordinate systems relative to the end-
effector reference and are given by the relations

T-af

N + j
0
- sin6gr
cose2r - 1

ref 0
sin6gr
cos6gr -

where hffi* is the vector in end-effector coordinates, to the tip of the
left jaw when the gripper angle 6 r is equal to zero, etc and C is the length
of the connecting link (Fig. 15). The distance dgr between the gripper jaws
can be expressed in terms of the gripper angle as

gr

where d£§* is this distance in the reference position (̂ gr = 0). The
« * • - — • * - f t * • _ _ . . .

positions of the gripper jaws in terms of world coordinates are given by

[PN+lVl-RJ

50

N+l

Figure 15.- Kinematics of the ISRL gripper.

Then, any point whose position LJT in jaw coordinates is known (e.g., a prox-
imity sensor fixed in the jaw) and can be located in world coordinates by the
standard point transformation.

51

Gripper dynamics. - The dynamics associated with the single-degree-of-
freedom gripper operation can be characterized by a second-order piecewise lin-
ear system. Figure L6(a) shows a block diagram representation of this system;
it includes analog rate feedback from the tachometer, viscous friction, a cou-
lomb friction term and the jaw gripping force. The symbols in this diagram in-
clude:

'dac

Kamp

Kemf

Ktach

Kev

Kec

output voltage from the digital-to-analog converter

s ervoamp1i f i er ga in

back emf coefficient for the gripper motor

tachometer coefficient relating tach voltage to gripper speed

effective viscous friction coefficient

effective coulomb friction coefficient

effective torque constant for the motor

motor circuit resistance

effective inertia of the gripper motor, gears, linkage and jaws

gripping force

Tp - effective torque due to gripping force

s - Laplace variable

The gripper angle ,'0gr forms the reference coordinate for most of these terms
(Fig.16); for example Kev gives the torque referenced to J9gr corresponding
to velocity ;6Kr' The voltage from the digital-to-analog converter is deter-
mined by the control law implemented in the microprocessor controller, gripper
angle feedback from the digital encoder and a reference angle supplied by a
user or host computer.

52

Gripping
Force

I

:(b) Simplified form.

(Figure 16.- Block diagram representing the dynamics of gripper operation.

The terms in Figure 16(a) can be combined to form the simplified block
diagram shown in Figure 16(b). The new coefficients in this diagram are de-
fined in

Kamp

—
Kemf > + Kev

53

The digital-to-analog converter acts as a zero-order hold, so v(jac is a
piecewise constant voltage. Assuming that the grippers is not contacting a
workpiece and that the gripper velocity does not change sign (so that Tc is
a constant), the dynamic equation represented by Figure 16(b) can readily be
solved to obtain the time trajectory of '6gr during each period of constant
voltage. The controlling equation is

and the solution can be written

6(t) . 6o + dac - ?c [(t +l (e - C(t-t0) _

-e0 (a - -o - i)

where tQ is the time at the beginning of the segment, i6 Q and PQ are the
position and velocity at the to and

In a computer simulation, these equations can be used to evaluate the transi-
tion in the gripper state during one timestep of its controller unless the
gripper velocity changes sign or the gripper closes on a workpiece during this
transition. In either of these cases, the driving torque (right-hand side of
the differential) changes during the timestep.

If the gripper jaw motion reverses direction, the time at which this oc-
curs can be obtained from the previous velocity equation. The gripper position
at that instant is determined and then the transition continues with the new
values for the coulomb friction term, tQ, QQ and 69. When the gripper
closes on an object, the same procedure can be employed, but the differential ;
equation is changed to include a torque term proportional to the distance be-
tween the gripper jaws to simulate the compliance in the jaws and object. A
simpler approach that can be used to evaluate the steady-state gripper force
corresponding to a given applied voltage involves modeling the gripper impact
as an inelastic collision between rigid bodies. The effective torque !TF due
to the gripping force Fgr is given by

TF = Kdac Vdac

The gripping force is found from

; TF =
 Fgr Ggr

54

where Ggr is the first geometric derivative relating the closing of the jaws
to the gripper reference angle and can be obtained by differentiating the posi-
tion relation, leading to

Ggr = 2&cos0gr

Grasping a load object. - Grasping an object can lead to constraints on
the arm motion (if the object is constrained) or additional mass to transport
during the motion. Suppose a load is rigidly grasped by the end-effector and
is moved by the arm. The path of the load object is found by evaluating a re- >
lative translation C an<* rotation [P] between the end-effector
reference and the load object's coordinate system at the time of the grasp

Then, after evaluating the end-effector position for each subsequent arm con-
figuration, the load position can be determined using these relative positions
by rewriting the equations as

The dynamic effects of the load mass on the arm motions are modeled by
adding the mass distribution of the load to that of the end-effector. The po-
sition of the load relative to the end-effector is used in the procedure for
combining the rigid-body ma.sses described earlier in the section that discusses
the system definition function.

The simplest implementation of the grasp operation performs these steps
regardless of whether the object was in position to be gripped and the grasp
was successful. To determine the success or failure of the grasp, knowledge of
the surface geometry and positions of the object and gripper jaws must be used.
For example, consider a cylindrical peg being grasped by flat fingers (Fig.
17). The position of the peg is determined by the vector jcp to the center of
one end of the peg and the direction cosine vector J3p along the peg axis
(Fig. 17). The projection of the peg axis onto the plane containing the jaw
surface is readily evaluated by transforming the coordinates of this axis into
the local jaw reference system (Fig. 18). The critical points c± and G£
that define the endpoints of this projection onto the jaw surface can then be
found. If either end of the projection of the peg axis lies within the jaw
surface, this is one critical point. Other critical points occur at the inter-
section of the peg axis projection with the edges of the jaw surface (Fig. 18).
These critical points must be determined to evaluate the load distribution be-
tween the two gripper jaws. If there is no intersection between the peg axis
projection and the jaw surface, the grasp fails and corrective action must be
taken.

55

^HGripper Jaws

Figure 17.1- Location of cylindrical peg.

!Peg Axis

Jaw Surface

. Figure 18.:- _
/Critical contact points between peg

•and jaw surface.

56

End-effector force sensing. - The ISRL end-effector is mounted to the arm
through a six-degree-of-freedom force/torque wrist. By placing the reference
point for the end-effector coordinate system at the center of this sensor, the
force and torque computed during analysis for this reference point are the
force and torque measured by the six-axis sensor.

In addition to the wrist sensor, the ISRL end-effector incorporates force
sensors in each jaw of the gripper. These force sensors measure forces and tor-
ques in the local x- and y-coordinate directions of each gripper jaw (see Fig.
15). The distribution of applied loads between these two jaws depends on the
critical contact points previously identified. The applied load on the peg is
balanced by reaction force _f_£j_ and fg2 at tne critical contact points Cj
and C2« The components of these forces in the local z-direction are neglec-
ted because the jaw force sensors have no sensing capabilities along or about
this axis. The components in the local x-direction are assumed to be evenly
distributed between the left and right jaws, and the y-axis force at each point
acts on only one jaw depending on its direction. The y-component of the reac-
tion forces at the jaw contact points also include terms for the gripping force
applied. For example, consider a force of magnitude fa applied to the peg as
shown in Figure 19(a). This leads to reaction forces f^, supplied by the
right jaw, and F^2> supplied by the left jaw. In addition, a gripping force
of magnitude fgr is applied. Figure 19(b) shows how these reaction forces
are distributed between the left jaw (fn and f]̂) and right jaw (fri
and fr2) as the applied force magnitude varies. The reason that reaction
forces greater than the gripping force can be supported is that the gripper
worm gear is not backdriveable.

The jaw reaction forces generate forces and moments at the jaw force sen-
sors. These forces and moments can be used during arm operation to identify
the critical contact points and the external loads applied to the peg, although
forces along, and moments about, the local z-axis cannot be identified, nor can
the local x-coordinates of the critical contact points.

57

cl

c2-

id.

Left Jaw Right Jaw

(a) Applied and reaction forces.

-f

"rl

(b) Resulting jaw forces

Figure 19.-
Jaw forces resulting from an applied load and gripping force.

58

POSTPROCESSING CAPABILITY

Introduction

This section describes the capabilities implemented in ROBSIM for process-
ing data generated during execution of the analysis tools functions. Because
enormous amounts of data may be generated, methods other than viewing printouts
are necessary to evaluate these data and compare different analysis runs. The
following options are included in ROBSIM to accomplish this:

1) Graphics replay of simulation motion;

2) Graphics replay of simulation vs hardware motion;

3) Plots of manipulator parameters vs time.

Items I) and 2) use an Evans and Sutherland picture system to display arm
motions. The replay of simulation motion displays the manipulator system mo-
tions as they occurred during a requirements analysis or response simulation
run. Replay of simulation vs hardware allows the user to display the motion
of actual hardware (a "real" arm) and the motion of its software model simul-
taneously. The simulation model is displayed in the configuration defined
during system creation. The hardware arm is shown as a stick figure super-
imposed on the simulation model. It should be noted that no calculations or
analyses are carried out during either simulation replay or simulation vs hard-
ware replay other than those needed for the Evans and Sutherland display.

Manipulator parameter plots allow the user to create x-y plots of various
manipulator parameters as functions of time. Some of the parameters available
for plotting are joint and end-effector positions, velocities, accelerations,
forces and torques. These plots may be displayed on a graphics terminal or
drawn on a pen plotter.

Simulation Replay

Replay of a manipulator system simulation displays the motions of the sys-
tem exactly as they occur during a requirements analysis or response simulation
run. The system is depicted as defined during system creation/modification
with simple cylinder components or detailed geometries. Simulation playback
makes use of a data file, written during the analysis function, that contains
manipulator joint displacements as functions of time. These, and data defining
the system geometry, are used to locate the positions and orientations of all
joint/link pairs and load objects held by an arm with respect to the world
coordinate system. The methods used to find these positions and orientations
were described in the System Definition and Analysis Capabilities sections.

59

Because very few calculations are needed for the playback compared to the ac-
tual analysis, the motion is more continuous. As the playback proceeds, the
motion may be halted at any time by pressing the button labeled zero on the
Evans and Sutherland control panel. The display of the manipulator system may
then be moved or rotated using the Evans and Sutherland control dials. This
allows the user to view the system from a different perspective. Pressing the
zero button again resumes the playback motion.

Simulation vs Hardware Replay

This postprocessing option allows the user to display the motion of a sim-
ulation as previously described, and concurrently display the motion of a hard-
ware arm superimposed on the simulation. This is quite useful when validating
system models. The data collected from a run of a hardware arm consist of
joint actuator voltages and joint positions as functions of time, stored in a
file, and transferred to the mainframe computer. A response simulation run
modeling the hardware arm may use the hardware joint actuator voltages as con-
trol inputs or the same control algorithm as used for the hardware. This makes
joint displacements as functions of time for both the hardware arm and its sim-
ulation model available for this option of the postprocessor. The joint dis-
placements are used to find positions and orientations of the system components
by the methods described earlier. The Evans and Sutherland picture system then
uses the position and orientation data to display the motion of the two arms.
The model, or simulation arm, is displayed as depicted during system defini-
tion; the hardware arm is displayed as a series of straight lines representing
the centerlines of the arm links. As with the simulation replay described ear-
lier, the motion of the display may be stopped at any time by pressing the zero
button on the Evans and Sutherland control panel. The motion is suspended and
the display may be viewed from a different perspective. Motion is resumed by
pressing the zero button again. Figure 20 shows an Evans and Sutherland dis-
play of a planar arm simulation model and the stick figure representing the
hardware arm.

Parameter Plots

This postprocessing option allows the user to plot various arm parameters
as functions of time. A commercially available graphics software package is
used to display the plot data on either a graphics terminal or a pen plotter.
The choice of parameters available for plotting depends on the plot package
chosen during the requirements analysis or response simulation run. The plot
packages available for each type of analysis are tabulated.

60

Requirements analysis Response simulation

1) Brief
2) End-effector data
3) Joint positions
4) Reaction forces
5) All or the above

1) Brief
2) End-effector data
3) Joint positions
4) Reaction forces
5) All or the above
6) PID control data
7) Force/ torque control data

/V7X1 Ft TIN MA HIE TTA

TIME C5ECJ " 1.009 JOINT TRRVEL STRTUS

RRM1

JMT1

JNT2

VBLJLE

10.4e
•41.78

t MRX

12

Figure 20. - Simulation vs hardware replay.

Listings of the manipulator variables saved by each plot package may be found
in the analysis tools and postprocessor user's guides. Data pertinent to the
chosen package are written to a file during the analysis run. During postpro-
cessing, the user may plot any of the parameters saved in this file. The user
determines the plot title, x- and y-axis labels and the number of curves per
plot (up to 31). Figure 21 shows the displacements of joints 1 and 2 for a
planar arm during response simulation using PID control.

JOINT POSITIONS VS TIME

H
E
T
1=1

R
1=1
O

-12--

-16--

-20--

-24--

TIME — SEC

Figure 21. - Joint displacements.

62

MANIPULATOR CONTROL

As the number of manipulators used in various applications increases, the
demands placed on control systems and sensor performance also increase. The
areas in which the demands occur are accuracy (implying repeatability), speed,
and uniformity of performance over a range of loading conditions. Efficiency
of operation—implying the use of optimization techniques—is also becoming im-
portant, especially with regard to long-duration space missions and high-volume
industrial operations. This section focuses on the different families of al-
gorithms used for manipulator control.

In the Manipulator Description section the basic manipulator problem is
defined in terms of fundamental elements—dyanmics, reference frame transforma-
tions, and performance requirements. The Control Algorithms section describes
several conventional position control approaches. The control algorithms dis-
cussed are:

1) Linear discrete with feedforward nonlinear compensation;

2) Resolved acceleration;

3) Resolved motion force.

The Adaptive Control section discussion includes both linear adaptive con-
trol and nonlinear adaptive control. Simulation results are presented for both
cases•

The Force/Torque Control section introduces the subject of control invol-
ving both positional and force constraints. Two approaches, hybrid control and
active stiffness control, are analyzed in detail and simulation results pre-
sented.

Manipulator Description

A full description of the plant to be controlled is required as the first
step in any control analysis. This section describes the properties of the
manipulator important to control system synthesis:

1) Kinematics;

2) Dynamics;

3) Performance requirements.

63

Figure 22 shows a typical manipulator system.

6-,

Bu

05

96

shoulder yaw

shoulder pitch

elbow pi tch

wrist pi tch

wrist yaw

wrist roll

Figure 22. - Six-degree-of-freedom manipulator.

Kinematics. - The first area of concern, kinematics, involves transforma-
tions between the manipulator reference frame, the joint angles and linear dis-
placements (in the case of sliding joints), and other Cartesian reference
frames (work coordinates). Although the transformation equations are not diff-
icult to determine conceptually, the function involves a significant amount of
computation. After this, the problem then becomes one of determining a torque
input vector T_ so actual joint positions will match desired joint positions
with specified time and overshoot constraints (Fig. 23).

SOLUTION
OF

AX =[J]A6

A6
CONTROLLER

MANIPULATOR
SYSTEM

COORDINATE
TRANSFORMATION

Figure 23. - Manipulator joint position solution procedure.

where

X^ is the desired end-effector position (in Cartesian coordinates)

Xg is the actual position of the manipulator (in Cartesian coordinates)

0a is the vector of actual manipulator joint angles

T_ is the vector of torque inputs to be applied to the manipulator joints

This is the typical servomechanism control problem. The direct applica-
tion of standard linear control theory is not possible, however, because of the
nonlinearities and coupling inherent in the dynamics of the manipulator. A
following section describes the basic methods employed for constructing the
dynamic equations of a manipulator, the basic form of the manipulator equa-
tions, and the equations for the two-degree-of-freedom model used in the con-
trol algorithm comparisons discussed later in this report.

Performance requirements are the final area of concern in establishing the
framework of the manipulator control problems. Typical requirements and their
impact on formulation of the control problem are discussed in the final sec-
tion.

Manipulator dynamics. - The problem of manipulator control is made con-
siderably more difficult by the nonlinear, highly coupled nature of the dynamic
description of a general manipulator system.

The dynamic equations for a three-link planar ana are shown in Figure
24(a) and (b). These equations are included to demonstrate that, even for a
relatively simple dynamic system, the dynamic equations become complex very
quickly.

Performance requirements. - Performance requirements for a manipulator
can take several forms. In the simplest case the requirement consists of
tracking some reference trajectory in space with the end-effector. A time-
space trajectory includes the possibility of position, velocity, and ac-
celeration" constraints. Because these constraints are usually specified in
terms of a Cartesian work frame, and the control is usually in terms of mea-
sured joint variables, coordinate transformations are required to relate the
two.

A second general class of requirements can be stated in terms of forces
or torques applied at the end-effector. As in the case of position and atti-
tude relating to joint positions, end-effector forces and torques are related
by coordinate transformations to joint torques or forces [Wu 1982],

To perform a general task (peg-in-the-hole insertion for example), both
position and force constraints must be met simultaneously. This subject is
discussed in the final section in greater detail.

65

Definition of Variables

Motor Parameters

"i

KTi

K.

V.
1

Bi

Motor Shaft Angle
Joint Angle

Torque Constant Of The Motor (Nm/amp)

= Amplifier Gain (V/v>

=? Amplifier Input Voltage (V)

= Back emf Constant (V/rad/s)

= Armature Resistance (ohms)

K

R .
ai

LINK PARAMETERS

m.
i

a.i

I

e2

ei

= Mass.Of Link (kg)

= Distance from Joint To Center Of Gravity (eg) Of Link (m)

= Moment Of inertia Of Link about eg (kg-m2)

= Length Of Link (m)

= Effective Moment Of Inertia Of The Gears and The Rotating
Portions Of The Motor, Measured At The Joint (kg-m2)

Figure 24(a). - Three-link planar arm.

66

"Page missing from available version"

A^fr

Although simplistic, this system retains the basic difficulties of a higher
degree-of-freedom system as evidenced by the nonlinear terms. The only term
missing from this equation that is found in more general systems is a force
term attributable to Coriolis acceleration. The Coriolis term is manifested as
the product of angular velocities, (-.8 ,8) and is therefore very similar to the
centrifugal terms; hence, no generality is lost in a controller designed for
the planar system. The basic form of the controllers is shown in Figure 26.

COMPENSATION
TERMS

REFERENCED ~
1 INPUT *•

LINEAR
COMPENSATOR

MANIPULATOR
SYSTEM

Figure 26. - General controller structure.

The compensation terms are discrete approximations to the nonlinear terms in
the manipulator dynamics. Typical approximations used for compensation are

shown in Table III.

Table III - NONLINEAR APPROXIMATIONS

ACTUAL DISCRETE APPROXIMATION

2.

m9a Lcos(69(k)-01(k))(eo(k)-269(k-l)+eo(k-2))
^- £. £- 1 Z _ £. __ _Z _

L) gsinO (k)

m2a2Lsin(81(k)-e2(k))(e2(k)-02(k-l))'

T

69

These nonlinear compensation terms are meant to provide "correcting" tor-
ques. In the ideal case these corrections are exact and the dynamic equations
can be rewritten as: .,• •

(j)e.

where

J1282 - TA1 J2161 " TA2

= T f = T
Gl g2 TG2

Canceling these equalities leads to two decoupled linear systems,

J1161 + Vl - TE1

J2262 + K262 ~ TE2

Any conventional linear, discrete design technique may then be used to design
the linear compensator shown in Figure 30. Basically, these techniques are:

1) Pole-zero compensator in conjunction with root locus using pole place-
ment:

2) Pole-zero compensator corresponding to lead, lag, and lead-lag designs
in the frequency domain using gain margin, phase margin, resonance
peak, and bandwidth specifications:

3) PID design leading to closed loop pole placement.

Items 1) and 2) are shown in Figure 27; Item 3) is shown in Figure 28.

D(Z) = K(Z-Z£(Z-Z2) ,

(z-pJ(z-P2).

e0(z)

Figure 27. - Pole-zero compensator.

70

E(Z)

INTEGRAL

K
I Z-l

PROPORTIONAL

DERIVATIVE

Figure 28. - PJ.D controller.

Design techniques for selected compensators are described in more detail
in the following paragraphs. Two key questions must be examined:

1) What impact does neglecting compensation terms have on control system
performance?

2) What impact do additional loads with nonadjustable compensation have
on performance?

As shown previously, the use of nonlinear compensation terms simplifies
the problem to a standard, linear, digital design. Therefore, the first step
in the design process is to develop a discrete model for the decoupled plant.
Taking the Laplace transform of each term

K1S)6n1(S) =

(J22S +K 2 S)6 0 2 (S) = TE

and assuming the use of a zero-order hold device

H (S) = 1 ~H V '

-TS

71

leads to the required z-transform

G(Z) = Z - 1 - !
Z S2(JS + K)

The required Z-transform [Franklin 1981]

•7 / . . - a \
" \s2(s+a)/

= Z((aT - 1 + e)Z + (1 -
a(Z -

e"aT- aTe-aT))

yields

K Z

K/J

J (aT -
= K2

- aTe a = K/J

(Z - 1)(Z - e

This equation is further modified so that the impulse response of the discrete
model matches that of the continuous system. In other words,

LIM S G(S) = LIM(Z-1)G(Z),
S-K) Z->1

by the final value theorems for both Laplace and Z transforms. This requires
an additional factor of 1/T. Therefore,

aKT
(aT - 1 + e aT)Z + (1 - e

aT)

(Z - 1)(Z -

-(aT - 1 + e"aT) Z + ((1 - e a-aTe aT)/(aT - 1 + e'
aKT (Z - 1)(Z - e~aT)

This yields a pole-zero diagram in the Z-plane as shown in Figure 29.

Lm

72

Z = e
! Z = 1 - e -aTe -aT

Z = 1

Figure 29. - System pole-zero diagram.

There are two basic approaches for the design of the compensator shown
r°0t 10CUS °r fre<luency domain design in the W-plane [Franklin

in

In the root-locus approach the compensator is used to alter the loop
transfer function through pole cancellation, followed by a gain adjustment to
achieve the desired closed-loop pole placement. This is shown in Figure 30.

COMPENSATOR POLE

COMPENSATOR ZERO

Figure 30. - Root locus with pole cancellation.

The second compensator design technique explored uses the PID controller

**' ̂ ^^ ^^ ™ "^ C°ntroller can be combined to form

G(Z) = KIZ + Kp(Z - 1) + (KD/,T).(Z - I)
2

(Z - 1)

The three adjustable parameters, KL, KP, and KD allow arbitrary
placement of the poles of the closed-loop system. j

The PID controller has another important property with regard to disturb-
ance rejection (Fig. 31).

73

W(Z)

R(Z) D(Z) G(Z) Y(Z)

Figure 31. - General control loop with disturbance, W(Z)

The input/output transfer function is

Y(Z) = D(Z)G(Z)
R(Z) 1+D(Z)G(Z)

The disturbance transfer function is

Y(Z) = G(Z)
W(Z) 1+D(Z)G(Z)

Let, G(Z) = ni(Z) . D(Z) = n

1
ni(Z)

Y(Z) = W(Z) dl(z)

= W(Z)

then » then

1 + ni(Z)n2(Z

(Z - l)dj

(Z -

_

(Z)

(Z -

This shows that if W(Z) is a step disturbance

W(Z) = Z
Z-l

then

Y(Z) = Z(ni(Z))
(Z - + ni(Z)n2(Z)

74

If the denominator has roots inside the unit circle, the steady-state re-
sponse to a step, disturbance is zero; i.e., there is no steady-state "offset."
This is attributable to the pure integrator in the controller. In contrast,
assume (Z-l) is replaced by some general d£(z) in the disturbance transfer
function. Then for a step disturbance

Y(Z) = Z d2(Z)n1(Z)
Z-l d1(Z)d2(Z) +"n1(Z)n2(Z)

/

The steady—state contains a step component

Y (Z) = LIM Zd2(Z)ni(Z)
step Z+l d1(Z)d2(Z) + n

This implies that there will be a steady-state error to a step disturb-
ance. The physical interpretation of these results is straightforward. At
equilibrium, in the non-PID case, a non-zero error is required to provide the
torque necessary to maintain equilibrium. In the PID case, the error can be
zero while the output from the integrator provides the torque to counter the
disturbance. From the standpoint of a manipulator system this is an interest-
ing property because gravity disturbances are essentially step disturbances
around a given operating region.

Resolved acceleration control (RAG). - The RAG is a method of position
control of a manipulator. The algorithm uses the position and orientation,
the velocity, and the acceleration of the hand (or end-effector). The desired
position and orientation, velocity, and acceleration of the hand are specified
at each time step, and the control algorithm determines the joint positions,
velocities, and accelerations required to satisfy the specified conditions.
Finally, the input forces and torques to be applied to the joints are calcu-
lated using the "inverse problem" technique [Luh 1980a].

One advantage of the RAG method is that the forces and torques are not ob-
tained by the dynamics equations; rather they are calculated as a function of
the desired and actual joint positions, velocities, and accelerations, using
the Newton-Euler formulation of the manipulator equations. The method succes-
sively transforms the velocities and accelerations from the base to the hand,
using moving coordinate system relationships. The input forces and torques are
computed for each link (working back from the hand to the base). This scheme
allows much faster computation than the conventional technique based on the
Lagragian formulation of the dynamics [Luh 1980b] .

Resolved motion force control (RMFC). - RMFC is a position control method
developed for robot manipulators [Wu 1982]. Rather than controlling the joint
positions and torques (as do classical control techniques), RMFC controls Car-
tesian positions and forces. This method has the advantage of automatically
compensating for the changing configuration of the manipulator, gravity forces,
and the internal friction of the manipulator. Another advantage of RMFC is
that the control method can be extended to more than six degrees of freedom
without increasing the computational complexity.

75

To effect control of a position manipulator, it is usually desired to
drive it to follow a given trajectory. Paul's method of defining a manipula-
tor's position and orientation, the relationship between Cartesian forces and
manipulator joint torques, the specification of a manipulator's position tra-
jectory, and the RMFC algorithm are discussed below.

The position and orientation of an n-link manipulator can be described by
a 4x4 transformation matrix

n ox x
ax Px

n,,, n,where P = (px pv pz) is the position and nx, uy, nz, ux,
ay and az are the direction cosines defining the manipulator's orientation.

Jz »

The matrix Tn is the product of all n transformation matrices, A£,
i = 1 to n, describing the position and orientation of link i relative to link

Tn = A2 ... An

The linear and angular velocities of the terminal link are a function of
the Jacobian and the joint rates

x = IJ]£

where x =fv~|= l£
I w|= an

= linear velocity
angular velocity

The terminal link static forces Fn =n *
[f̂ t<i ... fn-i f̂

Fy Fz and tne

are relatedstatic joint torques

Ft = [JjTFa

where

[j]" is the transpose of the Jacobian; the differential change in posi-
tion and orientation of Tn as a function of all n joint angles

fj, ... fn are the joint torques; FX, F , and FZ are the
Cartesian forces at the end-effector

Mx, My, and Mz are the moments at the end-effector

A time-based position trajectory can be defined as:
i

Tn(t+ t) =1

76

1

w z (t)

-wy(t)

0

-wz(t)

1

wx(t)

0

wy(t)

-wx(t)

1

0

vx(t)

vy(t)

v z(t)

1

At

where v(t) is the linear velocity and w(t) is the angular velocity Tn(t),
v(t), and w(t) must be continuous.

The basic idea of RMFC is to calculate the joint torques required to con-
trol the Cartesian motion of the manipulator. The method is based on the rela-
tionship between the joint torques and the terminal link forces. The control
is divided into two parts. The first part deals with position control of the
terminal link. The second part of resolved motion force control calculates the
joint torques required to obtain the desired terminal link forces and moments
that were determined in the first part.

For the first part of the control it is assumed that all links except the
terminal link and the load are massless. Also, the center of mass of the load
is located at the origin of the terminal link coordinate system, and the coor-
dinate axes of the load are aligned with the terminal link axes. Because the
manipulator's links are not massless, the second part of the RMFC scheme com-
pensates for these errors-using a method called force convergent control. The
technique uses the Robbins Monro stochastic approximation method to determine
the joint torques required to produce the desired Cartesian forces and moments
of the center of mass of the load.

The desired position and orientation can be expressed in the form of a
transformation matrix Tn<j. The actual position and orientation Tna is
determined according to equation for Tn above. The Cartesian position and
orientation error

Xe - Xd - Xa - [dx

can be written as

x "y rzj

nd na

1

-6

-6
2

l

6

y

X

1

0

The differential transformation matrix is obtained as follows. The trans-
formation matrices Tx, Ty, and Tz defining a rotation about the x, y and z
axes, respectively are given by

77

T =

T =

T =

1

0

0

0

-^= — -

cosG

0

-sine

0

cos6

sinO

0

0

0

cos6

sin9

0

0

1

0

0

-sin9

cos6

0

0

0

-sine

cose
0

sine

0

cos6

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

For a differential change dOj

lim sin6=d6
0-K)

lim cos6=l

Substituting these expressions into Tx, Ty, and Tz , multiplying the
resulting matrices together, and neglecting second order terms gives

T = T T T
6x 6y 6z

1

6Z

-6y
0

-6
z

1

6
X

0

6y
-5

X

1

0

0

0 .

0

1

Multiplying T (on the left or right) by a matrix Ta defining a differen-
tial translation along the x, y, and z axes gives

1

6
Z

-6

78

This is precisely the differential transformation Tnd« It should be noted
that this matrix is independent of the order of rotations.

Explicit expressions for dx, dy, dz, 6X, 6y» and 6Z of Tn<i
are obtained as follows.

Define Tna and Tn(j as

T =•̂na

i

Tnd =
f1

t
i

\

nax

nay

naz

0

~~n !dx

n,dy

njdz

_ 0

0ax

oay

oaz

0

°dx

°dy

°dz

0

aax

aay

aaz

0

adx

ady

adz

0

Pax

ay

paz

1

Pdx~

pdy

Pdz

1_

Rewriting gives

where

na

1 -6z

6 1z

-6 6y x
_0 0

= nax

°ax

a
ax

0

6
y
6
X

1

0

nay

°ay

aay

0

d
X

dy
dz

1_

= T l T .,
na nd

naz -pa • %

°az -pa ' °a

a -p a
az *a- • a

0 1

Premultiplying Tn<j by T^ and equating elements of the resulting
matrix with the elements of T gives

79

X =
e

X
a • o ,
a d

n • a,
a d

o • n,
a d

where nd, od, ad, pd, and na, oa, aa, pa are the column vectors
of Tnd and Tna, respectively.

The actual Cartesian velocity
(Tl

X = TV v V w w w 1 at- T
. -a L xa ys za xa ya za-1 at n

is given by

where [J] is the Jacobian of the manipulator and qa are the actual joint
velocities.

Rewriting the equation for Tn(t+At) gives an expression for the desired
Cartesian velocity Xd = [Vxd vyd vzcl wxci x-7yd wz<i]

T:

~1

w
zd

-w ,
yd

0

-w ,
zd

1

w jxd

0

w
yd

-w ,xd

1

0

Vxd

vyd
Vzd

1

*Tnd(t+At)]

where At is the sample time

Performing the multiplication on the right-hand side above and equating
elements of the resulting matrix to the elements of the matrix on the left side
yields

lnd(t) • [pd(t + At) - pd(t)]]/At

[od(t) • [pd(t + At) - pd(t)]]/At

[ad(t) • [pd(t + At) - pd(t)]]/At

[a.(t) • o,(t + At)]/At

Vyd(t)

Vzd(t>

[nd(t) ad(t + At)] /At

[od(t) • n(t + At)] /At

80

The Cartesian velocity error can be calculated by subtracting

X = -X, - X
-e -=d —a

i
The desired Cartesian acceleration can then be estimated

(̂t) = (Xd(t + At) - Xd(t))/At

The position control loop for the system uses position and derivative
feedback in addition to the desired acceleration. The actual acceleration is
given by the expression

where:

xa(t) = Kvxe(t) + Kpxe(t) + xd(t)

is the position gain Kv is the velocity gain.

Differentiating the equation for Cartesian error and substituting the
result into the above gives

To drive Xa to converge to X^, Kv and Kp must be chosen so the
roots of this equation have negative real parts.

The desired Cartesian forces and moments can be calculated as

where

M = m
• t
0

0

0

0

0

0

m
t̂

0

0

0

0

0

0

m
t

0

0

0

0

0

0

I
X

0

0

0

0

0

0

Iy
0

0

0

0

0

0

Iz

mt is the total mass of the load

Ix, Iy, Iz are the second moments of inertia about the coordinate
axes of the load.

The applied joint torques required to produce the desired Cartesian forces
and torques can be calculated

It =

81

When the mass of the terminal link and the load approaches the mass of the
remaining portion of the manipulator, the control algorithm will not converge
to the desired Cartesian forces and torques. Force convergent control compen-
sates for this error.

Force convergent control uses Robbins-Monro stochastic approximation to
calculate the applied Cartesian force F^ (and the corresponding joint tor-
ques) required to drive the observed Cartesian force F^ to converge to the
desired Cartesian force F̂ j.

The Robbins-Monro method, which finds the root of a regression function,
can be summarized as follows. Let be the parameter vector to be estimated
and the Zj^ be the observation at time K. Then the new estimate at time K+l
is given by

The coefficient b^ is a sequence of positive numbers with the following
properties

i
lim bv = 0

K

The first equation ensures that the estimate will settle down in the lim-
it. The second ensures that the estimate does not settle down before reaching
the root. The third ensures that the variance of the accumulated noise is fi-
nite so the effect of the noise can be corrected [Fukunaga 1972] .

The manipulator is modeled as an unknown function. The input of the func-
tion at each sample time is F_a, the applied force. The function's output is
the observed force F_o at the load. This can be stated as

F0 = F(Fa)

The method can be described as three basic steps. First, define an error
tolerance for the force

dF = [dF1 dF2 dF3 dF4 dF5 dF6]
T

This is the acceptable error between the observed Cartesian force F_o and the
desired Cartesian force Fjj.

Next, initialize the applied force F^ at t ~ 0 to the Cartesian force
caused by the gravity force of the load. Finally, at each sample time, perform
the following operations:

1) Calculate Fd using jĵ Ct) = MX^t)

2) Set K=0 and £3(0) = final F_a of previous
sample time;

82

3) Apply the joint torques Ft = [J]
TFa(K);

4) Measure the observed force F^dO;
!

5) Calculate the Cartesian force errorl6F(K) = Zd ~ Z

6) Calculate

a) If |6Fi[> dF± , i = 1, 2, 6, compensate
F_a according to the following equation

b̂ 6F(k)

where bR = 1/(K+1) for K = 0, 1, 2, ...

b) Increment K by 1,

c) Return to step 3 (apply new joint torques);

7)| If |6F±|-< dF ,i = 1, 2, . . . , 6, Fjo(K)
has converged to the desired force F^. Therefore, apply the joint
torques in step 3) for the remaining portion of the sample time.

It should be noted that in the simulations documented in [Wu 1982], the
above algorithm was modified to perform a finite number of iterations, N,
rather than using the force error criterion to test convergence. As N is in-
creased, the accuracy of the algorithm increases. It should be noted further
that N cannot exceed At/h, where At is the sample time (in seconds) and h is
the time (in seconds) required to perform the operations in FCC.

83

Adaptive Control

The algorithms discussed so far for manipulator control all rely on the
assumption that the manipulator dynamic parameters are known for use in control
law formulation. Although the general form of the manipulator equations is
well known, the precise coefficients (specifically the inertia matrix) will
generally be time-varying. One technique to overcome the effects of the time-
varying manipulator dynamics on system performance is to make the controller
adaptive. While the term adaptive has been used loosely in many applications,
it will be defined in this discussion to mean "parameter adaptive" control.

A parameter adaptive controller adjusts the coefficients of a variable
"filter." Figure 32 is a block diagram of an adaptive controller.

UNKNOWN
VARYI NG
PLANT

PARAMETER
ESTIMATOR

CONTROL
LAW

REFERENCE-

Figure 32. - General adaptive controller.

As shown, it is assumed that the plant to be controlled is either initial-
ly unknown or time-varying. The parameter adaptive controller consists of two
primary blocks—the parameter estimation block and the control law block.

Parameter estimation. - The parameter estimation block determines, using
sensor data, a set of coefficients that describes the system to be controlled.
This definition is purposely vague because a large number of parameter estima-
tion techniques exist. A typical parameter estimation block is shown in Figure
33.

84

u-
Y(Z) = B(Z)

A(Z
U(Z)

PARAMETER ESTIMATION
ALGORITHM

Figure 33. - General parameter estimation.

If the plant is a linear system, it can be expressed as a discrete model
as

= aLY(K) anY bQU(K) (K-m)

The parameter estimation algorithm operates on past values of input and
output data to generate an estimate of the unknown parameters - aj_, ... an,
and b0, ... bm.

Techniques for parameter estimation have been widely studied both for con-
trol and signal-processing applications. Algorithms are available for determi-
nistic and stochastic systems.

The parameter estimation algorithm to be discussed here is recursive least
squares (RLS). It is one of the most robust estimation schemes and converges
more rapidly than some of the simpler methods. Recursive least squares is
classified as an "equation error" parameter estimation scheme because of the
basic structure of the algorithm. Most parameter estimation techniques are of
the form [Goodwin 1982]

In "equation error" estimation schemes, the error is defined as

e(K) = Y(K) -llo(K)

where

= [Y(K-l),..., Y(K-n+l), U(K-l), ...,U(K-m-l)]T

,...an, b0,...bm]
T

85

For the true parameters, e(K) = 0. Thus the name "equation error." e(K)
is a measure of how well the parameter estimates satisfy the governing equa-
tion. If e(K) £ 0, the parameter estimator will continue to update the esti-
mate. The ",r" term is what differentiates parameter estimation schemes. It
can be thought of as a "gain" term for the estimation process. For the recur-
sive least squares estimator, is chosen to be [Goodwin 1982] and [Franklin
1981]

a(k) P(K-d-l) <}(K-d)
1 — ^̂ -̂ ^ • ' • • • ' ••' • -•

1 + a(K) <j)(K-d)TP(K-d-l)

and

a(K) P(K-d-l) (j)(K-d) $(K-d)TP(K-d-l)
P(K-d) = P(K-d-l)

+ a(K) <f)(K-d)TP(K-d-l)

To start the RLS algorithm,

P(-d-1) = £0I

where e » 1 and

I is the identity matrix

0 <a(K) < 2
f(0) = [0,..,0,1,0,...0]

where the "1" corresponds to the parameter bg.

If a good "first guess" of the parameters is available, it can be used for
j|(0). The estimate of the coefficient bg should not be initialized to zero
because this results in division of 0.

The coefficient a(K) is usually chosen to be unity; however, in cases
where <J>(K-d)T P(K-d-l) ̂ >(K-d) (in the denominator of T) is close to minus 1,
a(K) should be chosen to avoid division by a number close to zero.

Once an estimate of the parameters has been obtained, it is used in for-
mulation of the control law. The most general control form is model-reference
control. In this case the controller functions to make the closed-loop system
match a desired transfer function (or matrix). A special case of model-
reference control is "one-step ahead optimal" or minimum-variance control.
These control strategies are discussed in more detail in the next section.

Linear Adaptive Control. - A linear, deterministic system is described by
an auto-regressive moving average (ARMA) equation of the form

= a]Y(K) + ... + anY(K-n+l) + b0 U(K) + ... + bmU(K-m)

86

To formulate a "one step-ahead" or "deadbeat" controller, it is assumed
that the reference signal is known one step in advance. That is, Y*(K+1) must
be known at the time K. The control law for the parameter adaptive controller
is obtained by setting Y(K+1) = Y*(K+1) and solving for U(K) [Goodwin 1983].

This yields

U(K) = _!_[-a! Y(K) - ... - anY(K-n+l) - b]U(K-l)
b0 - ... -bm U(K-m) + Y*(K+1)]

This can also be written in vector notation as

U(K) = £

where £(K) = [-Y(K) ... -Y(K-n+l) - U(K-l),
-U(K-m) Y*(K+1)]T

6(K) = pil £n bjL ^
LbO ••• bO» bO ••• bO>

The vector j)(K) is referred to as the regression vector and 9(K) is the
parameter vector. This is referred to as the linear controller form because
the control law is a linear function of past Y and U values. If the a and b
coefficients are known, the control for U(K) will result in Y(K+1) = Y*(K+1).
Because it is assumed, however, that the system parameters are initially un-
known (or time-varying in the case of manipulator control), the a and b co-
efficients must be estimated. The control law then becomes

U(K) = (K)T (K-)

where 9(K) is the vector of parameter estimates.

A,
The parameter estimation algorithm used to obtain 0*(K) is RLS as explained

in the previous section.

While this form of control is appealing from the standpoint of its simpli-
city and apparent tracking performance, it is impractical for implementation in
an actual system. The superior performance is attained at the expense of large
control efforts. For practical systems this leads to saturation of control
components and hence full performance is never achieved.

A more reasonable approach to the problem is to force the closed-loop sys-
tem to behave as some reference model that is chosen with the limitations of
amplifiers and actuators in mind. (Strictly speaking, the one-step-ahead con-
troller is a model reference controller. The reference model is simply a pure
delay block with the number of delays governed by the number of delays in the
plant ARMA equation.)

87

The first step in the formulation of a model reference controller is to
specify the structure of the reference model

Y*(k+l) = eiY*(k) + .. + enY*(k-n+l)
+ hQR(k) + . . .

In this case, the "e" coefficients govern the poles of the reference model, the
"h" coefficients govern the zeros, and the sequence R(k) is the reference in-
put signal.

The first step in the formulation of the model reference control law is to
isolate the current input term, U(k) as before

U(k) = L - bLU(k-l)

o
-bU(k-m) + Y*(k+l)]m

This step was sufficient to generate the control signal for the one-step-
ahead controller. Now, instead, Y*(k+l) is replaced by the terms on the right-
hand side of the reference model

U(k) = 1 (-aiY(k) - .. anYU-n+D-bjUCk-D-bnjUCk-m)
b0

+e1Y*(k)+ ... +enY*(k-n+l)
+h0r(k) + ... + hjjRCk-m)]

This control law could be used as is by keeping track of previous Y* val-
ues. However, assume that ¥]_ and not ¥*j_ is used in generating the con-
trol. Substituting and combining terms yields

U(k) = J.(e1-a1)Y(k) + .. + (en-an)Y(k-n+l)
b

- .. -bmU(k-m)+h0R(k)
+ ... +

Under these conditions, this system has the compensation structure shown
in Figure 34.

R (Z)
h +hnz~1+h zo 1 m

u(z) m
, -1 -n1-a., z -. . . -a z

1 n

-1 , -m-v --v

(e a1)+(e.-aJz-1
+...+(e -a1 1 2 2 n n

Y(Z)

Figure 34. -Model reference control structure.

88

When the control law above is substituted into the original system equa-
tion, this results in:

. +enY(k-n+l)

.. +hmR(k-m)]+h0R(k)

Subtracting the above from the basic reference model equation and defining
E(k) = Y*(k) - Y(k) yields

= e]E(k) +en(E(k-n+l)

The significance is that initial startup mismatches between Y* and Y will
be regulated out as a function of the poles of the reference model. The
closed-loop transfer function, utilizing this control law, is the desired re-
ference model transfer function. (This can be shown by simple block diagram
reduction of Figure 34.)

Some simulation results for a single-input, single-output linear system
are shown in Figure 35. THe performance of the controller when no load change
is involved is shown in Figure 35(a). Parameter convergence is rapid and
tracking excellent after initial transient behavior. Figure 35(b) shows the
results of a load change at 50 iterations. As expected, control degrades as
reidentification takes place, but resumes one- step- ahead behavior after the

i Lei. s
• ' 1 1 '

1 0

8.0

0.6

0.4

|| 0.2

duJO.O

-0.2

-04

-0.6

lave seLneu.

i i 1 1 ill

j,
1.1

0.9

0.7
0.6
n K
0.4
0.3

g 8 °-^
»S 0.1
l.i o
CD tn A i

O.UJ -"•!

-0.2
-0.3
-0.4

J 1 1 1 1 1 1 1 .0.7

-

TÎin̂
v

J~\ "^
ft J

y \r

, i i i i i
20 40 60 80 100

Iterations
120 140 20 40 60 80

Iterations
120 140

10.0

9.0

8.0

7.0

6.0
Plant
Output, 5.0
Deg

4.0

3.0 I

2.0 I

1.0 I

\r

20 40 60 80 100 120 140
Iterations

0 10 20 30 40 50 60 70 80 90100 120 140
110 130 150

Iterations

(a) No Load Change (b) Load Change at 50 Iterations
89

.Figure 35. - Linear adaptive control simulation.

Nonlinear adaptive control. - The major body of results developed for
adaptive control systems have focused on linear systems. For several years,
however, researchers have addressed the problem of applying the adaptive con-
trol theory to robotic manipulators. Aside from purely theoretical interest,
this pursuit is practical. With the increased interest in intelligent, flex-
ible automation systems, manipulators are expected to be forced to perform over
their entire load range, often with loads that have poorly defined mass proper-
ties. An adaptive strategy is ideally suited for this type of situation. The
problem lies in extending a body of theory developed primarily for single-input
single-output linear systems to the highly coupled, strongly nonlinear dynamics
that characterize a manipulator.

Two of the primary approaches to adaptive control of manipulator systems
will be described in greater detail. In [Leininger 1983], the problem is at-
tacked by assuming that each joint can be adequately modeled as

(1 + A(Z~1))Y(t) = Z-kB(Z-L)U(t) + e(t) + d(t) .

A and B represent polynomials in Z~ , e(t) is a white noise sequence, and
d(t) is a "takeup" term that accounts for coupling from other joints. A re-
cursive least squares identification technique is used to identify the para-
meters of this model. The controller cancels the effect of d(t), (essentially
a feedforward term), and then computes compensation terms to yield a critical-
ly damped joint response. Simulations of this approach in [Leininger 1983]
demonstrate good system response in terms of output tracking, but time hist-
ories of parameter identification are not provided. Because d(t) represents
the total contribution of effects from all other joints, it would seem that the
identification loop would have to be very fast to adequately track this term.

[Lee 1982] proposed another approach. Rather than approximating the cou-
pling effects at each joint, the full set of nonlinear dynamic equations are
used to generate a state-space model that consists of the nonlinear equations
linearized about a nominal path. An RLS identification routine is used to
identify the coefficients of the linearized model. Once the state-space form
is available, a variety of approaches to control exist, including pole-
placement and optimal regulator theory. Although not referenced, this approach
to adaptive control is reminiscent of that proposed in [Kreisselmeier 1981] for
linear systems.

The nonlinear adaptive control approach that has served as the focus of
this study was developed by Dr. Howard Elliott at the University of Massachu-
setts, Amherst. The control approach can be summarized as feedforward cancel-
lation of nonlinear it ies at each joint, with subsequent model reference control
of the remaining linear terms. This approach to nonlinear control is not new
and apparently was first used in [Hemami 1982], The significant contributions
made by Dr. Elliott are:

1) Recursive least squares can be applied to the nonlinear manipulator
dynamics without first linearizing the system of equations,

90

2) By assuming knowledge of primitive dynamic parameters, i.e., link
lengths and the gravity coefficient g, there is a large amount of re-
dundancy in the manipulator equations and hence the parameter estima-
tion problem can be drastically reduced. In the case of a three-link
system, Elliott's back-substitution technique reduces the parameter
estimation problem from 23 parameters to three parameters per joint,
for a total of nine. Other studies have shown that the estimation of
three parameters can be accomplished at 100 Hz with an Intel 8086.

The use of recursive least squares to directly identify nonlinear terms
was suggested in [Goodwin 1982]. As an example of this technique, consider the
nonlinear plant model shown below, where g(Y(k)) is a nonlinear function of
Y(k), and the structure of the nonlinear function is known, e.g., g(Y(k)) =
cos(Y(k))

Y(k+l) = a0Y(k) + .. + anY(k-n+l) + an+ig(Y(k))
+b0U(k) + .. + bmU(k-m)

This can be written in terms of a parameter and regression vector

> an+l> bO> •••» bmJ•

Using this parameterization, the recursive least squares technique is directly
applicable.

The back-substitution technique for reducing the magnitude of the para-
meter estimation is described in the following subsection for the three-degree-
of-freedom planar arm system. This discussion includes the control law formu-
lation for model reference control and nonlinearity feedforward cancellation.

Parameter Estimation. - Our starting point is the equations for the
three-link planar arm. These can be rewritten for the purposes of parameter
estimation as shown.

Row 1

Row 1
r2 . . ~|

D l l ^ l ~*~ ^12^2 "*" ^13®3 ~^~ ^l1* cos62 (20^ + 02) — sin02(02 + 20 j0 2) |

(\~ + D15Fcos(02 + 03X20]. + 62) - sin(02 + 0 3) (0 i + 0| + 2(0!02 4- 0203 + 010s)) f

E2 • • • • " "1
:os03(201 + 202 + 03) - sin63(03 + 2 0 X 0 3 + 20203) •

+ Digsin0} + Digsin(0^ + 02) + D\ igsin(0i + 02 +

91

Row 2

r~« • • • ^ ** r * *PT
D2 i [_6i + 62J + D2263 + D23 [cos02(0'i) - sin02(e!)J

E « 2 ~I
:os(62 + 63) (0J.) - sin(62 + 83) (61)

J>-

+ 025(00363(261 + 262 + 03) - sine3(03 + 26J63 + 26263)] + D2662

+ 62) + D28sin(91 + 02 + 63) = T2 •

Row 3

«2- n r ••
pl + 62 + 63J + D32[cos(62 + 63)(01) - sin(62

E " • • o~i
:os63(e1 + 62) - 3̂ 63(6! - 62)

2J + 03463

4- 03581.11(6! + 62 + 63) = T3 «

where
i - - - - - -

; Row i
! 2 2 T 2 2 2 2
I DH = Miai + (Li + ;a2) + M3(L1 + L2 + a3) + l± + I2 + I3

2 2 ,'-?
D12 = .M2a2.+ M3 (L2 -Ha|) + I2 + I3

2 ' \
D13 = M3a3 + I3

= M3L2a3

Di7 = Bl

D19 = M2a2g +

DI 10 = M3a38

92

Row 2

D21 =

D22 =

2
M2a2

2
M3(L2

2
a3) I2 + I3

M3a3 +13

25 = M3L2a3

D26

D28 =

: M2a2g + M3L2g

M3a3g

Row 3

2
D31 = M3a3 + I3

D32 = ;M3L!a3.

D33 = M3L2a3

D_ . = B334 3

D35 = M3a3g •

If we assume knowledge of Lit L2 and g, we can rewrite these equa
tions as ._. - ____ __

Row 1

L1(cos92(291 .

L^(cos(02 +

+ L2(cos03(201

+ Di70! +

92) - sin02(02 + 29j92) + gsin(0j + 92)

92 + e'3) - sin(02 + 03)(93 + 92 +

202 + 03) - sin03(03 + 20103 + 20203))

03)]

93

: Row 2

.. -| .. r .. .2 -|
+ 62 I + D2293 + D23|LI(cos92(6i) + sin62(6j) + gsin(9i + 62)

_ -1 L _h
I "* O

+ D21 tlL1(cos(92 + eaXOi) + sin (02 + 9 3) (0 1)) + gsinOx + 92 + 63) +

..L2(cos3(201 + 262 + 63) - sin03(93 + 29x93 + Z^S^))

+ T\ ~fa — T*U2go2 — T2

Row 3

^ i fS i + 92 + 93~l
L™ ^J "̂

r " • 2
+ D3 2 lLi(cos(92 + 93)(9!) + sin(92 + 83)6!) + gsin(6i 4- 62 + 63)

U. , _
/ • • • • • • • • 2

+ L2(.cos63(91 + 92) + sin93(9i + 26i92 + 62))

+ D31t93 = T3

where

jit = M2a2 + M3L2 D23 = M2a2

M3a3 D2i+ = M3a3

This reduces the number of parameters from 10, 8, and 5 for rows 1, 2,
and 3 to 7, 5, and 3. Parameter estimation of 7, 5, and 3 parameters is
very reasonable and could be implemented practically. However, it is
possible to further simplify the size of the parameter estimation prob-
lems for rows 1 and 2 by back-substituting estimates from rows 3 and 2.

Notice that

D22 = D31

94

Thus the row 2 equation can be written as

D21 pi + 82 + D23 L1(cos62(ei) + sin62(0i) 4- gsin(9i + 92) + D2602

= T2 - D3i'e3 - D§2 L1(cos(62 + 03)(0i) + sin(62 + 83) (0!)

1+̂ 2(00883(26! + 28*2 + 63) - sin93(03 + 20163 * 28293)

Oi + 82 + 83)

where

D31 = estimate of D31 -~~V
/;w

i D32 = estimate of D32•

Similarly by observing

I D12 = D2i

D13 = D31

We can rewrite the equation for row 1 as

L1(cos02(201 + 02) - sin02(02 + 20102)) + gsin(6i + 02)

L1(cos(92 + 8 3) (28'i + 02 + 83)

• -2 .2
- sin (92 + 03)(03 + 02 + 2(6192 + 0^3 + 9293))

+ L2(cose3(20'1 + 282 + 83) - sin03(03 + 20^3 + 20293))

+ gsin(0! + 02 + ©3)I •

Each of these equations is now in the form

_X *-

95

where

1 X. and Y.

contain measurable signals and I ©is a vector of parameters to be estimated,
i.e.,

0 i =

0 2 =

, D l7 ,

D23, D26~]

'_^£J [D31, D32, D3lt~[

f t j> ' ~ 'To generate X and Y, we approximate ,16 i and Ij0 j as

e±k = e..(kh) = e ± ((k

ik
= e± (kh) = e±(kh) - e± ((k -

h-
Notice that one added benefit of this approach is that now all parameters in
'©i are of the same order of magnitude. This helps the performance of sequen-
tial least squares.

Model matching icontrol. - Assume, based on the equations for the three-link
planar arm, the following discretized model of the planar manipulator

J(9,) A.
k k

BV. + N. = T,
k k k

h = sample period

where A.. = — (9 - 26 + 6 . ')
ik ,2 ik + 1 ik . ik -..1

"vlk"
V2k

73k,
\ =

" Alk"
A2k

A3k

9k =

'6lk"

9 2k

93k .

\ =

"Tlk"

T2k .

T3k

vik • h (eik - eik - B = diag (D17, D26, D3lf)

96

J(6.) =

•

2D1itcos62l, \ /D12 + D1£fcose2

\ f•f 2D15cos(82k + 63k)| | + D15cos(82k

2D16cos83k / \+ 2D.16cos83

• 2D25cos63,
Iv

-I- D33cos83
IX

'N.

- D16

+ D25 [-

«3k = -D32^sin(62k H

Assume we want the closed-loop system to be characterized by the model

Eneik + i + Ei26ik + E13elk _ l = Hllrlk + H12rlk _

I + E22e2k•+ E23e2k _ 1 = H21r2k + H22r2k _

+ E3382k _ 1

An appropriate control is simply

. T, = N. + BV.' + J(6.)W.k k k k k

w. = —k h2
"wkl"

Wk2

2 e.k U13 + 16.,,p1 i(k

Hiirik + Hi2ri(k -

An adaptive version of this fixed control is obtained by generating estimates
of

J(6), B, and N
iC

using the estimates of^^and the equations relating' <(@̂ to J, B and N derived
earlier.

Simulation results for a three-degree-of-freedom planar arm system are
shown in Figure 36(a) thru (c). For each joint, both tracking performance and
parameter estimation results are shown

A full implementation of the adaptive control strategy described for a
6-DQF or 7-DOF system would represent a significant computational burden.
There are, however, many ways to reduce the overall complexity of the prob-
lem. The most obvious approach for reducing the severity of the problem is to
decrease the complexity of the underlying dynamic equations by ignoring cer-
tain terms, specifically centrifugal and coriolis acceleration. A second ap-
proach to making the problem more tractable is to treat the manipulator as two
decoupled systems. Both approaches will be investigated as future research
topics.

98

JOINT 1 OUTPUT

I I I I I T 1 I
O. O O. S 1. O l.S 2. O 2.5 3. O 3.5 •». O •». S S. O S. S 6. O

TIME (SECONDS)

JOINT 1 PRRRMETERS

I I I I I I I \ 1
O. O O. 5 1. O l.S 2. O 2. S 3. O 3. S

TIME (SECONDS)

Figure 36(a). - 3-DOF adaptive control simulation results - joint 1,

99

JOINT 2 OUTPUT

O. O O. S 1. O 1. 5 2. O 2.5 3. O 3.5 4. O 4. 5 S. 0 5. S 6. O
TIME (SECONDS)

JOINT 2 PRRRMETERS

0. O O. S 1. O 1.5 2. O 2. S 3. O 3. S 4. O 4.5 S. O S. S 6. O

Figure 36(b). - 3-DOF adaptive control simulation results - joint 2.

100

JOINT 3 OUTPUT

O. O O. S 1. O 1. S 2.0 2.5 3. O 3. S 4. O 4. 5 S. O S. S 6. O
TIME (SECONDS)

JOINT 3 PRRRMETERS

~T 1"1 I 1 I"
0.0 O. S 1.0 1. S 2.0 2.5 3.0 3.5 •*. O 4.5 5. O 5. S 6. O

TIME (SECONDS)

[Figure 36(c). - 3-DOF adaptive control simulation results - joint 3,

101

Force/Torque Control

The previous sections have discussed manipulator control in the context of
pure positional control. The topic of this section is the control for tasks
that involve satisfying both positional and force/torque constraints. For the
remainder of the section, this type of control will be referred to as "force/
torque" control.

Perhaps the most common example of a task that requires simultaneous sat-
isfaction of position and force/torque constraints is the insertion of a peg
in a hole. This example will be used to introduce a convention for describing
tasks that was suggested in [Mason 1981]. The peg-in-the-hole physical model
is shown in Figure 37..

Natural Constraints

V = 0
x
V = 0y
w = ox

W = 0y
F = o
z
T = 0
z

Artificial Constraints

T = T = 0, V = a, W = 0
x y z ' z

Figure 37. - Compliant control for peg insertion.

Using Mason's convention, a task is described in terms of "natural" and
"artificial" constraints specified in a coordinate frame associated with the
task. Natural constraints are those associated with the task physical geo-
metry. In the case of the peg-in-the-hole, for example, motion in the X and Y
axes appears as a natural constraint because it is constrained by the sides of
the hole. Similarly, forces and torques about the Z-axis appear as natural
constraints (assuming frictionless surfaces between the peg and hole). Arti-
ficial constraints essentially determine how the task will be performed. Again
referring to the example, the artificial constraints include centering of the
peg (X and Y axes forces and torques equal to zero), and motion of the peg
along the Z-axis (Vz =).

102

The two fundamental approaches to force/torque control are generally re-
ferred to as passive and active compliance. Passively compliant techniques
rely on the use of a mechanically compliant device located near the end-
effector. Misalignments at the workpiece are compensated for by the compliant
action of this device. The basic idea is shown in Figure 38 taken from
[Whitney 1982], While passive compliance can be used for many tasks, the ap-
proach has certain drawbacks. The most significant is the mechanical resonance
introduced by the passive device.

Figure 38, - Rigid peg supported compliantly by lateral
spring Kx and angular spring K^ at distance Lg from peg's tip.

The alternative to passively compliant devices is an active compliance
strategy. In an active compliance approach the forces and torques at the
end-effector are measured and this information is used in a feedback loop to
provide servoforce control.

The forces and torques at the end-effector are related to joint torques by
the Jacobian transpose

T = [J]TF

where

T^ = Joint torques
F = End effector forces and torques
[j] - Jacobian matrix

103

This relationship is used to map force error commands from an external
reference frame to the manipulator joints. It also demonstrates two alterna-
tives for measuring end-effector forces and torques. First, joint torques can
be used to reconstruct end-effector forces and torques via the Jacobian rela-
tionship. Joint torques can be measured in a variety of ways. First, they can
be measured directly via strain gage measurement devices [Paul 1981a]. In an-
other approach, joint torques can be derived from joint motor currents through
the motor torque constants.

A second approach to generating measurements of end-effector forces and
torques is to use a wrist-mounted sensing device. While these devices are be-
coming more readily available from a number of manufacturers, the most popular
implementation is shown in Figure 39. This is generally referred to as a
"Scheinman wrist", (after its inventor), and uses 16 strain gages to resolve
forces and torques. Strain-gage-type force-sensing devices typically have a
force resolution of 3 to 5 oz.

strain gage

Figure 39. - Scheinman force-sensing wrist.

The force-sensing wrist approach has two key advantages over the joint
torque measurement approach for determining end-effector forces and torques.
The first advantage is that the accuracy of the joint torque sensing approach
is degraded by friction, both viscous and non-linear that appears in all
manipulators. Also, the derivation of forces and torques is more computa-
tionally intensive for the joint torque approach [Shimano 1979].

Two approaches to force/torque control will be discussed. The first
approach was introduced by Raibert and Craig while at JPL, [Raibert 1981],
This strategy involves the use of separate position and force servo loops.
Errors are generated in a Cartesian reference frame and then mapped into the
joint reference frame. The response torque at each joint aids in satisfying
both position and force objectives in the Cartesian space. The approach is
referred to by the authors as "hybrid" control. The second approach was

104

introduced in [Salisbury 1980], and has been coined "active stiffness" control.
The controller has the net result of causing the end-effector of the manipula-
tor to behave as a six-degree-of-freedom spring in space. This is very similar
to the passively compliant techniques described earlier with the important ex-
ception that stiffnesses are computer controlled and can be varied as a func-
tion of the particular task being performed.

Hybrid Control. - As introduced in the previous section, the hybrid con-
trol approach is based on the description of a manipulator task in terms of
position- and force-controlled axes in a task reference coordinate frame. The
natural constraints partition the degrees of freedom into a position-controlled
subset and a force-controlled subset. The desired position and force trajec-
tories are then specified by the artificial constraints. Figure 40 illustrates
the basic structure of the hybrid controller. This figure will be used to de-
scribe additional detail of controller functioning.

C i*d + ;
'V^\

DESIRED
POSITION

Cf
f« + /-

~*}fi

^
DESIRED /
FORCE
TRAJECTORY

Cx

POSITION
FEEDBACK

J ^

y=C>[ii-i^

p=C> î i

c£

FORCE .

i

~*L CONTROL
] Z±> LAW AND

COORDINATE

POSITION
SENSORS

V + '
(LJ==> ARM
Xt

1 f FORCE
SENSORS

, CF FORCE
"" CONTROL

J) LAW AND
COORDINATE

F

1

t

Figure 40. - Conceptual organization of hybrid controller.

Error signals are generated in the task reference frame by comparing de-
sired trajectories with the actual state of the manipulator. This involves two
comparisons, as shown in Figure 40. To create the position error (the upper
loop in Fig. 40), manipulator position in the task coordinate system is derived
from a kinematic transformation of the manipulator joint angles and subtracted
from the reference trajectory. A force error is derived in a similar manner
as shown in the lower loop of Figure 40. This results in a force feedback
vector that is compared with the desired force trajectory to generate a force
error vector.

105

The next step in the hybrid control process is "filtering" of the position
and force error signals by a "compliance selection matrix" [SJ. The compliance
selection matrix is required because the transformations of manipulator posi-
tion and force variables result in terms that violate the partitioning of the
task reference frame into orthogonal position and force axes. The compliance
selection matrix has the basic form:

S =

Si
S2 -0-
S3
S4

-0-
S6

S£ = 1 if DOF
controlled, S-;

is force
0 otherwise

When the force error vector is mapped through the compliance selection ma-
trix, force components sensed at the manipulator end-effector (in general, com-
ponents will exist on all six axes) that are not on the -force-controlled DOF
will be eliminated from the error vector. A similar operation occurs for the
position-controlled DOF; however in this case the error vector is mapped
through [I] - [S], where [I] is the identity matrix.

In the final stage of the hybrid control process, the error vectors for
both force and position DOF are mapped back into manipulator joint space as
shown below.

le(t) = [J]-lcXe(t)

l«(t) = [JJTGFe(t)

Xe(t): Position error vector in task coordinate
Fe(t): Force error vector in task coordinate
Q_e(t): Position error vector in joint coordinate
Te(t): Torque error vector in joint coordinate
TJ]: Manipulator Jacobian

The error vectors, <1 and T_, are then distributed to the individual joint
servos of the manipulator. A more extensive diagram of the servo control
structure proposed in [Raibert 1981] is shown in Figure 41.

Figure 41. - Hybrid controller implementation.

106

The basic hybrid control approach described above has been, implemented on
ROBSIM for a three-degree-of-freedom planar arm case. A sketch of the simula-

tion configuration is shown in Figure 42.

Figure 42. - Hybrid control simulation configuration.

The task consisted of applying a force of 10 newtons in the Z-axis while
maintaining a specified Y-position. A plot of the resulting force profile is

shown in Figure 43.

END EFFECTOR FORCE - COMPONENT

o
R

W
T
O
N
S

-5- •

-10--

-15- -

-20--

-25--

-30--

16 20

TIME-SEC

24 28
Hnr-

Figure 43. - Profile of controlled force component.

107

Active stiffness control. - The concept of active stiffness control, has
many of the attributes of the hybrid control strategy described earlier, but
introduces the novel concept of forcing the end-effector of the manipulator to
behave as a six-dimensional spring in the Cartesian reference frame. As
pointed out earlier, this bears a striking resemblance to passive compliance
approaches in terms of accommodating misalignments between the end effector and
task. Again, the important difference is that in an active compliance ap-
proach, stiffnesses on specific axes are controlled externally and varied
during different phases of a task. For example, during rapid slewing motions
in moving from point to point, stiffnesses can be set high to minimize reac-
tions to acceleration- induced forces from the load or tool.

To arrive at an equivalent six-dimensional spring relationship expressed
in terms of joint displacements and joint torques

T = [J]TK[J]<59

The matrix K^ = JTKJ is referred to as the joint stiffness matrix. The
point in the hand reference frame that serves as the basis for the computation
of the Jacobian is referred to as the stiffness center. This is the point at
which pure forces cause only translation and pure torques cause only rotation.

In its most basic form active stiffness control can be implemented by gen-
erating joint torque commands of the form

The term TJJ is a bias torque generated from the relationship TR = J
TFR.

FJJ represents bias forces in the Cartesian reference frame. Note that the
appropriate choice of K leads to a decomposition of force- and position-
controlled axes as in the hybrid control scheme.

A six-dimensional linear spring is described by the relationship

F = [K]6X

6X is a generalized displacement from a nominal position XQ of the hand ori-
gin and consists of three orthogonal translation components and three small ro
tations about orthogonal axes. This diagonal matrix [Kj contains the spring
coefficients for each axis.

The Cartesian displacement .<$ X can be related to a manipulator joint dis-
placement 69, (<S6_ = 9_ - 9_Q) through the Jacobian matrix

6X = [J]60

Joint torques are also related to end-effector forces and torques as a
function of the Jacobian

T = [J]TF

108

These expressions can be combined to obtain the stiffness matrix Kg.

In actual implementation of active stiffness control, additional compensa-
tion elements were required [Salisbury 1980]. The total torque applied to the
it" joint is given by

where:
TC,I ^commanded torque, /th joint
ST{ = torque error, /th joint
9, —velocity, /th joint
(59,- =vclocity error, /th joint
G,=torq'ue compensation funct ion, /th joint
Ky t{ ^velocity damping term, y'tb joint
C^yy.i ^instantaneous inert ia, /th joint •
Ctt{ =gravity loading, /th joint
VQ ,- =fr ict ion torque, /th joint.

A block diagram of the full control loop is shown in Figure 44.

Figure 44. - Stiffness control system.

The algorithm implemented within ROBSIM deviates slightly from that just
presented. The first step in this algorithm is the calculation of the end-
effector position error & P_. This error vector and any prescribed bias forces
FJJ are used to compute joint control torques

Td = [J]
T[K] p + [Ĵ FB

where [j] and [K] have the same definitions as stated earlier. A torque error
vector AfT is then determined from

A,!*"

A.I = lc

109

where F_ is the vector of measured end-effector forces and torques.

The error vector T is then calculated using

where

KLL = lead-lag filter gain

Kj = integrator gain

K<j = derivative gain

Figure 45 shows a diagram of the control loop implemented in ROBSIM to simulate
active stiffness control.

; K /s

fT
1

TJ11
L J J

1

f — i

Figure 45. - Stiffness control system implemented in ROBSIM.

The results for an active compliance control simulation are shown for a
single axis in Figure 46. In this case, the manipulator has been commanded to
a position that is past the boundary of a rigid constraint. The force pro-
file shown is the result of the complying action.

110

;Start
'Position

(Constraint'
I Surface

jAchieved-
'Position

a,\s ^Commanded
•Position

xlO
-1

12 16 20
Time, s

24

Figure 46. - Active compliance control.

28 32

111

MANIPULATOR TRAJECTORY PLANNING

Manipulator systems often must operate in environments "cluttered" with
obstacles, e.g., the objects being manipulated and the machinery with which the
arms are interfacing. When performing tasks, the motions of the arms must be
carefully planned to avoid collisions between the manipulator links and these
obstacles. Collisions between the various parts of the manipulator system must
also be prevented, especially in multiple-arm systems or when manipulating
bulky objects. Manipulator path-planning can also be used to improve task per-
formance by finding paths that minimize energy consumption or operation time,
or that avoid singular configurations of the arm, etc.

To date, path-planning research has focused on two application areas—
paths for polyhedral objects and paths for robotic manipulators. Polyhedral
objects are self-contained—mobile objects such as autonomous robotic ve-
hicles,* aircraft, etc. The obvious difference between such an object and a
manipulator is that the latter is not "mobile" in the sense that one end is
fixed to a platform or base that may be mobile. A manipulator arm is a com-
bination of connected links, each of which is a polyhedron. The "motion" of a
manipulator is constrained by the link connectivity, which limits its overall
reach. The volume (or area) reachable by the hand or tool is a manipulator's
working envelope. When a manipulator moves, each of its links sweeps out the
path of a polyhedron. Thus, path planning for the motion of polyhedral objects
is a subproblem in trajectory planning for manipulators.

The problem of planning paths for polyhedrals has received much attention,
with the intent of generalizing methods to manipulator path planning. Unfor-
tunately, the two problems have inherent differences, limiting the application
of polyhedral methods to the manipulator case. There have been implementations
of manipulator path planners relying solely on relations among polyhedral ob-
jects and the polyhedral components of the arm [Brooks 1983b] but these neither
capitalize on the serial nature of the manipulator arm nor provide for diverse
manipulator operations. They have also demonstrated success only in very sim-
ple environments composed of rectangular polyhedrals.

This section of the report discusses the current state of path-planner
technology, with the emphasis on path planning for robotic manipulators. The
first part consists of the history and development of path-planning methods for
both mobile objects and manipulators. The next subsection examines current
technology and describes the results of path-planning research under the ROBSIM
contract. Finally, the third part compares the current methods and provides
some topics for further study. The emphasis in this work is on path planning
to avoid obstacles in the manipulator's operating environment. Table IV sum-
marizes the notation employed in this section.

* SRI's Shakey and the Mars rover are two examples of such vehicles.

112

TABLE IV. - NOTATION FOR MANIPULATOR PATH PLANNING SECTION

Up]

distance between link and obstacle

Jacobian relating translational motion of point A to joint motions

Jacobian relating hand motion (translational and rotational) to
joint motions

unit vector normal to obstacle surface

location (world coordinates) of point A

difference between desired and actual position of hand reference
point

margin of safety used in preventing collisions

vector representing difference between desired and actual hand
orientation

joint displacements

incremental step in joint displacements

113

History and Development of Path-Planning Methods

Several approaches for solving the path-planning problem for polyhedral
objects have been applied. These fall into three categories:

1) Topological search of discretized environments;

2) Visibility lines and growing obstacles; -

3) Graph search of representations of free space.

Each of these methods has been demonstrated successfully for two-dimensional
environments. Some have been generalized to three dimensions with limited suc-
cess. Each method is discussed in the following paragraphs.

Graph search of discretized environments. - A discretized environment is
one in which continuous space has been divided into a set of points, labeled
either "free" or "full" depending on whether an object coincides with that
point. Searching such a space involves finding a set of connected points
("connected" in the sense that each point in the set lies adjacent to both its
predecessor and successor points in the world) from the start point to the
goal. There are two basic limitations to this approach. First, both the start
and goal positions must be points in the discretized space. If they are not,
some other technique must be used to find a path from the start to a nearby
point in the space, and from a discrete point to the goal. The second limita-
tion is that a path may not always be found when one exists. Again this is at-
tributable to discretization of the space [Fig. 47(b)]. If the resolution of
the discrete representation is not high enough, some free space may not be at-
tainable. Also, small obstacles lying between discrete points may be over-
looked. Thus, a discretized space may not allow generation of collision-free
paths in all cases. One method for ensuring that objects are not overlooked is
to determine the resolution necessary for an environment after considering the
size of its objects. Eliminating the problem of nonattainable free space is
more difficult.

(a) Discretized space. (b) Discrete space with

impossible goal.

Figure 47.- Discretization of the environment.

114

Visibility lines and growing obstacles. - A "visibility line" is a path
from one point to another in continuous space so that, from either point, one
would be able to "see" the other point along an unobstructed straight line. In
two dimensions, this approach finds paths using vertices of the objects in the
world [Fig. 48(a)]. The basic operation loop of this method is:

1) Propose a straight-line path from current start to current goal;

2) If no objects interfere with this path, then return with success;
otherwise, go to step 3);

3) Generate subgoal locations avoiding the obstacle;

4) Select a new subgoal point to achieve;

5) Go to step 1) recursively.

The algorithm generates a straight-line "visibility" path from one point to an-
other and checks to see if it is permissible. If it is, the path is taken.
Otherwise, a path that avoids the obstructing object and attains the goal must
be found. The naturally recursive form of this approach makes it attractive
for solving the polyhedral path-planning problem.

seal

goal
•oving

reference point

(a) Visibility line paths. (b) Growing objects.

Figure 48.- Visibility line method of path planning.

A severe limitation of this approach is that the object being moved
through the environment is considered as a point. This is not so severe when
the objects in the environment are many times larger than the moving object.
However, some other technique must be used if the moving object is of non-
trivial size in comparison with other objects. One method of ensuring
co11is ion-free paths in this case is to "grow" the object to be moved [Lozano-
Perez 1979]. This technique uses the maximal size of a moving object in a
given attitude, a reference point on the object (the point to be moved through
the space), and a proposed trajectory to generate areas the reference point
must avoid while in motion [Fig. 48(b)]. The simplest case of obstacle growing
occurs when the moving obstacle is a circle with the reference point at the
circle's center. In this case, objects are "grown" by the radius of the cir-
cle, effectively generating r-coverings of the objects, where r is the circle's
radius.

115

Graph search of representations of free space. - As asserted previously,
there are inherent limitations to finding paths in a discrete space. Both the
recursive visibility search and the discrete space search methods are limited
by their knowledge of the environment. Neither method performs well in envir-
onments containing complex objects [Fig. 49(a)J. By modeling the free space
in an environment, some of these limitations can be avoided while improving the
nature of the paths generated. The best example of this method is the general-
ized cone representation [see Brooks 1983a and Figure 49(b)]. In this ap-
proach, the environment description is preprocessed before any path is sought.
The planner identifies the object sides that are relatively facing each other.
The space between each such pair is known as a freeway through space. All of
these freeways are found and analyzed to be sure that other obstacles do not
intrude on them. The freeways are pared down according to their intersections
with other objects in the environment. Those that will not accommodate the
volume of space swept out by the moving object are discarded. The shape of the
freeways is described as generalized cones. It is assumed that the moving ob-
ject will be centered on the axis or "spine" of a cone as it moves along it.
The freeways thus constitute the set of motions available to the moving object.
The spines of the free space are used in planning a path for the object. As
indicated in Figure 49(b), this approach generates paths that tend to keep the
moving object as far from stationary objects as possible.

(a) Paths generated by discrete space
(left) and visibility lines (right)
approaches for a more complete
object.

(b) Generalized cones generated by three
objects and boundary.

i Figure 49.'-Path planning in]
(

complex environment.

116

Path-Planning Research Under the ROBSIM Contract

Three approaches to manipulator path planning were investigated under the
ROBSIM contract:

1) The generalized cone method;

2) The joint space method;

3) The incremental, constrained-motion method.

Research applied to these methods resulted in preliminary implementations of
each approach. The following is a discussion of each method, its
implementation, and the outcome of the research.

The generalized cone method. - A path planner based on the approach deve-
loped by Brooks (see [Brooks 1983a and 1983b]) and the previous discussion),
in which free space is represented by generalized cones and trajectories along
the spines of these freeways are generated, was implemented initially. To
decrease the amount of computation involved in the algorithm, some simplifi-
cations are imposed on the planning environment. All objects in the environ-
ment, including the arm, are assumed to be rectangular in shape and grid-
aligned (i.e., their sides are parallel to the sides of the workspace). This
limitation is not overly restrictive. Irregularly shaped objects can be en-
closed within bounding boxes. Few feasible solutions will be excluded by the
use of this approximation, especially considering that this planning algorithm
prefers paths that follow wide lanes rather than paths for which the arm barely
fits between obstacles.

Programs for testing the algorithm were also developed. These programs
generate random obstacles, start points and goal points within a two-
dimensional workspace. Any number of objects are allowed in the environment.
Four obstacles provide good testing results; with more obstacles, the computa-
tion time for preprocessing the environment grows rapidly. This problem is in-
herent in the Brooks algorithm but might be circumvented by applying heuristics
to determine which calculations are necessary.

The planner was quite successful in solving the problems it set for it-
self. After generating a workspace, it would preprocess the environment,
establishing the path freeways, and seek a path from the start toward the goal.
Although it found a path in the majority of cases, the paths were sometimes
very indirect. This may be caused by some subtle programming bug yet to be un-
covered. The planner is able to rotate the arm as well as translate it, and
occasionally finds intricate paths involving sequences of rotations and trans-
lations through several corners.

The joint space method. - Joint space is an N-dimensional vector space,
where N is the number of manipulator joints or degrees of freedom, in which
each coordinate axis corresponds to one joint displacement. Any point in this
space represents a unique configuration of the manipulator. Similarly, with
appropriate bounds on the joint displacements, any configuration of the arm
corresponds to a unique vector in joint space. If, for any configuration of
the manipulator, some link collides with an obstacle (including another link),
that configuration is forbidden. In the joint space method of path planning,

117

all obstacles and position constraints are mapped into forbidden regions in
joint space. The problem of finding a collision-free path for the manipulator
therefore reduces to that of finding a point-path (curve) through joint space
that avoids forbidden regions (Fig. 50). Although the initial configuration
(starting point) is uniquely defined, the target point is often not unique and
might even constitute a goal surface.

link 2

Joint 2

link 1

ban (Joint 1)

(

Joint 2

/object}

/ Joint 1

. Banipulator - (J1.J2)

(a) Physical space composed of (b) Corresponding angle space
manipulator and object. \ representation.

Figure 50.- Joint space method, .of path planning.

The attraction of this approach to path planning is that a relatively sim-
ple (and fast) search algorithm, such as the recursive visibility lines method
outlined earlier, may be used to find paths for the entire manipulator. This
method's main drawback is that the translation algorithm for mapping obstacles
from physical space into their joint space representations can be exceedingly
complex and computationally time-consuming. This can be attributed not only to
the complexity of the inverse kinematic solution (i.e., finding joint displace-
ments for a prescribed tool position), but also to the fact that collisions be-
tween the obstacle and all points of the manipulator (not just the endpoint)
must be mapped. Therefore one point on an obstacle maps into one or more ir-
regularly shaped regions in joint space.

Another limitation is that search routines such as the visibility lines
method do not generalize directly to higher dimensions. This is because the
routine generates paths from vertex to vertex in avoiding an obstacle. In two
dimensions this can ensure an optimal path; in three-dimensional space it al-
most never does. This is because in higher dimensions, the shortest path
around an obstacle usually involves crossing its surfaces at points other than
vertices. Although methods that discretize three-dimensional edges have been
used to overcome this problem (see [Lozano-Perez 1979]), these methods suffer
from the same drawbacks as those discussed earlier.

118

Alternatively, the procedure can readily be modified to find optimal paths
as described in the following discussion. Rather than using only vertices of
the obstructing surface, consider instead the edges of the surface (Fig. 51).
The points (C,C') along this edge that minimize the total distance traveled
from A to the edge to B are readily evaluated as the solution of a set of lin-
ear equations. When more than one obstacle face is encountered along the path
from A to B, successive application of this approach leads to a suboptimal so-
lution. Alternatively, a modified quadratic programming algorithm can be em-
ployed to solve for an optimal solution. Hueristic or search methods can be
applied to determine which obstacle edges to consider.

j "Figure 51.- Visibility line method in three dimensions.

Another method that holds promise for implementing the joint space method
is based on a simplified representation of the obstacles. A more simplistic
representation of the forbidden zones in high-order spaces could be the key to
generating optimal paths. Representations that break up zones into regions of
free or full rectangular parallelepipeds (in much the same way as the discrete
space representation) facilitate the use of very simple interference detection
algorithms, and could be used to find near-optimal paths in higher dimensional
spaces [Haralick 1983].

Improved methods such as these are being investigated for extending the
joint space method to higher dimensional spaces.

A preliminary implementation of the joint space method was developed for
a manipulator of two joints. For a two-link manipulator with two rotational
joints, there are two joint angle solutions for any given end-effector position
in the reachable space. Figure 52 lists the translation functions that deter-
mine values for the joint angles corresponding to a given end-effector posi-
tion. None, one, or possibly both of the joint angle solutions may be found
to cause interference with an object. The complete mapping of an object re-
sults in a closed curve in the angle space. This curve is approximated ini-
tially by a large number of line segments. Next a minimal bounding box is gen-
erated enclosing all these segments (and thus the curve). Finally, an axis-
oriented bounding box is generated to be used in rough positioning. Figure 53
shows the resulting hierarchical joint space representation.

119

(x.u)

L \ =

L2 -

+ L -

d r KL2. + L2 -

d2 = arccosUL2 # L2 - L|)/2L1LJ

s B - d2

B - dt

8 * d2

t' and t' are the reflections of

t1 and *2 about their respective

axis of suBMtr*.

Figure 52.-^Translation functions from physical to angle space.

level 1 - axis oriented bounding box

level 2 - ninlnal bounding box

level 3 - approxiMting

level 4 - closed curve

.Figure 53.#- An hierarchical

•object representation.

Once all objects in the physical space have been represented in joint
space, the path-planning operation begins. The start and goal configurations
of the manipulator are the start and goal points in joint space. The planner
determines which "objects" (called "zones" in the joint space) are relevant by
a simple bounding box intersection check [Fig. 54(a)J. Next, a straight-line
path from start to goal is proposed. If a forbidden zone interferes with the
proposed path, subgoal points are generated to allow the planner to avoid the
offending zone. Thus the search operation of the planner follows the path of
the recursive visibility lines method (Fig. 54).

It was thought that an indepth study of the simple two-joint case would
yield insight into solutions in the general case. However, the generaliz-
ability of this method to higher degrees of freedom is inhibited in two impor-
tant areas. First, the closed-form translations of objects in the physical
world to their joint space representations are difficult to determine, espec-
ially for manipulators with several degrees of freedom. One method to over-
come this problem involves the notion of incremental learning of the physical
environment. This will be discussed in the final subsection.

"The second drawback to the joint space method is that search routines for
higher order spaces tend to generate nonoptimal solution paths. As described
earlier, algorithms are being developed to overcome this limitation.

120

goal
SMl goal

evert

a) relavent objects
found via rouah check

b) proposed path and
generated subsoals

c) the resulting path

Figure 54.-,Path planning in joint space.

Initially, the joint space method for manipulator path planning seems at-
tractive. Once a static space has been represented in the joint space for a
given arm, the problem of finding a path for the arm is reduced to a much sim-
pler and faster dynamic graph search problem. The problems inherent to this
method provide some genuinely difficult research areas, both in geometric mo-
deling and graph search techniques. However, for planning in a static environ-
ment for an arm with three degrees of freedom or less, this method is viable.
This is particularly true for applications demanding that plans be generated
in a short amount of time.

The incremental, constrained motion method. - This subsection describes a
new approach to manipulator path planning in which the end-effector (or hand)
moves toward the goal position in incremental steps. At each step, a check
for potential collisions with obstacles is made. If any exist, the motion at
each step in constrained to avoid the obstacles, while still moving toward its
goal. A linear programming algorithm is used in this case to solve for the
joint motion increments. The constraints and optimization criteria are trans-
formed to joint space for each instantaneous position of the device. The two-
dimensional case is implemented and used as a basis for discussion in the
following paragraphs, although the method extends directly to three dimensions
(nonplanar operations).

All obstacles are defined by enclosing line segments. The line segment
representation is stored as a pair of endpoints and the outward-facing unit
normal. Assume the manipulator is in an allowable initial or intermediate
configuration. First, the world coordinate positions of all links and points
of interest in the arm are evaluated as discussed in the Analysis Tools sec-
tion of this report. Then, all potential collisions are identified. Figure 55
illustrates the three types of collisions possible in the planar case. These
types involve (1) point on manipulator with edge of obstacle, (2) vertex of
obstacle with link of manipulator, and (3) point on manipulator with vertex of
obstacle.

121

Figure 55.- Arm position in cluttered environment.

User-specified bounding covers (e-covers) are defined around each manipulator
link and point of interest. Potential collisions are identified by checking
all manipulator points against all obstacle edges to see if they are within a
distance E of each other.* Also, all obstacle vertices are checked for prox-
imity to manipulator links. This checking process involves two steps: (1)
evaluate the distance between the point and the line containing the edge seg-
ment; and (2) if this distance is less than E, check that the point is within
the segment of this line defined by the edge endpoints. Potential collisions
of type (3) are determined as an intermediate result of this check.

For each potential collision identified, a corresponding constraint is
"activated" to prevent the collision from occurring on the subsequent motion
step. Consider the point/line interaction shown in Figure 56.

* The efficiency can be improved by limiting the point-edge pairs checked to
those that lie within the same discrete neighborhood.

122

Figure 56. - Constrained motion of joint]

Because point A is within distance '£,of the line, the constraint is activated.
The constraint placed on the relative motion of A toward the line is that A
cannot move closer than a distanced/2 from the line. This method is employed
to prevent A from jumping in and out of the! e-cover, repeatedly activating and
deactivating the constraint. This constraint can be written

A£A • s > i - d
where n is the outward-facing unit normal, d is the current distance between
the point and the line, andA£A *-s t^ie incremental motion of point A rela-
tive to the line for the subsequent step. This constraint is transformed to
joint space by the relations

ArA = [JA] AG

where A£ is the vector of incremental joint displacements and [JA] is the
translational Jacobian for point A, which is discussed further in the Analysis
Tools section. Constraints of type (2) are handled identically, considering
the moving link fixed and relative motion of the points of the environment.
For constraints of type (3), the line normal n is replaced in these equations
by a unit vector directed between the interacting points.

The incremental motion A0_ is therefore constrained by a set of linear in-
equality constraints. Additionally, limits are placed on the magnitude of the
change in each joints displacement

JA6 | <_ A0.
i,max

123

To determine the joint motion stepA'£, an error vector CArl.Â n.) p
between the current hand position and the desired hand position"" is computed as
described in a previous section. Then, the equations

are solved, subject to the joint stepsize limits, using the linear equation
solution algorithm previously discussed. This provides straight-line motion of
the hand toward the goal. If, however, the resulting joint displacements vio-
late any of the obstacle-avoidance constraints, the equations are solved by a
different method.

In this case, all activated joint motion constraints are considered and
the simplex algorithm for linear programming is applied. This is analogous to
the method described for a similar manipulator path-planning problem
[Grechanovsky 1981]. The linear optimization criterion is defined by

maximize (Ar • Ar . , + Ad> • Ad> }
— p —p, actual -"-p -cp, actual

which Is translated into joint coordinates to give

\ maximize KArJ, A£p
T) [Jp] A9>

The joint angles are updated using the resulting vector

and the entire process is recursively repeated until the goal is reached.

Initial testing verified that this algorithm works very well as a low-
level planner in an overall planning hierarchy. However, the manipulator can
easily be trapped against the edge of one or more constraints, endlessly cy-
cling among a few positions without making any progress toward the goal. This
problem illustrates the need for a high-level planner that provides interme-
diate goals to the incremental-motion planner and monitors its operation.

The ROBSIM path planner contains an initial implementation of such a high
level planner. The Cartesian position space of the hand is discretized into a
finite number of regions. Weights are assigned to transitions between conti-
guous regions; these weights indicate the relative ease of making the hand mo-
tion corresponding to that transition (small values indicate the transition is
readily achieved). The high-level planner chooses a goal-directed path, de-
fined as a sequence of regions to be traversed, based on these weights. The
center point for the next region along the path is specified as the current
goal for the low-level planner. The high-level planner then monitors the exe-
cution of the lower level.

124

If the goal region is attained within a small number of steps at the lower
level, the weight corresponding to that transition is decreased and the next
target region is prescribed. If the goal region is not attained within a cer-
tain number of lower level steps, the weight for that transition is increased
and the high-level path is resynthesized. In this manner, the high-level rep-
resentation of obstacles is adaptively learned as the arm executes planning mo-
tions. This high-level planner prevents the low-level planner from becoming
entrapped. This hierarchical design has provided good test results although
the current graph search algorithm in the high-level planner needs modification
to improve the overall planner performance.

Other high-level planning approaches in addition to this simplified
discrete-space method could also prove productive. For example, a rule-based
planner could be implemented.

Rules in the high level are simple heuristics pertaining to possible arm
motions. For instance, a rule to determine a direction to be taken (by the
manipulator's end-effector) in avoiding an object is

(can-reach-around fcann ̂ obstacle ^goal-orientation) -
(propose-path fcarm ̂ obstacle BEYOND)

This rule says that if the arm ($arm) can attain its final orientation (fcgoal-
orientation) by reaching around the obstacle (^obstacle), then a sequence of
subgoal configurations should be generated allowing the manipulator to avoid
the object by moving BEYOND it. A situation in which this rule may be used is
shown in Figure 57(a). Moving around an obstacle means that the overall length
of the arm increases, rather than shrinking toward the base of the arm [see
Figure 57(b)] . Another general heuristic says that shrinking the arm is pre-
ferred to extending it because a smaller arm tends to interfere with fewer ob-
jects than an extended one. Another rule points out that any object that in-
terferes with link i may also interfere with links i+1, i+2,..., L (where L is
the total number of links). The rules of the high-level planning system should
be simple and their interactions limited to keep the planning speed of the
overall system high.

final
configuration^

goal orientation

initial
configuration

oanipulator bas*

goal orientation

intcnwdiate
configuration

initial
final \ °bJ*"i A configuration

configuration)

K
•anipulator base

a) manipulator reaches around
object to attain goal

b) smaller manipulator cannot
reach around; finds path
beneath the object

Figure 57.- Actions of a rule-based planner.

125

The high-level planner does not attempt to find complete collision-free
paths in any sense. Rather, it guides the operation of the low-level planner
using information about the current state of the manipulator to generate plaus-
ible paths. This system may attempt ultimately impossible paths for some time
before deciding on a new approach. However, when this happens, the system can
be capable of large "jumps" back to previous manipulator configurations, par-
ticularly if the planning is completed before the motion begins. This back-
tracking scheme is maintained by the high-level system. Thus, when an attempt
to reach a goal orientation becomes less desirable (or fails) in the current
path direction than in some previous one, the system may return attention to
the previous path, possibly jumping back over many attained configurations.

Comparison of Current Methods and Directions for Further Study

Three methods stand out as viable solutions to the problem of manipulator
path planning—the generalized cone representation of free space, modeling phy-
sical environments in joint space, and incremental, constrained-motion plan-
ning. Each of these methods is directly applicable to manipulator path-
planning problems. However, depending on the application, one method may be
more suitable than another. In this section, each of these methods is dis-
cussed in terms of its strengths and weaknesses in various path-planning do-
mains. Following this is a brief discussion of directions for further study.

The generalized cone representation of free space. - Recall that repre-
senting physical environments as a set of intersecting generalized cones in-
volves finding cones between relatively facing edges (or faces, in three dimen-
sions) of all the objects in the environment. The time required to generate
the representation grows rapidly with the number of objects.* For this reason,
the method is limited to applications involving only sparsely populated envir-
onments. However, if objects may be represented in terms of simple geometric
figures (such as bounding boxes or rectangular parallelepipeds), evaluation of
the free space becomes more efficient.

Another limitation of this approach is that solutions are determined sole-
ly through examination of possible freeway paths. This leads to the same pro-
blem as the discretizing of an environment; namely, the algorithm may not find
a path even when one exists. This is because the object moving through the en-
vironment must remain aligned on a freeway at all times. Additionally, rota-
tion is allowed only at freeway intersections (i.e., within the intersection of
two cones). Thus, the planner may fail to find paths that require rotation be-
tween two intersection points. If the distance between objects in the environ-
ment is relatively large in comparison with the size of a manipulator's links,
this is only a minor problem.

* According to Brooks, the algorithm has complexity (n3) "n cubed" in num-
ber of objects for 2D worlds; (n4) "n to the fourth" for 3D (see [Brooks
1983a], pps. 194, 196).

126

Modeling physical environments in joint space. - The most limiting aspect
of this approach is calculation of the joint space representation of the physi-
cal world. Because there are many ways for a real manipulator to attain a
given end-effector position, an £ priori determination of all possible arm in-
terferences is difficult, if not impossible. However, a preliminary determina-
tion involving the first three of a manipulator's joints (base, shoulder, and
elbow) may be made, providing an approximation of free space suitable for rough
arm positioning. This approach alone is viable in applications involving man-
ipulators with three degrees of freedom or less, or those that do not require
accurate arm positioning.

A combination joint space/linear programming approach would be viable in
applications requiring accurate positioning of manipulators with more than
three joints. Using this approach, the low-level linear optimization planner
discussed would be coupled with a high-level planner that initially has no in-
formation regarding the physical environment. It would incrementally "learn"
a joint space approximation of the environment as the low-level planner moved
about and detected obstacles. This amounts to "feeling around" blindly in the
physical world, with the advantage of remembering every position. In a clut-
tered environment, this system would initially find awkward paths. However, as
the manipulator moved about more and more, the high-level planner would develop
an accurate representation of the joint space that would be used to guide the
arm along collis ion-free paths. This combination approach provides a means of
modeling the joint space that avoids the complexity of a priori calculation.
This adaptive, hierarchical path-planning algorithm could also accommodate
chang ing env i ronmen t s.

The incremental, constrained-motion method. - This planning method is very
promising, especially when coupled with an intelligent high-level planner that
generates subgoals for the motion. No restriction as to the size of the envir-
onment or the number of components it may contain is imposed, nor is the system
restricted to finding paths of a certain type. The number of degrees of free-
dom of arm motions is not limited and multiple arm systems can be accommodated.
Sensor information can readily be incorporated in the description of the system
and environment. Thus, this planner is especially well-suited for operation in
situations where knowledge regarding the free space in an environment is either
too costly to calculate or is impossible to determine ahead of time. This ap-
plies in either extremely cluttered static worlds or in dynamic environments.

Directions for further study. - Complex manipulator path planning in a
static environment may be successfully accomplished using any of the three
methods previously discussed. However, in any real world application of ro-
botics technology, a manipulator will be expected to attain very accurate posi-
tions many times during a given task (e.g., inspection, assembly, or machine
operation). Time constraints may also be imposed on the operation of the en-
tire robotic system. These two characteristics require that a path planner
generate plans in a very short amount of time. Some marriage between existing
methods will be necessary to accomplish this. For example, the generalized
cone method is capable of fast rough arm positioning in a simplified represen-
tation of an environment. The incremental, constrained-motion planner is cap-
able of fine positioning in complex environments. Coupled with the adaptive
learning of joint space, such a system could operate very well, especially in
static environments. The system could switch back and forth between the two
planning methods, using the generalized cone approach for large moves through

127

uncluttered regions of the environment and the bilevel incremental planning
system for smaller moves requiring finer positioning. The two operations could
be done in parallel so by the time a plan to attain a rough configuration was
completed, a path from there to the actual goal configuration would also have
been generated. Such a planning system is being developed at Martin Marietta
Denver Aerospace.

The main assumption of all present path-planning methods has been that the
environment to be operated on does not change. For most real-world applica-
tions, this is an invalid assumption. Many applications, such as assembly, re-
quire the manipulator to move objects around in the environment. This is known
as a dynamic application. The path planner may be constructed under the safe
assumption that the system will be aware of all objects in its environment.
The only constraint relaxed is that the obstacles remain stationary.*

This class of path-planning problems becomes even more complex when ob-
jects other than the manipulator may be in motion. For example, several
manipulators may be working together in intersecting workspaces. The only
technique suggested thus far for path planning in this situation is to allow
only one arm to be in motion at a time whenever one is inside the working en-
velope of another. This amounts to assuming a static configuration for one (or
more) arms while generating a path for another and forcing the former to assume
that configuration and stop while the latter moves. One advantage of the in-
cremental, constrained-motion method is that it can readily be extended to ac-
commodate interacting arms, simultaneously controlling the manipulators to
avoid each other.

One direction for path-planning research that would allow for less con-
strained operation in the case just described is toward execution of partial
plans. This method is also viable in simpler applications with time-critical
planning constraints. Several issues to be resolved include when .to begin exe-
cution, physical "backtracking" of the manipulator when the current route is
found to be impossible, and communication among path planners for the various
moving bodies.

* There are two subclasses of this type of environment, one in which objects
are moved only by the manipulator, and one in which objects may be moved by
other means.

128

IMAGE PROCESSING AND VIDEO SIMULATION

A video simulation software module was developed to simulate the output of
a video camera mounted on or near a simulated manipulator. A ROBSIM graphics
representation depicting a scene of a PUMA 600 manipulator in a peg-in-the-hole
scenario was generated with the ROBSIM program. Conversion of these data to a
form used by the MOVIE.BYU package available on the Ramtek raster graphics de-
vice was performed. The single scene was then displayed using shaded graphics
and color with the MOVIE.BYU package to generate a raster image of the scene;
this image was then used as input to various edge detection algorithm modules.
This method of ROBSIM geometry database conversion to MOVIE.BYU format may be
used to generate a raster image of any ROBSIM scene on which new image process-
ing algorithms, such as the edge detection and thresholding operations ex-
plained here, may be performed to enhance the resulting picture.

Edge Detection

An edge in a digital image is a change in intensities. However, an image
contains many intensity changes, not all of which represent physical edges.
For example, consider an image of a cube illuminated by a nearby point source*
Intensity changes in the image occur at the intersection of two faces because
of the change in the angle of reflection, and along each face because of the
change in distance from the light source. In this example, a computer vision
system must be able to distinguish the intensity changes caused by physical
edges from those caused by other factors.

Edge detection schemes generally involve three stages of processing:

1) Edge pixels are detected;

2) Edge pixels are thinned to eliminate all but significant edges;

3) Edge points are linked to form lines, curves, etc.

Each of these stages is discussed in the following sections.

Detecting edge pixels. - Consider an image as a three-dimensional surface
where each intensity value denotes the height of the surface at that point.
Then changes in intensity represent changes in surface height, and the magni-
tude of an intensity change represents the magnitude of the surface slope.
Hence, one approach to identifying the "edgeness" of a pixel is to treat the
image as a surface and compute the magnitude of the surface slope at each
pixel. On a continuous surface, this computation would involve computing the
directional derivatives at each point. Because a digital image is a discrete
function, difference operators are used to approximate the derivatives.

129

One of the first efforts at edge detection using difference operators was
presented in [Roberts 1965]. Roberts computed an approximation to the magni-
tude of the surface gradient at each pixel by computing first differences (dis-
crete first derivatives) in a 2x2 neighborhood of the pixel. Although the "Ro-
berts" operator requires relatively few computations and produces sharp edges,
it is sensitive to noise [Peli 1982], Furthermore, the Roberts operator is di-
rectionally sensitive, having the greatest response to edges oriented at 45 and
135° and can only detect edges that lie to the right or below a given pixel.

The Roberts operator is an example of what is known as a 2x2 convolution
operator. Let f(x,y) be the gray-level values at pixel (x,y) of an image.
Then, the Roberts operator can be expressed as

R(x,y) = f(x,y) - f(x+l, y+1) + f(x+l, y) - f(x, y+1).

This is equivalent to convolving the image with the two templates

1 °1 , FO 1° 41 and b I
and taking the sum of the response magnitudes for the output at the pixel in
the upper left corner. Thus the Roberts operator only takes differences to
the right and below a given pixel and only along directions of 45 and 135°
from the horizontal. Two more templates could be used to take differences at
0 and 90°. A larger operator must be used to take differences in a symmetrical
neighborhood around a pixel. The smallest symmetrical operator is a 3x3 oper-
ator; such an operator can take differences at 0, 45, 90, and 135°. Increasing
the size of the operators increases the number of directions along which dif-
ferences can be taken. For example, a 5x5 operator can take differences at 0,
30, 60, 90-, 120, and 150°. Because increasing the size of the operators also
increases the number of computations that must be performed, a computer vision
system designer must consider a tradeoff between directional sensitivity and
computational cost for this kind of operator.

Instead of approximating the first derivative at a pixel by taking first
differences, edges can also be detected by taking differences of average gray
levels of adjacent neighborhoods [Rosenfeld 1982]. Such operators are less
sensitive to noise than first difference operators but tend to produce wider,
more blurred responses.

Second difference (discrete second derivative) operators can be used to
detect edges. A commonly used second difference operator is the discrete
Laplacian, which is relatively orientation-independent [Rosenfeld 1982]. Be-
cause difference operators respond to changes in the rate of change of inten-
sities, in a region in which the image intensities vary smoothly, the discrete
Laplacian gives no response. At the boundaries of smooth regions, however,
the Laplacian responds twice—once on either side of the boundary, with re-
sponses of opposite sign. Edges are detected by locating all changes in sign,
or zero crossings, of the response.

130

[Binford 1981] noted that a distinction should be made between the pro-
cesses of detecting edges and localizing edges. A first difference operator
performs well at detecting edges but responds over a broad region and is there-
fore poor for localizing edges. A second difference operator, however, per-
forms well at the localization task but is more sensitive to noise [Rosenfeld
1982]. [MacVicar-Whelan 1981] reports edge localization to subpixel accuracy
using a second difference operator.

[Prewitt 1970] first introduced a method for detecting edges by using the
gradient of the best-fit polynomial surface in the neighborhood of a pixel.
Using a least squares criterion, a polynomial surface is fit to a symmetric
neighborhood around each pixel in an image. The magnitude of the gradient of
the best-fit surface is used as the measure of the edgeness of each pixel. The
size of the templates used is determined by the order of the polynomial surface
to be fit. For example, a 3x3 Prewitt operator computes the gradient magnitude
of the best-fit plane at each pixel, whereas a 5x5 operator uses the best-fit
quadratic surface.

Edge detection can also be performed by fitting an ideal step edge to the
neighborhood of a point. Generally, this technique is implemented using basis
functions. The neighborhood of a pixel is expanded in terms of some orthogonal
basis, and the coefficients of the expansion are compared with those for the
expansion of an ideal step edge. By adjusting the coefficients of the ideal
edge to minimize the squared differences between the sets of coefficients, the
best-fit step edge through each pixel can be determined. [Hueckel 1971] was
the first to use this technique by expanding regions in terms of the Fourier
basis functions. [O'Gorman 1978] used Walsh functions. [Hummel 1977] used the
Karhunen-Loeve expansion to derive a set of basis functions that are optimal
for the detection of step edges. [Morgenthaler 1981] combined the techniques
of surface fitting and step edge fitting to propose an edge detector using a
local model of a step edge superimposed on a polynomial surface.

Thinning edge pixels. - The fact was pointed out earlier that one of the
difficulties in edge detection is detecting only the significant edges out of
all the edges present in an image. This section discusses some of the ap-
proaches that have been developed for thinning out the edges in an attempt to
leave only the significant edges.

Decision-theoretic concepts can be used to thin edges [Rosenfeld 1982]).
Suppose that a finite number of regions can be formed in an image, and suppose
that the probabilities of a pixel being in each region or on a bor-
der are known. Then, if the probability densities of the edge detector re-
sponses in the regions or borders can be estimated, the probability of a given
pixel being an edge can be computed.

The magnitude of the response of a first difference operator is propor-
tional to the size of the intensity change at a point. If the assumption is
made that large intensity changes are significant, one approach to thinning
first difference operators is to threshold the edge picture at a particular
edge strength, retaining only the edge pixels at which edge strength exceeds
the threshold. However, this thinning technique fails if the strength of sig-
nificant edges varies greatly over an image. For example, consider an image of
objects in partial shadow. Object edges in shadow are faint and are likely to
be lost if a global threshold is used. [Rosenfeld 1971] suggested suppressing

131

all edges except the strongest for some distance taken perpendicular to the
edge. [Hanson 1980] used local thresholding based on the distribution of edge
strengths in square local neighborhoods.

[Rosenfeld 1971] also proposed a multistep technique for determining the
"best" edge at a point. The technique requires taking the differences of aver-
ages using neighborhoods of many different sizes. Each of the resulting edge
pictures is thinned by suppressing nonmaxima across the edge. Finally, a com-
posite edge picture is obtained by comparing the different edge strengths ob-
tained at each pixel. Let e'*1' (i,j) be the edge strength (after initial
thinning) at pixel (i,j) using a difference of averages operator of size hxh.
The final edge strength at (i,j) is given by e'm' (i,j) where m is the lar-
gest value such that

. ..e

but

The symbol "< " is taken to mean "much smaller than," and in the initial im-
plementation of Rosenfeld and Thurston, meant roughly "less than three-quarters
of." This algorithm is capable of detecting texture edges and was shown in
[Peli 1982] to be fairly tolerant of noise.

Smoothing an image before applying an edge detector can reduce the effects
of noise. Many kinds of smoothing operators exist and are discussed in texts
on image processing (see, for example, [Rosenfeld 1982]). Operators can be de-
signed that combine the operations of smoothing and edge detection.

[Binford 1981] proposed that a particular technique be implemented to
smooth a picture for edge detection. He calls the technique "lateral inhibi-
tion." Implementation consists of subtracting from each pixel value the aver-
age intensity of the eight pixels immediately surrounding it. The lateral in-
hibition operation effectively suppresses the effects of smooth variations in
intensity.

[Shanmugan 1979] proposed a frequency domain filter for edge detection.
The proposed filter yields a maximum response in the vicinity of an edge. For
the special case of a step edge, the optimal frequency domain filter is the
second derivative of a Gaussian. Marr and Hildreth [Marr 1980] proposed an
edge detector using the convolution of a.Gaussian smoothing function with a
Laplacian. The Marr-Hildreth edge detector employs operators of several dif-
ferent sizes to detect edges at various resolutions [Hildreth 1982].

132

The Marr-Hildreth edge detector produces good results but is computa-
tionally expensive; the templates used are huge by conventional standards—the
smallest is 32x32 pixels [Brady 1982]. However, improvements in computer
hardware technology may make even such large operators feasible for use in
real-time applications. Nishihara and Larson designed a special-purpose pro-
cessor for performing convolutions [Nishihara 1981]. The processor is capable
of convolving a 1000x1000 image with the smallest Marr-Hildreth operator in
about 1 second [Hildreth 1982]. Even greater speed can be expected as the
state of the art in hardware improves.

Linking edge pixels. - After detection and thinning of edges have been
performed, the next step is to link edges together to impose some order on the
image. The ways in which edge pixels are linked depend on the kinds of linear
features expected to be in an image.

Rosenfeld and Thurston [Rosenfeld 1971] proposed algorithms for detecting
thin curves and wide streaks. Using their formulation, a point lies on a thin
curve if it satisfies two conditions:

"Condition 1: It has a pair of lower valued neighbors on opposite sides of
it (in the direction across the curve).
Condition 2: It has two other neighbors (in the direction along the curve
that satisfy Condition 1."

Variations of this algorithm can be used to link pixels belonging to a variety
of linear features.

[Shirai 1978] used gradient magnitude and direction, as well as a classi-
fication of edge type to link edges. The edge types used are shown in Figure
58. Linking proceeds in two stages. First, edge "kernels" or sets of pixels
of the same type and direction, are identified. Then, each kernel is extended
by tracking as far as possible in both directions. Tracking consists of pre-
dicting the position and gradient values of the next point, and adding pixels
to the edge if their values differ from those predicted within prespecified
tolerances. Predictions are updated every time a pixel is added, enabling the
techniques to track curved edges as well as straight ones.

Ballard and Brown [Ballard 1982] advocated the use of the Hough transform
to detect arbitrary curves. As an explanation of the technique, consider the
example of detecting straight lines (following the development of Ballard and
Brown). Let (x,y) be an edge pixel in an image. Any line through (x,y) is
given by the equation y = mx + c. Because the set of all possible lines
through (x,y) is represented by a line in m,c-space, each edge pixel in an im-
age can be associated by a line in m,c-space; the set of edge pixels then cor-
responds to a set of lines in m,c-space. If two edge pixels lie on the same
line in an image, their corresponding lines will intersect in m,c-space.
Therefore, a straight line in an image will be represented as the intersection
of many lines in m,c-space. By detecting clusters in m,c-space, lines in an
image can be detected. The Hough transform technique can be extended to detect
any kind of parameterized feature.

133

R

Edge
Type

Intensity .
Profile

Gradient
Value

Figure 58. - Classification of edge types (after [Shirai 1978]).

Because edge detectors cannot be expected to give perfect results, gaps
can be expected in linear features. The Hough transform can be used to detect
features and fill in missing pixels. Another technique is to track features
and fill in pixels that comprise gaps of a certain maximum size [Rosenfeld
1982]. . s-,

. 6" /
- «•'•'

The following pictures of the PUMA manipulator [Fig.;59(a) thru (h)] were
taken from a Ramtek graphics terminal after conversion of an Evans and Suther-
land line graphics display to a solid figure display.

134

"Page missing from available version"

SIMULATION VALIDATION

This section describes validation of the simulation developed under this
contract. Two hardware systems were used to validate the ROBSIM software—a
Martin Marietta two-degree-of-freedom planar arm and a six-axis PUMA robot.
The sequence of validation tasks was:

1) Identify mass and motor parameters for the planar arm;

2) Model the planar arm in ROBSIM;

3) Employ the same voltages used to drive the planar arm motors to drive
the ROBSIM response simulation and compare the planar arm positions
with the simulated position as functions of time;

4) Repeat steps 1) through 3) for the PUMA robot.

Planar Arm Parameter Identification

The first step in simulating existing hardware was to determine the physi-
cal parameters that identify the system and its motion. Mass properties of the
planar arm were first determined by taking the arm apart to find the lengths
and weights of the arm components. Link centers of mass and inertias were then
calculated from these measurements. Figure 60 shows the configuration of the
planar arm used. It included a base, shoulder motor and gears, shoulder link,
elbow motor and gears, elbow link, and bracket.

fip- 1
F I Shoulder ID

; Motor . |
i I H"

1 i
(Shoulder 'Link

J I

jElbow
iMotor

: Elbow Link
i

j

1
I Bracket

Figure 60. - Planar arm configuration.

137

Table V gives the values obtained for link masses, centers of mass, and
y-axis inertias about the link's center of mass.

TABLE V. - PLANAR ARM LINK MASS PROPERTIES

Mass, kg
Center of
mass, m

122 inertia,
kg-ra2.

Shoulder

Elbow
(including
bracket)

1.0297

0.888

0.1605

0.2095

0.0132

0.0106

Motor parameters were obtained primarily from manufacturer's data sheets.
However, the parameters that could be were tested. These included the torque
constant, motor resistance, back-EMF, and static, coulomb, and viscous fric-
tions. The torque constant test measured the force at a known moment arm while
monitoring the motor current and voltage. Taking into account the amplifier
gain allowed the torque constant to be calculated. Motor resistance was deter-
mined from the slope of the voltage vs current curve obtained in the torque-
constant test. Back-EMF is the open-circuit voltage produced when driving the
motor manually through the gearing. The shaft velocity was monitored and the
EMF constant was found from the slope of the voltage vs velocity curve. Static
friction, which is the torque necessary to begin joint rotation, was measured
by increasing the voltage slowly up to the point at which joint rotation begins
and noting this voltage. Coulomb friction, which is the torque necessary to
keep the motor rotating at a slow speed, was determined by noting the lowest
voltage that would keep the motor turning when given a small initial velocity.
The actual static and coulomb friction torques were calculated from the mea-
sured voltages, amplifier gains and motor torque constants. Viscous friction,
which is proportional to the motor angular velocity, was determined by giving
the arm an initial velocity and then recording the angular velocity and dis-
placement with an open circuit at the motor leads. Curve fitting these empiri-
cal data led to extraction of the coulomb and viscous frictions.

Before the validation was conducted, a decision was made to go to current
control of the planar arm motors instead of voltage control. For purposes of
the simulation, this takes the motor resistance, back-EMF, and inductance out
of the control loop and they are set to 1, 0, and 0 respectively. Table VI
lists the motor parameters used in the ROBSIM simulation at the beginning of
the validation runs.

138

TABLE VI. - MOTOR PARAMETERS INITIALLY USED IN SIMULATION

Motor torque constant, Nm/arap

Motor gear ratio

Amplifier gain, amps/ volts

Back-EMF constant, V/rad/s

Motor effective inertia, kg-m^

Motor resistance, ohms

Motor inductance, henries

Coulomb friction coefficient, N-m

Static friction coefficient, N-m

Viscous damping coefficient,
N-m/rad/s

Shoulder

3.58

20.25

0.5202

0

0.0893

1

0

0.439

0.616

0.0878

Elbow

28.5

. 86.4

0 . 2543

0

0.6763

1

0

1.36

2.04

1.135

Simulation Comparison - Elbow

The comparison between hardware and software first looked at each joint
separately and then at combined motion of both the shoulder and the elbow. The
planar arm runs used were:

1) Elbow sinusoidal motion, ̂ 20° amplitude, 0.15-Hz frequency, 0.03-s
sampling time;

2) Elbow trapezoidal motion, ±20° amplitude, 0.15-Hz frequency, 0.03-s
sampling time;

3) Shoulder sinusoidal motion, +30° amplitude, 0.15-Hz frequency, 0.03-s
sampling time;

4) Combined shoulder and elbow motion, ;+30° amplitude, 0.1-Hz frequency,
0.03-s sampling time.

139

The simulation modeled the planar arm using the parameters in Tables V and
VI. Response simulation runs were executed in ROBSIM using the same control
voltage used to control the planar arm. To compare the motion of the simula-
tion with that of the actual hardware arm, one of the ROBSIM postprocessing op-
tions was used. This option plays back the motion that occurred during an
analysis run, and also simultaneously displays a stick figure whose motions re-
present the motion of the hardware arm.

The first hardware motion to be simulated was the sinusoidal elbow motion.
Although the first attempt showed agreement in the direction of motion, the
simulation amplitude and accelerations were too large. To attempt to obtain
better agreement, the elbow motor torque constant and friction coefficients
were reevaluated. The torque constant was determined by attaching the force/
torque wrist to the arm and then increasing the voltage to the elbow motor and
measuring the force exerted against a constraint. The slope of the force volt-
age curve multiplied by the amplifier gain and moment arm defined the motor
torque constant. This testing obtained a torque constant of 12.8 Nra/amp for
the elbow motor. The static friction torque was obtained by increasing the
voltage to the elbow joint until the joint moved. This voltage was then multi-
plied by the amplifier gain and motor torque constant. The coulomb friction
torque was evaluated by changing the voltage to find the lowest voltage that
would keep the joint moving after it was given a small initial velocity. Mul-
tiplying by the amplifier gain and torque constant gave the actual friction
torque value. This static friction torque was also evaluated by looking at the
planar arm motor voltage and position plots. The voltage at which motion be-
gins (at extreme reach of each cycle) was used to calculate the static friction
torque. The coulomb friction torque is approximately two-thirds of the static
torque. Testing the arm gave values of 1.5 Nra and 1.0 Nm for static and cou-
lomb friction respectively. The voltage taken from the plot indicated static
friction to be about 2.4 Nm. In testing both sets of values in the simulation,
it was noted that the higher friction values seemed to give better agreement
with the hardware positions. At this point the agreement between the hardware
and the simulation was quite good. Both reached the .same amplitude and would
start motion in the new direction at the same time. However, the simulation
would move out more quickly and reach the end of the motion and stop before the
hardware would. This seemed to indicate that the effective inertia of the
joint/link pair was too low. Because it was assumed that the link inertia was
accurately known, it was assumed that the motor effective inertia was in error.
The elbow motor inertia was increased until the motion of the hardware and
simulation matched well. This meant increasing the inertia from 0.68 to 1.8.
The positions of the elbow of the planar arm and its simulation are shown in
Figure^61. (In the figure h denotes the hardware motion and s the simulation.)
The negative shift of the simulation was because the arm was probably not ex-
actly in the horizontal plane so gravity caused the motor drive voltage to be
slightly greater in one direction than the other.

After the sinusoidal motion was matched, the voltages used for trapezoidal
motion of the planar arm elbow were used to control a response simulation run
of ROBSIM. Figure 62 shows the hardware and simulation elbow positions for
trapezoidal motion.

140

ixlO"

SIMULRTION VRLIDRTION
ELBOW MOTION

TIME — SEC

-h

!Figure 61. - Elbow"simulation and hardware positions, sinusoidal motion.

ST-MUL-RTILON VRLIDRTION
ELBOW MOTION

-h

TIME - SEC

Figure 62. - Elbow simulation and hardware positions, trapezoidal motion.

141

Simulation Comparison - Shoulder

The planar arm shoulder run commanded the joint to move 30° in both posi-
tive and negative directions. As with the elbow, simulation of the shoulder
motion initially showed only minimal agreement with the actual hardware motion.
The motor torque constant and the static and coulomb frictions were evaluated
in the same manner as described for the elbow. Testing the planar arm gave a
value of 2.6 Mm/amp for the shoulder motor torque constant and values of 0.95
Nm and approximately 0.88 Nm for the static and coulomb frictions respectively.
The preceding friction torque values are for motion in the positive direction.
Testing of the planar arm showed that frictions in the positive direction were
much greater than in the negative direction. This was also evident by looking
at the plot of shoulder motor voltages as a function of time. To compensate
for the effects of the direction dependency of the friction torques, voltages
corresponding to negative joint velocities were modified by subtracting an off-
set voltage. This value was determined by calculating the net positive offset
per time step from the voltage data and subtracting twice this value. The 0.2
volt subtracted seemed to overcompensate for the problem. Trial and error
seemed to indicate that approximately -0.18 volt was the best offset. In addi-
tion to offsetting the negative velocity voltages, the beginning of the voltage
file up to the first zero velocity point was cut off to prevent any initial
conditions from affecting the simulation run. After the modifications men-
tioned (motor torque constant, static and coulomb friction torques, and motor
voltages), reasonable agreement was obtained between the planar arm shoulder
motion and the simulation. But, as with the elbow, the simulation motion
seemed to indicate a low effective inertia for the shoulder joint/link pair.
Again it was assumed that the link inertia was fairly accurate and that the
joint effective inertia needed to be modified. An inertia value of 0.45 kg-m^
and an updated coulomb friction torque of 0.77 Nm produced good agreement be-
tween the simulation and the hardware it was modeling. Figure 63 shows both
the hardware and simulation positions as function of time for the shquj.der.

xicr1

6-r

SZEMULRTION VRL.IDRTZON
SHOULDER MOTHION

142
\ TIME - SEC

iFigure 63. - Shoulder simulation and hardware positions.

Table VII lists the motor parameters for the planar arm at this point.

TABLE VII. - PLANAR ARM MOTOR PARAMETERS.

Motor torque constant, Mm/ amp

Motor gear ratio

Amplifier gain

Back-EMF constant, V/rad/s

Motor effective inertia, kg-iar

Motor resistance, ohms

Motor inductance, henries

Coulomb friction coefficient, N-m

Static friction coefficient, N-m

Viscous damping coefficient,
N-m/rad/s

Shoulder

2.6

20.25

0.5202

0

0.45

1.0

0

0.77

' 0.95

0.0878

Elbow

12.8

86.4

0.2543

0

' 1.8

1.0

0

1.5

2.4

1.135

Simulation Comparison - Combined Motion

Thus far, good agreement between the hardware and simulation has been
shown for each joint (shoulder and elbow) separately. To further check the
validity of the simulation, a planar arm test case that combined the motion of
both the shoulder and the elbow was run. Both joints were commanded to move
30° in both the positive and negative directions at a 0.1-Hz frequency. The
simulation was run using the motor and link parameters set previously when each
joint was looked at separately. Figures 64 and 65 show the shoulder and elbow
hardware and simulation positions.

143

xKJTS*

COMBINED MOTION
SHOULDER POSITIONS,.

T.ICME - SEC

Figure 64. - Hardware and simulation shoulder positions for combined motion.

COMBINED MOTION
ELBOW POSITIONS

-h

144

TIME — SEC

Figure 65. - Hardware and simulation elbow positions for combined motion.

As can be seen in Figure 64, the simulated shoulder position was forced to
the positive limit because of the direction dependency of the shoulder fric-
tions. The shoulder motor voltages corresponding to negative joint velocities
were then offset by -0.18 (this value was determined earlier). The plot of
shoulder hardware and software positions after offsetting the drive voltages is
shown in Figure 66.

COMBINED MOTION
SHOULDER POSITIONS

x10~

/-h

-15 --

TIME — SEC

Figure 66. = Shoulder hardware and simulation positions after offset.

Figure 66 indicates that the effective inertia is too low and that the el-
bow link inertia must be increased. (Increasing the shoulder joint or link
inertia would change its response when run alone.) To keep the motion of the
elbow the same when run by itself, the elbow motor inertia would have to be de-
creased to keep the effective inertia of the elbow joint/link pair the same. As
a first attempt, the elbow motor effective inertia was decreased to 1.0 kg-m^
and the link inertia (about its center of mass) was increased to 0.81 kg-m^.
Although these values do not give the same total effective inertia as previous-
ly noted, they were used to see if this was a valid method for correcting the
simulation model. Figures 67 and 68 show that this is the correct method for
updating the simulation model, and that trial and error testing would yield an
accurate model.

145

COM.BINED MOTION - SHOULDER

SECONDS

Figure 67. - Shoulder hardware and simulation positions", combined motion.

COMBINED MOTION - ELBOU

SEC

Figure 68. - Elbow hardware and simulation positions, combined motion.

146

PUMA Parameter Identification

Initial experiments were performed to determine the kinematic and dynamic
parameters for one of the two PUMA robots at NASA Langley Research Center.
[Paul 1983] presented kinematic and dynamic parameter estimates for the PUMA
six-degree-of-freedom manipulator. [Lee 1984] determined the kinematic para-
meters of this arm more precisely. The evaluation described here was performed
to validate these earlier results and to verify the consistency of parameters
between devices of the same model.

Figure 69 illustrates the PUMA robot and the kinematic parameters to be
identified. The relative angles between consecutive joint axes were all as-
sumed to be 0° or 90° and no attempt was made to verify these values. To de-
termine the length parameters, a point on each joint axis had to be located
first. This task was performed by marking the position (in the world coordi-
nates) of one point on a subsequent link. The joint was then rotated by 180°
and the new position of the point determined. (Protractors and plumb bobs were
mounted on some of the joints to verify that 180° rotations were achieved.)
The midway point between these two positions locates a point on the joint axis
(Fig. 70). Using this procedure, the kinematic parameters listed in Table VIII
were obtained (see also [Paul 1983]. Table IX shows that these agree well with
the valued obtained by [Lee 1984] and [Paul 1983].

jAxis of -
'Joint 4

Axis "of
'I Joint 4_A

iAxis of
* Joint 1 J.S,

H
J
248 mm.-

Figure 69. - Kinematic parameters of the PUMA.
147

/

V

jPoint on
[Joint Axis

180

4d/2

! Point on
i Link

Figure 70. - Locating a point on the joint axis.

TABLE VIII. - PUMA KINEMATICS

Joint

1

2

3

4

5

6

a, deg

-90

0

90

-90

90

0-

S

0

S2 = 150.4

0

L3 = 433.1

0

S6 = 56.1

a, mm

0

L2 = 431.0

d4 = 20.2

0

0

0

TABLE IX. - COMPARISON OF PUMA CHARACTERISTICS

Parameter

s2

L2

^3

d4

S6

Measured Value*

150.4

431.0

433.1

20.2

56.1

[Lee 1984]

149.09

431.8

433.07

20.32

5625

[Paul 1983]

125

432

432

19

-

* All parameters in millimeters.

148

Based on the measurement technique, the accuracy of these values is esti-
mated to be on the order of jf0.5mm. Furthermore, many of the kinematic para-
meters have assumed values. Verifying these parameters requires a more elabor-
ate experimentation and data reduction scheme such as that proposed in [Barker
1983]. We believe that high-accuracy positioning of robotic devices will re-
quire some type of end-effector position sensing or online calibration because
of these kinematic uncertainties (as well as the fact that structural deforma-
tions occur under load.)

A computer simulation of the system response requires several associated
dynamic parameters to be evaluated for the system. The dynamic parameters
needed for the simulation include masses, inertias, friction forces, etc. They
can be broken down into two general classes:

1) Parameters that can be identified by static force measurements;

2) Those that require dynamic response measurements.

First, static force measurements were performed to determine the link masses,
link centroid locations, and friction torques at each joint. The measurements
were performed by setting the robot up in several configurations, freeing one
joint while leaving the relative motions at the other joints fixed and measur-
ing the forces needed to start the arm in motion. For simplicity it was as-
sumed that the centroid of each link lies at an unknown distance a^ along the
link axis. The main concern was to identify the mass m£ and centroid loca-
tion a^ for links 2 and 3 (Fig. 71) and the static friction at all joints.
To accomplish this, force measurements were taken for eight arm configurations.
Figure 72 schematically illustrates the eight test configurations. In each
configuration i, the minimum applied force Fajltiin and maximum applied
force F* max

 to aH°w tne free joint to just begin to move were measured.
Each measurement was taken five times and Table X lists the average value and
standard deviation.for each of these measurements. The static friction for
configuration i, Fj, can be approximated by

PJ - F1 - F1 .f a , max a, mm
2

and the support force Fi needed to counteract gravity is the average ap-
plied force

F1 = F1 + F1 .g a , max a , mm .

149

(assume m. contains the masses of
1 links 4, 5, and 6 also)

Figure 71. - PUMA mass/centroid parameters.

TABLE X. - MEASURED FRICTION AND GRAVITYFORCES'

i

a

b

c

d

e

f

g

h

Fl,min/o *

-35.6/0.49

51.2/089

13.4/0.12

80.1/0.67

38.7/1.07

11.8/0.71

10.0/0.22

12.0/0.09

Fi ia,max/;a

39.4/0.55

66. 7/0. 53

26.6/0.47

112.5/0.84

64.9/0.84

23.1/0.31

24.7/0.18

22.6/0.11

Fl

-

58.9

20.0

96.3

51.8

17.5

17.4

17.3

4

37.5

7.78

6.58

16.2

13.1

5.65

7.34

5.32

* a - standard deviation; all values given in newtons.

Based oh the results listed in Table X and the effective moment arms for
the different configurations shown in Figure 72, the joint friction forces can
be evaluated. Table XI lists the resulting joint friction torques. Note that
the configurations b, d, and e all give values for the static friction at joint
2. The values from configurations b and d are 6.72 and 6;82 Nm, but the mea-
sured value from configuration e is 8.82 Nm which is inconsistent with the
other results. Unfortunately, the test could not be readily repeated, so it is
unclear whether this indicates a true anomaly or that an error was made in re-
cording the arm configuration. The latter explanation seems unlikely because
the gravity force in this configuration agrees closely with the results for
configuration b, as discussed later.

150

U 500 mm M

(a) Joint 1 free.

£
ffl

864 mm-

-O—

(b) Joint 2 free.

o
L— 497 mm_*J

o -<

(c) Joint 3 free.

t
V

^ 421 mm

O

(d) Joint 2 free.

(e) Joint 2 free.

149 mm k*-

a

[Weight

! (f) Joint 4 free.
! (g) Joint 6 free.

(h) Joint 5 free.

Figure 72. - Static load measurement configurations.

151

TABLE XI. - JOINT STATIC FRICTION TORQUES

Joint

1

2

3

4

5

6

Static Friction, Nm

18.8

6.8

3.3

0.84

0.84

1.09

Analysis of the results in this and the preceding section provide the
following conclusions and suggested modifications of the testing procedure:

1) The standard deviation for each set of measurements is quite small
(approximately 1%), providing good confidence in the resulting values;

2) The Fg values for measurement configurations f, g, and h agree
closely, as they should, because the supported weight is the same in
each of these cases;

3) The directional nature of the friction forces must be evaluated. As
seen from the results from joint 1 of the PUMA and from the planar
arm, the friction coefficient for one direction of motion can signifi-
cantly differ from the value for the other direction;

4) The dry friction when the joint is just barely moving should be evalu-
ated in addition to the static value determined by these tests;

5) The friction forces from the input-driven system should be compared
with the values obtained by the technique presented here in which the
output is driven.

The force measurements from configurations b, c,
for the mass and centroid locations.

d, and e also provide values

The discussion in the adaptive control subsection of this report showed
that only certain combinations of these terms can be identified, i.e., response
measurements cannot differentiate between some of the terras. This also means
that these observable mass combinations determine the dynamic properties and
the individual components need not be evaluated explicitly. The disassembled
manipulator must be measured or engineering approximations must be used to ex-
plicitly evaluate the individual terms. In the measurement cases considered
here, the terms that can be identified are D]^ = 111333 and 0^4 =

152

For example, configuration c provides the result (Fig. 71 and 72)

m3a3g = Fad = (20. ON) (0.497m)

where g = 9.8 m/s^ is the acceleration caused by gravity. This leads to

Di5 = 111333 = 1.01 kg-m,

Similarly, configuration d provides the value for D^4 as

g[m2a2 + m3L2] = Fad = (96.3N)(0.421)m

= m2a2 + m3L2 = 4.14 kg-m.

.These values can be validated by comparing them with the measurements from con-
figurations b and e. For configuration b, the values given above yield

g[m2a2 + m3(L2 + 33)] = g(D̂ 4 + D^) = 50.5 Nm,

which is within 1% of the measured value

Fad = (58.9N)(0.864m) = 50.9 Nra.

Also, for configuration e, the identified mass properties produce

g cos 45°[m2a2 + m3(L2 + a2)] = 0.7071 g (Dĵ . = D^) = 35.7 Nm,

which differs by about 2% from the measured value

Fad = (51.8N)(0.673m) = 34.9 Nm.

In addition to the static force measurements for determining the system
parameters, dynamic response was also measured. These tests consisted of run-
ning certain trajectories with a single joint moving at a time and recording
the position and driving current profiles during the motion.

The data from the dynamic response runs were transferred to Martin
Marietta. The intent of the effort was to first plot position, velocity and
acceleration profiles of the single-joint PUMA runs. The PUMA would then be
modeled using ROBSIM and response simulations would be run using the same cur-
rents as used to run the actual PUMA arm. After this, positions, velocities,
and accelerations of the simulated motions would be plotted and compared with
the joint motions of the actual PUMA. However, when the motion profiles for
the actual hardware joints were plotted, a lot of noise was present. Figures
73, 74 and 75 show position, velocity and acceleration plots for joint 3 of
the PUMA and the noise present in the signals. At this time of this writing
the source of the noise has not been determined and further testing is nec-
essary for this evaluation.

153

UOINT 3 MOTION

x10~

-14 --

TIME - SECONDS

Figure 73. - PUMA joint 3 position profile.

JOINT 3 MOTION

12 14 16 18

TIME - SECONDS

Figure 74. - PUMA joint 3 velocity profile.

154

JOINT 3 MOTION

16 18 20

TIME - SECONDS

Figure 75. - PUMA joint 3 acceleration profile.

155

CONCLUDING REMARKS

This report has documented the work done in Phases II and HI of contract
NASl-16759, Evaluation of Automated Decisionmaking Methodologies and Develop-
ment of an Integrated Robotic System Simulation. The tasks defined for Phase
II (tasks 9 thru 13) and Phase III (14 thru 20) have significantly increased
the capabilities of the robotic simulation (ROBSIM) package and the technolo-
gies associated with the automation and operation of advanced manipulator sys-
tems listed:

1) System definition - The implementation of this module allows a user to
define a manipulator system consisting of multiple arms, load objects
and an environment. This addressed task 12 of the contract;

2) Analysis capabilities - This has added the capabilities of kinematic
analysis, requirements analysis, and response simulation for investi-
gating manipulator motion. This addressesed tasks 14, 15, and 16;

3) Postprocessing - This module allows the user to better evaluate sys-
tem analysis results through the graphic replay of simulated motion
or manipulator parameter plots;

4) Control - Various control methods were investigated and those imple-
mented in ROBSIM include manual force/torque and active compliance
control. This addressed tasks 13, 17 and 19 of the contract;

5) Trajectory planning - Three methods of obstacle avoidance were imple-
mented and evaluated and research was conducted in the field of tra-
jectory planning. This work addressed tasks 9 and 18;

6) Image processing - The module implemented video simulation and edge
detection and addressed tasks 10 and 11;

7) Simulation validation - The software simulation was validated in con-
junction with the Automation Technology Branch of NASA-LRC. This work
addresses task 20 of the contract.

Target areas for future enhancement of the ROBSIM capabilities include
greater ease of user interaction with the program, expanded manipulator model-
ing abilities, and the addition of system compliance in the model.

Expansion of the ROBSIM software could now be directed toward support of
teleoperator and robotic systems capable of such remote space operations as the
remote orbital servicing system (ROSS) concept. The simulation could support
dual manipulator arms attached to a carrier spacecraft in orbit. Forces, mo-
ments and motions typical of a dual-arm robot/host vehicle system of this type
would be included in the kinematic and dynamic solutions. It is anticipated
that the models for the manipulator motors, the sensors and end-effector will
warrant the development of new software modules and laboratory validation ex-
periments. Figure 76 is a sample of a preliminary ROSS simulation graphics
display.

156

ATXJ f=f TIN A?X» Ft IE TTA

OXRtNT TIKE CSEO O.OOO JOINT TRRVEL STfTTUS

PRM1

.JNT1

JNT2

JNT3

JNT4

JNT5

JNT8

JNT7

RRM2

JNT1

JNT2

JNTS

JNT4

JNT5

JNT6

JNT7

VflLUE

O.OO

OwOO

O.OO

0.00
O.OO

O.OO

O.OO

VFB-UE

O.OO

OwOO

O.OO

O.OO

O.OO

O.OO

O.OO

Z MPX

o
0

o
0

0

o
o

X MRX

o
0

0

o
0

0

0

Figure 76. - Preliminary ROSS simulation graphics display.

An investigation of concepts for a system that allows manual designation
of objects within a visual (television) scene and that performs high-accuracy
position measurements could be conducted. A description of one or more systems
that provides this capability for the ROSS configuration would be developed.

157

Continuing work in the trajectory planning field would couple the man/
machine interface with the software-simulation of remote systems. Assessment
of the problem of path trajectory singularity avoidance and various approaches
to autonomous task planning should be researched. A task-oriented command mo-
dule that incorporates task primitive commands into the simulation user inter-
face would be documented and developed. Executing a task command will initiate
a sequence of appropriate sensor, actuator and state commands. Techniques em-
ploying rule-based systems and theorem provers may solve the problems associ-
ated with task scheduling to achieve a specific mission goal.

Validation of the existing software simulation modules will continue, and
the models for actuators, joints and links should be extended to fit a more
generalized set of hardware robotic systems. To effect a better representa-
tion of the robotic hardware defined in the system development phase of the
program, an interface to allow transfer and conversion of CAD/CAM (computer-
aided design and manufacturing) or geometric modeling data to the ROBSIM format
should be designed. The establishment of a compatible exchange of product de-
finition between CAD/CAM and ROBSIM would enhance the general applicability of
ROBSIM-generated databases and serve to lessen duplication of efforts in mo-
deling hardware component systems. The current method for definition of robo-
tic systems within ROBSIM proceeds by defining primitive robotic hardware geo-
metry and provides only rough sketches of the actual hardware properties.
Figure 77 depicts a CAD/CAM robot arm that was converted from a standardized
IGES (initial graphics exchange specification) formatted file for display on a
vector graphics terminal.

Figure 77. - Display of robot arm converted from a CAD/CAM database.

158

Current processing capabilities in the ROBSIM program may be carried out
on virtually any modern digital computing machine of the supermini or higher
class. However, with the exception of the newest and fastest machines, the
necessary speed for real-time simulation processing will not be achieved by a
single machine. Specialized machines with multiple processor architectures
will be necessary to accomplish this goal. Areas such as mechanical configu-
ration optimization, accuracy analysis, control requirements, stability, and
work environment studies require simulation but not necessarily in real time.
Several significant long-range requirements point to the need for a real-time
simulation capability, and research of the following available systems is re-
commended:

1) Realistic graphics - When the simulation system is coupled with a gra-
phics display of the computer solutions in real time, the results are
much more realistic;

2) Surrogate hardware - Properly simulated hardware may be used to re-
place hardware subsystems that have failed or are not yet available.
The remainder of the hardware may be used in the system as intended.
System problems may be isolated by substituting software modules for
suspected failing hardware modules. System integration may be ap-
proached more gradually by bringing hardware on line one module at a
time or as the hardware is available;

3) Real time testbed for algorithm development - Control and estimation
algorithms may be evaluated and optimized using the true or emulated
control computer without the use of scaling within the algorithms, and
with no potential damage to the existing and manipulator assembly;

4) Real-time testbed for path planning and man/machine interface - Safe,
real-time response to decisions and trajectory decisions as dictated
by sensor output and command input is very important for a smooth flow
of the man/machine interface within the simulation and to achieve a
diversified approach to task-oriented plans.

159

REFERENCES

Ballard, D. H.; and Brown, C. M.: Computer Vision. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1982.

Barker, L. Keith: Vector Algebra Approach to Extract Denavit-Hartenberg Para-
meters of Assembled Robot Arms. NASA Technical Paper 2191, August 1983.

Binford, T. 0.: Inferring Surfaces from Images. Artificial Intelligence, vol.
17, 1981, pp. 205-244.

Brady, M: Computational Approaches to Image Understanding. Computing Surveys,
vol 14 (1), 1982, pp. 3-71.

Chace, M. A.; Calahan, D. A.; Orlandea, N.; and Smith, D.: Formulation and
Numerical Methods in the Computer Evaluation of Mechanical Dynamic Systems.
Third World Congress for the Theory of Machines and Mechanisms, Kupari,
Yugoslavia, 1971, pp. 61-100.

Dubowsky, S.; and DesForges, D. T.: The Application of Model-Referenced Adap-
tive Control to Robotic Manipulators. Joint Automatic Control Conference, 1979.

Duffy, J,; and Crane, C.: A Displacement Analysis of the General Spatial
7-link, 7R Mechanism. Mechanism and Machine Theory, vol. 15, no. 3, 1980, pp.
153-169.

Duffy, J,: Analysis of Mechanisms and Robot Manipulators. Wiley, New York,
NY, 1981.

Duffy, J,: Analysis of Robot Arms. DOE Contract AC05-79ER-10013, Center of
Intelligent Machines and Robotics, University of Florida, Gainesville, FL,
1979.

Franklin, G. F.; and Powell, J. D.: Digital Control of Dynamic Systems.
Addison-Wesley Publishing Company, Menlo Park, CA, 1981.

Fukunaga, Keinosuke: Introduction to Statistical Pattern Recognition. Academic
Press, San Francisco, 1972, p. 294.

Goodwin, Graham C.; and Sin, K. S.: Adaptive Filtering Prediction and Control.
Manuscript, Department of Electrical and Computer Engineering, University of
Newcastle, New South Wales, 2308, Australia, 1982.

Hanson, A. R.; and Riseman, E. M.: Processing Cones: A Computational Structure
for Image Analysis. Structured Computer Vision, ed. Tanimoto, S.; and Klinger,
A.; Academic Press, New York, NY, 1980.

Hemani, J; and Camana, P. C.: Nonlinear Feedback in Simple Locomotion Systems.
IEEE Transactions on Automatic Control, December 1976.

160

Hildreth, E. C.: Edge Detection for Computer Vision Systems. Mechanical Engi-
neering, August 1982, pp. 48-53.

Hollerback, J. M.: A Recursive Lagrangian Formulation of Manipulator Dynamics
and a Comparative Study of Dynamics Formulation Complexity. IEEE Transactions
on Systems, Man, and Cybernetics, vol. SMC-10, no. 11, 1980, pp. 730-736.

Horowitz, R.; and Tomizuka, M.: Discrete-Time Model Reference Adaptive Control
of Mechanical Manipulators. ASME Computer Engineering Conference, August,
1982.

Hueckel, M. F.: An operator Which Locates Edges in Digitized Pictures. Jour-
nal of the ACM, vol. 18, 1971, pp. 113-125.

Hummel, R. A.: Edge Detection Using Basic Functions. Technical Report TR-56,
University of Maryland, Computer Science Center, August 1977.

Koivo, A. J.; and Guo, T. H.: Control of Robotic Manipulator with Adaptive Con-
troller. Conference on Decision and Control, December 1981.

Kreisselmeier, G.: On Adaptive State Regulation. IEEE Transactions, vol.
AC-27, no. 1, February 1982.

Lee, C. S. G.: Robot Arm Kinematics, Dynamics, and Control. Computer Maga-
zine, December 1982, pp. 62-80.

Lee, C. S. G.; and Chung, M. J.: An Adaptive Control Strategy for Mechanical
Manipulators. Proceedings, 21st Conference on Decision and Control, 1982*

Lee, George: University of Michigan Department of Electrical and Computer
Engineering, Ann Arbor, MI. Personal Correspondence.

Leinenger, G. G.: Self-Tuning Adaptive Control of Manipulators. Symposium on
Advanced Software in Robotics, Liege, Belgium, 1983.

Lowrie, J. W.; Formelia, A. J.; Haley, D. C.; Gremban, K. D.; Van Baalen, J.;
and Walsh, R. W.: Evaluation of automated Decisionmaking Methodologies and
Development for an Integrated Robotic System Simulation. NASA Contractor
Report 165975, 1982.

Luh, J. Y. S.; Walker, M. W.; and Paul, R. P. C.: Resolved-Acceleration Con-
trol of Mechanical Manipulators. IEEE Trans, vol. AC-25, no. 3, June 1980.

Luh, J. Y. S.; Walker, M. W.; and Paul, R. P. C.: Online Computational Scheme
for Mechanical Manipulators. J. Dynamic System. Measurement. Contr., Trans-
actions ASME, vol. 102, June 1980.

MacVicar-Whelan, P. J.; and Binford, T. 0.: Line Finding with Subpixel Preci-
sion. Techniques and Applications of Image Understanding, ed. Pearson, J. J.;
SPIE vol. 281, 1981, pp. 211-216.

Marr, D.; and Hildreth, E. C.: Theory of Edge Detection. Proceedings of the
Royal Society of London, Series B, 207, 1980, pp. 187-217.

161

Mason, M. T.: Compliance and Force Control for Computer-Controlled Manipula-
tors. IEEE Transactions, vol. SMC-11, no. 6, June 1981.

Morgenthaler, D. G.: A New Hybrid Edge Detector. Computer Graphics and Image
Processing, vol. 16, 1981, pp. 166-176.

Nevins, J. L.; and Whitney, D. E.: Computer-Controlled Assembly. Scientific
America, 1978.

Nishihara, K.; and Larson, W.: Towards a Real-Time Implementation of the Marr
and Poggio Stereo Matcher. Techniques and Applications of Image Understanding,
ed. Pearson, J. J.; SPIE vol. 281, 1981, pp. 299-305.

O'Gorman, F.: Edge Detection Using Walsh Functions. Artificial Intelligence,
vol. 10, 1978, pp. 215-223.

Okada, T.: Computer Control of Multijointed Finger System for Precise Object
Handling. IEEE Sys. Man. Cyber, vol. SMC-12, no. 3, 1982.

Orin, D. E.; McGhee, R. B,; Vukobratovic, M.; and Hartoch, G.: Kinematic and
Kinetic Analysis of Open-Chair linkages Utilizing Newton-Euler Methods. Mathe-
matical Biosciences, vol. 43, 1979, pp. 107-130.

Paul, R. P.: Robot Manipulators: Mathematics, Programming, and Control. MIT
Press, Cambridge, Massachusetts, 1981a.

Paul, R. P.: Kinematic Control Equations for Manipulators. IEEE Transactions,
vol. SMC-11, 1981b.

Paul, R. P.; MaRong; Hong Zhang: The Dynamics of the PUMA Manipulator. Ameri-
can Control Conference Proceedings, 1983, pp. 491-496.

Peli, T.; and Malah, D.: A Study of Edge Detection Algorithms. Computer Gra-
phics and Image Processing, vol. 20, 1982, pp. 1-21.

Prewitt, J. M. S.: Object Enhancement and Extraction. Picture Processing and
Psychopictories, ed. Lipkin, B. S.; and Rosenfeld, A.; Academic Press, New
York, NY, 1970.

Raibert, M. H.; and Craig, J. J.: Hybrid Position/Force Control of Manipula-
tors. ASME Transactions, Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 102, pp. 126-133.

Rosenfeld, A.; and Kak, A. C.: Digital Picture Processing. Second Edition,
Academic Press, New York, NY, 1982.

Rosenfeld, A.; and Thurston, M.: Edge and Curve Detection for Visual Scene
Analysis. IEEE Transactions, vol. C-20(5), 1972, pp. 562-569.

Salisbury, J. K.: Active Stiffness Control of Manipulator in Cartesian Coordi-
nates. Proceedings of the 19th IEEE Conference of Decision and Control, 1980,
pp. 95-100.

162

Shanraugan, K. S.; Dickey, F. M.; and Green, J. A.: An Optimal Frequency Domain
Filter for Edge Detection in Digital Pictures. IEEE Transactions, vol. PAMI-1,
1979, pp. 37-49.

Shimano, b. E.; and Roth, B.: On Force Sensing Information and Its Use in Con-
trolling Manipulators. Proceedings of the 9th International Symposium on In-
dustrial Robots, Washington, D.C., 1979. pp. 119-126.

Shirai, Y.: Recognition of Real-World Objects Using Edge Cues. Computer Vi-
sion Systems, ed. Hanson, A. R.; and Riseman, E. M.; Academic Press, New York,
NY, 1978.

Sugimoto, K.; Duffy, J,; and Hunt, K. H.: Special Configurations of Spatial
Mechanisms and Robots. Mechanism and Machine Theory, vol. 17, no. 2, 1982,
pp. 119-132.

Thomas, M.; and Tesar, D.: Dynamic Modeling of Serial Manipulator Arms. ASME
Transactions, Journal of Dynamic Systems, Measurement, and Control, vol. 104,
1982, pp. 218-228.

Walker, M. W.; and Orin, D. E.: Efficient Dynamic Computer Simulation of
Robotic Mechanisms. ASME Transactions, Journal of Dynamic Systems, Measure-
ments, and Control, vol. 104, 1982, pp. 205-211.

Whitney, D. E.: Resolved Motion Rate Control of Manipulators and Human Pros-
thesis. IEEE Transactions, vol. MMS-10, no. 2, 1969, pp. 47-53.

Wu, C. H.; and Paul, R. P.: Resolved Motion Force Control of Robot Manipula-
tor. IEEE Transactions, vol. SMC-12, no. 3, 1982, pp. 266-275.

163

1. Report No.
NASA CR- 172401

2. Government Accession No. .

4. Title and Subtitle

Evaluation of Automated Decisionmaking Methodologies and Development
of an Integrated Robotic System Simulation

7. Author(s)
D. C. Haley, B. J. Almand, M. M. Thomas, L. D. Krauze, K. D. Gremban,
J. C. Sanborn, J. H. Kelly, T. M. Depkovich

9. Performing Organization Name and Address
Martin Marietta Aerospace
Denver Aerospace
P.O. Box 179
Denver, CO 80201

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date
September 1984

6. Performing Organization Code

8. Performing Organization Report No.

MCR-84-549

10. Work Unit No.

11. Contract or Grant No.

N ASM 6759
13. T.ype of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Jack Pennington
Report Consists of Three Volumes: Study Results, Appendix A-User's Guide, Appendix B-Programmer's Guide

16. Abstract

This report covers the work performed on tasks 9-20 of contract ISIAS1 -16759. The work done under this contract
implemented a generic computer simulation for rnanipuiaior systems (ROBSiM) and developed the specific technologies
necessary to increase the role of automation in various missions. The specific items developed are:

1) Capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment;
2) Capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion;
3) Postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting;
4) Investigation and simulation of various control methods including manual force/torque and active compliance

control;
5) Evaluation and implementation of three obstacle avoidance methods;
6) Video simulation and edge detection;
7) Software simulation validation.

The tasks listed above are documented in the study results volume of this report. Appendix A is the user's guide and
includes examples of program runs and outputs as well as instructions for program :use. Appendix B, the programmer's
guide, defines the program structure and includes a VCLR and short explanation for each subroutine.

17. Key Words (Suggested by Author(s))

ROBSIM

19. Security dassif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 63

20. Security Classif . (of this page) 21 . No. of Pages

Unclassified 170

22. Price

For sale by the National Technical Information Service, Springfield. Virginia 22161

