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ABSTRACT

A constrained iterative image vrestoration method is applied to :
multichannel diffraction-limited 1imagery. This method is based on the '
Gerchberg-Papoulis algorithm utilizing incomplete information and partial
constraints. The procedure

is described using the orthogonal projection
operators which project onto two prescribed subspaces iteratively.

Some of ‘ ‘
its properties and Tlimitations are also presented. The selection of ;
apropriate constraints was emphasized in a '

practical application.
Multichannel microwave images, each having different spatial resolution, were

i
restored to a common highest resolution to demonstrate the effectiveness of
the method. Both noise-free and noisy images were used in this investigation.
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i. Background

Multichannel microwave radiometers on the Seasat and Nimlus 7 satellites
offer a quantitative method for measuring geophysical parameters over the
ocean. The emissivity of the ocean surface is low and varies predictably with
wind speed; it thus provides a good background for observing precipitation.
The theory and initial validation of this concept was given by Wilheit, et al.
[1].

Recently 0lscen [2] employed a radiative transfer model to simulate the
polarized brightress temperatures that a Scanning Multichannel Microwave
Radiometer (SMMR) would measure from hurricanes over sea surfaces at several
frequencies (6.6, 10.7, 18.0, 21.0, and 37.0 GHz each with two
polarizations), These brightness temperatures depend upoﬁ the rainfall ?ates,
rain column height, and the emissivity of the wind roughened sea surface. It
became evident that the 37 GHz channel is most sensitive to the height of the
freezing level, whereas the 10.7 or 18 GHz channels are sensitive to changes
in rainfall rates when those rates are less than 10 to 20 mm/hr. The 6.6 GHz
channel provides rain information when the rainfall rate exceeds these
values. The information content of each channel is a variable function of
rainfall rate, rain column height, and emissivity of the sea surface, and the
dependencies are generally nonlinear. A piecewise-linear regression algorithm
has been applied to the synthetic data in the manner discussed by Smith and
Woolf [3] to infer rainfall rates. The regression method employs data from
eight of the SMMR channels.

Unfortunately, the size of the antenna of the SMMR on Nimbus-7 imposes a
diffraction 1imit on the sensor's angular resolution such ﬁhat the relative
angular response, d, of the radiometer 1is a function of the channel

frequency. The antenna response function can be approximated by the
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diffraction pattern of a circularly symmetric aperture with wuniform

illumination. The normalized radiation pattern, or the response function d,

is of the form

rfJ (ka sine) ]

d(e) = t—msmo ’ (1)

where a 1is the antenna radius, ¢ is the angular deviation from the antenna
centerline, p = 2n/X is the wave number and dl(-) is the first-order Bessel
function. SMMR chanrels at different frequencies therefore have different
footprint sizes, where the term footprint, or instantaneous field of view, is
the most frequently used definition of the sputial resolution of a satellite
radiometer, The foot prints corresponding to the half-power beamwidths of
each channel are shown in Table 1. It is difficult to apply the regréssicn
algorithm unambiguously to real SMMR data, because each channel measures
radiation from a footprint which may contain differing amounts of rain. This
study overcemes the diffraction Timitation imposed on spatial resolution by

means of a constrained iterative restoration algorithm.

SHMK PEREORMANCE CHARACTERISTICS.
PARAMETER CHANNEL
1 2 3 4 5

WAVELENGTH (CM) 4.54 2.8 1.66 1.36 0.81
FREQUENCY (GHz) 6.6 | 10.7 18.0 21.0 37.0
DYNAMIC RAMGE (° K) 10 - 330 '
FOOTPRINT SIZE (KnZ) Lgxas | 91x59 55041 i

(PICTURE ELEMENT) " " W30 2718

Table 1.
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11, Iterative Image Restoration - An Introduction

The problem of image degradation can be stated mathematically as

follows: the observed image, b(x,y), is expressed as
b(x,y) = 2(x,y) * d(x,¥) + n(x,¥), (2)
where

d(x,y) 1is the point spread response function of the degradation,
%(x,y) s the ideal image,

n(x,y) 1is random noise, and

* denotes a convolution operator

|
In the frequency domain, we can also represent the spectrum of the

Al

degraded image by
B(wx,wy) = L(wx,wy) . D(wx,wy) + N(wx,wy) (3)

Where B, L, D, N are the Fourier transformations of b, &, d, and n,
respectively.

One approach to the image restoration problem is based on the concept of
inverse filtering, in which the degradation point spread function is inverted
to obtain a restored image. This approach is by solving for either an
estimate of the ideal image & or its transform L.

There have been a number of metﬁods developed in recent years to restore
degraded images, such as Wiener filtering, parametric estimation filtering,
and pseudoinverse spatial restoration; see Andrews and Hunt [4]. Wiener
filtering is perhaps the most popular linear restoration method in which the
mean square error between the ideal image and the restored image is

minimized. Other commonly used restoration methods include the power spectrum
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equalization method that sets the power spectrum of a blurred image equal to
that of the original image, and the minimum a posteriori density method that
uses Bayes theorem to optimize the restoration.

The major task 1in linear rcstoration is to invert the degradation
equation which is modeled either by a superposition integral or by a vector-
space matrix equation. The existence of a unique inverse of the degradation
point spread function, d(x,y), is required to derive &(x,y) in the presence of
noise, n(x,y). If the inverse transformation of d(x,y) does not exist, then
the problem is said to be singular. In those cases for which the inverse
exists but is not unique, multiple solutions result. However, even if a
unique inverse of d exists, it may be ill-conditioned. It can be shown that
an arbitrary small perturbation in b can result in a large perturbation %n the
solution, £. Namely, the noise n(x,y) will lead to an undesired solution if
the inverse of d is ill-conditioned.

For these reasons, an alternative approach that 1is based upon iterative
processing (successive approximations) to imagz restoration is of interest.
This approach has the advantage that it is not necessary to determine the
inverse of the point spread function. .It has been demonstrated in a number of
studies and applications that the sequence of approximations converges to a
unique solution if constraints based upon known properties of the desired
soluticn are incorporated into the iterative procedure. The use of iterative
methods provides the flexibility of mixing constraints and distortions which
is essential in solving many practical restoration problems. It is also
evident from past work that this approach may provide a relatively efficient
solution for linear spatially varying and nonlinear degradation prbb]ems (see

Schafer, et al. [8] foi* a survey of iterative restoration algorithms).
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For diffraction-limited imaging, the restoration of the image beyohd the
ditfraction 1imit cannot be accomplished by filters that are based upon an
inversion of convolution equation. The removal of noise and distortion is
obtained at the expense of resolution. However, the use of iterative
restoration techniques may provide superresolution in the presence of noise.

» Such techniques make use of an incomplete a priori knowledge that we may have
about the original image and the imaging system in order to extrapolate the
bandlimited image spectrum beyond its diffraction Timit. The incorporation of
praor  Kknowledge of the image signal in the restoration process may be
considered as a constraint operator which operates on the image signal
iteratively to correct for imaging distortions.

An iterative restoration technique using a spectral extrapo%ation
algorithm was developed by Gerchberg [5] for the reconstruction of the signal
of an ubjest with a known finite duration or extent. 1In this method the a
priori constraint operates on the signal's magnitude and the magnitude of its
Fourier transform.  Papouiis [6] proposed the same algorithm assuming a
bandlimited signal and emphasizing signal extrapolation. Both of these
methods are based on the fact that a finite object has an analytic spectrum.
Analyticity implies that knowledge of only part of the spectrum is sufficient
to uniquely determine the remainder of the spectrum. Hence, the complete
spectrum may be derived from a diffraction-limited image although the
information content may be incomplete.

The Gerchberg-Papoulis algorithm has been studied and applied by a number
of researchers. Sabri and Steenaart [7] derived a fast bandiimited signal
extrapolation method using a matrix formulation. Another similar approach to
the extrapolation of a bandlimited signal was proposed by Cadzow [16].

Rushforth and Frost [9] introduced a modified version of the Gerchberg-
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Papoulis algorithm that provides additional flexibility and reduces the
sensitivity to noise, Youla [10] generaiized the algorithm using an
alternating orthogonal projection method in Hilbert space and developed
general conditions for convergence. Stack, Cahana, and Webb [11] formulated
the restoration of finite-energy objects from two projections, Cahana and
Stark [12] extended the algorithm to produce a faster convergence rate.
Howard [13] formulated the algorithm as the solution of a system of Tinear
equations containing Fourier components. Maeda and Murata [14] attempted to
suppress noise in the restoration algorithm by preprocessing the imuge by a
conventional spatial frequency filter. Fienup [15] proposed a versijon of the
iterative algorithm for reconstruction using the magnitude of the Fourier
transform of a signal with positivity constraints. More recently, HayesL Lim,
and Oppenheim [17], [18] have investigated iterative procedures for the
reconstruction of signals with finite extent from either the phase or the
magnitude of the Fourier transform. All of these methods fit into the general
framework of a general jterative restoration algorithm, with the Gerchberg-
Papoulis algorithm being perhaps the mgst widely know algorithm of this type.
In the following section, we will discuss the mathematical framework,
convergence criteria, and the effect of noise in the general Gerchberg-
Papoulis algorithm. Some of the mathematical formalism and notation used by
Youla [10] and Stark et al. [11] will be used here to describe the iterative
restoration procedure. Experimental results obtained by applying a modified
Garchberg-Papoulis algorithm to the restoration of multichannel microwave

imagery will be presented.
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111. The Constrained Iterative Restoration -~ rithm

A. The Resoration Algorithm

Consider the Hilbert space H with elements f, g, h, x, etc., consisting
of all L, square-integrable, Fourier-transformable functions, with inner
product

«©

(fag) = [ f(x) « g(x) dx (4)

00

and norm

® 1
Hfr = [ [ If(x)12 dx]/2 . (5)
Let Hl and H, be two subspaces of H. The angle between the two subspaces
[

Wiy, Hy) = cos™ (s pHEAMy (6) "

faHl - gl
gst

is defined by the expression

The angle ¢=0 occurs waen Hy and H, are orthogonal to each other. For

each f ¢ H we have a unique decomposition
f=g+h, (7)

where g is the projection of f onto the subspace P and h is the projection of
f onto the orthogonal complement of ¥, denoted by L P. Since g and h are
mutually orthogonal, the inner product (g,h) = 0.

Two Tinear operators P(+) and Q(-) are defined by the rules
g = P(f) and h = Q(f), | (8)

respectively. P and Q are orthogonal operators which project the ?

function f € H onto the orthogonal subspaces P and L P, respectively.

A




Let us associate these two projection operators with the transformation
of image signals between the spatial domain and the frequency domain via the
Fourier transformation pair, Let Pa(-) and Qa(o) denote the projection
operators in the spatial domain which project onto Py and L Pyas
respectively. Similarly, let Pb(-) and Qb(') be the operators in the
frequency domain which project onto Ph and L Ppys respectively.

For example, if a portion of the ideal image f(x) is known a priori (say,
we have an unknown object in a background of known intensity), the unknown

portion of f(x) can be expressed using the spatial projection operator, Pas @s

Mx) « F(x) = P() (9)

while the known portion of the image f(x) is expressed using the projection

operator Q, as
(1 - M(x)) + f(x) = Q,(f) , (10)

vhere

1, x.e unknown extent

M(x) = {
0, x e known extent .,

This pair of spatial projection operators decomposes the image signal f
into two parts: the unknown portion of the signal P,(f), and the known portion
Qa(f), where f = P, (f) + Q,(f) and (P,(f), Qa(f)) = 0.

By dividing the image spectrum into two spectral bands at wes that is, a
and a high-pass spectrum with |u] > u, the

Pp(f) + Qu(f) with

low-pass spectrum with [u| < u,

]

image signal f is decomposed by two projections f
(Pp(f)s Qy(f)) = o. The operators Pb(-) and Qg (+) are defined by the

following equations:

e

T e o e e

—— IR T S~ g W




- Srnim T E0f

M'M,ﬂ R Al g

LY

M) + F(w)] = Py() (11)
FL(L - Mw)) + F(w)] = Gy(F), (12) ;g
whare ﬁ
1
Fw) is the Fourier transform of f(x), ;
y“lfcj deno’:ts inverse Fourier transformation,
Pb and Qb are projection operators onto the low-pass and high-pass

image subspaces, respectively, and

1, for |u
|

M) = [O, for

The iterative 1mage restoration problem can be stated as follows: given
the projections of the image signal on prescribed subspaces, can one derive
the original image f(x)? It has been proved by Stark, et al. [11] that the
restoration is possible under certain conditions if partial information from
the subspaces is given.

To be more precise, let us consider an example: If we are given two
projections of f(x), say g = Qy(f) and h = P, (f) as defined in (10) and (11),

respectively, then a restoration is possible. In this case, g = Q,(f) is

considered to he the portion of the image data which vanishes outside some
known extent, and h = P (f) is considered to be the low-pass signal of a
bandlimited image. The low-pass spectrum, $[Pb(f)], is the truncated spectrum
of the image f. This low-pass spectrum can be obtained from the fact that the
Tow-frequency components of the degraded image have not been changed, or the
knowledge of the degradation function is known. This example is equivalent to

the extrapolation problem described by Gerchberg [5] and by Papoulis [6].



Before starting the iterative restoration algorithm, we first define the

notation of iterative projection, (PaQb)(k)(f), explicitly by

(Pa0,) V(1) = P (0, (P, (08,0 oP, (G ()))) 000 ), (13)

where both Pa and Q, oper ~ : times, For cxample,

(Pt ) = f

L)

(P, “(f) =P (Q,(f)) (14)

f
\

(P 1 3VB)(F) = P, (0, (P, (0, (1)) .

Then, the iterative method is stated as follewvs:

Step 1:

Step 2:

Step 3:

Step 4:

Step b5:

Obtain the signal Py(f) and Q,(f), based on available a pri-ri

informatinn,

Let k=1, and let the first guess of the iteration process be
(1) o P, (Py(F)) + 0, (f). (15)

Note that f(k) is the enhanced image after k-1 iterations.

Correct the error by imposing constraints in the spectral domain,
o= fK)p (rlk)y P, (f) (16)

Correct the error by imposing constraints in the spatial domain,
K =g () + g,(h) (17)

Let kK = k + 1, If a satisfying result is obtained, staop.

Otherwise, go to step 3.

Figure 1 shows the block diagram of the restoration method.
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a priorf Spatial ~ Intial Guess '
Knowledgs Qq(f) %% B, (Py(f))+ Q4 (f)
:
i
i
{
Y
Spatial Consirainis
fR g e Qu(t') + Qg f) ™ FFT
-4 Spectral Constraints
FFT < 1o (K] o g glk)
f=f -Pb(f ) +Pb(f)
: ]
===P» It{sration
~==m Initial Guess
~w=  Partial Knowledge a priori Spectral

Knowledge Pb(f)

Figure 1, Block Diagram of the Constrained Iterative
, Restoration Algorithm.
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The procedure begins with an initial guess as in (1%) by performing the
operation P, on the signal Py(f) to remove all the signal from regions where a
priori data are available. Adding Q,(f) then restores the correct values bask
into those regions. Both the correct values and their corresponding spatial
Tocations are assumed to be known., This initial guess, f(l), b {ne result of
a one~step Gerchberg-Papoulis algorithm, which performs error correction on
the low-pass filtered image, Py(f), using incomplete information,

In step 3, spectral constraints are imposed according to (16) where
incorrect low frequency components at the kEh jteration, Pb(f(k)), are
replaced with spectral information Py(f) that is assumed to be known. In step
4, spatial constraints are imposed according to (17); the resulting signal f'
from (16) is corrected by removing Q,(f') and replaced by the known sbatia?
information Qu(f).

It is easy to show that Equations (16) and (17) are functions of f(k"l),
the previous iteration result, and f(l), the initial guess as in Eq. (15).

Substituting Eq. (16) into Eq. (17), and letting k = 2,3,..., we obtain

() 2 (g ey 10D

#3) = p (g (1)) 4 £ (V) (18)

.
[
[ ]

L]

f) - p (gt 4 p()

Solving these equations recursively, a simple equation is obtained for

the kM image iterate:

12~
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k-1 ;
(k) o j};0 (paQb)(J)(f - (P,Q,)(f))

(19}

= f - (PaQb)(k)(f)

The reconstructed image £(k) can thus be considered as the difference
between the ideal image f and the k-times projected versicn of the ideal
image, (PaQb)(k)(f). In other words, #(k) depends on the ideal image function

f, the projection operation P,Qy, and the number of iterations, If f(k) is an
estimate of f, then e(k) = (PaQb)(k)(f) is the error in the kP image iterate.

Since Qy and P, are projection operators, the norm (or power) of the
projection onto the subspace is less than or equal to that of the mapping

signal, that 1‘3,.
e > qu(f)u,
ifn > uPa(f)u, and (20)
i > u(PaQb)(f)u .

The error tarm in the (k+1)s‘t iterate, e(k”), can be expressed in terms of

k), the error in the k" iterate by
el*1) = (p g ) 1) (r) (21)
= p,0,((?,0,) KV (F))
= (p,0,)(e(¥)),
with |
AR u(PaQb)(e(k))n . (22)

-13-




This implies that the error is strictly monotonically decreasing, and it has
been proved [10] that recursion Eq. (19) converges to f as k approaches
infinity, if and only 1f‘Pa nLPy = o } and wCPa, i ?b) > 0.

In practical situaticns the iterative process converges to some
constant not equal to f for some finite k, 1in which (PaQb)(k)(f) =
(PaQb)(k+1)(f). This s mainly due to noise generated by imaging,
quantization error, an inaccurate estimate of the degradation function, etc.
One important noise source that will further affect the performance of the
restoration is the insufficiency of a priori constraints. In this situation
the prescribed subspaces do not provide sufficient information for the
restoration when wCPa, LP,) is very small. Such a situation can be improved

|
by incorporating more constraints into the procedure.

B. Restoration with Noisy Constraints

Insufficient or inaccurate constraints imposed on the restoration
procedure will lead to undesirable results even if the iteration process
converges. For example, if we havg some uncertainties in the projection
operators which project onto subspaces P and L P, the extrapolated signal will
inevitably contain some error, and this error will amplify in the iteration
process. In most cases, noisy constraints are the result of wrong assumptions
in the physical model of the problem, or from noisy image signals used to
constrain the data.

We now demonstrate the effect of noisy constraints on image resolution
restoration. We use two projections of f(x), say g' and h', where
g' = (Qa(f) + ns) and h' = (Pb(f) + nf), to represent the amount of additive
noise embeddea in the partial in%ormation from the two prescribad subspaces.

In the case of bandlimited image extrapolation, ng and ng represent erroneous

-14-
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constraints in the spatial and frequency domains, respectivly. The initial

guess f(l) of the iterative procedure becomes
fl1) . PL(PL(F) + ng) + (Q,(F) + ng)s (23)
By substituting f = Po(f) + Q. (f) and f = Pp(f) + Q,(f) into (23), we have
£ = p (b (F)) + £ - P (F) + P (nc) + n, (24)
= [f - P,(Qy(f))] + [P, (ng) + n.1.

Rewriting (16) and (17) using the noisy constraints, we obtained the recursion

formula
k-1 .
(k) 1 (P,0) (5 - PL(0,(F)) + P_(ne) + ny) (25)
k-1 .
= £ - (P0) ) (F) P (p,0,)9)(p, (n) + ny)
=f - e(k).

The error e(k) in the reslored image f(k) consists of two terms. The
first term (PaQb)(k)(f) decreases -monotonically while the second term

k-1 .
) (PaQb)(J)(Pa(nf) + ns) increases monotonically as the number of ijterations

kJincreases. One must inerefore consider the tradeoff between these two error
terms in deciding how many iterations sho&]d be applied. If the image signal
is much stronger than the noise signal, the iterative procedure will converge
within a reasonable number of jterations. For the case of extremely noisy
constraints, the second error term becomes dominant. Thus, fewer iterations
will provide satisfying results while more iterations will lead to divergence.

In one experiment a square object in a square background field, both with
constant signal levels, was used to demonstrate the tradeoff between

performance and the number of iterations. The test image was first degraded
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by a low-pass filter., The bandlimited image was then restored by the above-
described constrained iterative algorithm. The cutoff frequency of the image
signal wass assumed to be known and it was used as a constraint in the
frequency domain., The physical extent of the square object and the signal
from the background were considered as partial a priori spatial information.
To generate the effects of noisy constraints, independent noise was added to
the spatial constraint. This was done by corrupting the signal of the
background with additive zero-mean white Gaussian noise. Noise levels with
different standard deviations (0, 5, 10, 20, 30, and 40) were used. The
resto.ed images were evaluated by measuring the mean-square error between the
jdeal image and the restored image. Figure 2 shows the resultant curves
representing the performance of the algorithm at different noise 1eve1§. At
low noise levels, the procedure converges in a reasonable number of iterations
to a low error rate. This implies that the bandlimited image has been
successfully restored. With higher noise levels in the constrained data, the
second term of e(k) in (25) becomes dominant and the algorithm performance
deteriorates as k increases. This experiment confirms that the restoration

results are sensitive to the number of iterations when noisy constraints are
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Figure 2. Performance of the algorithm with noisy constraints
at different noise levels.
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IV. Restoration of Multichannel Microwave Images

The image restoration procedure described above has been aplied to
overcome the diffraction-limited imagery obtained from the SMMR, The goal is
to restore channels of low spatial resolution to a common high resolution.
The low frequency bandlimited images are obtained from the 21.0, 18.0, 10.7,
and 6.6 GHz channels, and the common hibh resolution is that of the 37 GHz
channels.

The procedure described in Sectién ITI1 was implemented with special
features, which accommodates the multichannel SMMR imagery of hurricanes. The
procedure is summarized in Figure 3. Details of the partial constraints will

be discussed in the following sections.

A. Spatial Constraints, Q,(f)

Spatial constraints are based on the estimated extent of rain areas,
derived from the 37 GHz and infrared images, the upper and lower bounds of the
measured brightness temperatures, and some physical attributes of hurricanes,

We initially utilized polarization information at 37 GHz to provide an a

priori estimate of the spatial extent of model hurricane raincells., While

microwave emission from the ocean surface is highly polarized, the emission
from raincells is nearly unpolarized. Therefore, a polarization threshold was
applied to the 37 GHz antenna temperatures to identify areas of significant
rainfall (rainfall rate > 2 mm/hour).

A simple physical model was then employed to relate the 37 GHz antenna
temperatures outside the rain areas to antenna temperatures at the lower
microwave frequencies. In these regions, the microwave antenna temperature,

Tg, at frequency v and in polarization p can be expressed as

-17-
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(Noise Removal) [ Of Hurricane
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Spatial Constraints

Speé?ral Constraints

Highest ' Degradation

Cutoff Function
Frequency (Phase &
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Figure 3. The procedure to restore low frequency SMMR images
(6.6, 10.7, and 18.0 GHz) to a high common resolution
(that of the 37 GHz channels).
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Ta(vs p) = (1 = r(v, p)) - UTRIS (21)

+ Tp(v) o (1 = 1(v)) « (1 + r(v,p) « n(v))
+ Tbb ‘ nz(v) * r{v,p),
whers TA9) = T () + T,0) + (1 - (v))

is the effective emitting temperature of the atmosphere, Tbb = 2.7 %K is the
cosmic microwave background, and TIR is the infrared ocean surface
temperature, which can be obtained operationally from aeostationary
satellites. The constants Tl(v) and Tz(v) are obtained empirically. The
atmospheric transmittance is Ii(v), and the ocean surface reflectivity,

r(v,p), can be expressed [19] !

r(v, p) = a(v, p) - B(v) - UZO’ (22)

where Uog is the wind speed at 20 m height, and a(v, p) and B(v) are empirical
constants. The three terms on the right.hand side of (21) represent surface
emission, atmospheric emission, and the small contribution from the cosmic
background, respectively. .

From (21) and (22) it may be noted that each antenna temperature depends
only upon the two unknown quantities Ii(v).and Uoge Thus, antenna temperature
measurements in the two polarizations at 37 GHz provide enough information to
solve simultaneoulsy for N(37 GHz) and UZO' Since the transmittance at 37 GHz
is related empirically to transmittances at the lower frequency channels,
Tg (21.0, p), Tg (18.0, p), Tg (10.7, p) and Tz (6.6, p) can also be computed.

In areas where the rainfall rate did not exceed ~ 2mm/hour the above
method (Egs.' (21) and (22)) was utilized to recreate imagery in the 1low

frequency channels with 37 GHz resolution. This "known" portion of each low
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frequency image was then used as a partial constraint, or {incomplete

information, to extend the resolution in the heavier rain arecas,

B.  Spectral Constraints, Pp(f)

The spectral constraints used in the restoration algorithm are based on a
knowledge of the highest cutoff frequency (defined by the 37 GHz resolution),
and a knowledge of the degradation point spread function. The SMMR antenna
aperture illumination function is considered to be the degradation point
spread function of the imaging process.

In this initial study, a Bessel-type point spread function was used to
describe the passive microwave radiometer response; see Eq. (1). This
response function is a simpiified model of the actual SMMR antenna apérture
illumination that allows us to assume a flat response function at ‘the Tow
frequency portion of the spectrum. During the iteration. the DC and a few low
frequency components (both the phase and amplitude) of the image spectrum were
kept intact, while frequency components above 37 GHz were removed.

This simple response function (1), with the assumption of a uniformly
illuminated aperture, does not agree %n general with the actual SMMR antenna
aperture illumination function for which one must assume non-uniform
distribution. In order to apply the restoration algorithm to real microwave
image data, a more realistic degradation point spread function will be needed.

One can empirically estimate the amplitude and phase distribution
functions of the SMMR instrument. One can also model the antenna response
through analytical methods. The most commonly used phase distributions across
the aperture are Tinear and quadratic functions, where linear-phase
illumination %s the basic principle behind an electronic scanning antenna, and

quadratic~-phase illumination functions are used primarily to effect far-field

“20-

o e e NN




A

conditions in the Fresnal region of the diffracted field. The amplitude
1lumination 1is governed by antenna parameters such as the antenna
directivity, the side-lobe energy level, and the half-power beamwidth. The
amplitude illumination function of a particular antenna can be modeled by
matching the antenna parameters with those produced by selected distribution
functions, such as the cosine functions, the parabolic functions, etc.

Given an estimate of the point spread function -- both in phase and
amplitude ~~ we will be able to constrain the spectrum during the iterative
restoration process and apply the procedure to restore the 6.6, 10.7, 18.0,
and 21.0 GHz SMMR channels to a common, high resolution (that of the 37 GHz

channels).

C. Experiments and Results

A set of synthetic hurricane 1images, each consisting of antenna
temperatures in a 16 x 16 pixel image fieid, were created. Noise-free antenna
temperatures at 37.0, 18.0, 10.7, and 6.6 GHz were generated using the
approximate radiative transfer model qf Otson [1], assuming an ocean surface
background (see Figure 4). After the restoration, the low frequency channels
were enhanced to a resolution compatible with the 37 GHz channel. The
enhanced images are shown in Figure 5. .

Figure 6a shows the cross-sections of rain cells in the 6.6 GHz synthetic
hurricane image before and after restoration. The degraded 6.6 GHz image
resolution has been enhanced to a large degree after a few iterations. A
synthetic image of the entire model huriricane that would be measured at 37
GHz, the original degraded 6.6 GHz ‘image, and the enhancéd 6.6 GHz model

hurricane image are shown in Figs. 6b, 6c and 6d respectively.
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Enhancement of the resolution of a synthetic 6.6 GHz image

of a hurricane.

A detailed cross-section plot is shown in (a).

This enhancement algorithm uses the known extent of the image
shown in (b) to enhance the degraded 6.6 GHz image shown in (d).
The derived image at 37 GHz resolution is shown in (c).
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Data distorted by noise has rendered it difficult to continue the
spectrum beyond the original diffraction limitation, The restoration
procedure was applied to a set of noisy images to determinc its ability to
handle noisy data. In one example, additive white noisc with an rms value of
4° K was added to both the 37 GHz and 6.6 GHz synthetic images. Within a few
iterations, we obtained the restored image scan as shown in Fig. /., The 6.6

GHz noisy image is almost completely restored to the optimal resolution,

V. Conclusions

An iterative resolution restoration method for restoring multichannel
diffraction-limited imagery has been described, It is based upon the
Gerchberg~Papoulis algorithm wusing incomplete information and pértial
constraints in both the image space and the Fourier space. The procedure was
presented using the orthogonal projeciion formulation proposed by Youla [10]
where projection operators project onto two prescribed subspaces. The
projection operators are defined by incorporating a priori information of the
imaging system and the nature of the observed object. The tradeoff between
error and convergence rates has also béen investigated.

One of the focuses of this research was on the multichannel microwave
image restoration problem, with special ;ttention paid to the selection of
appropriate constraints for the iteration procedure. It was demonstrated that
the constraints control the performance and rate of convergence of the
restoration. Using the procedure, a set of synthetic hurricane images was
restored to a common resolution,

This application has shown the effectiveness of this iterative procedure

in restoring the spatial resolution of low frequency channels. An obvious

next step is to &pply this procedure to real multichannel data.
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