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TRANSFORMATIOM OF TWO AND THREE-DIMENSIONAL

REGIOKS BY ELLIPTIC SYSTEMS

The research during this period continued to expand the class of numerical

algorithms that can be accurately and efficiently implemented on overlapping grids.

Whereas previous calculations have been used to solve elliptic equations and to

find the steady-state solution of parabolic equations, the present work is aimed

towards developing time-accurate solution techniques for parabolic and hyperbolic

equations. The primary difficulty.here is in the correct treatment of the

interior boundary nodes that must be updated at each iteration. The implementation

of explicit methods is straightforward. However, the common practice of lagging

these values when using an implicit method leads to inconsistencies in the difference

equation. One way to avoid this problem is to alternately calculate with an

implicit and an explicit method on each subgrid. With this procedure, the explicit

method generates boundary values at the next time level which are then used by

the implicit step. It can be shown that when a backward implicit method is combined

with a forward explicit method, the composite method is second order accurate

and unconditionally stable for linear problems. Of course, one can view this

method as a hopscotch algorithm applied to subgrids. A disadvantage of this method

is that it requires the coding of both an explicit and an implicit algorithm. This

was of little consequence for the one-dimensional model problems on which it was

tested, but would be a consideration when solving a large multidimensional system

of partial differential equations. The following graph indicates the type of

problem that is being used for algorithm verification. The moving front problem

was modeled by solving Burgers' equation on two uniform overlapping grids. The

use of the above hopscotch algorithm resulted in a fifty percent error reduction when
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compared with a second order Crank-Nicolson scheme with lagged boundary values.

A further improvement in the numerical solution was achieved by using a new

interpolation procedure based on the approximation of the differential equation.

We are presently investigating the feasibility of using such an interpolation

procedure for multidimensional problems.
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A second area in which progress can be reported is in the distribution of

grid points on curves and surfaces. Here the problem is to select a set of

parameter values so that the corresponding points on the curve are correctly

distributed. The desired distribution would be influenced to some extent by the

physical problem one wishes to solve. Typically, one may want the grid points

along a boundary curve equidistributed relative to arclength, or it may be

desirable to have more points where the curvature is greatest. Either choice is

possible with the general reparameterization algorithm which is presently under

development. The problem of finding grid points at equal spacing along a curve

is nothing new. Previous solutions have required a numerical integration method to
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define the arclength parameter. The present method allows the specification

of an arbitrary grid spacing function and the numerical values for the parameter

are computed by solving an ordinary differential equation. The decision to

formulate the problem as a differential equation was primarily motivated by the

multitude of highly accurate and stable solution algorithms. The current calculations

use a fourth order Runge-Kutta method with variable steplength. The following

examples indicate the natural distribution of grid points, obtained with equal

parameter values, and a redistribution determined by a specified grid spacing function.

In the plots, the grid points are connected by straight lines and not the actual

curve.

Curvature Distribution

l-



Natural Distribution Reparameterization

Natural Distribution Arclength Distribution



This report contains only a brief discussion of our two most recent research

protects. Both pro3ects are under continuing investigation. A detailed report

on the distribution of grid points on parametric curves and surfaces will be

prepared for presentation at a conference this summer.
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