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ABSTRACT

A constrained	 iterative image	 restoration method	 is applied to
multichannel diffraction-limited imagery.	 This method is based on the
Gerc,hberg-Papoulis algorithm utilizing incomplete information and partial
constraints.	 The procedure is described using the orthogonal projection
operators which project onto two prescribed subspaces iteratively. 	 Sgme of
its properties and limitations are also presented. 	 The selection of
apropriate constraints was emphasized in a practical application.
Multichannel microwave images, each having different spatial resolution, were
restored to a common highest resolution to demonstrate the effectiveness of
the method. Both noise-free and noisy images were used in this investigation.
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i. Background

Multichannel microwave radiometers on the S pasat and Nimbus 7 satellites

offer a quantitative method for measuring geophysical parameters over the

ocean. The emissivity of the ocean surface -is low and varies predictably with

wind speed; it thus provides a good background for observing precipitation.

The theory and initial validation of this concept was given by Wilheit, et al.

[1]•

Recently Olsen [2] e,^iployed a radiative transfer model to simulate the

polarized brightness temperatures that a Scanning Multichannel Microwave

Radiometer (SMMR) would measure from hurricanes over sea surfaces at several

frequencies	 (6.6,	 10.7 0	18.0,	 21.0,	 and	 37.0	 GHz	 each with	 two

polarizations). These brightness temperatures depend upon the rainfall rates,

rain column height, and the emissivity of the wind roughened sea surface. It

became evident that the 37 GHz channel is most sensitive to the height of the

freezing level, whereas the 10.7 or 18 GHz channels are sensitive to changes

in rainfall rates when those rates are less than 10 to 20 mm/hr. The 6.6 GHz

channel provides rain information when the rainfall rate exceeds these

values.	 The information content of each channel is a variable function of

rainfall rate, rain column height, and emissivity of the sea surface, and the

dependencies are generally nonlinear. A piecewise-linear regression algorithm

has been applied to the synthetic data in the manner discussed by Smith and

Woolf [3] to infer rainfall rates.	 The regression method employs data from

eight of the SMMR channels.

Unfortunately, the size of the antenna of the SMMR on Nimbus-7 imposes a

diffraction limit on the sensor's angular resolution such that the relative

angular response, d, of the radiometer is a function of the channel

frequency.	 The antenna response function can be approximated by the
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® diffraction pattern of a circularly symmetric aperture with uniform

illumination.	 The normalized radiation pattern, or the response function d,

is of the form

-:J1(ha sine) 2

d(6) L_ka sin© j	 (1)

where a is the antenna radius, © is the angular deviation from the antenna

centerline, k = 2Tr/a is the wave number and J 1 ( • ) is the first-order Bessel

function.	 SMMR channels at different frequencies therefore have different

footprint sizes, where the term footprint, or instantaneous field of view, is

the most frequently used definition of the spatial resolution of a satellite

radiometer.	 The foot prints corresponding to the half-power beamwidths of

each channel are shown in Table 1. 	 it is difficult to apply the regression

algorithm unambiguously to real SMMR data, because each channel measures

radiation from a footprint which may contain differing amounts of rain. This

study overcomes the diffraction limitation imposed on spatial resolution by

means of a constrained iterative restoration algorithm.

PARAMETER CHANNEL

1 2 3 4	 5

WAVELENGTH (CM) 4.54 2.8 1.66 1.36	 0.81

FREQUENCY ( G Hz) 6.6 10.7 18.0 21.0	 37.0

DYNAM IC RANGE (° K) 10 - 330	 ~

FOOTPRINT SIZE (Kr2)

(PICTURE ELEMENT)
148x95 91X59 55x41 44x 30 27x18

Table 1.
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.I. Iterative Image Restoration -- An Introduction

The problem of image degradation can be stated mathematically as

follows: the observed image, b(x,y), is expressed as

b(x,y) = t ( x , y ) * d (x,y ) + n(x,y ),	 (2)

where

d(x,y) is the point spread response . function of the degradation,

R(x,y) is the ideal image,

n(x,y) is random noise, and

*	 denotes a convolution operator

In the frequency domain, we can also represent the spectrum of the

degraded image by
	 t

Q(wx ,wy ) = L(wx ,wy ) - D ( wx, wy) + N(wx ,wy )	 (3)

where D, L, D, N are the Fourier transformations of b, P,, d, and n,

respectively.

One approach to the image restoration problem is based on the concept of

inverse filtering, in which the degradation point spread function is inverted

to obtain a restored image.	 This approach is by solving for either an

estimate of the ideal image x or its transform L.

There have been a number of methods developed in recent years to restore

degraded images, such as Wiener filtering, parametric estimation filtering,

and pseudoinverse spatial restoration; see Andrews and Hunt [4]. 	 Wiener

filtering is perhaps the most popular linear restoration method in which the

mean square error between the ideal image and the restored image is

minimized. Other commonly used restoration methods include the power spectrum
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equalization method that sets the power spectrum of a blurred image equal to

that of the original image, and the minimum a posteriori density method that

uses Bayes theorem to optimize the restoration.

The major task in linear restoration is to invert the degradation

equation which is modeled either by a superposition integral or by a vca ctor-

space matrix equation. The existence of a unique inverse of the degradation

point spread function, d(x,y), is required to derive t(x,y) in the presence of

noise, n(x,y).	 If the inverse transformation of d(x,y) does not exist, then

the problem is said to be singular. 	 In those cases for which the inverse

exists but is not unique, multiple solutions result. 	 However, even if a

unique inverse of d exists, it may be ill-conditioned. 	 It can be shown that

an arbitrary small perturbation in b can result in a large perturbation in the

solution, t.	 Namely, the noise n(x,y) will lead to an undesired solution if

the inverse of d is ill-conditioned.

For these reasons, an alternative approach that is based upon iterative

processing (successive approximations) to imap restoration is of interest.

This approach has the advantage that it is not necessary to determine the

inverse of the point spread function. It has been demonstrated in a number of

studies and applications that the sequence of approximations converges to a

unique solution if constraints based upon known properties of the desired

solution are incorporated into the iterative procedure. The use of iterative

methods provides the flexibility of mixing constraints and distortions which

is essential in solving many practical restoration problems. 	 It is also

evident from past work that this approach may provide a relatively efficient

solution for linear spatially varying and nonlinear degradation problems (see

Schafer, et al. [8] fo^^ a survey of iterative restoration algorithms).
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For diffraction-limited imaging, the restoration of the image beyond the

diffraction limit cannot be accomplished by filters that are based upon an

inversion of convolution e quation.	 The removal of noise and distortion is

obtained at the expense of resolution. 	 However, the use of iterative

restoration techniques may provide superresolution in the presence of noise.

,Such techniques make use of an incomplete a, priori knowledge that we may have

about the original image and the imaging system in order to extrapolate the

bandlimited image spectrum beyond its diffraction limit. The incorporation of

pr-kor knowledge of the image signal in the restoration process may be

considered as a constraint operator which operates on the image signal

iteratively to correct for imaging distortions.

An iterative restoration technique using a spectral extrapolation

algorithm was developed by Gerchberg [5] for tha reconstruction of the signal

of an objert with a known finite duration or extent.	 In this method the a

priori constraint operates on the signal's magnitude and the magnitude of its

Foorier transform.	 Papoulis [6] proposed the same algorithm assuming a

bandlimited signal and emphasizing signal extrapolation. 	 Both of these

methods are based on the fact that a finite object has an analytic spectrum.

Analyticity implies that knowledge of only part of the spectrum is sufficient

to uniquely determine the remainder of the spectrum. 	 Hence, the complete

spectrum may be derived from a diffraction-limited image although the

information content may be incomplete.

The Gerchberg-Papoulis algorithm has been studied and applied by a number

of researchers.	 Sabri and Steenaart [7] derived a fast bandlimited signal

extrapolation method using a matrix formulation. Another similar approach to

the extrapolation of a bandlimited signal was proposed by Cadzow [16].

Rushforth and Frost [9] introduced a modified version of the Gerchberg-

-5-



r

Papoulis algorithm that provides additional flexibility and reduces the

sensitivity to noise. 	 Youla [10] generalized the algorithm using an

alternating orthogonal projection method in Hilbert space and developed

general conditions for convergence. Stack, Cahana, and Webb [11] formulated

the restoration of finite-energy objects from two projections. 	 Cahana and

Stark [12] extended the algorithm to produce a faster convergence rate.

Howard [13] formulated the algorithm as the solution of a system of linear

equations containing Fourier components. Maeda and Murata [14] attempted to

suppress noise in the restoration algorithm by preprocessing the imJge by a

conventional spatial frequency filter. Fienup [15] proposed a vers-ion of the

iterative algorithm for reconstruction using the magnitude of the Fourier

transform of a signal with positivity constraints. More recently, Hayes, Lim,

and Oppenheim [17], [18] have investigated iterative procedures for the

reconstruction of signals with finite extent from either the phase or the
	 k

magnitude of the Fourier transform. All of these methods fit into the general

framework of a general iterative restoration algorithm, with the Gerchberg-

Papoulis algorithm being perhaps the most widely know algorithm of this type.

In the following section, we will discuss the mathematical framework,

convergence criteria, and the effect of noise in the general Gerchberg-

.
Papoulis algorithm.	 Some of the mathematical formalism and notation used by

Youla [10] and Stark et al. [11] will be used here to describe the iterative

restoration procedure.	 Experimental results obtained by applying a modified

Garchberg-Papoulis algorithm to the restoration of multichannel microwave

imagery will be presented.
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III. The Constrained Iterative Rostoration	 ,rithm

A. The ,Resorati on Algorithm

Consider the Hilbert space 11 with elements f, g, h, x, etc., consisting

of all L2 square-integrable, Fourier-transformable functions, with inner

product

00

	

( f , g ) = f	 f(x) • g (x) dx	 (4)
-00

and norm

	

1181 _	 f	 Cf(x)] 2 dx] 1/2 .	 (5)
-00

Let H 1 and H2 be two subspaces of H. The angle between the two subspaces

is defined by the expression

1	 f,g	 r

	

^(H 1 , H2 ) =	

f

	

cos - 	( s e l	 II If l	 IlgIll	 (6)

gelf2

The angle ^=0 occurs Hnen H 1 and 11 2 are orthogonal to each other.	 For

each f a i-1 we have a unique decomposition

f =g+h,
	

(7)

where g is the projection of f onto the subspace P and h is the projection of

f onto the orthogonal complement of P, denoted by L p . Since g and h are

mutually orthogonal, the inner product (g,h) = 0.

Two linear operators P(-) and Q(-) are defined by the rules

g = P(f) and h = Q(f),
	

(8)

respectively.	 P and Q are orthogonal operators which project the

function f e H onto the orthogonal subspaces P and 1 P, respectively.
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Let us associate these two projection operators with the transformation

of image signals between the spatial domain and the frequency domain via the

Fourier transformation pair. 	 Let P a (•) and Qa (•) denote the projection

operators	 in	 the	 spatial	 domain	 which	 Pct	 onto p	 proj ect 	^'a and 1 1^a$

respectively.	 Similarly,	 let Pb (•) and Qb ( • ) be the operators in the	 N

frequency domain which project onto 
'Pb 

and 1 fib , respectively.

	

For example, if a portion of the ideal image f(x) is known a priori (say, 	 b'

we have an unknown object in a background of known intensity), the unknown

portion of f(x) can be expressed using the spatial projection operator, Pa , as

M(x) . f ( x ) = P a( f ) t	 (g)

while the known portion of the image f(x) is expressed using the projection

operator Qa as

0 - M(x)) • f(x) = Q a (f) ,	 (10)

where

1,	 x-e unknown extent
M(x)	 t 0,	 x e known extent ,

This pair of spatial projection operators decomposes the image signal f

into two parts: the unknown portion of the signal Pa (f), and the known portion

Qa (f), where f = Pa (f) + Qa (f) and (Pa (f), Qa (f)) = 0.

By dividing the image spectrum into two spectral bands at w c , that is, a

low-pass spectrum with 
Iw) < we and a high-pass spectrum with I W I 

> wc , the

image	 signal f is decomposed by two projections f = P b (f) + Qb (f) with

NY), Qb (f)) = 0.	 The operators P b ( • ) and Qb (•) are defined by the

following equations:

-8-

f



...r. .., :.raw+-.rr..^r^°.s:w .........,.n •.rte+:. .. er

p^,y^y,Je. rni a1 *a. •̂ ww'^s  ^wrH +^*i"e°nr,.^w+-sr«^srrs.r^s

n

IF- 1 [M(w) - F(w)3 - Pb(f)
	

(11)

'F"1[(1 - M(w)) - F(w)] - Qb(f)*
	

(12)

who-re

F(w)

'F" 1 [- ]

Pb and Qty

is the Fourier transform of f(x),

deno ",^J., inverse Fourier transformation,

are projection operators onto the low-pass and high-pass

image subspaces, respectively, and

M(w)	
1, for Jwl < we

0, for Jw` > wc.

i

The iterative image restoration problem can be stated as follows: given

the projections of the image signal on prescribed subspaces, can one derive

the original image f(x)? 	 It has been proved by Stark, et a1. [11] that the

restoration is possible under certain conditions if partial information from

the subspaces is given.

To be more precise, let us consider an example: 	 If we are given two

projections of f(x), say g = Q a (f) and h = P b (f) as defined in (10) and (11),

respectively, then a restoration is possible.	 In this case, g = Qa (f) is

considered to be the portion of the image data which vanishes outside some

known extent, and h = Pb (f) is considered to be the low-pass signal of a

bandlimited image. The low-pass spectrum, F.[P b (f)], is the truncated spectrum

of the image f. This low-pass spectrum can be obtained from the fact that the

low-frequency components of the degraded image have not been changed, or the

knowledge of the degradation function is known. This example is equivalent to

the extrapolation problem described by Gerchberg [5] and by Papoulis [6].

-g-



Before starting the iterative restoration algorithm, we first define the

notation of iterative projection, (1))(P)(f), explicitly by
aQb

(PaQb)(k)(f) = Pa(Qb(Pa((1b(Pa..0Pa(Qb,(f))))...), 	 (13)

where both P a and Q b oper	 times. For example,

(P a ..	 (f) = f

a
( Pa d	'(f) ': Pa (Qb ( f ) )	 (14)

(Pa:,il`2)(f) r Pa(Qb(Pa(Qb(f))))

Then, the iterative method is stated as follo-.vs:

Step 1;	 Obtain the signal P b (f) and Qa (f), based on available a pri°ri

informat%n,

Step 2:	 Let k=1, and let the first guess of the iteration process be

f (l) = Pa (Pb (f)) + Qa (f).	 (15)

Note that f (k) is the enhanced image after k-1 iterations.

Step 3:	 Correct the error by imposing constraints in the spectral domain.

f' = f (k) - Pb ( f ^k) ) + Pb ( f )	 (15)

Step 4:	 Correct the error by imposing constraints in the spatial domain,

f(k+l) = f' - Qa( f ') + Qa( f )	 (17)

Step 5: Let k = k + 1.	 If a satisfying result is obtained, stop.

Otherwise, go to step 3.

Figure 1 shows the block diagram of the restoration method.

K ^^

i

z

x
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w
a..
y!:

i

d

a priori Spatial	 11,01ol Guess
Knowledge Qa(f)	 f({)" Pa (Pb (f))+ Oa(f)

I
I
1
1

Spatial Constraints

f(k.,)Rf'-Qalf') +Qo(f) 	 FFT

FFT '
Spectral Constraints

fI=f(k)Pb(f(k)) +Pb(f)

^► I terat io nnitiaG

---►- Initial Guess
---^- Partial Knowledge	 a priori Spectral

Knowledge Pb(f)

Figure 1, Block Diagram of the Constrained Iterative

Restoration Algorithm.
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The procedure be(lins with an initial guess as in (lei) by performing the

operation Pa on the signal Pb (f) to remove all the signal from regions where a

riori data are available. Adding Q,,(f) then restores the correct values ba +,k

into those regions. Both the correct va l ues and their corru^sponding spatial

locations are assumed to be known. this initial guess, f( 1) , k wie result of

a one-step Gerchberg-Papoulis algorithm, which performs error correction on

the low-pass filtered image, P b (f), using incomplete information.

In step 3, spectral constraints are imposed according to (16) where

incorrect low frequency components at the ktn iteration, P b (f (k )), are

replaced with spectral information P b (f) that is assumed to be known. In stop

4, spatial constraints are imposed according to (17); the resulting signal f'

from (16) is corrected by removing Q a (f') and replaced by the known spatial

information Qa(f).

It is easy to show that Equations (16) and (17) are functions of f(k-1),

the previous iteration result, and f (l) , the initial guess as in Eq. (15).

Substituting Eq. (16) into Eq. (17), and letting k = 2,3,..., we obtain

f(?) = Pa(Qb(f(1))) + f(1)

f (3) = Pa(Qb(f(2))) + f(1)	 (18)

f (k) = Pa(Qb(f(k-1))) + f(1)

Solving these equations recursively, a simple equation is obtained for

the k th image iterate:

-12-



f (k) 	 k ^. l ( P aQb) W ( f - (PaQb)(f))
j " A	 (19;

z f - (PaQb)(k)(f)

The reconstructed imcge f (k) can thus be considered as the difference

between the ideal image f and the k-times projected version of the ideal

image, (PaQb)(k)(f).	 In other words, f (k) depends on the ideal irlage function

f, the projection operation P a Qb , and the number of iterations. If f (k) is an

estimate of f, then e(k) = (PaQb)(k)(f) is the error in the k th image iterate.

Since Qb and Pa are projection operators, the norm (or power) of the

projection onto the subspace is less than or equal to that of the mapping

si gital , that is,

Il f ll > IIQb(f )II,

1181 > UP a (f)II,	 and
	

(20)

1181 > II (Pa Q W)II -

The error t; rm in the (k+l)st iterate, e (k+l) , can be expressed in terms of

e (k) , the error in the k th iterate by

e(k+l) = (Pa Qb)(k+1)(f)	 (?1)

PaQb((PaQb)e(k)(f))

(PaQb)(e(k))^

with

Ile* +1) 11 < II (P a Qb )(e (k) )ll 	 (22)

A
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This implies that the error is strictly monotonically decreasing, and it has

been proved [101 that recursion Eq. (19) converges to f as k approaches

infinity :, if and only if Pa n 1.11b - ( ) and ^(Pa ,	 Pb ) > 00

In practical	 situations the iterative process converges to some

constant not equal to f for some finite k, in which (PaQb)'"(f)

(PaQb)(k+1)(f),	 This	 is mainly due to noise generated by imaging,

quantization error, an inaccurate estimate of the degradation function, etc.

One important noise source that will further affect the performance of the

restoration is the insufficiency of a priori constraints. 	 In this situation

the prescribed subspaces do not provide sufficient information for the

restoration when yo(P a , 1 `Pb ) is very small. Such a situation can be improved

by incorporating more constraints into the procedure.

R. Restoration with Noisy Constraints

Insufficient or inaccurate constraints imposed on the restoration

procedure will lead to undesirable results even if the iteration process

converges.	 For example, if we have some uncertainties in the pro.,ection

operators which project onto subspaces P and 1 P, the extrapolated signal will

inevitably contain some error, and this error will amplify in the iteration

process. In most cases, noisy constraints are the result of wrong assumptions

in the physical model of the problem, or from noisy image signals used to

constrain the data.

We now demonstrate the effect of noisy constraints on image resolution

restoration. We use two projections of f(x),	 say g' and h',	 where

g' = (Q a (f) + n s ) and h' = (P b (f) + n f ), to represent the amount of additive

noise embedded in the partial information from the two prescribed subspaces.

In the case of bandlimited image extrapolation, ns and o f represent erroneous

-14-



constraints in the spatial and frequency domains, respectivly. 	 The initial

guess f (1) of the iterative procedure becomes

f(1) z Pa(Pb(f) + nf) + (Qa(f) + n s).	 (23)

By substituting f = P a (f) 4. Q& 
(f)and f = P b (f) + Q b (f) into (23), we have

f(1)	 Pa(P6(f)) + f - Pa (f) F Pa (n f ) + n s	 (24)

= [f - Pa(Qb ( f ))] + [ Pa ( n f ) + ns].

Rewriting (16) and (17) using the noisy constraints, we obtained the recursion

formula

k-1
f ( k ) =	 (PaQb)(j)(f - 

Pa(Qb( f )) + Pa( n f ) + ns)	 (^5)
j=0

= f - (PaQb)(k)(f) ^. k l (paQb)(j)(pa(nf) + ns)
j=0

= f - e(k).

The error e (k) in the resLored image f (k) consists of two terms.	 The

first term	 (PaQb)(k)(f) decreases monotonically while the second term
k-1

(Pa Qb ) (3) (Pa (n f ) + n s ) increases monotonically as the number of iterations
j

k increases. One must Therefore consider the tradeoff between these two error
a

terms in deciding how many iterations should be applied. 	 If the image signal

is much stronger than the noise signal, the iterative procedure will converge

within a reasonable number of iterations. 	 For the case of extremely noisy

constraints, the second error term becomes dominant. Thus, fewer iterations

will provide satisfying results while more iterations will lead to divergence.

In one experiment a square object in a square background field, both with

constant signal levels, was used to demonstrate the tradeoff between

performance and the number of iterations. The test image was first degraded

-15-
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•
a	 ,r

a

by a low-pass filter. The bandlimited image was then restored by thu above-

described constrained iterative algorithm. The cutoff frequency of the image

signal was assumed to be known and it was used as a constraint in the,

frequency domain.	 The physical extent of the square object and the signal

from the background were considered as partial a priori spatial information.

To generate the effects of noisy constraints, independent noise was added to

the spatial constraint.	 This was done by corrupting the signal of the

background with additive zero-mean white Gaussian noise. 	 Noise levels with

different standard deviations (0, 5, 10, 20, 30, and 40) were used. 	 The

resto ed images were evaluated by measuring the mean-square error between the

ideal image and the restored image. 	 Figure 2 shows the resultant curves

representing the performance of the algorithm at different noise levels. At

low noise levels, the procedure converges in a reasonable number of iterations

to a low error rate.	 This implies that the bandlimited image has been

successfully restored. With higher noise levels in the constrained data, the

second term of e (k) in (25) becomes dominant and the algorithm performance

deteriorates as k increases. 	 This experiment confirms that the restoration

results are sensitive to the number of iterations when noisy constraints are

used.
1.0

0.8

W
0.6

Q 0.4
J

ne 0.2

a- =40

l do^

.0

^+	 `.,^	 ^,. ,•,., _ _....,..._ rr = 201

0.0 L_
0

Figure 2.

ITEF2ATIONS
10	 20	 30	 40	 50

Performance of the algorithm with noisy constraints
at different noise levels.
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IV. Restoration of Multichannel Microwave Images

The image restoration procedure described above has been aplied to

overcome the diffraction-limited imagery obtained from the SMMR. The goal is

to restore channels of low spatial resolution to a common high resolution.

The low frequency bandlimited images are obtained from the 21.0, 18.0, 10.7,

and 6.6 GHz channels, and the common high resolution is that of the 37 GHz

channels.

The procedure described in Section III was implemented with special

features, which accommodates the multichannel SMMR imagery of hurricanes. The

procedure is summarized in Figure 3. Details of the partial constraints will

be discussed in the following sections.

A.	 _Spatial Constraints, Q f)

Spatial constraints are based on the estimated extent of rain areas,

derived from the 37 GHz and infrared images, the upper and lower bounds of the

measured brightness temperatures, and some physical attributes of hurricanes.

We initially utilized polarization information at 37 GHz to provide an a

Priori . estimate of the spatial extent of model hurricane raincells.	 While

microwave emission from the ocean surface is highly polarized, the emission

from raincells is nearly unpolarized. Therefore, a polarization threshold was

applied to the 37 GHz antenna temperatures to identify areas of significant

rainfall (rainfall rate > 2 mm/hour).

A simple physical model was then employed to relate the 37 GHz antenna

temperatures outside the rain areas to antenna temperatures at the lower

microwave frequencies.	 In these regions, the microwave antenna temperature,

T6 , at frequency v and in polarization p can be expressed as
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Low - Frequency

Microwave
Image

Preprocessing
(Noise Removal)

Physical Constraints
Of Hurricane

Brightness	 Known	 37 GHz image
Temperature	 Extents	 IR image
Range

i
----- -- ---_--_-- _------•-----__--I

I
^	 I
I

I	 Spatial Constraints 	 F FT	 I^	 I
I	 i

II	 I
FFT^ I	Spectral Constraints
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s

TB(vf p) - (1 - r(v, p)) - TIR n (-")	 (21)

+ TA (v) ' (1 - H( v )) • ( 1 + r ( v : p ) - n(v))

+ Tbb • n2 ( v ) • r(v,p),

where	 TA(v) L Tl (v) + T2 (v) • (1 - H(v))

is the effective emitting temperature of the atmosphere, T bb = 2.7 OK is the

cosmic microwave background, and T IR is the infrared ocean surface

temperature, which	 can	 be obtained operationally from eeostationary

satellites.	 The constants T l (v) and T2 (v) are obtained empirically.	 The

atmospheric transmittanc q is H(v), and the ocean surface reflectivity,

r(v,p), can be expressed [19]	 1

	

r ( v , p ) = a ( v , p ) - S ( v ) - U 20'	 (22)

where U 20 is the wind speed at 20 m height, and a(v, p) and a(v) are empirical

constants. The three terms on the right-hand side of (21) represent surface

emission, atmospheric emission, and the small contribution from the cosmic

background, respectively.

From (21) and (22) -it may be noted that each antenna temperature depends

only upon the two unknown quantities n(v)^and U 20 . Thus, antenna temperature

measurements in the two polarizations at 37 GHz provide enough information to

solve simultaneoulsy for 11(37 GHz)	 and U 20 . Since the transmittance at 37 GHz

is	 related	 empirically to	 transmittances at	 the lower	 frequency channels,

TB (21.0, p), TB (18.0, p), TB (10.7, p) and TB (6.6, p) can also be computed.

In areas where the rainfall rate did not exceed — 2mm/hour the above

method (Egs.-(21) and (22)) was utilized to recreate imagery in the low

frequency channels with 37 GHz resolution. This "known" portion of each low
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frequency image was then used as a partial constraint, or incomplete

information, to extend the resolution in the heavier rain areas.

Q.	 Spectral Constraints, Pb(f)

The spectral constraints used in the restoration algorithm are based on a

knowledge of the highest cutoff frequency (defined by the 37 GHz resolution),

and a knowledge of the degradation point spread function. The SMMR antenna

aperture illumination function is considered to be the degradation point

spread function of the imaging process.

In this initial study, a Bessel-type point spread function was used to

describe the passive microwave radiometer response; see Eq. (1). 	 This

response function is a simplified model of the actual SMMR antenna aperture

illumination that allows us to assume a flat response function at 'the low

frequency portion of the spectrum. During the iteration. the DC and a few low

frequency components (both the phase and amplitude) of the image spectrum were

kept intact, while frequency components above 37 GHz were removed.

This simple response function (1), with the assumption of a uniformly

illuminated aperture, does not agree in general with the actual SMMR antenna

aperture illumination function for which one must assume non-uniform

distribution.	 In order to apply the restoration algorithm to real microwave

image data, a more realistic degradation point spread function will be needed.

One can empirically estimate the amplitude and phase distribution

functions of the SMMR instrument. 	 One can also model the antenna response

through analytical methods. The most commonly used phase distributions across
d.

the aperture are linear and quadratic functions, where linear-phase

illumination is the basic principle behind an electronic scanning antenna, and
a

quadratic-phase illumination functions are used primarily to effect far-field
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conditions in the Fresnal region of the diffracted field.	 The amplitude

illumination is governed by antenna parameters such as the antenna

directivity, the side-lobe energy level, and the half-power beamwidth. 	 The

amplitude illumination function of a particular antenna can be modeled by

matching the antenna parameters with those produced by selected distribution

functions, such as the cosine functions, the parabolic functions, etc.

Given an estimate of the point spread function -- both in phase and

amplitude -- we will be able to constrain the spectrum during the iterative

restoration process and apply the procedure to restore the 6.6, 10.7 0 18.0,

and 21.0 GHz SMMR channels to a common, high resolution (that of the 37 GHz

channels).

C.	 Experiments and Results

A set of synthetic hurricane images, each consisting of antenna

temperatures in a 16 x 16 pixel image field, were created. Noise-free antenna

temperatures at 37.0, 18.0, 10.7, and 6.6 GHz were generated using the

approximate radiative transfer model of Olson Ea], assuming an ocean surface

background (see Figure 4). After the restoration, the low frequency channels

were enhanced to a resolution compatible with the 37 GHz channel.	 The

enhanced images are shown in Figure 5. 	 .

Figure 6a shows the cross-sections of rain cells in the 6.6 GHz synthetic

hurricane image before and after restoration.	 The degraded 6.6 GHz image

resolution has been enhanced to a large degrea after a few iterations. 	 A

synthetic image of the entire model hurricane that would be measured at 37

GHz, the original degraded 6.6 GHz 'image, and the enhanced 6.6 GHz model

hurricane image are shown in Figs. 6b, 6c and 6d respectively.

-21-
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18.0 GHz images after 15
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Data distorted by noise has rendered it difficult to continue the

spectrum beyond the original diffraction, limitation.	 The restoration

procedure was applied to a set of noisy images to doterminc its ability to

handle noisy data. In one example, additive white noise with an rms value of

4 0 K was added to both the 37 GNz and 6.6 GNz synthetic images. Within a few

iterations, we obtained the rostored image scan as shown in Fig. i. The 6.6

GNz noisy image is almost completely restored to the optimal resolution.

V. Conclusions

An iterative resolution restoration method for restoring multichannel

diffraction-limited imagery has been described.	 It is based upon the

Gerchberg-Papoulis	 algorithm using	 incomplete	 information	 and partial

constraints in both the image space and the Fourier space. The procedure was

presented using the orthogonal projection formulation proposed by Youla [103

where projection operators project onto two prescribed subspaces. 	 The

projection operators are defined by incorporating a priori information of the

imaging system and the nature of the observed object. The tradeoff between

error and convergence rates has also been investigated.

One of the focuses of this research was on the multichannel microwave
i

image restoration problem, with special attention paid to the selection of

appropriate constraints for the iteration procedure. It was demonstrated that

the constraints control the performance and rate of convergence of the

restoration.	 Using the procedure, a set of synthetic hurricane images was

restored to a common resolution.

This application has shown the effectiveness of this iterative procedure

in restoring the spatial resolution of low frequency channels. 	 An obvious

next step is to apply this procedure to real multichannel data.
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