General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
NASA Technical Memorandum

NASA TM- 86470

FY 1984 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

November 1984

(NASA-TM-86470) FY 1984 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS AND PRESENTATIONS (NASA) 68 p HC A06/HF A01

CSCL 05B

Unclas

NASA
National Aeronautics and Space Administration
George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 84. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>16</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>20</td>
</tr>
<tr>
<td>NASA REFERENCE PUBLICATION</td>
<td>20</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>21</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>38</td>
</tr>
</tbody>
</table>
NASA TECHNICAL MEMORANDUM

TM-82547 November 1983

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 83. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM-82548 October 1983

This report is a supplement to the 1983 Materials Processing in Space Program Task catalog. The purpose of this document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications.

The tasks are grouped into six categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes; and Ultrahigh Vacuum and Containerless Processing Technologies; Combustion experiments; and Experimental Technology.

TM-82549 October 1983

The Space Processing Applications Rocket Project (SPAR) IX Final Report contains the compilation of the post-flight reports of each of the Principal Investigators (PIs) of the three selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space.

The SPAR project is coordinated and managed by MSFC as part of the Materials Processing in Space (MPS) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters.

This technical memorandum is directed entirely to the payload manifest flown in the ninth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled “Directional Solidification of Magnetic Composites” (Experiment No. 76-22/2, “Directional Solidification of Immiscible Aluminum-Indium Alloys” (Experiment Nos. 76-51/1 and 76-51/2), and “Comparative Alloy Solidification” (Experiment No. 76-36/1).

TM-82550 October 1983

The development of a bivariate gamma probability distribution and the development of a new discrete wind gust model are both considered original and significant research accomplishments. In 1981, Smith and Adelfang published in the Journal of Spacecraft a new wind gust model based on a four-parameter bivariate gamma distribution. This gust model related gust magnitude and gust length under the assumption of equal shape parameters of the four-parameter bivariate gamma distribution. This assumption
proved to be inadequate to properly describe the wind gust data sample. Since then a five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter has been developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test have been investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics.

This report presents the results of the Marshall Space Flight Center (MSFC) air quality predictions and measurements made during the launches of the Space Shuttle on April 12, 1981 (STS-1), November 12, 1981 (STS-2), March 22, 1982 (STS-3), and June 27, 1982 (STS-4), from Kennedy Space Center (KSC), Florida. The report discusses the atmospheric conditions, the use of the NASA/MSFC REED code, and the resulting predictions and measurements.

This memorandum describes two in-house welding studies undertaken by the Materials and Processes Laboratory as a result of problems with the Challenger engines.

(1) Heat Exchanger Coils: Description of process used to perform these welds, sample test data, recommendations for process improvement.

(2) Weld 56; High-Pressure Fuel Turbo Pump: Description of effort to simulate problem welds, as well as good welds, test data, and conclusions.
in the fully liquid state, the nickel phase had separated into large islands within the silver matrix.

A debate has been going on in government on the subject of "Should government funds be spent on early research and high-risk development of new technology?" Opponents claim that if a product is worth the effort, then private enterprise will invest in it. Proponents claim that we are all beneficiaries of new technology. Today, the answer impinges on doing materials processing and other commercial endeavors in space. Here, we discuss past experience in nurturing new ideas, and find two themes. In the first, the military initiates development of a given technology for national defense, and the marketplace makes use of the technology. In the second, the government supports large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation. NASA has completed advanced research to identify areas of interest. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space. Additional technology developments are in the pipeline.

This report summarizes the present understanding of the bellows flow excitation mechanism and of results of a comprehensive test program conducted at MSFC. This, along with other existing test data, is used to refine the analytical model for predicting bellows flow-induced stress. This model includes the effects of an upstream elbow, arbitrary geometry, and multiple plies. A refined computer code for predicting flow-induced stress is described which allows life prediction if a material S-N diagram is available.
NASA TECHNICAL MEMORANDUM

TM-82559 October 1983

The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. This report describes the current status of this evolving resource. It also provides necessary information to allow users to utilize it most efficiently.

TM-82560 October 1983

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-8 launch time on August 30, 1983, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-8 vehicle ascent and SRB descent/impact have been constructed. The STS-8 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

TM-82561 November 1983
Coil Planet Centrifugation as a Means for Small Particle Separation. Frederick T. Herrmann. Space Science Laboratory. N84-13756

The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) Single phase fresh sheep and human erythrocytes. (2) Single phase fixed sheep and human erythrocytes. (3) Electrophoretically enhanced single phase fresh sheep and human erythrocytes.

TM-82562 November 1983

The Marshall Space Flight Center conducts research programs in atmospheric science, materials processing in space, and space sciences as well as technology programs in space power, materials processes, and space structures. This Marshall Space Flight Center 1983 Annual Report on Research and Technology contains precis of the more significant scientific and technical results obtained during FY 1983.

TM-82563 October 1983
Development of an Improved Protective Cover/Light Block for Multilayer Insulation. L. M. Thompson, Dr. J. M. Stuckey, Don Wilkes and Dr. Randy Humphries. Materials and Processes Laboratory. N84-15269

This task was directed toward demonstrating the feasibility of using a scrim-reinforced, single metallized, 4-mil Tedlar film as a replacement for the Teflon coated Beta-cloth/single metallized 3-mil Kapton film presently used as the protective cover/light block for multilayer insulation (MLI) on the Orbiter, Spacelab, and other space applications. The proposed Tedlar concept will be lighter and potentially lower in cost. Thermal analysis with the proposed concept was much simpler than with the present system. Tests have already demonstrated that white Tedlar has low α (adsorption) degradation in space from U.V. This study indicated that proposed concept was 4400 percent cheaper with nominal weight savings of 50 percent.
Evidence Linking Coronal Mass Ejections with Interplanetary "Magnetic Clouds."
Robert M. Wilson and Ernest Hildner.
Space Science Laboratory.

Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients. A condensed version of this study is to be published in Solar Physics.


The technique described in this report has facilitated the more reproducible fabrication of electromagnetic levitation coils. A split mandrel has been developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, it required a full day to fabricate a levitation coil. The success rate for a functional coil was still only 50 percent. With the new technique described in this note about eight coils may be completed in one day and 95 percent of them are good levitation coils.

Wind Speed and Direction Shears with Associated Vertical Motion During Strong Surface Winds. Margaret B. Alexander and Dennis W. Camp. Systems Dynamics Laboratory.

Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower Facility at Kennedy Space Center, Florida are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high (≥20 kts 10 m s⁻¹) surface winds.


An efficient propellant injection method is discussed to raise the Space Shuttle Main Engine (SSME) thrust and payload. Relatively large diameter injector elements with low pressure loss are recommended for the main combustion chamber and the pre-burners. Smaller losses admit more propellant flow which then raises thrust. Payload is not only gained by specific impulse but also by thrust. The chamber pressure is stabilized by selecting the proper cavity size for the injector elements while reducing the injection pressure loss which normally is kept high for stability. The rather large injector element recesses provide acoustic damping which makes baffles and
acoustic absorbers unnecessary. The study shows a tenfold reduction of flow induced stresses which are rather high in the present design. Relaxed tolerances, fewer elements, and better maintenance are offered. The study was conducted under a center director discretionary fund assignment.

TM-82568 February 1984
The New MSFC Solar Vector Magnetograph
N84-19786

The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view (≈ 6x6 arc min) with spatial resolution determined by a 2.7x2.7 arc second pixel size. Supported by two Center Director's Discretionary Fund Projects, this system has recently undergone extensive modifications to improve its sensitivity and temporal response. The modifications included: replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. In this report, we describe the new system, and present results of calibrations and tests that have been performed. Initial observations of solar magnetic fields with the new magnetograph are presented; they indicate that the system is an order of magnitude more sensitive than the original one and has a much higher temporal response (by a factor of ≈30). These new capabilities enhance our continued research in solar vector magnetic fields and our support of NASA's solar missions.

The nickel-base superalloy MAR-M246(Hf) was studied to determine the factors affecting basic morphology and fatigue properties. Of particular interest was the degradation of fatigue properties with deviation from the [001] growth orientation. Examination of directionally solidified samples showed a dependence of carbide shape and interdendritic segregation on growth rate. Heat treatment studies focused on the rama prime structure, determining that it reaches maximum growth after twenty-four hours but its size and stability depends on the temperature of the treatment. Fatigue test specimens were oriented crystallographically in the failed and unfailed regions and found to have rotated their orientation during the testing if they were located a significant distance from [001]. This would place increased strain on the crystal and precipitate early failure.

TM-82570 January 1984
N84-20341

The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented in this work. This program is part of the major task of developing the Advanced X-Ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions have been drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure is studied by X-ray, visual, and mechanical techniques. These techniques and their results are described in this volume.

TM-82571 February 1984
N84-21607

This report traces the evolution of the ideas of tether applications in space from its origin in the last century past a dormant period of sixty-five years to the mid-seventies. At that time as a
consequence of major revival efforts, NASA entered into serious investigations of the theoretical and practical feasibility of a large number of tethered concepts in space. These efforts culminated in the establishment of the Tethered Satellite System Project now at NASA in the advanced development phase.

The report describes NASA's 1983 extensive planning efforts, first, through a Tether Applications in Space Workshop which generated additional concepts and provided overall assessments and recommendations to NASA, and then through a NASA inter-center Tether Applications in Space Task Group which generated a four-year program plan in the areas of further studies, technology, work and science and applications of tethers in space.

Finally, the report offers an outlook into the future of tether applications that may approach some of the goals of the early visionaries.

This report presents the scientific information produced under the Center Director's Discretionary Fund Task 82-1, "Charge Injection Device Usage in Stellar Tracking Technology." The development of an improved 256 x 256 array Charge Injection Device (CID) and the configuration of a MSFC laboratory to evaluate the improved CID and other solid state stellar sensors are detailed. Detailed descriptions of new interpolation algorithms to determine stellar position and experimental testing of these algorithms with simulated and actual stellar data are provided. Data analysis of contractor-supplied stellar data was performed at MSFC and the accuracy capabilities of the various algorithms were determined and described.

The report shows the improved CID, coupled with the new interpolation algorithms, to be a sensor that is more reliable, more accurate, and capable of satisfying stellar sensor needs for the next two decades.

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-9 launch time on November 28, 1983, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimosphere measured vertical wind profiles is given in this report. The final meteorological tape, which consists of wind and thermodynamic parameters versus altitude, for STS-9 vehicle ascent has been constructed. The STS-9 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 561-81-22-368 with Johnson Space Center.

Recent studies using sounding data derived from VAS radiance measurements have projected a hope for increased time and space resolution of the mesoscale environment. Working with this new data, however, presents some problems normally not encountered when using conventional measurements because of the irregular spacing of the data, biases in the data, as well as errors due to cloud contaminated measurements. This report addresses these problems and presents an objective analysis technique which utilizes LFM guess fields to produce a consistent four-dimensional data set which adequately describes the mesoscale environment over a large area. Parameters derived from this data set can be useful in a diagnostic mode by both the operational and research communities.
Three mesoscale sounding data sets from the VISSR Atmospheric Sounder (VAS) produced using different retrieval techniques have been evaluated using corresponding ground truth rawinsonde data for 6-7 March 1982. Mean, standard deviations, and RMS differences between the satellite and rawinsonde parameters were calculated over gridded fields in central Texas and Oklahoma. Despite procedures to reduce known time and space discrepancies, large differences exist between each satellite data set and the ground truth data. Biases in the satellite temperature and moisture profiles seem extremely dependent upon the 3-dimensional structure of the atmosphere and range from 1°C to 3°C for temperature and 3°C to 6°C for dewpoint temperature. Atmospheric gradients of basic and derived parameters determined from the VAS data sets produced an adequate representation of the mesoscale environment but their magnitudes were often reduced by 30 to 50 percent.

Investigation of Thermospheric Winds Relative to Space Station Orbital Altitudes. Michael Susko. Systems Dynamics Laboratory. N84-25220

An investigation of thermospheric winds, relative to the space station orbital altitudes, has been made in order to provide information that may be useful in an environmental disturbance assessment. Current plans are for this low Earth orbiting facility to orbit at an inclination of 28.5 deg. The orbital altitudes have not yet been defined due to the evolutionary configuration of the Space Station. The upper and lower bounds of the orbital altitudes will be based on constraints set by the drag and expected orbital decay and delivery altitude capability of the Shuttle. It is estimated that the orbital altitude will be on the order of 500 km. This report deals with neutral winds in the region from about 80 to 600 km which have been derived from satellite drag data, Fabry-Perot interferometers, sounding rockets, ground-based optical Doppler techniques, incoherent scatter radar measurements from Millstone Hill combined with the mass spectrometer and lithium trail neutral wind measurements. The equations of motion of the low Earth orbiting facility are also discussed in this report.


Generally, attempts to solidify immiscible mixtures to make binary alloys, in-situ, yield poorly dispersed composites. By and large, the situation is more pronounced for hypermonotectic compositions than for either monotectic or hypomonotectic solutions. There is considerable interest among metallurgists to understand processes causing liquid-liquid and solid-liquid phase separations during monotectic alloy solidification. Knowledge of such dynamics must precede accurate predictability of the behaviors of solidifying
metallic systems and control of their microstructure.

If a homogeneous melt is cooled into an immiscible region, the newly formed second phase will generally have a density different from the parent phase, and will separate readily by sedimentation. Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: (1) critical-point wetting and spreading, and (2) thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. Considerable work has been done using neutrally buoyant systems, but such systems are generally neutrally buoyant at only one temperature. Therefore, in order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses.

Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth, spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

Finally, computer models developed from the transparent model studies will be quite helpful when applied to existing metallic specimens already prepared in low gravity. Additional metallic samples solidified in the MSFC drop tower will test the accuracy of predictions based on such studies.

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimosphere measured vertical wind profiles is given in this report. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-11 vehicle ascent and SRB descent/impact have been constructed. The STS-11 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 561-81-22-368 with Johnson Space Center.

**TM-82581 April 1984**


Equilibrium temperature-composition diagrams were determined for the two organic systems, succinonitrile-benzene and succinonitrile-cyclohexanol. Measurements were made using the common thermal analysis methods and UV spectrophotometry. Succinonitrile-benzene monotectic was chosen for its low affinity for water and because UV analysis would be simplified. Succinonitrile-cyclohexanol was chosen because both components are transparent models for metallic solidification, as opposed to the other known succinonitrile-based monotectics.

**TM-82583 May 1984**


The purpose of this report is to review linear shaped charge (LSC) literature for the past 20 years.
years. The following topics are discussed: (1) LSC Configuration, (2) LSC Usage, (3) LSC Induced Pyroshock, (4) Simulated Pyrotechnic Testing, (5) Actual Pyrotechnic Testing, (6) Data Collection Methods, (7) Data Analysis Techniques, (8) Shock Reduction Methods, and (9) Design Criteria. Although no new discoveries have been made in LSC research, charge shapes have been improved to allow better cutting performance, testing instrumentation has been refined, and some new explosives, for use in LSC, have been formulated. However, little progress has been made in LSC induced pyroshock.

TM-82584 May 1984
An Investigation Into the Probabilistic Combination of Quasi-Static and Random Accelerations. Richard W. Shock and Lenox P. Tuell. Systems Dynamics Laboratory.

The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.

TM-82586 May 1984
Pattern Recognition for Space Applications, Center Director's Discretionary Fund Final Report. Maurice E. Singley. Systems Analysis and Integration Laboratory.

Results and conclusions are presented on the application of recent developments in pattern recognition to spacecraft star mapping systems. Sensor data for two representative starfields were processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Also, some newly proposed cluster validity measures were evaluated, but not found especially useful to this application. Recommendations are given for two system configurations worthy of additional study.

TM-82587 June 1984

Results of the ASTRO-1 Preliminary Design Review coupled loads analysis are presented. M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface forces, relative displacements, and net c.g. accelerations were recovered for two ASTRO-1 payloads in tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

TM-86451 June 1984

Motion pictures have been taken at night by astronauts on the space shuttle showing lightning discharges that spread horizontally at speeds of $10^5$ m/sec$^{-1}$ for distances over 60 km. Tape recordings have been made of the accompanying optical pulses detected with a photocell optical system. The observations show that lightning is often a mesoscale phenomena that can convey large amounts of electric charge to earth from an extensive cloud system via a cloud-to-ground discharge.

TM-86452 May 1984
Dielectric Cure Monitoring: Preliminary Studies. Benjamin E. Goldberg and Marie Louise Semmel. Materials and Processes Laboratory.

Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure
monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet’s sensitivity to water adsorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

An additional conductivity related term has been indicated for the dielectric permittivity, \( e' \). This term, heretofore unreported, appears to have significance for high conductivity epoxy and phenolic composites. Previous work on dielectric cure monitoring has always been performed on a parallel plate electrode system; this type of system appears only marginally compatible with epoxy and phenolic composites.

TM-86453 June 1984

This report discusses the results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

TM-86454 July 1984
Radial SI Latches Vibration Test Data Review. Phillip M. Harrison and James Lee Smith, Systems Dynamics Laboratory.

Dynamic testing of the Space Telescope Scientific Instrument Radial Latches was performed as specified by the designated test criteria. No structural failures were observed during the test. The alignment stability of the instrument simulator was within required tolerances after testing. Particulates were discovered around the latch bases, after testing, due to wearing at the “B” and “C” latch interface surfaces. This report covers criteria derivation, testing, and test results.

TM-86455 July 1984

Two sets of observations from a NASA U-2 airplane flying at approximately 20 km altitude over nocturnal thunderstorms are reported. Photographs show frequent lightning activity in the upper part of the cloud. In some cases, only the diffuse illumination produced by the lightning can be seen. In other cases unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels, accidentally displaced on the film during transport of the film in the camera, indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that which has been observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system.

Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events, such as dart leaders, which radiate light first from a location within the cloud and later from outside (beneath) the cloud are consistent with the predicted modification of optical lightning signals by clouds as given by Thomason and Krider [1]. As a result, it appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the
cloud-to-ground flashes studied. If confirmed by further studies as a regularly identifiable occurrence, the pulse pairs together with other criteria, could form the basis for the reliable identification of ground strokes from a satellite by the use of an optical detector alone.

It has been found unexpectedly that a multitude of weak lightning channels commonly exists in the clear air above or around cloud tops. This indicates that lightning is capable of introducing chemical species, ions, and space charge directly into the upper troposphere and lower stratosphere.


The object of this investigation was to evaluate Vespel for potential application on the Solid Rocket Booster to replace all-metal deformed self-locking nuts and anchor nuts and be used as self-locking elements for bolts and screws. The Vespel self-locking elements were tested for prevailing torque retention at room temperature, after heating to 450°F and exposure for 3 hr, breakaway torque at 450°F and for vibration at a level consistent with the maximum expected on the SRB at lift-off and reentry.

The investigation revealed Vespel has properties that can provide a self-locking capability for threaded fasteners up to 450°F and it can be used in nuts and anchor nuts for installation on the SRB. Vespel elements in bolts did not meet all our SRB requirements for reuse, however, we have defined a design for Vespel elements in nuts/anchor nuts that fully meets all requirements.

It is recommended that No. 10, 1/4 in. and 5/16 in. nuts/anchor nuts be procured for use on the SRB. This system will eliminate the galling problems now encountered and achieve a much higher reuse life than the present deformed nut design.


This report describes machine vision research at Marshall Space Flight Center which has potential benefit for the NASA Space Station program and its associated Orbital Maneuvering Vehicle (OMV). Initial operation of OMV for orbital assembly, docking, and servicing will be manually controlled from the ground by means of an on-board TV camera. These orbital operations may later be accomplished autonomously by machine vision techniques which use the TV camera as a sensing device. Classical machine vision techniques are described in this report. An alternate method was developed and is described which employs a syntactic pattern recognition scheme. It has the potential for substantial reduction of computing and data storage requirements in comparison to the Two-Dimensional Fast Fourier Transform (2D FFT) image analysis. The method embodies powerful heuristic pattern recognition capability by identifying image shapes such as elongation, symmetry, number of appendages, and the relative length of appendages.


Sunspot records have been systematically maintained, with the knowledge that an 11-year average period exists, since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle 8 through the present. On the basis of cycles 8 through 20, we have used various combinations of sine curves to approximate the observed $R_{\text{MAX}}$ values (where $R_{\text{MAX}}$ is the smoothed sunspot number at cycle maximum). We find that a three-component sinusoidal function, having an 11-cycle and a 2-cycle variation on a 90-cycle periodicity, yields computed $R_{\text{MAX}}$ values which fit, reasonably well, observed $R_{\text{MAX}}$ values for
the modern sunspot cycles. Extrapolation of the empirical function forward in time allows us to project values of $R_{\text{MAX}}$ for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5 and to that predicted earlier by Sargent [64] - 154. For cycle 22, the function projects a value of about 107. Linear regressions identified in Wilson [44] have been applied to cycle 22, yielding the result that it will probably be a long-period cycle (cycle duration > 132 months). A major feature of this report is an extensive bibliography on techniques used to estimate the time-dependent behavior of sunspot cycles.

TM-86459  

A carbon dioxide laser experiment facility was constructed to investigate the problems in using a laser beam to zone refine semiconductor and metal crystals. The hardware includes a computer to control scan mirrors and stepper motors to provide a variety of melt zone patterns. The equipment and its operating procedures are described.

TM-86460  
Natural Environment Design Criteria for the Space Station Definition and Preliminary Design (First Revision). William W. Vaughan. Systems Dynamics Laboratory.

This document provides the natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition and preliminary design studies. It addresses the atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants, etc., and is intended to enable all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements.

TM-86461  
Induced Environment Contamination Monitor – Preliminary Results from the Space-Lab 1 Flight. Edited by E. R. Miller. Space Science Laboratory.

The STS-9/Induced Environment Contamination Monitor (IECM) mission is briefly described. Preliminary results and analyses are given for each of the 10 instruments comprising the IECM. The final section presents a summary of the major results.

TM-86462  

As a part of the investigation of the control system failure on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, a study was undertaken to evaluate the techroll seal materials properties under severe flight environment conditions.

This study evaluated the materials utilized in the techroll seal for possible failure modes. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test.

These studies indicate that if the seal failed due to a materials deficiency, the most likely mode was excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could have been a contributing factor.

TM-86463  

Effects of LEO atomic oxygen have been measured on a variety of spacecraft materials which obtained exposure on STS-5. Material degradation dependency on temperature was found in one material. Of the five paints flown,
only S13GLO was unaffected. Generally, the glossy paints became Lambertian and the diffuse coatings improved. Scanning electron microscope examinations indicated removal of urethane and epoxy paint binder materials. Reaction products were evident on the surfaces of Z302 paint and Mylar. Thin films showed thickness losses ranging from negligible loss in Teflon to considerable loss in Mylar and Kapton. Glossy films such as black Kapton and white Tedlar became diffuse. Kevlar 29 rope lost tensile strength and silver solar cell interconnect material oxidized. Oxidation on the backside of an elevated silver specimen indicated that reflections of oxygen atoms were occurring and that reflecting surfaces, probably Kapton, were not fully accommodating the incident atoms.

TM-86464 August 1984

A screening program determined the effects of high-pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications. The alloys chosen for the investigation were CM SX-2, CM SX-4C, Rene N-4, and PWA 1480. Testing was carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

TM-86465 July 1984

The Simulation Engineer's Handbook is a guide for new engineers assigned to Experiment Simulation and a reference for engineers previously assigned. The experiment simulation process, development of experiment simulator requirements, development of experiment simulator hardware and software, and the verification of experiment simulators are discussed. The training required for experiment simulation is extensive and is only referenced in the handbook.

TM-86466 September 1984

A review of meteoroid flux measurements and models for low orbital altitudes of the Space Station has been made in order to provide information that may be useful in design studies and laboratory hypervelocity impact tests which simulate micrometeoroids in space for design of the main wall of the Space Station. This report deals with the meteoroid flux mass model, the defocusing and shielding factors that affect the model, the probability of meteoroid penetration of the main wall of a Space Station. Whipple (1947) suggested a meteoroid bumper, a thin shield around the spacecraft at some distance from the wall, as an effective device for reducing penetration, which has been discussed in this report. The equations of the probability of meteoroid penetration, the average annual cumulative total flux, \( \phi \), and the equations for the thickness of the main wall and the bumper are presented in this report.

TM-86467 September 1984

This document presents the Real-Time Solar Magnetograph (RTSM) Operation system software design on PDP11/23+ and the User's Guide.

RTSM operation software is for Real-Time Instrumentation Control, data collection and data management.

The data will be used for vector analysis, plotting or graphics display. The processed data
can then be easily compared with solar data from other sources, such as the Solar Maximum Mission (SMM).

This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.

This report is a review of observations and studies of solar magnetic fields that were carried out during the period of the Solar Maximum Year (SMY), January 1980 to June 1981, with the goal of providing an overview of what was learned about solar magnetic fields during the SMY. The review covers the subjects of the relationship between solar magnetic fields and flares, the role of magnetic fields in the sunspot phenomenon, the magnetic-canopy structure overlying the supergranular network as well as the turbulent magnetic fields within the network, the fields within the polar crown prominences, and the solar magnetic cycle.
TP-2258 July 1983
Space Shuttle Exhaust Cloud Properties.
B. J. Anderson and V. W. Keller. Systems Dynamics Laboratory. N84-14606

A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust and deposited downwind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

TP-2263 September 1983

Possible static configurations of liquids in rotating cylindrical containers with baffles evenly spaced in the axial direction are found. The force balance is among surface tension, centrifugal force and gravity. Two “instabilities” are found in this parameter space: type I is the inability of the liquid to form an interface attached to the baffles; type II is the inability for multi-baffled configurations to sustain interfaces between each pair of baffles. The type I analysis is confirmed through laboratory based equipment. Applications to orbiting containers are discussed.

TP-2264 September 1983

Methods for evaluating the Euler-Mascheroni constants which appear in the Laurent expansion of Reimann zeta function about Z=1 are presented. The first 32 of these numbers are listed.

TP-2295 January 1984

Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two-stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis-(dimethylamino)dimethylsilane, N, N-bis(pyrrolidinyl)dimethylsilane and N, N-bis (gamma-butyrolactam)dimethylsilane. Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540° to 562°C, as opposed to 408° to 426°C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50° to -55°C for the silphenylene-siloxane copolymer while the commercial silicones had Tg’s at -96° to -112°C.

TP-2314 December 1983

A technique for achieving autonomous rendezvous and docking of two orbiting space vehicles is described. Results of a digital computer simulation of the technique are presented and used to evaluate its performance under a wide variety of conditions, including docking with tumbling spacecraft. The interrelationships between initial range, tumbling rates, fuel consumption, and time requirements are explored; factors which limit performance are identified and beneficial modifications proposed.

TP-2313 March 1984
A Spatial Model of Wind Shear and Turbulence for Flight Simulation. C. Warren Campbell. Systems Dynamics Laboratory. N84-24044

A three-dimensional model which combines measurements of wind shear in the real atmosphere with three-dimensional Monte Carlo simulated turbulence was developed. The
measurement of three-dimensional wind shear is a recent development. Measurements were made on a rather coarse (~200 m) grid scale so that high frequency, short length scale turbulence information was not included. Some of the missing frequencies are important to aircraft response and hence for flight simulation. The missing turbulence must be added to the wind shear measurements. The spatial model adds three-dimensional, Monte Carlo simulated turbulence conforming to the von Karman model. The turbulence was generated in the frequency domain and transformed to the space domain using Fast Fourier Transform techniques. The resulting turbulence is three-dimensional and contains lateral and vertical as well as longitudinal correlations associated with isotropic turbulence. The resulting Gaussian, isotropic turbulence is multiplied by a spatially varying gust intensity and added to the wind shear data set winds. The resulting simulated wind field is nonisotropic, non-Gaussian, and nonlinear as are winds in the real atmosphere. Previous turbulence simulations were either one-dimensional or accounted for two- or three-dimensionality in an artificial way. With the present model, the wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated. The inclusion of three-dimensional variation of winds and turbulence is believed to be a significant advance over previous wind simulation models.

TP-2315 February 1984

Shock response spectra data from flight certification tests were analyzed to determine envelope variation with respect to mean values in each axis. An overall variation of ±8.61 dB or 169 percent exists for the data. This large variation may be attributed to one or more of the following:

(1) Instrumentation Problems may exist.

(2) Variations in the source charge (blasting caps) such as shape or explosive load may exist.

(3) Two blasting caps were used to excite the pyrotechnic plate tester. Delay time between charge firings may have varied.

The cause or causes of the variations need to be identified and researched to prevent future pyroshock problems.

TP-2323 April 1984

A major objective of NASA's Spacelab is to exploit the microgravity environment of an orbiting vehicle for science and technology. There are many fundamental fluid dynamics experiments and materials processing studies involving fluid motions which can only achieve their full potential in a low-gravity environment. The many constraints and high costs of space experimentation mean that quantitative and detailed scientific and engineering design studies should be performed before proceeding to the construction of flight apparatus. However, for experiments involving fluid dynamics, such studies are not easily performed. Analytical methods are severely limited in their range of applicability by fundamental mathematical difficulties. Experimental measurement cannot, in principle, be performed until the apparatus is built and flown, but even laboratory analogs can present substantial difficulties to a detailed measurement program. The solution to the above difficulties can often be found in numerical modeling. Recent advances in numerical modeling methods mean that accurate numerical models for many fluid flow problems can now be developed in a systematic manner, and the continued improvement in computer hardware means that these models can be run in a relatively short time. In particular, models of non-turbulent, incompressible fluid flows in simple geometries can be developed to provide accurate and detailed data.

Numerical methods are used to design a spherical baroclinic flow model experiment of the large-scale atmosphere flow for Spacelab.
The dielectric simulation of radial gravity is only dominant in a low-gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low-gravity environment.

Two- and three-dimensional finite-difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time-stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal at the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time-dependent coordinate transformation is used to make this interface a coordinate surface.

A Comparative Look at Sunspot Cycles.

On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties have been used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters (e.g., \( R_{MIN}, R_{MAX}, ASC, DES, \) etc.). The resultant “schematic” sunspot cycle has been contrasted with the “mean” sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurrence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-\( R_{MAX} \) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Further, sunspot cycles denoted HIGH-\( R_{MAX} \) usually are SHORT-PERIOD cycles and those denoted LOW-\( R_{MAX} \) usually are LONG-PERIOD cycles. Linear regression analyses have been performed comparing late cycle parameters with early cycle parameters and solar cycle number (SCN), and the early occurring cycle parameters \( R_{MIN}, \sum_{t=0}^{24} R_{Z}(t) \), especially the latter two, can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both \( R_{MIN} \) and \( R_{MAX} \) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations have also been obtained for several measures of solar activity — \( R_{A}, R_{Z} \) (now \( R_{I} \)), \( R_{13}, F_{2800} \), and \( F_{13} \) on the basis of provisional and final values.

Magnetohydrodynamic Power Generation.
James Lee Smith. Systems Dynamics Laboratory. N84-245458

“Magnetohydrodynamic (MHD) Power Generation” is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

Geometric Interpretations of the Discrete Fourier Transform (DFT).
C. Warren Campbell. Systems Dynamics Laboratory. N84-24114

A recent tendency in technical literature has been to ignore the relationship of the DFT to the real world. Rather the DFT has become an end unto itself. This attitude is somewhat surprising since the DFT’s reason for existence is its relationship to the real, i.e., continuous, world. One-, two-, and three-dimensional DFTs and geometric interpretations of their periodicities
are presented. These operators are examined in light of their relationship with the two-sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. These symmetries are examined in detail for the one-, two-, and three-dimensional cases. Extension to higher dimensions is straightforward.

**TP-2337**

February 1984


The Space Telescope (ST) will be subjected to charged particle strikes in its space environment. ST's onboard Fine Guidance Sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate "spurious" photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope.

This paper presents a stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts.

The model which has been programmed allows for easy adaptation to a wide range of particles and different parameters for the phototube of the multiplier.

The probability density functions for photon noise caused by protons, alpha particles, and carbon nuclei were generated using thousands of simulated strikes. These distributions will be used as part of an overall ST dynamics simulation.

The sensitivity of the density function to changes in the window parameters has also been investigated.
NASA CONFERENCE PUBLICATIONS

CP-2274	April 1983

CP-2288	October 1983

CP-2303	February 1984

CP-2312	April 1984

CP-2313	August 1984

CP-2329	July 1984

NASA REFERENCE PUBLICATION

RP-1127	July 1984
Preliminary Vibration, Acoustic, and Shock Design and Test Criteria for Components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME). Systems Dynamics Laboratory.
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-3751  August 1983
Analysis of Large Space Structures Assembly
Essex Corporation.	 N84-13208

CR-3752  October 1983
The Influence of Convective Activity on the Vorticity Budget. Tamara L. Townsend and

CR-3766  May 20, 1983
Alternative Experiments Using the Geophysical Fluid Flow Cell. John E. Hart. NASA-83-
31958. University of Colorado.  N84-15706

CR-3771  October 10, 1983
Evaluation of Two 1-D Cloud Models for the Analysis of VAS Soundings. Dr. G. D.

CR-3778  October 3, 1983
Universities Space Research Association.  N84-21293

CR-3787  December 1983
34611. The City College Research Foundation.  N84-18805

CR-3819  June 1983
Applications of the AVE-SESAME Data Sets to Mesoscale Studies. David Suchman,
Brian Auvine, H. Michael Goodman, Raymond Lord, and David Santek. NASA-83-
33799. The University of Wisconsin-Madison.

CR-3820  June 1983

CR-3826  July 1984
Initialization of a Mesoscale Model for April 10, 1979, Using Alternative Data Sources. Michael W. Kalb. NASA-83-34767.
The Universities Space Research Association.

CR-3835  May 1984
Smithsonian Institution.

CR-170873  September 1983
Martin Marietta.  X84-10015

CR-170874  September 1983
Teleoperator Maneuvering System – Mark II Propulsion Module Study, Appendices.
NASA-83-34581. Martin Marietta.  X84-10016

CR-170875  August 1983
SPAR Improved Structure/Fluid Dynamic Analysis Capability. NASA-83-34975. Lockheed
Missiles & Space Company, Inc.  N83-36402

CR-170876  February 15, 1983
SSME HPFTP Interstage Scal: Analysis and Experiments for Leakage and Reaction-
| CR-170880 | July 1983 | NDE Detectability of Fatigue Type Cracks in High-Strength Alloys. NAS8-34425. Martin Marietta Corp. |
| CR-170881 | August 1983 | Control of Array Systems. NAS8-34621. The Charles Stark Draper Laboratory, Inc. |
| CR-170883 | June 1980 | Verification of the SRB Motor Case Pin Retainer Band TPS. NAS8-32982. Lockheed Missiles and Space Co. |
| CR-170884 | June 1980 | Results of Tests on a Specimen of the SRB Aft Skirt Heat Shield Curtain in the MSFC LRLF. NAS8-32982. Lockheed Missiles and Space Co. |
CR-170894 October 11, 1982
Evaluation of SRB Phenolic TPS Material Made by an Alternate Vendor. NAS8-32982. Lockheed Missiles and Space Co.
X83-10346

CR-170895 September 27, 1983
N84-10182

CR-170896 October 1983
Numerical Analysis of Ullage Gas Flow and Heat Transfer in the LOX Tank of Space Shuttle, Volume 1: Test Cases and Results. NAS8-34940. CHAM of North America, Inc.
X84-71302

CR-170897 October 1983
Numerical Analysis of Ullage Gas Flow and Heat Transfer in the LOX Tank of Space Shuttle, Volume 1A: Appendix to Volume 1. NAS8-34940. CHAM Of North America, Inc.
X84-71302

CR-170898 October 1983
X84-71304

CR-170899 September 30, 1983
N84-10174

CR-170900 August 15, 1983
X84-71101

CR-170901 September 1983
Pressure Scaled Water Impact Test of a 12.5 Inch Diameter Model of the Space Shuttle Solid Rocket Booster Filament Wound Case and External TVC Pod. NAS8-35017. Chrysler Corp.
N84-10181

CR-170902 September 16, 1983
N84-10171

CR-170903 September 1983
N84-17622

CR-170904 September 1983
N84-17615

CR-170905 September 8, 1983
High Pressure Servovalve Development Research Study. NAS8-34593. Moog Inc.
N84-70297

CR-170906 September 1983
Plasma Source for Spacecraft Potential Control. NAS8-35339. The University of Alabama in Huntsville.

CR-170907 August 20, 1983
N84-11077

CR-170908* July 1983
Lightning Mapper Sensor Study. NAS8-34942. Hughes Aircraft Co.
N84-13731

CR-170909* September 1983
Lightning Mapper Sensor Design Study. NAS8-34941. TRW Space and Technology Group.
N84-13732

CR-170910 November 1983
MCT Crystal Growth. NAS8-34957. The University of Alabama in Huntsville.
N84-90094

CR-170911 September 30, 1983
Teleoperator Maneuvering System Mockup. NAS8-35303. Essex Corp.
N84-70399
CR-170912 September 1983
Analysis of Solar Cell Data. NAS8-34338.
The University of Alabama in Huntsville.
X84-10050

CR-170913 October 1983
Development of Deployable Structures for
Large Space Platform Studies. Executive
Summary Volume I. NAS8-34677. Rockwell
International.
N84-10175

CR-170914 October 1983
Development of Deployable Structures for
Large Space Platform Studies. Design
Development Volume I1. NAS8-34677.
Rockwell International.
N84-10176

CR-170915 September 1983
Evaluation and Prediction of Long-Term
Environmental Effects on Nonmetallic
Materials. NAS8-33578. Martin Marietta
Corp.
N84-11595

CR-170916 May 11, 1983
Studies of Convection in a Solidifying
Binary Mixture at Reduced Gravity. NAS8-
34268. University of Tennessee Space
Institute.
N84-11231

CR-170917 October 20, 1983
Space Shuttle Propulsion Parameter Estima-
tion Using Optimal Estimation Techniques.
NAS8-35324. Systems Dynamics, Inc.
N84-90173

CR-170918 October 14, 1983
High Pressure Servovalve Development Re-
search Study: Revision A. NAS8-34593.
Moog Inc.
N84-70298

CR-170919* July 15, 1983
Microgravity Silicon Zoning Investigation.
NAS8-34920. Westech Systems, Inc.
N84-13207

CR-170920 September 1983
The Modelling of the Solar Upper Photos-
sphere and Lower Chromosphere Based
Upon ATM Data. NAS8-33219. University
of Hawaii.
N84-12021

CR-170921 November 1, 1983
SSME Seal Test Program: Leakage Tests for
Helically-Grooved Seals. NAS8-33716. Texas
A&M University.
N84-12495

CR-170922 October 1983
Improved Two-Dimensional Kinetics (TDK)
Computer Program. NAS8-35046. Software
and Engineering Associates, Inc. N84-12248

CR-170923 October 29, 1983
Low Gravity Experiment for Studying a
Rotating Fluid Having a Free Surface.
NAS8-35481. Precision Devices, Ltd.
N84-12413

CR-170924 May 10, 1981
Doppler Lidar Signal Processor. NAS8-
33389. Lassen Research.
N84-90105

CR-170925 August 4, 1983
Development of a Radiation-Hard CMOS
Process. NAS8-33092. Auburn University.
N84-10061

CR-170926 August 1983
AXAF Technology Mirror Assembly (TMA).
NAS8-34578. Itek Optical Systems.
N84-90107

CR-170927 October 26, 1983
Stanford Gyro Relativity Experiment.
NAS8-34619. Stanford University.

CR-170928 December 1982
Teleoperator Maneuvering System Mission
Requirements and System Definition Study
- Volume I. Executive Summary. NAS8-
33903. Vought Corp.
X84-10054

CR-170929 December 1982
Teleoperator Maneuvering System Mission
Requirements and System Definition Study
- Volume II. Technical Report. NAS8-
33903. Vought Corp.
X84-10055

CR-170930 September 30, 1983
Teleoperator Maneuvering System - Mission
Requirements and System Definition Study,
Volume I - Executive Summary. NAS8-
33903. Vought Corp.
X84-10052
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-170936</td>
<td>July 1, 1981</td>
<td>Replacement of PBNA in HB and HC Polymers Used in SRM Propellant and Liner. NAS8-30490. Thiokol/Wasatch Division.</td>
<td>N84-12311</td>
</tr>
<tr>
<td>CR-170939</td>
<td>October 15, 1983</td>
<td>Study of Multi-Kilowatt Solar Arrays for Earth Orbit Applications. NAS8-34131. TRW.</td>
<td>N84-12634</td>
</tr>
<tr>
<td>CR-170941</td>
<td>October 31, 1983</td>
<td>Studies of Highly Variable Galactic X-Ray Sources with HEAO-1. NAG8-446. California University.</td>
<td>N84-16112</td>
</tr>
<tr>
<td>CR-170942*</td>
<td>December 1983</td>
<td>Research Reports — 1983 NASA/ASEE Summer Faculty Fellowship Program. NASA Grant NGT 01-005-021.</td>
<td>N84-16022</td>
</tr>
</tbody>
</table>
CR-170949 November 11, 1983
N84-15171

CR-170950 November 1983
N84-15959

CR-170951 December 1, 1983
Digital Multi-Shaker Modal Testing. NAS8-33980. The University of Texas at Austin.
N84-15522

CR-170952 October 1983
Multi-Shaker Modal Testing. NAS8-33980. The University of Texas at Austin.
N84-15521

CR-170953 November 15, 1983
N84-15165

CR-170954 September 1983
Wind Tunnel Material Test to Quantify Space Shuttle External Tank Insulation Requirements. H-61304B. Arnold Engineering Development Center.

CR-170955 January 1984
Summary of Plume Development and Radiation Analysis. NAS8-33719. Lockheed Missiles and Space Co.

CR-170956 September 1983
N84-72024

CR-170957 September 30, 1983
N84-15267

CR-170958 December 31, 1982
Countercurrent Distribution of Biological Cells. NAS8-33575. Oregon Health Sciences University.
N84-15755

CR-170959* December 1983
The Control of Float Zone Interfaces by the Use of Selected Boundary Conditions. NAS8-35108. Science Applications, Inc.
N84-17017

CR-170960 December 1983
SSME Structural Dynamic Model Development. NAS8-34973. Lockheed Missiles and Space Co.
N84-17287

CR-170961 December 19, 1983
SRB Nozzle Erosion Related Flow Analysis. NAS8-35767. Continuum, Inc.
N84-16251

CR-170962 January 1984
N84-17522

CR-170963 July 1983
X84-10174

CR-170964 January 11, 1984
Performance Characteristics of the Proto-Flight Manipulator Arm. NAS8-35320. Essex Corp.
N84-72590

CR-170965 September 15, 1983
Intelligent Editor/Printer Enhancements. NAS8-34969. Arizona State University.
N84-18909

CR-170966 November 1983
X84-90093

CR-170967 January 10, 1984
Integration and Verification of Sepac Software. NAS8-34747. Intermetrics, Inc.
N84-72601

CR-170968 January 10, 1984
IMCS Reflight Certification Requirements and Design Specifications. NAS8-33825. Intermetrics, Inc.
N84-17167
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-170969 January 1984
Development of an Autonomous Video Rendezvous and Docking System Phase 3.
NAS8-34679. Martin Marietta Aerospace.
N84-17249

CR-170970 January 1984
AXAF Optical Technology Analysis. NAS8-34951. TAI Corp.
N84-90075

CR-170971 September 30, 1983
Data Analyses and Interpretation of UVSP and Other Experiment on Board SMM.
NAS8-33526. The University of Alabama in Huntsville.

CR-170972 January 1984
Investigation of Electrodynamic Stabilization and Control of Long Orbiting Tethers.
NAS8-35036. Smithsonian Institution of Astrophysical Observatory. N84-17251

CR-170973 January 1984
N84-17166

CR-170974 November 1983
N84-17686

CR-170975 January 23, 1984
Dynamics and Energetics of the South Pacific Convergence Zone During FGGE SOP-1.
NAS8-35187. Purdue University. N84-90092

CR-170976 December 23, 1983
Doppler Lidar Signal and Turbulence Study. NAS8-35185. FRG Associates, Inc.
N84-17574

CR-170977 January 13, 1984
Payload Missions Integration Progress Report — Data Requirement (DR) MA-03.
NAS8-32712. Teledyne Brown Engineering.
N84-18225

N84-18147

CR-170979 July 1983
N84-20805

CR-170980 December 23, 1983
N84-17196

N84-18918


CR-170983 September 20, 1983
Design, Fabrication, and Assembly of a Custom Directional Solidification System.
NAS8-35178. Dynamic Design, Inc.
N84-72838

CR-170984 December 1983
Definition of Technology Development Missions for Early Space Stations Orbit Transfer Vehicle Servicing Phase II — Task 1 Space Station Support of Operational OTV Servicing. NAS8-35039. General Dynamics.
N84-19377

CR-170985 February 10, 1984
GP-B Error Modeling and Analysis. NAS8-34426. The University of Tennessee.
N84-18960

CR-170986 January 20, 1984
N84-19814

CR-170987 January 30, 1984
Rotordynamic Characteristics of the HPOP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). NAS8-34505. Texas A&M University. N84-19389

CR-170988 July 1983
Ion Implantation of 440C RCF Test Specimens. NAS8-35055. Martin Marietta Aerospace.
X84-10264
CR-170989  December 16, 1983
Dynamic Assessment of B-52B-008 Carrier Aircraft for the Revised Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test Vehicle. NAS8-35016. Boeing. N84-21606

CR-170990  November 14, 1980
Physical Processes in Fluids. NAS8-33074. Rensselaer Polytechnic Institute. N84-21827

CR-170991  March 8, 1984
High Pressure Oxygen Turbopump Bearing Cage Stability Analyses. NAS8-34908. Battelle Columbus Labs. N84-19815

CR-170992  November 30, 1983
A Study of Pump Cavitation Damage. NAS8-34535. Pennsylvania State University. N84-20783

CR-170993  February 1984
Exhibit D Modular Design Attitude Control System Study, NAS8-33979. Bendix Corp. N84-20625

CR-170994  December 1983

CR-170995  January 1984
SSME Interstage Seal Research. NAS8-33716. Texas A&M University. N84-20631

CR-170996  January 24, 1984
Modular Design Attitude Control System. NAS8-33979. The Bendix Corp. N84-19392

CR-170997  August 1983
Compendium of Flight Vehicle Base Pressure and Base Drag Prediction Techniques. NAS8-34976. Lockheed Missiles and Space Co. N84-73573

CR-170998  January 26, 1984

CR-170999  December 1983

CR-171000  December 1983

CR-171001  December 1983

CR-171002  December 1983
Space Shuttle Main Engine, Powerhead Structural Modeling, Stress and Fatigue Life Analysis Vol. IV Summary of Investigation of Unscheduled Events and Special Tasks. NAS8-34978. Lockheed Missiles and Space Co. N84-20638

CR-171003  December 1983
Acoustic Environmental Accuracy Requirements for Response Determination. NAS8-33379. Wyle Laboratories. N84-23234

CR-171004  March 22, 1984
Definition of Technology Development Missions for Early Space Stations Large Space Structures Phase II Midterm Review. NAS8-35043. Boeing Aerospace Co. N84-22607

CR-171005  June 18, 1983
Microcomputer Numerical Analysis System for Gas Dynamics Application. NAS8-34592. Continuum, Inc. N84-22908
<table>
<thead>
<tr>
<th>CR-171006</th>
<th>January 1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascent Trajectory Dispersion Analysis.</td>
<td>NAS8-34431, Dynetics, Inc.</td>
</tr>
<tr>
<td>N84-73736</td>
<td></td>
</tr>
<tr>
<td>CR-171007</td>
<td>March 12, 1984</td>
</tr>
<tr>
<td>Summary of Electrostatic Factors in Charged Particle Fog Dispersion.</td>
<td>NAS8-34729, FWG Associates, Inc.</td>
</tr>
<tr>
<td>X84-90320</td>
<td></td>
</tr>
<tr>
<td>CR-171008</td>
<td>April 2, 1984</td>
</tr>
<tr>
<td>Measurements of Elastohydrodynamic Film Thicknesses, Wear, and Tempering Behavior of High Pressure Oxygen Turbopump Bearings.</td>
<td>NAS8-34908, Battelle Columbus Laboratories.</td>
</tr>
<tr>
<td>N84-22960</td>
<td></td>
</tr>
<tr>
<td>CR-171009</td>
<td>March 28, 1984</td>
</tr>
<tr>
<td>Science and Technical Support for Development of a Solar Variability Experiment.</td>
<td>NAS8-34944, Atmospheric and Environmental Research, Inc.</td>
</tr>
<tr>
<td>N84-90320</td>
<td></td>
</tr>
<tr>
<td>CR-171010</td>
<td>March 22, 1984</td>
</tr>
<tr>
<td>Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing - Follow-on Study Phase II Final.</td>
<td>NAS8-35039, General Dynamics.</td>
</tr>
<tr>
<td>N84-73735</td>
<td></td>
</tr>
<tr>
<td>CR-171011</td>
<td>February 15, 1984</td>
</tr>
<tr>
<td>Ion Implantation and Plating to Improve Surface Hardness and Wear Characteristics of Stainless Steel for Bearing Applications.</td>
<td>NAS8-35048, Georgia Institute of Technology.</td>
</tr>
<tr>
<td>X84-10220</td>
<td></td>
</tr>
<tr>
<td>CR-171012</td>
<td>March 1984</td>
</tr>
<tr>
<td>Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt.</td>
<td>NAS8-35416, Harvard University.</td>
</tr>
<tr>
<td>N84-22752</td>
<td></td>
</tr>
<tr>
<td>CR-171013</td>
<td>August 31, 1979</td>
</tr>
<tr>
<td>Atmospheric Turbulence Simulation for Shuttle Orbiter.</td>
<td>NAS8-33076, Engineering Analysis, Inc.</td>
</tr>
<tr>
<td>N84-22602</td>
<td></td>
</tr>
<tr>
<td>CR-171014</td>
<td>February 1984</td>
</tr>
<tr>
<td>Space Station Systems Technology Study – Executive Summary, Volume 1.</td>
<td>NAS8-34893, Boeing Aerospace Co.</td>
</tr>
<tr>
<td>N84-22614</td>
<td></td>
</tr>
<tr>
<td>CR-171015</td>
<td>February 1984</td>
</tr>
<tr>
<td>CR-171016</td>
<td>February 1984</td>
</tr>
<tr>
<td>Space Station Systems Technology Study Volume III: Technology and Advancement Program Plan.</td>
<td>NAS8-34893, Boeing Aerospace Co.</td>
</tr>
<tr>
<td>N84-22613</td>
<td></td>
</tr>
<tr>
<td>CR-171017</td>
<td>March 29, 1984</td>
</tr>
<tr>
<td>N84-25018</td>
<td></td>
</tr>
<tr>
<td>CR-171018</td>
<td>May 1969</td>
</tr>
<tr>
<td>N84-73908</td>
<td></td>
</tr>
<tr>
<td>CR-171019</td>
<td>September 1973</td>
</tr>
<tr>
<td>N84-73866</td>
<td></td>
</tr>
<tr>
<td>CR-171020</td>
<td>April 1984</td>
</tr>
<tr>
<td>Protoflight Manipulator Assembly -- Vol. 1: Performance Characteristics of the Protoflight Manipulator Assembly.</td>
<td>NAS8-35320, Essex Corp.</td>
</tr>
<tr>
<td>CR-171021</td>
<td>April 1984</td>
</tr>
<tr>
<td>Protoflight Manipulator Assembly -- Vol. 2: Modular Software Development for the Protoflight Manipulator Assembly.</td>
<td>NAS8-35320, Essex Corp.</td>
</tr>
<tr>
<td>CR-171022</td>
<td>April 1984</td>
</tr>
<tr>
<td>Protoflight Manipulator Assembly -- Vol. 3: End Effector and Task Board Development for the Protoflight Manipulator Assembly.</td>
<td>NAS8-35320, Essex Corp.</td>
</tr>
</tbody>
</table>
CR-171023  May 1980
N84-25217

CR-171024  May 1976
N84-74014

CR-171025  March 1, 1984
N84-25334

CR-171026  April 26, 1984
PDSS/IMC Qualification Test Software Acceptance Procedures. NAS8-33825. Intermetrics, Inc.
N84-25335

CR-171027  September 1983
N84-25752

CR-171028  March 1984
Pretest Plan for a Quarter Scale Aft Segment of the SRB Filament Wound Case in the NSWC Hydroballistics Facility — Test No. 84-1. NAS8-35017. Chrysler Corp.
N84-24699

CR-171029*  April 13, 1984
Vector Wind Gust Model. NAS8-33433. Computer Sciences Corp.
N84-25222

CR-171030  January 1984
N84-23752

CR-171031  March 1984
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville.
N84-25205

CR-171032  December 1983
Effects of Chemical Releases by the STS-3 Orbiter on the Ionosphere. NAS8-32807. University of Iowa.
N84-25204

CR-171033  April 1984
N84-74268

CR-171034  April 6, 1984
N84-24716

CR-171035  April 1984
N84-25584

CR-171036  May 10, 1984
Space Shuttle Environment Analyses. NAS8-34595. Computer Sciences Corp.
N84-74181

CR-171037  March 1982
Fabrication, Test, and Delivery of a Self-Contained Gas Turbine Powered Fire Fighting Module. NAS8-33151.
N84-74177

CR-171038  May 1984
N84-25481

CR-171039  May 1984
N84-25046

CR-171040  May 4, 1984
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Laboratories, Inc.
X84-75618
CR-171041 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume I Executive Summary. NAS8-35471. Boeing Aerospace Co. X84-10319

CR-171042 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facility — Volume II Study Results. NAS8-35471. Boeing Aerospace Co. X84-10320

CR-171043 October 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II Study Results, Appendix A. NAS8-35471. Boeing Aerospace Co. X84-10321

CR-171044 November 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II Study Results, Appendix B. NAS8-35471. Boeing Aerospace Co. X84-10322

CR-171045 November 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II Study Results, Appendix C. NAS8-35471. Boeing Aerospace Co. X84-10323

CR-171046 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities, Final Briefing, Volume III. NAS8-35741. Boeing Aerospace Co. X84-10324

CR-171047 May 1984
Definition of Technology Development Missions for Early Space Station Orbit Transfer Vehicle Servicing Phase II Task 2 Ground Based OTV Support by Initial Space Station. NAS8-35039. General Dynamics. N84-74875

CR-171048 April 10, 1984
MEA/A-1 Experiment #1F01 Conducted on STS-7 Flight, June 1983 Containerless Processing of Glass Forming Melts. NAS8-34758. University of Missouri-Rolla. N84-28993

CR-171049 January 12, 1983
Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing. NAS8-35039. General Dynamics.

CR-171050 August 1979
The Fundamentals of Solar Energy Technology. NAS8-31293. The University of Alabama in Huntsville. N84-74972

CR-171051 June 1984

CR-171052 June 1984
Ascent Trajectory Dispersion Analysis for ETR High Inclination Space Shuttle Trajectory. NAS8-34431. Dynetics, Inc. N84-74878

CR-171053 May 1984
Definition of Technology Development Missions for Early Space Station Orbit Transfer Vehicle Servicing Phase II Task 4 Integrated Technology Development Plan. NAS8-35039. General Dynamics. N84-74876

CR-171054 April 25, 1983
Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing. NAS8-35039. General Dynamics. N84-74881

CR-171055 May 11, 1984
CR-171056 May 5, 1984
Participation in the Definition, Conduct, and Analysis of Particle Accelerator Experiments for the First Spacelab Mission. NAS8-32488. Southwest Research Inst.

CR-171057 May 8, 1984

CR-171058 April 1984

CR-171059 April 13, 1984

CR-171060 March 31, 1984

CR-171061 May 11, 1984

CR-171062 March 1984
Development of Autonomous Momentum Management Scheme for Space Station System Study. NAS8-35349. Bendix Corp.

CR-171063 May 1984

CR-171064 April 1984

CR-171065 May 1984

CR-171066 January 1984
Improved Charge Injection Device and a Focal Plane Interface Electronics Board for Stellar Tracking. NAS8-34644. General Electric Co. N84-29092

CR-171067 June 18, 1984
Research Study: Severe Storms Lidar Base. NAS8-35345. Lassen 1 Research.

CR-171068 April 1984

CR-171069 June 8, 1984

CR-171070 June 18, 1984
A Study of Fatigue Damage on Selected Superalloys by Positron Annihilation. NAS8-35325. The University of Missouri-Rolla.

CR-171071 May 10, 1984
Ceramic Turbine Elements Monthly Technical Progress Narrative Month of April 1984. NAS8-35327. Rockwell International Corp. X84-10398

CR-171072 April 1984

CR-171073 April 10, 1984
Ceramic Turbine Elements Monthly Technical Progress Narrative, Month of March 1984. NAS8-35327. Rockwell International Corp. X84-10397
CR-171074 June 8, 1984
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Laboratories, Inc. X84-10399

CR-171075 May 31, 1984

CR-171076 June 1984

CR-171077 May 11, 1984

CR-171078 June 29, 1984
SPAR Improved Structure/Fluid Dynamic Analysis Capability. NAS8-34975. Lockheed, Research and Development Division. N84-29153

CR-171079 June 1984
Investigation of Acoustic Emission Coupling Techniques – Phase 1. NAS8-34649. Southwest Research Institute. X84-77461

CR-171080 June 1984

CR-171081 May 11, 1984
Research Study Severe Storms Lidar Base. NAS8-35345. Lassen Research.

CR-171082 April 1984

CR-171083 April 10, 1984

CR-171084 May 8, 1984

CR-171085 May 1984

CR-171086 April 24, 1984

CR-171087 April 30, 1984
Surface Analysis of Space Telescope Material Specimens, Monthly Report for April. NAS8-35914. Auburn University. X84-10414

CR-171088 April 1984

CR-171089 April 27, 1984

CR-171090 June 1984
System Definition Study of Deployable, Non-Metallic Space Structures. NAS8-35498. Goodyear Aerospace Corp. N84-28887
CR-171091 June 19, 1984

CR-171092 June 19, 1984

CR-171093 June 19, 1984

CR-171094 March 1984
Analysis of SSME HPOTP Rotordynamics Subsynchronous Whirl. NAS8-35053. Control Dynamics Co. N84-28900

CR-171095 July 2, 1984
Definition of Technology Development Missions for Early Space Station – Large Space Structures. NAS8-35043. Boeing Aerospace. N84-74871

CR-171096 March 1984
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Co. N84-74879

CR-171097 April 1984
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Co. N84-74880

CR-171098 May 9, 1984

CR-171099 April 30, 1984
Color Film Preservation System – Breadboard Development. NAS8-35822. Electro-Optics Consultants, Inc. N84-29194

CR-171100 July 11, 1984
Development of Standardized Specifications for Screening Space Level Integrated Circuits and Semiconductors. NAS8-35823. Omni Technology Corp. N84-29093

CR-171101 June 1984

CR-171102 May 1984
Definition of Technology Development Missions for Early Space Station Orbit Transfer Vehicle Servicing Phase II Executive Summary. NAS8-35039. General Dynamics. N84-74877

CR-171103 March 1984

CR-171104 May 1984

CR-171105 June 8, 1984

CR-171106 May 1984

CR-171107 June 30, 1984

CR-171108 July 3, 1984

CR-171109 June 1984
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171110  July 18, 1984
Orbital Transfer Vehicle Concept Definition and System Analysis Study Orientation Meeting. NAS8-36108. Martin Marietta. N84-75128

CR-171111  February 8, 1984
HgCdTe Crystal Growth Investigation. NAS8-34958. Semtec Inc.

CR-171112  June 18, 1984

CR-171113  July 19, 1984
Study of Proton and Neutron Activation of Metal Samples in Low Earth Orbit. NAS8-35180. Eastern Kentucky University.

CR-171114  March 31, 1984

CR-171115  May 1, 1984

CR-171116  May 21, 1984

CR-171117  June 1984

CR-171118  July 1984
Techniques for Fatigue Life Predictions from Measured Strains. NAS8-34971. Failure Analysis Associates. N84-30334

CR-171119  July 1984
Multi-100 KW Planar Low Cost Solar Array Development. NAS8-32981. Lockheed Missiles and Space Co. N84-30529

CR-171120  June 1984

CR-171121  May 1984

CR-171122  May 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171123  August 9, 1984

CR-171124  May 30, 1984
Application of TOS/AMS to TDRS E & F. NAS8-35617. Martin Marietta Corp.

CR-171125  April 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171126  March 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171127  July 20, 1984

CR-171128  June 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell, Inc.
CR-171129 July 1984

CR-171130 April 20, 1984

CR-171131 January 1984
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville.

CR-171132 July 1984
Spacecraft Servicing Demonstration Plan. NAS8-35496. Martin Marietta.

CR-171133 June 10, 1984

CR-171134 August 1984
Quarterly Progress Report for May 1, 1984-July 31, 1984. NAS8-34137. The University of Alabama in Huntsville.

CR-171135 August 6, 1984
Co-Investigator Tasks on Sepac Experiment for the First Spacelab Mission for the Period May 1, 1984 to July 31, 1984. NAS8-32580. TRW, Inc.

CR-171136 July 1984
System Analysis for the Huntsville Operational Support Center Distributed Computer System. NAS8-34906. Mississippi State University.

CR-171137 April 1984

CR-171138 August 31, 1984
PDSS/IMC Relight Certification Software Design Specifications. NAS8-33825. Intermetrics, Inc.

CR-171139 July 5, 1984
Plasma Source for Spacecraft Potential Control. NAS8-35339. The University of Alabama in Huntsville.

CR-171140 July 1984
Simulation Requirement for the Large Deployable Reflection (LDR). NAS8-34904. The Charles Stark Draper Laboratory, Inc.

CR-171141 June 1984
MCT Crystal Growth. NAS8-34957. University of Alabama.

CR-171142 September 1984
The Study of Efficient Low-Power Diffraction Designs. NAS8-31170. The University of Alabama in Huntsville.

CR-171143 July 1984
Research Study of Pressure Instrumentation. NAS8-35015. Mechanical Technology, Inc.

CR-171144 August 10, 1984

CR-171145 July 31, 1984

CR-171146 September 6, 1984
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Lab., Inc.
CR-171147  August 31, 1984

CR-171148  September 1984

CR-171149  March 1984

CR-171150  April 10, 1984
SSME Main Combustion and Nozzle Flowfield Analysis, Monthly Progress Report for March 1 - March 31, 1984. NAS8-35510, Continuum, Inc.

CR-171151  August 21, 1984
High Area Ratio Nozzle Concepts Investigation Program Plan. NAS8-35771, Rockwell International Corp.

*White cover reports printed at MSFC.
ALLEN, DAVID W. IF44

ALEXANDER, MARGARET B. IF42
CAMP, DENNIS W. IF42
Analysis of Low-Altitude Wind Speed and Direction Shears. For publication in the AIAA Journal of Aircraft.

ALTER, WENDY S. EH22
PARR, RICHARD A.
JOHNSTON, MARY H.
STRIZAK, JOSEPH P.

ANDERSON, B. JEFFREY ED43
BOWDLE, DAVID A. (USRA)
KELLER, VERNON W.
VAUGHAN, OTHA H.
Cloud Formation in Low Gravity During Thermal/Pressure Wave Forcing. For presentation at the First International Aerosol Conference, Minneapolis, Minnesota, September 16-21, 1984.

APPARAO, KRISHNA M. V. ES62

APPARAO, KRISHNA M. V. ES62

APPARAO, KRISHNA M. V. ES62

ARNOLD, JAMES E. ED44

AUSTIN, ROBERT E. PS03
Orbit Transfer Vehicles. For presentation to the Twenty-First Space Congress Canaveral Council of Technical Societies, Cocoa Beach, Florida, April 24-26, 1984.

BAILEY, C. R. EP23
BAILEY, WAYNE TBE
DeSANCTIS, CARMINE E.
SCHULTZ, DAVID N.
NICAISE, P. D.
Payload Isolation and Stabilization by a Suspended Experiment Mount. For presentation at the Space Shuttle Experiment and Environment Workshop, New England College, Henniker, New Hampshire, August 5-10, 1984.

BAYUZICK, R. J. ES74
EVANS, N. D.
HOFMEISTER, W. H.
ROBINSON, M. R.
A Review of Long Drop Tubes as a Supplement/Alternative to Space Experiments. For presentation at the 25th Plei, ry Meeting of the Committee on Space Research, Graz, Austria, July 2-5, 1984, and for publication in the Proceedings.

BENTON, E. V. ES62
ALMASI, J.
CASSOU, R.
HENKE, FRANK
ROWE, V.
PARNESS, T. A. ES62
SCHOPPER, E.

Radiation Measurements Aboard Spacelab 1: Preliminary Results. For publication in Science, Journal of AAAS.

BIAT, BILIYAR N. EH23
Rolling Contact Fatigue Life of Ion Plated 440C Bearing Steel. For presentation at the Advanced O₂/H₂ Propulsion Technology Conference, Huntsville, Alabama, June 27-29, 1984.

BIDDLE, ALAN P. ES53
Evidence for Ion Heat Flux in the Light Ion Polar Wind. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

BILBRO, J. W. EB23
EMMITT, G. D.

BRANDON, LARRY B. PD12

BRANTLEY, LOTT W., JR. PD14
STS Flight Experiments. For presentation to the Twenty-First Space Congress Canaveral Council of Technical Societies, Cocoa Beach, Florida, April 24-26, 1984.

BRANTLEY, LOTT W., JR. PD14
STS Flight Experiments. For presentation at and publication in the proceedings of the AIAA 2nd Annual Aerospace Technology Symposium, New Orleans, Louisiana, October 25-26, 1984

BROOK, M. (NMIT) ED43
RHODES, C. (NMIT)
VAUGHAN, O. H. ED43
ORVILLE, R.
VONNEGUT, B. (Sunya)


BROWN, ROBERT A. TA02
The Role of Scientists in Developing and Operating Space Telescope. For presentation to the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 11-15, 1984.

BROWN, ROBERT A. TA02

BROWN, S. C.
JEFFRIES, W. R., III ED44

A New NASA Cloud Cover Data Base. For publication in the Journal of Climate and Applied Meteorology.

BUCHANAN, HARRY J. ED15
Space Station Attitude Control -- An Overview of Requirements and Solutions. For presentation at the AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985.

BURNETT, T. H. ES62
PARNELL, T. A.

Interaction Characteristics of Heavy Nuclei on Various Targets at Energies 20-100 GeV/AMU from the JACEE-3 Hybrid
Counter-Emulsion Chamber Experiment. For presentation at the Quark Matter 84 Conference, Helsinki, Finland. June 17-21, 1984.

CAMP, DENNIS W.
FROST, WALTER
Seventh Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems. For publication in the Bulletin of the American Meteorological Society.

CAMPBELL, C. WARREN

CAMPBELL, C. WARREN
CAMP, DENNIS W.
SANDBORN, V. A.
FROST, WALTER

CAMPBELL, C. WARREN
CAMP, DENNIS W.

CHANDLER, M. O., NRC
CHAPPELL, C. R.
Velocities of the Major Ions in the Plasmasphere. For presentation to the Twenty-fifth Plenary Meeting and Associated Activities/COSPAR, Graz, Austria, June 25-July 7, 1984.

CHANDRA, D.
SZOFRAN, F. R.
WANG, J. C.
COTHKTRAN, E. K.
LEHOCZKY, S. L.
Effect of Growth Parameters on Compositional Variations in Directionally Solidified HgCdTe Alloys. For presentation to the Sixth American Conference on Crystal Growth in conjunction with Sixth International Conference on Vapor Growth and Epitaxy, Atlantic City, New Jersey, July 15-20, 1984.

CHAPPELL, CHARLES R.

CHAPPELL, C. R.

CHAPPELL, C. R.
KNOTT, KARL (ESA/ESTEC)
Spacelab — A New Capability for Space Science Research. For presentation at the 1984 Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

CHRISTIAN, HUGH J.
A Technique for the Detection of Lightning from Geostationary Orbit. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 5-10, 1983.

CHRISTIAN, HUGH J.
Simultaneous Observations of Lightning from Above and Below Thunderstorms. For presentation at the Fall Meeting of The American Geophysical Union, San Francisco, California, December 5-10, 1983.
CHRISTIAN, HUGH J.  
**ED43**  
The Spectrum of Lightning as Measured from Above Cloud Top. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 5-10, 1983.

CHRISTIAN, HUGH J.  
**ED43**  

CHRISTIAN, HUGH J.  
**ED43**  
The Optical Characteristics of Lightning as Measured from Above Cloud Tops. For presentation to the VII International Conference on Atmospheric Electricity, Albany, New York, June 4-8, 1984.

CHRISTIAN, HUGH J.  
VAUGHAN, W. W.  
**ED43**  
A Technique for the Detection of Lightning from Geostationary Orbit. For presentation at the VII International Conference on Atmospheric Electricity, Albany, New York, June 4-8, 1984.

CLIFTON, K. STUART  
OWENS, JERRY K.  
**ES55**  
IECM Optical Contamination Measurements on Early Shuttle Missions. For publication in Applied Optics.

COMFORT, R. H.  
WAITE, J. H., JR.  
**ES53**  
CHAPPELL, C. R.  
Response of Plasmaspheric Ion Thermal Structure to Geomagnetic Activity. For presentation at the 1984 American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

CONNERNEY, J. E. P.  
**ES53**  
WAITE, J. H., JR.  

COURTES, G.  
**ES61/ES52**  
VITON, M.  
SIVAN, J. P.  
DECHER, R.  
GARY, A.  
The SL1 Very-Wide-Field Ultraviolet Sky-Survey. For publication in Science, Washington, D.C.

CRAFT, HARRY G., JR.  
**JA11**  

CRAVEN, P. D.  
**ES53**  
OLSEN, R. C.  
CHAPPELL, C. R.  
KAKANI, L.  
The Measurement of the Molecular Ions \( \text{N}_2^+, \text{O}_2^+, \text{NO}^+ \) Up to 3RE. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

DABB, JOSEPH  
**PS02**  
ROUTH, DONALD  
TANDBERG-HANSSEN, EINAR  
DANIELS, J. G.  EH33  California, January 30 through February 3, 1984.
LEDBETTER, F. E. III
CLEMONS, J. M.
PENN, B. G.
Thermogravimetric Analysis of Silicon Carbide-Silicon Nitride Fibers at Ambient to 1000°C in Air. For publication in the SAMPE Quarterly, Covina, California, May 15, 1984.

DAVIS, BILLY G.  PD12

DELOACH, A. C.  ES51
HAGYARD, M. J.
RABIN, D.
MOORE, R. L.
SMITH, J. B., JR.
WEST, E. A.
TANDBERG-HANSSEN, E.

DERRICKSON, J.  ES61
EBY, P.
WATTS, J.
Effect of the Mott Cross Section on Charge Identification in the HEAO-3 Heavy Cosmic Ray Experiment. For presentation at the Nuclear Instruments and Methods Conference, Amsterdam, Holland.

DESSLER, A. J.  ES01
Magnetospheric Phenomena Powered by Planetary Spin: Jupiter, Saturn and Uranus. For presentation to the Astronomy Department, University of California at Berkeley.

DESSLER, A. J.  ES01
ISBELL, J. T.

DESSLER, A. J.  ES01
Shuttle Airglow. For presentation at the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 11-14, 1984.

DESSLER, A. J.  ES01
Spacecraft Glow. For publication in the Journal of the Society of Photo-Optical Instrumentation Engineers.

DESSLER, A. J.  ES01

DESSLER, A. J.  ES01
Non-Rigid Rotation of the Magnetic Fields of Jupiter and Saturn. For presentation at the 1984 Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

DEXTER, CAROL  EP23
McCAY, T. DWAYNE

DING, Y. J. (Yunnan Observatory)  ES52
HONG, Q. F.
HAGYARD, M. J.
DELOACH, A. C.

DOZIER, JAN D.  EP42
HACKETT, ROBERT M.

ELSNER, RONALD F. ES62
LAMB, F. K. University of Illinois
Plasma Entry Into the Magnetospheres of Accreting Neutron Stars. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada, January 8-11, 1984 and for publication in the AAS Bulletin.

ETHRIDGE, E. C. ES74
CURREN, P. A.
PLINE, D.

ETHRIDGE, E. C. ES74
CURREN, P. A.
THEISS, J.
ABBASCHIAN, G. J.

ETHRIDGE, EDWIN C. ES74

EVANS, ROSS W. EL55
PEARSON, STEVEN D.

FEREBEE, ROBIN C. ED23
JONES, JESS H.
Comparison of Miles' Relationship to the True Mean Square Value of Response for a Single Degree of Freedom System. For presentation to the Shuttle Dynamic Environments and Loads Prediction Workshop, JPL, Pasadena, California, January 24, 1984.

FERNANDEZ, KENNETH R. EB44
Robotic Applications on Earth and In Space. For presentation at the Wichita Conference on Computers and Robotics, Wichita, Kansas, June 8, 1984.

FERNANDEZ, KENNETH R. EB44

FERNANDEZ, KENNETH R. EB44

FISHMAN, GERALD J. ES62
Gamma Ray Burst Observations. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada on January 8, 1984 and for publication in the Bulletin AAS.

FISHMAN, G. J. ES62
Balloon-Borne Observations of Gamma-Ray Bursts. For presentation at the COSPAR Meeting, Graz, Austria, June 1984.

FOWLIS, WILLIAM W. ES74
Analytical and Numerical Investigations of Thermocapillary Convection in a Rapidly Rotating Float Zone. For presentation to the Mechanical Engineering Department, University of Alabama in Huntsville.

FOWLIS, WILLIAM W. ES74
ROBERTS, GLYN O.
GALLAGHER, D. L. ES53
MENIETTI, J. D.
PERSON, A. M.
WAITE, J. H.
CHAPPELL, C. R.
Evidence of High Densities and Ion Outflows in the Polar Cap During the Recovery Phase. For presentation to the Spring AGU Meeting, Cincinnati, Ohio, May 13-18, 1984.

GALLAGHER, D. L. ES53

GALLAGHER, DENNIS ES53
WAITE, HUNTER
CHAPPELL, C. R.
OLSEN, R. C. et al.
A Detailed Analysis of the Ion Motions and Electric Field During Pc5 Event. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984, and publication in EOS.

GARY, D. E. ES52
DULK, G. A.
HOUSE, L. L.
ILLING, R.
HILDNER, ERNEST, et al.

GOODMAN, S. J. (USRA) ED43
CHRISTIAN, H. J.
RUST, W. D.
MACGORMAN, D. R. (NSSL)
ARNOLD, R. T. (U. of MI)

GRAHAM, MARCELLUS H. AH33
GOEDDE, VINCE P.

GREEN, JAMES L. ES53
SIX, N.
GULKIS, SAM
MENIETTI, J.
Identification of a Night-Side Component of DAM as a Jovian Counterpart to AKR. For publication in the Geophysical Research Letters.

GREEN, JAMES L. ES53
HORWITZ, JAMES
THOMAS, DOUG
PETERS, DAVE
Data System Technology Program (DSTP) and Space Plasma Computer Analysis Network (SCAN). For presentation at the 1984 Spring DECUS U. S. Symposium, Cincinnati, Ohio, June 4-8, 1984.

GREEN, J. L. ES53
WAITE, J. H.
CHANDLER, M. O.
CHAPPELL, C. R.
Observations of Ionospheric/Magnetospheric Coupling; DE and Chatanika Coincidences. For publication in the Journal of Geophysical Research, Washington, D.C.

GREEN, J. L. ES53
BAKER, D. N.
ZWICKL, R. D.
Span Pilot Project Report. For publication in EOS, Washington, D.C.
GREEN, J. L. ES53
Spacelab Data Analysis Using the Scan System. For presentation at the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 1984, and for publication in the Proceedings.

GREEN, J. L. ES53
WAIT, J. H.
CHANDLER, M. O.
CHAPPELL, C. R. et al.
Comparative Ionospheric Studies Using DE-1, 2 and Ground-Based Radars. For presentation to the Recent Programmes in Magnetospheric and Ionospheric Physics, Toulouse, France, May 22-25, 1984.

GREEN, J. L. ES53
CHAPPELL, C. R.
DOUPNIK, J. R.
HEELIS, R.
Observations of Ionospheric/Magnetospheric Coupling: DE and Chatanika Coincidences. For presentation at the USRI XXI General Assembly, Florence, Italy, August 26 through September 6, 1984.

GREEN, J. L. ES53
MENIETTI, J. D.
Three-Dimensional Raytracing of IO-dependent Jovian Decametric Radiation. For presentation at the USRI XXI General Assembly, Florence, Italy, August 26 through September 6, 1984.

GREEN, J. L. ES53
GALLAGHER, D. L.
The Detailed Intensity Distribution of the AKR Emission Cone. For publication in the Journal of Geophysical Research.

GUYNES, BUDDY V. JA11

HALYARD, M. J. ES52
SMITH, J. B., JR. (NOAA)
TEUBER, D.
WEST, E. A.
TANDBERG-HANSSEN, E.
HENZE, W. JR.
The Vertical Gradient of Sunspot Magnetic Fields. For publication in the Proceedings of Kunming Workshop on Solar Physics and Interplanetary Travelling Phenomena.

HAGYARD, M. J. ES52
WEST, E. A.
SMITH, J. B., JR.
Electric Currents in Active Regions. For publication in Proceedings of Kunming Workshop on Solar Physics and Interplanetary Travelling Phenomena.

HAGYARD, M. J. ES52
WEST, E. A.
SMITH, J. B., JR.
HAGYARD, M. J. ES52
MOORE, R. L.
EMSLIE, A. G.

HANNAKAM, L. ES52
GARY, G. ALLEN
TEUBER, D. L.
Computation of Solar Magnetic Fields from Photospheric Observations. For publication in Archive of Electrical Engineering, Berlin, Germany.

HARDEE, PHILIP E. ES62 (ASEE Summer Faculty)

HASTINGS, LEON J. EP43

HENDRIX, J. C. ES74
CURRERI, P. A.
STEFANESCU, D. M.

HERRMANN, FREDERICK T. ES73
Laminar Flow Effects in the Coil Planet Centrifuge. For publication in the Journal of Chromatography, Amsterdam, Holland.

HILCHEY, JOHN D. PS02
GUSTAN, EDITH
RUDIGER, C. E.

HILDNER, E. ES52
WILSON, R. M.
Are Interplanetary Magnetic Clouds Manifestations of Coronal Mass Ejections at 1 AU? For presentation at the 164th Meeting of the American Astronomical Society and for publication in the Bulletin of the AAS.

HOFMEISTER, W. H. ES74
EVANS, N. D.
BAYUZICK, R. J.
ROBINSON, M. B.
Undercooling of Nb-Ge Alloys in a 100-Meter Drop Tube. For presentation at the 5th International Conference on Rapidly Quenched Metals and for publication in the Proceedings, Warzburg, West Germany, September 3-7, 1984.

HOLLAND, LAWRENCE ROZIER ES72

HOLLAND, LAWRENCE ROZIER ES72/UAH
VLS Growth to Purify Te and Cd. For presentation to the Sixth American Conference on Crystal Growth in conjunction with Sixth International Conference on Vapor Growth and Epitaxy, Atlantic City, New Jersey, July 15-20, 1984.

HOLMES, RICHARD R. EH43

HOPKINS, MIRIAM ED15
HAHN, E.
Bendix Corp.

HORWITZ, J. L. ES53/UAH
Relationship of Dusk Sector Radial Electric Field to Energy Dispersion at the Inner
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)


HORWITZ, J.
COMFORT, R.
CHAPPELL, C. R.
Thermal Ion Composition Measurements of the Formation of the New Outer Plasmasphere and Double Plasmapause During Storm Recovery Phase. For publication in the Geophysical Research Letters.

HORWITZ, J. L.
Relationship of Dusk Sector Electric Field to Energy Dispersion at the Inner Edge of the Electron Plasma Sheet for Non-Equatorially Mirroring Electrons. For publication in the Journal of Geophysical Research, Washington, D.C.

HORWITZ, J. L.
Features of Ion Trajectories in the Polar Magnetosphere. For publication in Geophysical Research Letters.

HORWITZ, J. L.
BRACE, L. H.
COMFORT, R. H.
CHAPPELL, C. R.
Near-Conjugate Measurements of Plasmasphere and Ionosphere Structure. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

HORWITZ, J. L. (NRC)
FOREST, G.
LOCKWOOD, M.
Ion Trajectories in the Polar Magnetosphere and DE-1 Observations. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

HOWELL, LEONARD W., JR.

HUBER, WILLIAM G.
CRAMBLIT, DAVID C.

HUEYER, UWE

HUlf, HAROLD II.

HUNG, R. J.
SMITH, R. E.

HUNG, R. J.
LIU, J. M.
TSAO, D. Y.
SMITH, R. E.

HUNG, R. J.
TSAO, D. Y.
SMITH, R. E.
Case Study of Pampa, Texas, Multicell Storms. For publication in Pure and Applied Physics.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBELL, J.</td>
<td>ES01</td>
</tr>
<tr>
<td>DESSLER, A. J.</td>
<td></td>
</tr>
<tr>
<td>WAITE, J. H., JR.</td>
<td></td>
</tr>
<tr>
<td>JOHNSTON, M. H.</td>
<td>EH22</td>
</tr>
<tr>
<td>OWEN, R. B.</td>
<td></td>
</tr>
<tr>
<td>JOHNSTON, M. H.</td>
<td>EH22</td>
</tr>
<tr>
<td>CURRERI, P. A.</td>
<td></td>
</tr>
<tr>
<td>PARR, R. A.</td>
<td></td>
</tr>
<tr>
<td>ALTER, W. S.</td>
<td></td>
</tr>
<tr>
<td>JEDLOVEC, GARY J.</td>
<td>ED44</td>
</tr>
<tr>
<td>JOHNSTON, MARY HELEN</td>
<td>EH22</td>
</tr>
<tr>
<td>JONES, CLYDE S.</td>
<td>EH42</td>
</tr>
<tr>
<td>KALB, MICHAEL</td>
<td>(USRA) ED44</td>
</tr>
<tr>
<td>KAPUSTKA, ROBERT E.</td>
<td>EB12</td>
</tr>
<tr>
<td>JOHNSTON, GARLAND D.</td>
<td>ET53</td>
</tr>
<tr>
<td>KAUFMAN, JOHN W.</td>
<td>ED42</td>
</tr>
</tbody>
</table>

**Magnetoospheric Energization by Interaction Between Planetary Spin and the Solar Wind.**
For publication in the Journal of Geophysical Research, Washington, D.C.

**Birkeland Currents Driven by Planetary Spin.**
For presentation to the 1984 AGU Spring Meeting, Cincinnati, Ohio, May 14-18, 1984 and for publication in EOS, Washington, D.C.

**Application of VISSR Atmospheric Sounder (VAS) Data in Weather Analysis.**

**A Statistical Evaluation and Comparison of VISSR Atmospheric Sounder (VAS) Data and Corresponding Rawinsonde Measurements.**

**Mesoscale Analysis of 6.7 m Image Data From the VISSR Atmospheric Sounder (VAS) for Several Case Studies.**

**Paper on SSME Steerhorn Modal Test.**
For presentation at the SESA — Society for Experimental Stress Analysis, Salt Lake City, Utah, October 21, 1983.

**Optical Observation of Unidirectional Solidification and Related Fluid Parameters in Microgravity.**
For publication in Optics and Lasers in Engineering, Essex, England.

**Gravity Level Induced Microstructural Variations in a Directionally Solidified Superalloy.**
For publication in Metallurgical Transactions, Pittsburg, Pennsylvania.

**Crystal Growth Experiments on Spacelab 3.**
For presentation at the Sixth American Conference on Crystal Growth, Atlantic City, New Jersey, July 15-20, 1984.

**Vision-Based Robotic Welding Development System.**
For presentation at the American Welding Society, Las Vegas, Nevada, April 7, 1985.

**Results from a Limited Area Mesoscale Numerical Forecast, Part I: Initialization with SESAME-AVE Radiosonde Data.**
For publication in the Monthly Weather Review, Boston, Massachusetts.

**A Programmable Transformer Coupled Converter for High Power Space Applications.**
For presentation at the Power Electronics Specialist Conference, IEEE 1984 PESC Record, June 18, 1984, Gaithersburg, Maryland.

**In-Phase Gusts and Moment Force Wind Loads Over the First 150 Meters at KSC, Florida.**
For presentation at the 16th Joint Meeting of U.S.-Japan Panel on Wind/Seismic Effects, May 14-18, 1984, Washington, D.C.
KAUKLER, WILLIAM F.          ES74/USRA

KAUKLER, WILLIAM F.          ES74
FRAZIER, DONALD O.
Observations of a Monotectic Solidification Interface Morphology. For publication in the Journal of Crystal Growth, Amsterdam, The Netherlands.

KAUKLER, W. F.              ES74
TCHERENSHOFF, L. M.
STRAITS, S. R.
Critical Point Wetting Drop Tower Experiment. For publication in the Proceedings of the Second Symposium on Space Industrialization.

KELLER, V.                   ED43
OWEN, R.
VAUGHAN, O.
LORD, A.
HALLETT, J.
Influence of Convective Velocity on Dendritic Growth from Solution. For presentation to the Sixth American Conference on Crystal Growth, Atlantic City, New Jersey, July 15-20, 1984.

KELLER, V. W.               ED43

KORNFIELD, D.               ES73
VANDERHOFF, J. W.
EL-AASSER, M.
MICALE, F.
SUDOL, E.
TSENG, C.
SILWANOWICZ, A.
VICENTE, F.

KOS, LAWRENCE D.            ED23
CHRISTIAN, DAVID C.

KROES, R. L.                ES72
REISS, D.
SILBERMANN, E.
MORGAN, S.
Diffusion of TGS in Aqueous Solution. For publication in the Journal of Physical Chemistry, Los Angeles, California.

KROES, R. L.                ES72
REISS, D.

KROES, R.                   ES72
WILCOX, W.
LAL, R.
VAN DEN BERG, L.

KROSS, D. A.               ED22
RODIER, R.               Pioneer Parachute Co.
MOOG, R.               Martin Marietta Corp.

KROSS, DENNIS A.            ED22
SCHMIDT, ALBERT A.
LEHOCZKY, S. L. ES72
SZOFRAN, F. R.
CHANDRA, D.
WANG, J. G.
Growth Rate Dependence of the Axial Compositional Variations in Bridgman-Growth \( \text{Hg}_1-x\text{Cd}_x\text{Te} \) Crystals. For presentation at the Fall meeting of the American Physical Society, San Francisco, California, November 20-23, 1983.

LEHOCZKY, S. L. ES72
SZOFRAN, F. R.

LEHOCZKY, S. L. ES72
SZOFRAN, F. R.
Further Comments on Segregation During Bridgman Growth of \( \text{Cd}_x\text{Hg}_1-x\text{Te} \). For publication in the Journal of Crystal Growth (Letters), Amsterdam, The Netherlands.

LENNOX, HERBERT M. PD24

LOCKWOOD, M. ES53
WAITE, J. H.
MOORE, T. E.
JOHNSON, J. F. E.
CHAPPELL, C. R.

LOCKWOOD, M. ES53
WAITE, J. H., JR.,
MOORE, T. E.
CHANDLER, M. O. et al.
Mass and Energy Dispersions of Ionospheric Ions Injected into the Magnetosphere Near the Cusp. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

LOGAN, EARL ED42
LIN, SHU HO
ALEXANDER, MARGARET B.
Wakes from Arrays of Buildings. For publication in the Journal of Atmospheric and Oceanic Technology.

LYONS, L. R. ES53
EVANS, D. S.
An Association Between Discrete Aurora and Energetic Particle Boundaries. For publication in the Journal of Geophysical Research.

LYONS, L. R. ES53

LYONS, L. R. ES53

LYONS, L. R. ES53
Electron Energization in the Geomagnetic Tail Current Sheet. For presentation to the American Geophysical Union Spring Meeting and for publication in the EOS, Cincinnati, Ohio, May 14-18, 1984.

LYONS, L. R. ES53
DUSENBERY, P. B.

LYONS, L. R. ES53
A Simple Model for Polar Cap Convection Patterns and Generation of Theta-Aurora. For publication in the Journal of Geophysical Research, Hanover, New Hampshire.
LYONS, L. R.  

LYONS, LAWRENCE R.  

McBRIDE, JAMES E.  
HARRISON, PHILLIP M.,  
Spacelab 1 Vibro-Acoustics. For presentation at the Shuttle Payload Dynamics and Loads Prediction Workshop, JPL, Pasadena, California, January 24-26, 1984.

McCAY, THURMAN D.  
VANZANDT, D. M.  
ESKRIDGE, R. H.,  

McINTYRE, STANLEY D.  
Technology Drivers and Benefits for Advanced OTV Propulsion. For presentation at the OTV Propulsion Issues, LeRC, Cleveland, Ohio, April 3, 1984.

McKANNAN, E. C.  

McNIDER, Robert T.  
JEDLOVEC, GARY  
WILSON, GREGORY  

McPHERSON, W. B.  

MALDONADO, JUAN E.  

MARTIN, WILLIAM R.  
Shuttle-Derived and Heavy Lift Launch Vehicles. For presentation to the Twenty-First Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, Florida, April 24-26, 1984.

MEEGAN, C. A.  
FISHMAN, G. J.  
WILSON, R. B.,  
The Frequency of Weak Gamma-Ray Bursts. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada, on January 8, 1984, and for publication in the AAS Bulletin.

MEEGAN, CHARLES A.  
Detection Efficiency for Weak Bursts. For presentation at the Gamma Burst and Neutron Star Physics Workshop, Stanford University, Stanford, California, July 29-August 3, 1984.

MENDE, S. B.  
SWENSON, G. R.  
CLIFTON, K. S.,  
Preliminary Results of the Atmospheric Emissions Photometric Imaging Experiment. For publication in Science Magazine, Washington, D. C.

MENIETTI, J. D.  
GREEN, JAMES LAUER  
GULKIS, SAM  
SIX, N. FRANK,  
Three Dimensional Ray Tracing of the Jovian Magnetosphere in the Low
Frequency Range. For publication in the Journal of Geophysical Research.

MENIETTI, J. D. ES53
GREEN, J. L.
GULKIS, S.
SIX, N. F.

MENIETTI, J. D. ES53
WINNINGHAM, J. D.
BURCH, J. L.
PETERSON, W. K.
WAITE, J. H., JR.
WEIMER, D. R.
Enhanced Ion Outflows Measured by the DE-1 High Altitude Plasma Instrument in the Dayside Plasmasphere During the Recovery Phase. For publication in the Journal of Geophysical Research, Washington, D.C.

MENIETTI, J. DOUGLAS ES53
GREEN, JAMES L.

MICHEAL, JAMES D. ED15

MICHEL, F. CURTIS ES01
DESSLER, A. J.

MILLER, T. L. ES74
FOWLER, W. W.
Baroclinic Instability at Small Richardson Number. For presentation at the 36th Meeting of the American Physical Society Division of Fluid Dynamics, Houston, Texas, November 20-22, 1983.

MILLER, T. L. ES74
On the Energetics and Non-Hydrostatic Aspects of Symmetric Baroclinic Instability. For publication in the Journal of Atmospheric Sciences.

MILLER, T. L. ED42
ANTAR, B. N.
Three-Dimensional Baroclinic Instability at Small Richardson Number. For presentation at the 37th annual Meeting of the Division of Fluid Dynamics, Providence, Rhode Island, November 18-20, 1984.

MOORE, R. L. ES52
RABIN, D. M.
On the Formation of Magnetic Shear Clues from a Well-Observed Active Region. For presentation at the 164th Meeting of the American Astronomical Society and for publication in the Bulletin of the AAS.

MOORE, THOMAS E. ES53
Polar Wind and Ion Acceleration. For publication in Revs. Geophys. Space Phys., Washington, D.C.

MOORE, T. E. ES53

MOORE, T. E. ES53
WAITE, J. H., JR.
Comment on “O+ Charge Exchange in the Polar Wind” by Barakat and Schunk. For publication in the Journal of Geophysical Research, Washington, D.C.

MOORE, T. E. ES53
CHAPPELL, C. R.
LOCKWOOD, M.
WAITE, J. H.
Superthermal Ion Signatures of Auroral Acceleration. For publication in the Journal of Geophysical Research, Washington, D.C.
MOORE, T.
Upwelling O+ Ions: A Case Study, For presentation at the AGU Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

MORGAN, S. H.
SILBERMAN, E.
KROES, R. L.
REISS, D.
Diffusion Coefficients of TGS (Triglycine Sulfate) and Its Dissociation Products in Aqueous. For presentation at the 50th Meeting of SESAPS, Columbia, SC, and for publication in Bulletin APS, Woodsbury, New York.

MORRIS, DANIEL J. (NAS Fellow) ES62
Monte Carlo Simulation of Atmospheric Gamma-Ray Scattering. For publication in the Proceedings of the Sixth Santa Cruz Summer Workshop in Astronomy and Astrophysics, Santa Cruz, California.

MURPHY, G.
DeANGELO, N.
PICKETT, J.
SHAWHAN, S.
SAMIR, U.
STONE, N.
WRIGHT, K. H., JR.
Elevated Plasma Temperature in the Near Wake of the Shuttle Orbiter. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984.

NAGAI, T.
WAITE, J. H.
GREEN, J. L.
CHAPPELL, C. R.
OLSEN, R. C.
COMFORT, R. H.
First Measurements of Supersonic Polar Wind in the Polar Magnetosphere by DE1/RIMS. For publication in Geophysical Research Letters, Washington, D.C.

NAGAI, T.
HORWITZ, J. L.

ANDERSON, R. R.
CHAPPELL, C. R.
Structure of the Plasmapause from ISEE 1 Low Energy Ion and Plasma Wave Observations. For publication in the Journal of Geophysical Research.

NAUMANN, ROBERT J.

NAUMANN, R. J.
MILLER, T. L.
On the Fluid Dynamics of Crystal Growth from the Vapor in a Cylindrical Ampoule. For presentation at the 37th annual meeting of the Division of Fluid Dynamics, Providence, Rhode Island, November 18-20, 1984.

NESMAN, THOMAS E.

NICHOLAS, DAVID P.

NUNES, A. C., JR.
BAYLESS, E. O., JR.
JONES, C. S., III
MUNAFIO, P. M.
BIDDLE, A. P.
WILSON, W. A.

NURRE, GERALD S.
The Pointing System for Space Telescope.

NURRE, GERALD S. ED12

OLSEN, R. ES53
GALLAGHER, D.
CHAPPELL, C. R.
GREEN, J.
SHAWHAN, S.

OLSEN, R. C. ES53
GALLAGHER, D. L.
CHAPPELL, R.
GREEN, J. L.
SHAWHAN, S.

OLSEN, R. C. ED53
PEDERSEN, A.
DECREAU, P. M. E. (NAS/NRC)
CHAPPELL, C. H.
GREEN, J. L.
WAITE, J. H.
GURNETT, D.
COMFORT, R. H.

OLSEN, R. C. ES53
CHAPPELL, C. R.
Observations of Conical Ion Distributions at 1 RE-Observations from the Acceleration Region. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

OMENYI, SAMUEL N. ES73
HERREN, BLAIR J.
SNYDER, ROBERT S.
The Surface Charge of Quartz as Modified by Surfactants. For publication in Industrial and Engineering Chemistry Fundamentals, Washington, D.C.

OMENYI, SAMUEL N. ES73
HERREN, BLAIR J.
SNYDER, ROBERT S.
SEAMAN, G. V. F.
Comparative Isoetric Ion Adsorption for Minerals. For publication in the Journal of Colloidal and Interface Science.

OWEN, ROBERT B. ES74
JOHNSTON, M. H.
LAL, R. B.

PARNELL, T. A. ES62
BURNETT, T. H.
DAKE, S.

PENN, B. G.
CLEMONS, J. M.
LEDBETTER, F. E., III EH33
DANIELS, J. G.
THOMPSON, L. M.
Effects of Water During Cure on the Interlaminar Shear and Compressive Strengths of a Carbon/Phenolic System. For publication in the SAMPE Quarterly.

PENN, B. G.
CROUSE, D. J. EH33
LEDBETTER, F. E. III
DANIELS, J. G.
CLEMONS, J. M.

PENN, B. G.  
DANIELS, J. G.  
LEDBETTER, F. E., III  
CLEMONS, J. M.  
CROUSE, D. J.

Thermogravimetric Analysis of Silicon Carbide-Silicon Nitride Precursors: Polycarbosilazane Derived from Tris (N-Methylamino) Phenylsilane. For publication in Polymer Communications.

PENN, B. G.  
DANIELS, J. G.  
WHITE, W. T.  
THOMPSON, L. M.  
CLEMONS, J. M.

Preparation of Kevlar Reinforced Neoprene Composites. For publication in the SAMPE Quarterly, Covina, California.

POWELL, LUTHER E.

Space Station Concept Development Group Studies. For presentation at the Thirty-Fifth International Astronautical Federation Congress, Lausanne, Switzerland, October 7-13, 1984.

PRAHARAJ, SARAT C.  
FOSTER, L. D.


PRIEST, C. C.  
WOODCOCK, G. R.

Mission Modes for a Return to the Moon. For presentation to the Second Symposium on Space Industrialization, Huntsville, Alabama, February 13, 1984.

RABIN, DOUGLAS  
MOORE, RONALD L.


RABIN, D. M.  
MOORE, R. L.


RAY, C. D.


REASONER, DAVID L.

Analysis of Electron Spectra Produced by Sepac Electron Beams from Spacelab 1. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

REAVES, JOHN H.


REICHMANN, EDWIN J.

The Sun - Skylab and SMM Observations. For presentation at the IAPP-Dyer Symposium, Nashville, Tennessee, November 18, 1983.
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>REICHHAMM, E.</td>
<td>ES52</td>
<td>Image Data from Ultraviolet Spectrometer and Polarimeter Post Repair of Solar Maximum Mission Satellite.</td>
<td>For presentation at the 1984 American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.</td>
</tr>
<tr>
<td>WEST, E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HENZE, W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORDAN, J. F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESTON, R. A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAMILTON, E. C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIELSEN, E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIELSEN, E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REINLEITNER, L. A.</td>
<td>ES53 (NRC)</td>
<td>Self-Consistent Analysis of Electron Drift Velocity Measurements with STARE and SABRE Systems.</td>
<td>For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.</td>
</tr>
<tr>
<td>NIELSEN, E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REISS, D. A.</td>
<td>ES72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KROES, R. L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDERSON, E. E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KROES, R. L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBERTS, G. O.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNYDER, R. S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHODES, P. H.</td>
<td>ES73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBERTS, G. O.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNYDER, R. S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROBERTS, D. H.</td>
<td>PD01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORGAN, S. H.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

56
TANDBERG-HANSSEN, E.

SCHRAMM, FRED
CHANNELL, JANE (DOD)

SELTZER, SHERMAN M.
WAITES, HENRY B.
NASA/MSFC Ground Experiment for Large Space Structure Control Verification. For presentation at the 1984 ACC Conference, San Diego, California, June 6-8, 1984.

SHACKELFORD, BEN W.
Filament Wound Case Effects on Shuttle Booster Internal Ballistics. For presentation at the 1985 JANNAF Propulsion Meeting, San Diego, California, April 8-13, 1984.

SMALLEY, LARRY L.
Application of Fourier Transforms on a 1/2-Integer Lattice to the Discrete. For publication in Journal of Mathematical Physics, Murray Hill, New Jersey.

SMALLEY, LARRY L.

SMALLEY, LARRY L.
Spectral Resolution of the 4-D Dirac Equation on a Half-Integer Lattice. For publication in the Journal of Mathematical Physics, Murray Hill, New Jersey.

SMALLEY, LARRY L.
Riemann Curvature Tensor in Nonholonomic Coordinates and Non-Riemannian Space-Times. For publication in the International Journal of Theoretical Physics, New York.

SMITH, JAMES E., JR.
FRAZIER, D. O.
KAUKLER, WILLIAM F.
A Redetermination of the Succinonitrile-Water Phase Diagram. For publication in Scripta Metallurgica, Elmsford, New York.

SMITH, JESSE B.
HAGYARD, M. J.
The Correlation of Flare Occurrence with the Observation of Magnetic Shear. For presentation to the SMA Symposium, COSPAR, Graz, Austria, June 25-July 7, 1984.

SMITH, RALPH R.

SMITH, RALPH R.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Paper Title</th>
<th>Conference/Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARRIS, J. MILTON</td>
<td>ES73</td>
<td></td>
</tr>
<tr>
<td>CASE, MARTHA G.</td>
<td>ES73</td>
<td></td>
</tr>
<tr>
<td>STONE, N. H.</td>
<td>ES53</td>
<td></td>
</tr>
<tr>
<td>SAMIR, U.</td>
<td>ES53</td>
<td></td>
</tr>
<tr>
<td>WIGHT, K. H., JR.</td>
<td>ES53</td>
<td></td>
</tr>
<tr>
<td>STURROCK, P. A.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>KAUFMANN, P.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>MOORE, R. L.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>SUuess, S. T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>THOMAS, B. T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>NERNEY, S. F.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>STEINCAMP, JAMES W.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>SUuess, S. T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>WILCOX, J. M.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>HOEKSEMA, J. T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>HENNING, H.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>SUuess, STEVEN T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>SUuess, S. T.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>HILDNER, E.</td>
<td>ES52</td>
<td>Deformation of the Heliospheric Current Sheet. For presentation at the 164th Meeting of the American Astronomical Society and for publication in the Bulletin of the AAS.</td>
</tr>
</tbody>
</table>
SUSS, S. T.  ES52
Large Scale Phenomena in the Heliosphere.
Contributed to IAU Commission 49's

SWALLEY, FRANK E.  PD21
OMV Utilization for Large Observatory
Mission Support. For presentation at the
Rendezvous and Proximity Operations
Workshop, Houston, Texas, October 16-19,
1984.

SWENSON, G. R.  ES53
SHARP, W. E.
(Dept. of Atmospheric and Oceanic Sci.)
A Refinement of Auroral O^+2p Continuity
Theory Using E-Region Data. For presenta-
tion at the Fall Meeting of the American
Geophysical Union, San Francisco, Cali-
fornia, December 5-10, 1983, and for
publication in EOS.

SZOFRAN, F. R., LEHOCZKY, S. L.  ES72
High Temperature Electrical Properties of
HgTe. For presentation at the Fall Meeting
of the American Physical Society, San
Francisco, California, November 20-23,
1983.

SZOFRAN, F. R., LEHOCZKY, S. L.  ES72
A Method for Interface Shape Control
During Bridgman-Type Crystal Growth in
HgCdTe Alloys. For publication in the
Journal of Crystal Growth, Amsterdam.

SZOFRAN, F. R., CHANDRA, D.,
WANG, J. C., COTHRAI, E. K.,
LEHOCZKY, S. L.  ES72
Effect of Growth Parameters on Composi-
tional Variations in Directionally Solidified
HgCdTe Alloys. For publication in the
Journal of Crystal Growth, Amsterdam.

Takahashi, Y.  ES62
EBY, P. B.
PARNELL, T. A.
GREGORY, J. C.
Direct Electron-Pair Method for Energy
Measurement of Very High Energy Cosmic
Ray Iron Group Nuclei. For presentation at
the Spring Meeting of the American Physical
Society, Washington, D. C., April 25-26,
1984.

TANDBERG-HANSSEN, E.  ES01
HENZE, W., JR.
Results from the Ultraviolet Spectrometer
and Polarimeter: Non-Flare Investigations.
For publication in Memorie della Societa
Astronomica Italiana, Italy.

TANDBERG-HANSSEN, EINAR A.  ES01
The Ultraviolet Spectrometer and Polarime-
ter (UVSP). For presentation at the 1984
Fall Meeting of the American Geophysical
Union, San Francisco, California, December
3-7, 1984, and for publication in EOS.

TAYLOR, KENNETH R.  PS05
Opportunities for Commercial Participation
in Materials Research in Space. For presenta-
tion to the Twenty-First Space Congress,
Canaveral Council of Technical Societies,
Cocoa Beach, Florida, April 24-26, 1984.

TELESCO, CHARLES M., et al.  ES63
Ongoing Star Formation in NGC 3310: An
Infrared Perspective. For publication in the

TRUCKS, HOWARD F.  TA81
Space Telescope Maintenance and Refurbish-
ment Program. For presentation at the
National Symposium and Workshop on
Optical Platforms, Huntsville, Alabama, June
TRUCKS, HOWARD F.  
Space Telescope Maintenance. For presentation at the AIAA Conference, Atlanta, Georgia, October 8-9, 1984.

TURNER, GARY F.  
Lockheed Missiles and Space Company, Inc.  
ST 41-D Solar Array Flight Experiment. For presentation to the 21st Space Congress, Cocoa Beach, Florida, April 24, 1984 and for publication in the proceedings.

URBAN, E. W.  
LADNER, D. R.  

VAN ZANDT, DAVID M.  
MCCAY, THURMAN, D.  

VANDERHOFF, J. W. et al.  
KORNFELD, D. M.  
Lehigh University  
Preparation of Large-Particle-Size Monodisperse Latexes in Space: The STS-3, STS-4, STS-6, and STS-7 Mission Results. For publication in Science, Washington, D. C.

VAUGHAN, O. H.  
VONNEGUT, B.  
HUANG, SHI-HONG  
Low Light Level TV Images of Lightning from Space. For publication in the Bulletin of American Meteorology Society, Boston, Massachusetts.

VAUGHAN, O. H., JR.  
Thunderstorm Overflight Program. For presentation to the VII International Conference on Atmospheric Electricity, Albany, New York, June 4-8, 1984.

VAUGHAN, W.  
ROBERTSON, P.  
FICHTL, G.  
WILSON, G.  

VINZ, FRANK L.  

VINZ, FRANK  

VON PRAGENAU, GEORGE L.  
VON TIESENAUSEN, GEORG  
Damping Seals for Turbomachinery. For presentation at the Advanced High Pressure O$_2$/H$_2$ Technology Conference, MSFC, Alabama, June 27-29, 1984.

VON TIESENAUSEN, GEORG  

WAITE, J. H.  
CHAPPELL, C. R.  
WAITE, J. H., JR.  ES53
Meeting Report on Yosemite Conference on Planetary Plasma Environments. For publication in EOS.

WAITE, J. H., JR.  ES53
MOORE, T. E.
BIDDLE, A. P.
CHAPPELL, C. R.
OLSEN, R. C.
Thermal Ion Signatures of Auroral Acceleration Processes. For presentation at the AGU Spring Meeting, Cincinnati, Ohio, May 14-18, 1984, and for publication in EOS, Washington, D. C.

WAITE, J. H., JR.  ES53
NAGAI, T.
JOHNSON, J. F. E.
CHAPPELL, C. R.
BURCH, J. L., et al.

WAITE, J. H., JR.  ES53
CHAPPELL, C. R.

WAITE, J. H., JR.  ES53
DESSLER, A. J.
ISBELL, J. T.

WAITES, HENRY B.
Seltzer, SHERMAN M.

PDOWIAK, THOMAS J.  ES63
CLIFF, K. STUART

WEGRIE, RICHARD D.  EP44
STOLL, ROY

WEISSKOF, M. C.  ES62
RAMSEY, B.
ELSNER, R. F.
WILLIAMS, A. C.
DARBO, W.

WEISSKOF, MARTIN C.  ED62

WEISSKOF, M. C.  ES62

WEST, E. A.  ES52

WILKES, R. J.  ES62
PARNELL, T. A. et al.
Nucleon-Nucleus Interactions from JACEE. For presentation at the Spring Meeting of

WILLIAMS, ALTON . ES62
Atoms on the Surface of Neutron Stars—Intense Magnetic Field Effects. For presentation at the 163rd AAS Meeting in Las Vegas, Nevada, on January 8-11, 1984, and for publication in the AAS Bulletin.

WILLIAMS, ALTON C. . ES62

WILLIAMS, A. C. . ES62
DARBRO, W.
WEISSKOPF, M. C.
ELSNER, R. F.

WILLIAMS, JOHN R. . JA64

WILLS, FRED D. . ES55

WILLS, FRED D. . EH12
Spacelab Molecular Contamination Modeling Predictions. For publication in Applied Optics, Newton Highlands, Massachusetts.

WILSON, GREGORY S. . ED44

WILSON, ROBERT M. . ES52
TEUBER, D. L.
REICHMANN, E. J.
Description of Sunspot Cycles by Orthogonal Functions. For publication in Astronomy and Astrophysics (Main Journal), Meudon, France.

WILSON, ROBERT M. . ES52
REICHMANN, EDWIN J.
TEUBER, DIETER L.

WILSON, ROBERT M. . ES52
RABIN, DOUGLAS
MOORE, RONALD L.
Bimodality of the Solar Cycle. For publication in Science.

WITHEROW, W. K. . ES74
FACEMIRE, BARBARA R.
Optical Studies of a Binary Miscibility Gap System. For publication in the Journal of Colloid and Interface Science.

WRIGHT, K. H. JR. . ES53
STONE, N. H.
SAMIR, U.
A Comparison Between the Interactions of the Space Shuttle and Small, Unmanned Satellites with the Ionosphere. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984.

WU, S. T. . ES01
HU, Y. Q.
NAKAGAWA, Y.
TANDBERG-HANSSSEN, E.
WU, S. T. (UAH) 
CHANG, H. M. (UAH) 
HAGYARD, M. J. 

WYMAN, CHARLES L. 

YARBROUGH, LEONARD S. 
Managing for High Technology Development. For presentation at the Institute of Management Sciences Joint Meeting of Huntsville and Birmingham Groups, Huntsville, Alabama, November 4, 1983.