General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 84. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PAPERS</td>
<td>16</td>
</tr>
<tr>
<td>MSFC CONFERENCE PUBLICATIONS</td>
<td>20</td>
</tr>
<tr>
<td>NASA REFERENCE PUBLICATION</td>
<td>20</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>21</td>
</tr>
<tr>
<td>MSFC PAPERS CLEARED FOR PRESENTATION</td>
<td>38</td>
</tr>
</tbody>
</table>
The Space Processing Applications Rocket Project (SPAR) IX Final Report contains the compilation of the post-flight reports of each of the Principal Investigators (PIs) of the three selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space.

The SPAR project is coordinated and managed by MSFC as part of the Materials Processing in Space (MPS) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters.

This technical memorandum is directed entirely to the payload manifest flown in the ninth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled “Directional Solidification of Magnetic Composites” (Experiment No. 76-22/2, “Directional Solidification of Immiscible Aluminum-Indium Alloys” (Experiment Nos. 76-51/1 and 76-51/2), and “Comparative Alloy Solidification” (Experiment No. 76-36/1).

The development of a bivariate gamma probability distribution and the development of a new discrete wind gust model are both considered original and significant research accomplishments. In 1981, Smith and Adelfang published in the Journal of Spacecraft a new wind gust model based on a four-parameter bivariate gamma distribution. This gust model related gust magnitude and gust length under the assumption of equal shape parameters of the four-parameter bivariate gamma distribution. This assumption
proved to be inadequate to properly describe the wind gust data sample. Since then a five-parameter bivariate gamma distribution having two shape parameters, two location parameters and a correlation parameter has been developed. This more general bivariate gamma distribution reduces to the known four-parameter distribution. The five-parameter distribution gives a better fit to the gust data. The statistical properties of this general bivariate gamma distribution and a hypothesis test have been investigated. Although these developments have come too late in the Shuttle program to be used directly as design criteria for ascent wind gust loads, the new wind gust model has helped to explain the wind profile conditions which cause large dynamic loads. Other potential applications of the newly developed five-parameter bivariate gamma distribution are in the areas of reliability theory, signal noise, and vibration mechanics.

(1) Heat Exchanger Coils: Description of process used to perform these welds, sample test data, recommendations for process improvement.

(2) Weld 56; High-Pressure Fuel Turbo Pump: Description of effort to simulate problem welds, as well as good welds, test data, and conclusions.

This report summarizes one aspect of the work carried out in the Space Science Laboratory of Marshall Space Flight Center under a Technical Exchange Agreement with Eaton Corp. The general aim of this aspect of the program was to investigate the feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. The highest melt temperature achieved by the coil was about 2400°C during melting of Nb-Ge alloys. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particles in their respective matrices. They also contained a considerable amount of entrapped gas bubbles. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil. The structure of the Cu-Fe samples that were fully liquid and solidified while levitated consisted of the fine iron dendrites distributed uniformly in the copper matrix. For Ag-Ni samples, due to the existence of immiscibility gap
in the fully liquid state, the nickel phase had separated into large islands within the silver matrix.

A debate has been going on in government on the subject of "Should government funds be spent on early research and high-risk development of new technology?" Opponents claim that if a product is worth the effort, then private enterprise will invest in it. Proponents claim that we are all beneficiaries of new technology. Today, the answer impinges on doing materials processing and other commercial endeavors in space. Here, we discuss past experience in nurturing new ideas, and find two themes. In the first, the military initiates development of a given technology for national defense, and the marketplace makes use of the technology. In the second, the government supports large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation. NASA has completed advanced research to identify areas of interest. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research. Associates process for growing gallium arsenide crystals in space. Additional technology developments are in the pipeline.

This report summarizes the present understanding of the bellows flow excitation mechanism and of results of a comprehensive test program conducted at MSFC. This, along with other existing test data, is used to refine the analytical model for predicting bellows flow-induced stress. This model includes the effects of an upstream elbow, arbitrary geometry, and multiple plies.

A refined computer code for predicting flow-induced stress is described which allows life prediction if a material S-N diagram is available.

This report includes actual and projected optimum High Speed Machining (HSM) data for producing Shuttle External Tank (ET) Liquid Hydrogen Barrel Panels which are aluminum alloy 2219-T87. The data includes various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods. The results of a study by the Lockheed Missiles and Space Company for the George C. Marshall Space Flight Center under Contract NAS8-34508 are included.

The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45° of (001).

Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation.

Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.
The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) Single phase fresh sheep and human erythrocytes. (2) Single phase fixed sheep and human erythrocytes. (3) Electrophoretically enhanced single phase fresh sheep and human erythrocytes.

The Marshall Space Flight Center conducts research programs in atmospheric science, materials processing in space, and space sciences as well as technology programs in space power, materials processes, and space structures. This Marshall Space Flight Center 1983 Annual Report on Research and Technology contains precises of the more significant scientific and technical results obtained during FY 1983.

This task was directed toward demonstrating the feasibility of using a scrim-reinforced, single metallized, 4-mil Tedlar film as a replacement for the Teflon coated Beta-cloth/single metallized 3-mil Kapton film presently used as the protective cover/light block for multilayer insulation (MLI) on the Orbiter, Spacelab, and other space applications. The proposed Tedlar concept will be lighter and potentially lower in cost. Thermal analysis with the proposed concept was much simpler than with the present system. Tests have already demonstrated that white Tedlar has low alpha (adsorption) degradation in space from U.V. This study indicated that proposed concept was 4400 percent cheaper with nominal weight savings of 50 percent.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients. A condensed version of this study is to be published in Solar Physics.

The technique described in this report has facilitated the more reproducible fabrication of electromagnetic levitation coils. A split mandrel has been developed upon which the coil is wound. After fabrication the mandrel can be disassembled to remove it from the coil. Previously, it required a full day to fabricate a levitation coil. The success rate for a functional coil was still only 50 percent. With the new technique described in this note about eight coils may be completed in one day and 95 percent of them are good levitation coils.
acoustic absorbers unnecessary. The study shows a tenfold reduction of flow induced stresses which are rather high in the present design. Relaxed tolerances, fewer elements, and better maintenance are offered. The study was conducted under a center director discretionary fund assignment.

The New MSFC Solar Vector Magnetograph
Center Director's Discretionary Fund, Final Report. M. J. Hagyard, E. A. West, and N. P. Cumings, Space Science Laboratory.

The unique MSFC solar vector magnetograph allows measurements of all three components of the Sun's photospheric magnetic field over a wide field-of-view (≈ 6×6 arc min) with spatial resolution determined by a 2.7×2.7 arc second pixel size. Supported by two Center Director's Discretionary Fund Projects, this system has recently undergone extensive modifications to improve its sensitivity and temporal response. The modifications included: replacing an SEC vidicon detector with a solid-state CCD camera; replacing the original digital logic circuitry with an electronic controller and a computer to provide complete, programmable control over the entire operation of the magnetograph; and installing a new polarimeter which consists of a single electro-optical modulator coupled with interchangeable waveplates mounted on a rotating assembly. In this report, we describe the new system, and present results of calibrations and tests that have been performed. Initial observations of solar magnetic fields with the new magnetograph are presented; they indicate that the system is an order of magnitude more sensitive than the original one and has a much higher temporal response (by a factor of ≈30). These new capabilities enhance our continued research in solar vector magnetic fields and our support of NASA's solar missions.

The nickel-base superalloy MAR-M246(Hf) was studied to determine the factors affecting basic morphology and fatigue properties. Of particular interest was the degradation of fatigue properties with deviation from the [001] growth orientation. Examination of directionally solidified samples showed a dependence of carbide shape and interdendritic segregation on growth rate. Heat treatment studies focused on the γα' prime structure, determining that it reaches maximum growth after twenty-four hours but its size and stability depends on the temperature of the treatment. Fatigue test specimens were oriented crystallographically in the failed and unfailed regions and found to have rotated their orientation during the testing if they were located a significant distance from [001]. This would place increased strain on the crystal and precipitate early failure.

The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented in this work. This program is part of the major task of developing the Advanced X-Ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions have been drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure is studied by X-ray, visual, and mechanical techniques. These techniques and their results are described in this volume.

This report traces the evolution of the ideas of tether applications in space from its origin in the last century past a dormant period of sixty-five years to the mid-seventies. At that time as a
consequence of major revival efforts, NASA entered into serious investigations of the theoretical and practical feasibility of a large number of tethered concepts in space. These efforts culminated in the establishment of the Tethered Satellite System Project now at NASA in the advanced development phase.

The report describes NASA's 1983 extensive planning efforts, first, through a Tether Applications in Space Workshop which generated additional concepts and provided overall assessments and recommendations to NASA, and then through a NASA inter-center Tether Applications in Space Task Group which generated a four-year program plan in the areas of further studies, technology, work and science and applications of tethers in space.

Finally, the report offers an outlook into the future of tether applications that may approach some of the goals of the early visionaries.

TM-82572 January 1984

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-9 launch time on November 28, 1983, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimisphere measured vertical wind profiles is given in this report. The final meteorological tape, which consists of wind and thermodynamic parameters versus altitude, for STS-9 vehicle ascent has been constructed. The STS-9 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 561-81-22-368 with Johnson Space Center.

TM-82573 March 1984

This report presents the scientific information produced under the Center Director's Discretionary Fund Task 82-1, "Charge Injection Device Usage in Stellar Tracking Technology." The development of an improved 256 x 256 array Charge Injection Device (CID) and the configuration of a MSFC laboratory to evaluate the improved CID and other solid state stellar sensors are detailed. Detailed descriptions of new interpolation algorithms to determine stellar position and experimental testing of these algorithms with simulated and actual stellar data are provided. Data analysis of contractor-supplied stellar data was performed at MSFC and the accuracy capabilities of the various algorithms were determined and described.

The report shows the improved CID, coupled with the new interpolation algorithms, to be a sensor that is more reliable, more accurate, and capable of satisfying stellar sensor needs for the next two decades.

TM-82574 February 1984

Recent studies using sounding data derived from VAS radiance measurements have projected a hope for increased time and space resolution of the mesoscale environment. Working with this new data, however, presents some problems normally not encountered when using conventional measurements because of the irregular spacing of the data, biases in the data, as well as errors due to cloud contaminated measurements. This report addresses these problems and presents an objective analysis technique which utilizes LFM guess fields to produce a consistent four-dimensional data set which adequately describes the mesoscale environment over a large area. Parameters derived from this data set can be useful in a diagnostic mode by both the operational and research communities.

TM-82575 March 1984
Three mesoscale sounding data sets from the VISSR Atmospheric Sounder (VAS) produced using different retrieval techniques have been evaluated using corresponding ground truth rawinsonde data for 6-7 March 1982. Mean, standard deviations, and RMS differences between the satellite and rawinsonde parameters were calculated over gridded fields in central Texas and Oklahoma. Despite procedures to reduce known time and space discrepancies, large differences exist between each satellite data set and the ground truth data. Biases in the satellite temperature and moisture profiles seem extremely dependent upon the 3-dimensional structure of the atmosphere and range from 1° to 3°C for temperature and 3° to 6°C for dew-point temperature. Atmospheric gradients of basic and derived parameters determined from the VAS data sets produced an adequate representation of the mesoscale environment but their magnitudes were often reduced by 30 to 50 percent.

TM-82577 March 1984

Investigation of Thermospheric Winds Relative to Space Station Orbital Altitudes.
Michael Susko. Systems Dynamics Laboratory. N84-25220

An investigation of thermospheric winds, relative to the space station orbital altitudes, has been made in order to provide information that may be useful in an environmental disturbance assessment. Current plans are for this low Earth orbiting facility to orbit at an inclination of 28.5 deg. The orbital altitudes have not yet been defined due to the evolutionary configuration of the Space Station. The upper and lower bounds of the orbital altitudes will be based on constraints set by the drag and expected orbital decay and delivery altitude capability of the Shuttle. It is estimated that the orbital altitude will be on the order of 500 km. This report deals with neutral winds in the region from about 80 to 600 km which have been derived from satellite drag data, Fabry-Perot interferometers, sounding rockets, ground-based optical Doppler techniques, incoherent scatter radar measurements from Millstone Hill combined with the mass spectrometer and lithium trail neutral wind measurements. The equations of motion of the low Earth orbiting facility are also discussed in this report.

TM-82578 April 1984

The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space.

The SPAR project is coordinated and managed by MSFC as part of the Materials Processing in Space (MPS) program of the Office of Space and Terrestrial Applications (OSTA) of NASA Headquarters.

This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled “Glass Formation Experiment” SPAR 74-42/1R, “Glass Fining Experiment in Low-Gravity” SPAR 77-13/1, and “Dynamics of Liquid Bubbles” SPAR Experiment 77-18/2.

TM-82579 April 1984

Generally, attempts to solidify immiscible mixtures to make binary alloys, in-situ, yield poorly dispersed composites. By and large, the situation is more pronounced for hypermonotectic compositions than for either monotectic or hypomonotectic solutions. There is considerable interest among metallurgists to understand processes causing liquid-liquid and solid-liquid phase separations during monotectic alloy solidification. Knowledge of such dynamics must precede accurate predictability of the behaviors of solidifying
metallic systems and control of their microstructure.

If a homogeneous melt is cooled into an immiscible region, the newly formed second phase will generally have a density different from the parent phase, and will separate readily by sedimentation. Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: (1) critical-point wetting and spreading, and (2) thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. Considerable work has been done using neutrally buoyant systems, but such systems are generally neutrally buoyant at only one temperature. Therefore, in order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses.

Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth, spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

Finally, computer models developed from the transparent model studies will be quite helpful when applied to existing metallic specimens already prepared in low gravity. Additional metallic samples solidified in the MSFC drop tower will test the accuracy of predictions based on such studies.
years. The following topics are discussed: (1) LSC Configuration, (2) LSC Usage, (3) LSC Induced Pyroshock, (4) Simulated Pyrotechnic Testing, (5) Actual Pyrotechnic Testing, (6) Data Collection Methods, (7) Data Analysis Techniques, (8) Shock Reduction Methods, and (9) Design Criteria. Although no new discoveries have been made in LSC research, charge shapes have been improved to allow better cutting performance, testing instrumentation has been refined, and some new explosives, for use in LSC, have been formulated. However, little progress has been made in LSC induced pyroshock.

Sensor data for two representative starfields were processed by an adaptive shape-seeking version of the Fc-V algorithm with good results. Also, some newly proposed cluster validity measures were evaluated, but not found especially useful to this application. Recommendations are given for two system configurations worthy of additional study.

TM-82587 June 1984

Results of the ASTRO-1 Preliminary Design Review coupled loads analysis are presented. M6.0Y Generic Shuttle mathematical models were used. Internal accelerations, interface force, relative displacements, and net c.g. accelerations were recovered for two ASTRO-1 payloads in tandem configuration. Twenty-seven load cases were computed and summarized. Load exceedences were found and recommendations made.

TM-86451 June 1984

Motion pictures have been taken at night by astronauts on the space shuttle showing lightning discharges that spread horizontally at speeds of 10^5 m/sec$^{-1}$ for distances over 60 km. Tape recordings have been made of the accompanying optical pulses detected with a photocell optical system. The observations show that lightning is often a mesoscale phenomena that can convey large amounts of electric charge to earth from an extensive cloud system via a cloud-to-ground discharge.

TM-86452 May 1984
Dielectric Cure Monitoring: Preliminary Studies. Benjamin E. Goldberg and Marie Louise Semmel. Materials and Processes Laboratory.

Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure
monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water adsorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

An additional conductivity related term has been indicated for the dielectric permittivity, e'. This term, heretofore unreported, appears to have significance for high conductivity epoxy and phenolic composites. Previous work on dielectric cure monitoring has always been performed on a parallel plate electrode system; this type of system appears only marginally compatible with epoxy and phenolic composites.

TM-86453 June 1984

This report discusses the results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

TM-86454 July 1984
Radial SI Latches Vibration Test Data Review. Phillip M. Harrison and James Lee Smith, Systems Dynamics Laboratory.

Dynamic testing of the Space Telescope Scientific Instrument Radial Latches was performed as specified by the designated test criteria. No structural failures were observed during the test. The alignment stability of the instrument simulator was within required tolerances after testing. Particulates were discovered around the latch bases, after testing, due to wearing at the “B” and “C” latch interface surfaces. This report covers criteria derivation, testing, and test results.

TM-86455 July 1984

Two sets of observations from a NASA U-2 airplane flying at approximately 20 km altitude over nocturnal thunderstorms are reported. Photographs show frequent lightning activity in the upper part of the cloud. In some cases, only the diffuse illumination produced by the lightning can be seen. In other cases unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels, accidentally placed on the film during transport of the film in the camera, indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that which has been observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system.

Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events, such as dart leaders, which radiate light first from a location within the cloud and later from outside (beneath) the cloud are consistent with the predicted modification of optical lightning signals by clouds as given by Thomason and Krider [1]. As a result, it appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the
cloud-to-ground flashes studied. If confirmed by further studies as a regularly identifiable occurrence, the pulse pairs together with other criteria, could form the basis for the reliable identification of ground strokes from a satellite by the use of an optical detector alone.

It has been found unexpectedly that a multitude of weak lightning channels commonly exists in the clear air above or around cloud tops. This indicates that lightning is capable of introducing chemical species, ions, and space charge directly into the upper troposphere and lower stratosphere.

TM-86456 August 1984

The object of this investigation was to evaluate Vespel for potential application on the Solid Rocket Booster to replace all-metal deformed self-locking nuts and anchor nuts and be used as self-locking elements for bolts and screws. The Vespel self-locking elements were tested for prevailing torque retention at room temperature, after heating to 450°F and exposure for 3 hr, breakaway torque at 450°F and for vibration at a level consistent with the maximum expected on the SRB at lift-off and reentry.

The investigation revealed Vespel has properties that can provide a self-locking capability for threaded fasteners up to 450°F and it can be used in nuts and anchor nuts for installation on the SRB. Vespel elements in bolts did not meet all our SRB requirements for reuse, however, we have defined a design for Vespel elements in nuts/anchor nuts that fully meets all requirements.

It is recommended that No. 10, 1/4 in. and 5/16 in. nuts/anchor nuts be procured for use on the SRB. This system will eliminate the galling problems now encountered and achieve a much higher reuse life than the present deformed nut design.

TM-86457 August 1984

This report describes machine vision research at Marshall Space Flight Center which has potential benefit for the NASA Space Station program and its associated Orbital Maneuvering Vehicle (OMV). Initial operation of OMV for orbital assembly, docking, and servicing will be manually controlled from the ground by means of an on-board TV camera. These orbital operations may later be accomplished autonomously by machine vision techniques which use the TV camera as a sensing device. Classical machine vision techniques are described in this report. An alternate method was developed and is described which employs a syntactic pattern recognition scheme. It has the potential for substantial reduction of computing and data storage requirements in comparison to the Two-Dimensional Fast Fourier Transform (2D FFT) image analysis. The method embodies powerful heuristic pattern recognition capability by identifying image shapes such as elongation, symmetry, number of appendages, and the relative length of appendages.

TM-86458 July 1984

Sunspot records have been systematically maintained, with the knowledge that an 11-year average period exists, since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle 8 through the present. On the basis of cycles 8 through 20, we have used various combinations of sine curves to approximate the observed R_{MAX} values (where R_{MAX} is the smoothed sunspot number at cycle maximum). We find that a three-component sinusoidal function, having an 11-cycle and a 2-cycle variation on a 90-cycle periodicity, yields computed R_{MAX} values which fit, reasonably well, observed R_{MAX} values for
the modern sunspot cycles. Extrapolation of the empirical function forward in time allows us to project values of R_{MAX} for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5 and to that predicted earlier by Sargent [64] - 154. For cycle 22, the function projects a value of about 107. Linear regressions identified in Wilson [44] have been applied to cycle 22, yielding the result that it will probably be a long-period cycle (cycle duration > 132 months). A major feature of this report is an extensive bibliography on techniques used to estimate the time-dependent behavior of sunspot cycles.

TM-86459 August 1984

A carbon dioxide laser experiment facility was constructed to investigate the problems in using a laser beam to zone refine semiconductor and metal crystals. The hardware includes a computer to control scan mirrors and stepper motors to provide a variety of melt zone patterns. The equipment and its operating procedures are described.

TM-86460 September 1984
Natural Environment Design Criteria for the Space Station Definition and Preliminary Design (First Revision). William W. Vaughan. Systems Dynamics Laboratory.

This document provides the natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition and preliminary design studies. It addresses the atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants, etc., and is intended to enable all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements.

TM-86461 August 1984
Induced Environment Contamination Monitor – Preliminary Results from the Space-lab 1 Flight. Edited by E. R. Miller. Space Science Laboratory.

The STS-9/Induced Environment Contamination Monitor (IECM) mission is briefly described. Preliminary results and analyses are given for each of the 10 instruments comprising the IECM. The final section presents a summary of the major results.

TM-86462 July 1984

As a part of the investigation of the control system failure on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, a study was undertaken to evaluate the techroll seal materials properties under severe flight environment conditions.

This study evaluated the materials utilized in the techroll seal for possible failure modes. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test.

These studies indicate that if the seal failed due to a materials deficiency, the most likely mode was excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could have been a contributing factor.

TM-86463 August 1984

Effects of LEO atomic oxygen have been measured on a variety of spacecraft materials which obtained exposure on STS-5. Material degradation dependency on temperature was found in one material. Of the five paints flown,
only S13GLO was unaffected. Generally, the
glossy paints became Lambertian and the diffuse
coatings improved. Scanning electron microscope
examinations indicated removal of urethane and
epoxy paint binder materials. Reaction products
were evident on the surfaces of Z302 paint and
Mylar. Thin films showed thickness losses ranging
from negligible loss in Teflon to considerable loss
in Mylar and Kapton. Glossy films such as black
Kapton and white Tedlar became diffuse. Kevlar
29 rope lost tensile strength and silver solar cell
interconnect material oxidized. Oxidation on the
backside of an elevated silver specimen indicated
that reflections of oxygen atoms were occurring
and that reflecting surfaces, probably Kapton,
were not fully accommodating the incident
atoms.

TM-86464 August 1984
High-Pressure Hydrogen Testing of Single
Crystal Superalloys for Advanced Rocket
Engine Turbopump Turbine Blades. Wendy
S. Alter, Richard A. Parr, Dr. Mary H.
Johnston, and Joseph P. Strizak. Materials
and Processes Laboratory.

A screening program determined the effects
of high-pressure hydrogen on selected candidate
materials for advanced single crystal turbine blade
applications. The alloys chosen for the investiga-
tion were CM SX-2, CM SX-4C, Rene N-4, and
PWA 1480. Testing was carried out in hydrogen
and helium at 34 MPa and room temperature,
with both notched and unnotched single crystal
specimens. Results show a significant variation in
susceptibility to Hydrogen Environment
Embrittlement (HEE) among the four alloys and
a marked difference in fracture topography
between hydrogen and helium environment
specimens.

TM-86465 July 1984
Payload Crew Training Complex Simulation
Engineer's Handbook. Dr. David L. Ship-
man. Systems Analysis and Integration
Laboratory.

The Simulation Engineer's Handbook is a
guide for new engineers assigned to Experiment
Simulation and a reference for engineers
previously assigned. The experiment simulation
process, development of experiment simulator
requirements, development of experiment simu-
lator hardware and software, and the verification
of experiment simulators are discussed. The
training required for experiment simulation is
extensive and is only referenced in the handbook.

TM-86466 September 1984
A Review of Micrometeoroid Flux Measure-
ments and Models for Low Orbital Altitudes
of the Space Station. Michael Susko. Sys-
tems Dynamics Laboratory.

A review of meteoroid flux measurements
and models for low orbital altitudes of the Space
Station has been made in order to provide
information that may be useful in design studies
and laboratory hypervelocity impact tests which
simulate micrometeoroids in space for design of
the main wall of the Space Station. This report
deals with the meteoroid flux mass model, the
defocusing and shielding factors that affect the
model, the probability of meteoroid penetration
of the main wall of a Space Station. Whipple
(1947) suggested a meteoroid bumper, a thin
shield around the spacecraft at some distance
from the wall, as an effective device for reducing
penetration, which has been discussed in this
report. The equations of the probability of
meteoroid penetration, the average annual cumu-
lative total flux, \(\phi \), and the equations for the
thickness of the main wall and the bumper are
presented in this report.

TM-86467 September 1984
Real-Time Solar Magnetograph Operation
Caroline Wang. Space Science Laboratory.

This document presents the Real-Time Solar
Magnetograph (RTSM) Operation system
software design on PDP11/23+ and the User's
Guide.

RTSM operation software is for Real-Time
Instrumentation Control, data collection and data
management.

The data will be used for vector analysis,
plotting or graphics display. The processed data
can then be easily compared with solar data from other sources, such as the Solar Maximum Mission (SMM).

This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.

This report is a review of observations and studies of solar magnetic fields that were carried out during the period of the Solar Maximum Year (SMY), January 1980 to June 1981, with the goal of providing an overview of what was learned about solar magnetic fields during the SMY. The review covers the subjects of the relationship between solar magnetic fields and flares, the role of magnetic fields in the sunspot phenomenon, the magnetic-canopy structure overlying the supergranular network as well as the turbulent magnetic fields within the network, the fields within the polar crown prominences, and the solar magnetic cycle.
NA€A TECHNICAL PAPERS

TP-2258 July 1983
Space Shuttle Exhaust Cloud Properties.
B. J. Anderson and V. W. Keller. Systems
Dynamics Laboratory. N84-14606
A data base describing the properties of the
exhaust cloud produced by the launch of the
Space Transportation System and the acidic fall-
out observed after each of the first four launches
was assembled from a series of ground and
aircraft based measurements made during the
launches of STS 2, 3, and 4. Additional data were
obtained from ground-based measurements during
firings of the 6.4 percent model of the Solid
Rocket Booster at the Marshall Center. Analysis
indicates that the acidic fallout is produced by
atomization of the deluge water spray by the
rocket exhaust and deposited downwind.
Aircraft measurements in the STS-3 ground cloud
showed an insignificant number of ice nuclei.
Although no measurements were made in the
column cloud, the possibility of inadvertent
weather modification caused by the interaction
of ice nuclei with natural clouds appears remote.

TP-2263 September 1983
Liquid Management in Low-Gravity Using
Baffled Rotating Containers. Roger F. Gans.
Systems Dynamics Laboratory. N84-15427
Possible static configurations of liquids in
rotating cylindrical containers with baffles evenly
spaced in the axial direction are found. The force
balance is among surface tension, centrifugal
force and gravity. Two “instabilities” are found
in this parameter space: type I is the inability of
the liquid to form an interface attached to the
baffles; type II is the inability for multi-baffled
configurations to sustain interfaces between each
pair of baffles. The type I analysis is confirmed
through a laboratory based equipment. Applications
to orbiting containers are discussed.

TP-2264 September 1983
The Generalized Euler-Mascheroni Con-
Systems Dynamics Laboratory. N84-15880
Methods for evaluating the Euler-Mascheroni
constants which appear in the Laurent expansion
of Reimann zeta function about Z=1 are pre-
presented. The first 32 of these numbers are listed.
16

TP-2295 January 1984
Ultra-High Molecular Weight Silphenylene-
Siloxane Polymers. W. J. Patterson, N. H.
Hundley, and L. M. Ludwick. Materials and
Processes Laboratory. N84-19564
Silphenylene-siloxane copolymers with mol-
ecular weights above one million were prepared
using a two-stage polymerization technique. The
technique was successfully scaled up to produce
50 grams of this high polymer in a single run.
The reactive monomer approach was also inves-
tigated using the following aminosilanes: bis-
(dimethylamino)dimethylsilane, N, N-bis(pyrrro-
lidinyl)dimethylsilane and N, N-bis (gamma-
butyrolactam)dimethylsilane. Thermal analyses
were performed in both air and nitrogen. The
experimental polymers decomposed at 540° to
562°C, as opposed to 408° to 426°C for com-
mercial silicones. Differential scanning calorim-
etry showed a glass transition (Tg) at -50° to
-55°C for the silphenylene-siloxane copolymer
while the commercial silicones had Tg's at -96°
to -112°C.

TP-2296 December 1983
Automatic Rendezvous and Docking: A
Parametric Study. Richard Dabney. Systems
Dynamics Laboratory. N84-23677
A technique for achieving autonomous ren-
dezvous and docking of two orbiting space
vehicles is described. Results of a digital computer
simulation of the technique are presented and
used to evaluate its performance under a wide
variety of conditions, including docking with
tumbling spacecraft. The interrelationships
between initial range, tumbling rates, fuel con-
sumption, and time requirements are explored;
factors which limit performance are identified
and beneficial modifications proposed.

TP-2314 March 1984
A Spatial Model of Wind Shear and Turbu-
ulence for Flight Simulation. C. Warren
Campbell. Systems Dynamics Laboratory.
N84-24044
A three-dimensional model which combines
measurements of wind shear in the real atmos-
phere with three-dimensional Monte Carlo
simulated turbulence was developed. The
measurement of three-dimensional wind shear is a recent development. Measurements were made on a rather coarse (~200 m) grid scale so that high frequency, short length scale turbulence information was not included. Some of the missing frequencies are important to aircraft response and hence for flight simulation. The missing turbulence must be added to the wind shear measurements. The spatial model adds three-dimensional, Monte Carlo simulated turbulence conforming to the von Karman model. The turbulence was generated in the frequency domain and transformed to the space domain using Fast Fourier Transform techniques. The resulting turbulence is three-dimensional and contains lateral and vertical as well as longitudinal correlations associated with isotropic turbulence. The resulting Gaussian, isotropic turbulence is multiplied by a spatially varying gust intensity and added to the wind shear data set winds. The resulting simulated wind field is nonisotropic, non-Gaussian, and nonlinear as are winds in the real atmosphere. Previous turbulence simulations were either one-dimensional or accounted for two- or three-dimensionality in an artificial way. With the present model, the wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated. The inclusion of three-dimensional variation of winds and turbulence is believed to be a significant advance over previous wind simulation models.

TP-2315 February 1984

Shock response spectra data from flight certification tests were analyzed to determine envelope variation with respect to mean values in each axis. An overall variation of ±8.61 dB or 169 percent exists for the data. This large variation may be attributed to one or more of the following:

(1) Instrumentation Problems may exist.

(2) Variations in the source charge (blasting caps) such as shape or explosive load may exist.

(3) Two blasting caps were used to excite the pyrotechnic plate tester. Delay time between charge firings may have varied.

The cause or causes of the variations need to be identified and researched to prevent future pyroshock problems.

TP-2323 April 1984

A major objective of NASA's Spacelab is to exploit the microgravity environment of an orbiting vehicle for science and technology. There are many fundamental fluid dynamics experiments and materials processing studies involving fluid motions which can only achieve their full potential in a low-gravity environment. The many constraints and high costs of space experimentation mean that quantitative and detailed scientific and engineering design studies should be performed before proceeding to the construction of flight apparatus. However, for experiments involving fluid dynamics, such studies are not easily performed. Analytical methods are severely limited in their range of applicability by fundamental mathematical difficulties. Experimental measurement cannot, in principle, be performed until the apparatus is built and flown, but even laboratory analogs can present substantial difficulties to a detailed measurement program. The solution to the above difficulties can often be found in numerical modeling. Recent advances in numerical modeling methods mean that accurate numerical models for many fluid flow problems can now be developed in a systematic manner, and the continued improvement in computer hardware means that these models can be run in a relatively short time. In particular, models of non-turbulent, incompressible fluid flows in simple geometries can be developed to provide accurate and detailed data.

Numerical methods are used to design a spherical baroclinic flow model experiment of the large-scale atmosphere flow for Spacelab.
The dielectric simulation of radial gravity is only dominant in a low-gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low-gravity environment.

Two- and three-dimensional finite-difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time-stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal at the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time-dependent coordinate transformation is used to make this interface a coordinate surface.

On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties have been used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters (e.g., \(R_{\text{MIN}} \), \(R_{\text{MAX}} \), ASC, DES, etc.). The resultant "schematic" sunspot cycle has been contrasted with the "mean" sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurrence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-\(R_{\text{MAX}} \) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Further, sunspot cycles denoted HIGH-\(R_{\text{MAX}} \) usually are SHORT-PERIOD cycles and those denoted LOW-\(R_{\text{MAX}} \) usually are LONG-PERIOD cycles. Linear regression analyses have been performed comparing late cycle parameters with early cycle parameters and solar cycle number (SCN), and the early occurring cycle parameters \(R_{\text{MIN}} \), \(\sum_{t=0}^{24} R_z(t) \), especially the latter two, can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both \(R_{\text{MIN}} \) and \(R_{\text{MAX}} \) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations have also been obtained for several measures of solar activity — \(R_A \), \(R_Z \) (now \(R_1 \)), \(R_{13} \), \(F_{2800} \), and \(f'_{13} \) on the basis of provisional and final values.

"Magnetohydrodynamic (MHD) Power Generation" is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

A recent tendency in technical literature has been to ignore the relationship of the DFT to the real world. Rather the DFT has become an end unto itself. This attitude is somewhat surprising since the DFT's reason for existence is its relationship to the real, i.e., continuous, world. One-, two-, and three-dimensiona... DFTs and geometric interpretations of their periodicities...
are presented. These operators are examined in light of their relationship with the two-sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. These symmetries are examined in detail for the one-, two-, and three-dimensional cases. Extension to higher dimensions is straightforward.

TP-2337 February 1984

The Space Telescope (ST) will be subjected to charged particle strikes in its space environment. ST's onboard Fine Guidance Sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate "spurious" photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope.

This paper presents a stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts.

The model which has been programmed allows for easy adaptation to a wide range of particles and different parameters for the phototube of the multiplier.

The probability density functions for photon noise caused by protons, alpha particles, and carbon nuclei were generated using thousands of simulated strikes. These distributions will be used as part of an overall ST dynamics simulation.

The sensitivity of the density function to changes in the window parameters has also been investigated.

TP-2377 August 1984
Development of In-Situ Stiffness Properties for Shuttle Booster Filament Wound Case. V. Verderame. Systems Dynamics Laboratory.

Subscale tests were extensively used to develop a data base on elastic properties of graphite-epoxy wound pressure vessels. Scaling phenomena were observed to influence biaxial strains. Causes for scaling are proposed and lamina models with scaling factors are presented.
NASA CONFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Publication Code</th>
<th>Date</th>
<th>Title</th>
<th>Editors/Authors</th>
<th>Institution</th>
</tr>
</thead>
</table>

NASA REFERENCE PUBLICATION

<table>
<thead>
<tr>
<th>Publication Code</th>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
</table>
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-3751 August 1983

CR-3752 October 1983

CR-3766 May 20, 1983

CR-3771 October 10, 1983

CR-3778 October 3, 1983

CR-3787 December 1983

CR-3812 June 1984

CR-3817 June 1984

CR-3819 June 1983

CR-3820 June 1983

CR-3826 July 1984

CR-3835 May 1984

CR-170873 September 1983
Teleoperator Maneuvering System – Mark II Propulsion Module Study. NASA8-34581. Martin Marietta. X84-10015

CR-170874 September 1983
Teleoperator Maneuvering System – Mark II Propulsion Module Study, Appendices. NASA8-34581. Martin Marietta. X84-10016

CR-170875 August 1983

CR-170876 February 15, 1983
CR-170877 August 1983

CR-170878 September 20, 1983

CR-170879 July 1983
NDE Detectability of Fatigue Type Cracks in High-Strength Alloys. NAS8-34425. Martin Marietta Corp. N83-36179

CR-170880 August 1983
Control of Array Systems. NAS8-34621. The Charles Stark Draper Laboratory, Inc. N84-70191

CR-170881 August 1979

CR-170882 March 1980
Verification of the SRB Motor Case Pin Retainer Band TPS. NAS8-32982. Lockheed Missiles and Space Co. X83-10337

CR-170883 June 1980
Results of Tests on a Specimen of the SRB Aft Skirt Heat Shield Curtain in the MSFC LRLF. NAS8-32982. Lockheed Missiles and Space Co. X83-10338

CR-170884 July 1979

CR-170885 November 1979
STB TPS Closeout Materials Characterization. NAS8-32982. Lockheed Missiles and Space Co. X83-10339

CR-170886 January 1982
Study of NSI and Related Cable Performance During Tests Performed in the NASA Hot Gas Facility. NAS8-32982. Lockheed Missiles and Space Co. X83-10350

CR-170887 February 1982
SRB Attach Ring Phenolic TPS Fishtail Seal Evaluation Tests. NAS8-32982. Lockheed Missiles and Space Co. X83-1049

CR-170888 February 1982
Results of Tests of the SRB Aft Skirt Heat Shield Curtain in the MSFC Hot Gas Facility. NAS8-32982. Lockheed Missiles and Space Co. X83-10340

CR-170889 February 22, 1982
Results of Variable Enthalpy Tests of CPR-488 “Tip” Panels in MSFC Hot Gas Facility. NAS8-32982. Lockheed Missiles and Space Co. X83-10343

CR-170890 June 30, 1982
Results of Tests of KSNA and a Revised Formulation of EPDM/Cork Patch Material in MSFC Hot Gas Facility. NAS8-32982. Lockheed Missiles and Space Co. X83-10344

CR-170891 June 30, 1982
Results of Tests of MTA-2 TPS on the SRB Hold-Down Bolt Blast Container. NAS8-32982. Lockheed Missiles and Space Co. X83-10341

CR-170892 August 3, 1982
Results of Test of “Insta-Foam” Thermal Protection System (TPS) Material for Protection of Equipment Inside the SRB Aft Skirt. NAS8-32982. Lockheed Missiles and Space Co. X83-10348

CR-170893 August 6, 1982
Results of Tests of Weathered KSNA Closeout Material in the MSFC Hot Gas Facility. NAS8-32982. Lockheed Missiles and Space Co. X83-10345
CR-170894 October 11, 1982
Evaluation of SRB Phenolic TPS Material
Made by an Alternate Vendor. NAS8-32982.
Lockheed Missiles and Space Co.
X83-10346

CR-170895 September 27, 1983
Feasibility Demonstration of Booster Cross-
Over System for 3½ Inch SRB/MLP Frangible
Nut. NAS8-34651. Space Ordnance
Systems.
N84-10182

CR-170896 October 1983
Numerical Analysis of Ullage Gas Flow and
Heat Transfer in the LOX Tank of Space
Shuttle, Volume 1: Test Cases and Results.
NAS8-34940. CHAM of North America,
Inc.
X84-71302

CR-170897 October 1983
Numerical Analysis of Ullage Gas Flow and
Heat Transfer in the LOX Tank of Space
Shuttle, Volume 1A: Appendix to Volume
1. NAS8-34940. CHAM Of North America,
Inc.
X84-71302

CR-170898 October 1983
Numerical Analysis of Ullage Gas Flow and
Heat Transfer in the LOX Tank of Space
Shuttle, Volume 2: Computer Printouts.
NAS8-34940. CHAM OF North America,
Inc.
X84-71304

CR-170899 September 30, 1983
Molecular Contamination Math Model Sup-
port. NAS8-34945. Martin Marietta Denver
Aerospace.
N84-10174

CR-170900 August 15, 1983
Advanced Turbine Study – Technical Pro-
gress Report No. 6. NAS8-33821. United
Technologies Pratt and Whitney.
X84-71101

CR-170901 September 1983
Pressure Scaled Water Impact Test of a 12.5
Inch Diameter Model of the Space Shuttle
Solid Rocket Booster Filament Wound Case
and External TVC Pod. NAS8-35017.
Chrysler Corp.
N84-10181

CR-170902 September 16, 1983
Payload Missions Integration Progress Re-
port. NAS8-32712. Teledyne Brown Engi-
neering.
N84-10171

CR-170903 September 1983
A Review of Fracture Mechanics Life Tech-
nology. NAS8-34746. Failure Analysis Asso-
ciates.
N84-17622

CR-170904 September 1983
Recommendations for Future Research on
Fracture Mechanics Life Technology. NAS8-
34746. Failure Analysis Associates.
N84-17615

CR-170905 September 8, 1983
High Pressure Servovalve Development Re-
search Study. NAS8-34593. Moog Inc.
N84-70297

CR-170906 September 1983
Plasma Source for Spacecraft Potential
Control. NAS8-35339. The University of
Alabama in Huntsville.

CR-170907 August 20, 1983
HEAO 1-A1 Observations of AM Hercules
and Related Objects. NAG8-362. Indiana
University Foundation.
N84-11077

CR-170908* July 1983
Lightning Mapper Sensor Study. NAS8-
34942. Hughes Aircraft Co.
N84-13731

CR-170909* September 1983
Lightning Mapper Sensor Design Study,
NAS8-34941. TRW Space and Technology
Group.
N84-13732

CR-170910 November 1983
MCT Crystal Growth. NAS8-34957. The
University of Alabama in Huntsville.
N84-90094

CR-170911 September 30, 1983
Teleoperator Maneuvering System Mockup.
NAS8-35303. Essex Corp.
N84-70399
CR-170912 September 1983 Analysis of Solar Cell Data. NAS8-34338. The University of Alabama in Huntsville. X84-10050

CR-170936	July 1, 1981	Replacement of PBNA in HB and HC Polymers Used in SRM Propellant and Liner. NAS8-30490. Thiokol/Wasatch Division.	N84-12311
CR-170939	October 15, 1983	Study of Multi-Kilowatt Solar Arrays for Earth Orbit Applications. NAS8-34131. TRW.	N84-12634
CR-170941	October 31, 1983	Studies of Highly Variable Galactic X-Ray Sources with HEAO-1. NAG8-446. California University.	N84-16112
CR-170949 November 11, 1983
Payload Missions Integration Progress Report — Data Requirement (DR) MA-03.
NAS8-32712. Teledyne Brown Engineering. N84-15171

CR-170950 November 1983

CR-170951 December 1, 1983
Digital Multi-Shaker Modal Testing. NAS8-33980. The University of Texas at Austin. N84-15522

CR-170952 October 1983
Multi-Shaker Modal Testing. NAS8-33980. The University of Texas at Austin. N84-15521

CR-170953 November 15, 1983

CR-170954 September 1983
Wind Tunnel Material Test to Quantify Space Shuttle External Tank Insulation Requirements. H-61304B. Arnold Engineering Development Center.

CR-170955 January 1984
Summary of Plume Development and Radiation Analysis. NAS8-33719. Lockheed Missiles and Space Co.

CR-170956 September 1983

CR-170957 September 30, 1983

CR-170958 December 31, 1982
Countercurrent Distribution of Biological Cells. NAS8-33575. Oregon Health Sciences University. N84-15755

CR-170959* December 1983
The Control of Float Zone Interfaces by the Use of Selected Boundary Conditions. NAS8-35108. Science Applications, Inc. N84-17017

CR-170960 December 1983
SSME Structural Dynamic Model Development. NAS8-34973. Lockheed Missiles and Space Co. N84-17287

CR-170961 December 19, 1983
SRB Nozzle Erosion Related Flow Analysis. NAS8-35767. Continuum, Inc. N84-16251

CR-170962 January 1984

CR-170963 July 1983
Shuttle Derived Cargo Launch Vehicle Concept Evaluation Study. NAS8-34599. Boeing Aerospace Co. X84-10174

CR-170964 January 11, 1984
Performance Characteristics of the Proto-Flight Manipulator Arm. NAS8-35320. Essex Corp. N84-72590

CR-170965 September 15, 1983
Intelligent Editor/Printer Enhancements. NAS8-34969. Arizona State University. N84-18909

CR-170966 November 1983
Study of Mechanical Properties of Experimental Alloys in Gaseous Hydrogen. NAS8-34531. United Technologies Pratt and Whitney. X84-90093

CR-170967 January 10, 1984
Integration and Verification of Sepac Software. NAS8-34747. Intermetrics, Inc. N84-72601

CR-170968 January 10, 1984
IMCS Reflight Certification Requirements and Design Specifications. NAS8-33825. Intermetrics, Inc. N84-17167
CR-170969 January 1984
Development of an Autonomous Video Rendezvous and Docking System Phase 3.
NAS8-34679. Martin Marietta Aerospace. N84-17249

CR-170970 January 1984
AXAF Optical Technology Analysis. NAS8-34951. TAI Corp. N84-90075

CR-170971 September 30, 1983
Data Analyses and Interpretation of UVSP and Other Experiment on Board SMM.
NAS8-33526. The University of Alabama in Huntsville.

CR-170972 January 1984
Investigation of Electrodynamic Stabilization and Control of Long Orbiting Tethers.
NAS8-35036. Smithsonian Institution of Astrophysical Observatory. N84-17251

CR-170973 January 1984

CR-170974 November 1983
Power Subsystem Automation Study. NAS8-34938. Martin Marietta Aerospace. N84-17686

CR-170975 January 23, 1984
Dynamics and Energetics of the South Pacific Convergence Zone During FGGE SOP-1.
NAS8-35187. Purdue University. X84-90092

CR-170976 December 23, 1983
Doppler Lidar Signal and Turbulence Study. NAS8-35185. FRG Associates, Inc. N84-17574

CR-170977 January 13, 1984
Payload Missions Integration Progress Report — Data Requirement (DR) MA-03.
NAS8-32712. Teledyne Brown Engineering. N84-18225

CR-170978 July 1983
Polarized-Interferometer Feasibility Study.
NAS8-34960. Green Mountain Radio Research Co. N84-20805

CR-170980 December 23, 1983
Sepac Spacelab Mission 1 Report. NAS8-34747. Intermetrics, Inc. N84-17196

CR-170981 Polyreference Software. NAS8-34503. University of Cincinnati. N84-18918

CR-170983 September 20, 1983
Design, Fabrication, and Assembly of a Custom Directional Solidification System.
NAS8-35178. Dynamic Design, Inc. N84-72838

CR-170984 December 1983
Definition of Technology Development Missions for Early Space Stations Orbit Transfer Vehicle Servicing Phase II — Task 1 Space Station Support of Operational OTV Servicing. NAS8-35039. General Dynamics. N84-19377

CR-170985 February 10, 1984
GP-B Error Modeling and Analysis. NAS8-34426. The University of Tennessee. N84-18960

CR-170986 January 20, 1984

CR-170987 January 30, 1984
Rotordynamic Characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). NAS8-34505. Texas A&M University. N84-19389

CR-170988 July 1983
Ion Implantation of 440C RCF Test Specimens. NAS8-35055. Martin Marietta Aerospace. X84-10264
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-170993</td>
<td>Exhibit D Modular Design Attitude Control System Study. NAS8-33979. Bendix Corp.</td>
<td>February 1984</td>
</tr>
<tr>
<td>CR-170996</td>
<td>Modular Design Attitude Control System. NAS8-33979. The Bendix Corp.</td>
<td>January 24, 1984</td>
</tr>
<tr>
<td>CR-171006</td>
<td>January 1984</td>
<td>Ascent Trajectory Dispersion Analysis. NAS8-34431. Dynetics, Inc. N84-73736</td>
</tr>
<tr>
<td>CR-171007</td>
<td>March 12, 1984</td>
<td>Summary of Electrostatic Factors in Charged Particle Fog Dispersion. NAS8-34729. FWG Associates, Inc. X84-90320</td>
</tr>
<tr>
<td>CR-171010</td>
<td>March 22, 1984</td>
<td>Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing – Follow-on Study Phase II Final. NAS8-35039. General Dynamics. N84-73735</td>
</tr>
<tr>
<td>CR-171011</td>
<td>February 15, 1984</td>
<td>Ion Implantation and Plating to Improve Surface Hardness and Wear Characteristics of Stainless Steel for Bearing Applications. NAS8-35048. Georgia Institute of Technology. X84-10220</td>
</tr>
<tr>
<td>CR-171012</td>
<td>March 1984</td>
<td>Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt. NAS8-35416. Harvard University. N84-22752</td>
</tr>
</tbody>
</table>
CR-171023 May 1980

CR-171024 May 1976

CR-171025 March 1, 1984

CR-171026 April 26, 1984
PDSS/IMC Qualification Test Software Acceptance Procedures. NAS8-33825. Intermetrics, Inc. N84-25335

CR-171027 September 1983

CR-171028 March 1984
Pretest Plan for a Quarter Scale Aft Segment of the SRB Filament Wound Case in the NSWC Hydroballistics Facility — Test No. 84-1. NAS8-35017. Chrysler Corp. N84-24699

CR-171029* April 13, 1984
Vector Wind Gust Model. NAS8-33433. Computer Sciences Corp. N84-25222

CR-171030 January 1984

CR-171031 March 1984
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville. N84-25205

CR-171032 December 1983
Effects of Chemical Releases by the STS-3 Orbiter on the Ionosphere. NAS8-32807. University of Iowa. N84-25204

CR-171033 April 1984
Plasma Turbulence Effects on Auroral Particle Precipitation. NAS8-35913. University of Colorado. N84-74268

CR-171034 April 6, 1984

CR-171035 April 1984

CR-171036 May 10, 1984
Space Shuttle Environment Analyses. NAS8-34595. Computer Sciences Corp. N84-74181

CR-171037 March 1982
Fabrication, Test, and Delivery of a Self-Contained Gas Turbine Powered Fire Fighting Module. NAS8-33151. N84-74177

CR-171038 May 1984

CR-171039 May 1984

CR-171040 May 4, 1984
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Laboratories, Inc. X84-75618
CR-171041 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume I
Executive Summary. NAS8-35471. Boeing Aerospace Co. X84-10319

CR-171042 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facility — Volume II
Study Results. NAS8-35471. Boeing Aerospace Co. X84-10320

CR-171043 October 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II
Study Results, Appendix A. NAS8-35471. Boeing Aerospace Co. X84-10321

CR-171044 November 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II
Study Results, Appendix B. NAS8-35471. Boeing Aerospace Co. X84-10322

CR-171045 November 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities — Volume II
Study Results, Appendix C. NAS8-35471. Boeing Aerospace Co. X84-10323

CR-171046 December 1983
System Analysis Study of Space Platform and Station Accommodations for Life Sciences Research Facilities, Final Briefing, Volume III. NAS8-35741. Boeing Aerospace Co. X84-10324

CR-171048 April 10, 1984

CR-171049 January 12, 1983
Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing. NAS8-35039. General Dynamics.

CR-171050 August 1979
The Fundamentals of Solar Energy Technology. NAS8-31293. The University of Alabama in Huntsville. N84-74972

CR-171051 June 1984

CR-171052 June 1984
Ascent Trajectory Dispersion Analysis for ETR High Inclination Space Shuttle Trajectory. NAS8-34431. Dynetics, Inc. N84-74878

CR-171053 May 1984
Definition of Technology Development Missions for Early Space Station Orbit Transfer Vehicle Servicing Phase II Task 4 Integrated Technology Development Plan. NAS8-35039. General Dynamics. N84-74876

CR-171054 April 25, 1983
Definition of Technology Development Mission for Early Space Station Orbit Transfer Vehicle Servicing. NAS8-35039. General Dynamics. N84-74881

CR-171055 May 11, 1984
CR-171056 May 5, 1984
Participation in the Definition, Conduct, and Analysis of Particle Accelerator Experiments for the First Spacelab Mission. NAS8-32488. Southwest Research Inst.

CR-171057 May 8, 1984

CR-171058 April 1984

CR-171059 April 13, 1984

CR-171060 March 31, 1984

CR-171061 May 11, 1984

CR-171062 March 1984
Development of Autonomous Momentum Management Scheme for Space Station System Study. NAS8-35349. Bendix Corp.

CR-171063 May 1984

CR-171064 April 1984

CR-171065 May 1984

CR-171066 January 1984
Improved Charge Injection Device and a Focal Plane Interface Electronics Board for Stellar Tracking. NAS8-34644. General Electric Co.

CR-171067 June 18, 1984
Research Study: Severe Storms Lidar Base. NAS8-35345. Lassen 1 Research.

CR-171068 April 1984

CR-171069 June 8, 1984

CR-171070 June 18, 1984
A Study of Fatigue Damage on Selected Superalloys by Positron Annihilation. NAS8-35325. The University of Missouri-Rolla.

CR-171071 May 10, 1984

CR-171072 April 1984

CR-171073 April 10, 1984
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171074
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Laboratories, Inc.
X84-10399

CR-171075

CR-171076
N84-29147

CR-171077

CR-171078
SPAR Improved Structure/Fluid Dynamic Analysis Capability. NAS8-34975. Lockheed, Research and Development Division.
N84-29153

CR-171079
Investigation of Acoustic Emission Coupling Techniques — Phase 1. NAS8-34649. Southwest Research Institute.
X84-77461

CR-171080
N84-29374

CR-171081
Research Study Severe Storms Lidar Base. NAS8-35345. Lassen Research.

CR-171082

CR-171083
X84-10394

CR-171084
X84-10411

CR-171085

CR-171086

CR-171087
X84-10414

CR-171088
X84-10403

CR-171089

CR-171090
N84-28887
CR-171091 June 19, 1984

CR-171092 June 19, 1984

CR-171093 June 19, 1984

CR-171094 March 1984
Analysis of SSME HPOTP Rotordynamics Subsynchronous Whirl. NAS8-35053. Control Dynamics Co. N84-28900

CR-171095 July 2, 1984
Definition of Technology Development Missions for Early Space Station Orbit Structures. NAS8-35043. Boeing Aerospace.

CR-171096 March 1984
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Co. N84-74879

CR-171097 April 1984
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Co. N84-74880

CR-171098 May 9, 1984

CR-171099 April 30, 1984
Color Film Preservation System – Breadboard Development. NAS8-35822. Electro-Optics Consultants, Inc. N84-29194

CR-171100 July 11, 1984
Development of Standardized Specifications for Screening Space Level Integrated Circuits and Semiconductors. NAS8-35823. Omni Technology Corp. N84-29093

CR-171101 June 1984

CR-171102 May 1984
Definition of Technology Development Missions for Early Space Station Orbit Transfer Vehicle Servicing Phase II Executive Summary. NAS8-35039. General Dynamics.

CR-171103 March 1984

CR-171104 May 1984

CR-171105 June 8, 1984

CR-171106 May 1984

CR-171107 June 30, 1984

CR-171108 July 3, 1984

CR-171109 June 1984
NASA CONTRACTOR REPORTS

(abstracts for these reports may be obtained from STAR)

CR-171110 July 18, 1984
Orbital Transfer Vehicle Concept Definition and System Analysis Study Orientation Meeting. NAS8-36108. Martin Marietta.
N84-75128

CR-171111 February 8, 1984
HgCdTe Crystal Growth Investigation. NAS8-34958. Semtec Inc.

CR-171112 June 18, 1984

CR-171113 July 19, 1984
Study of Proton and Neutron Activation of Metal Samples in Low Earth Orbit. NAS8-35180. Eastern Kentucky University.

CR-171114 March 31, 1984

CR-171115 May 1, 1984

CR-171116 May 21, 1984

CR-171117 June 1984

CR-171118 July 1984
Techniques for Fatigue Life Predictions from Measured Strains. NAS8-34971. Failure Analysis Associates. N84-30334

CR-171119 July 1984
Multi-100 KW Planar Low Cost Solar Array Development. NAS8-32981. Lockheed Missiles and Space Co. N84-30529

CR-171120 June 1984

CR-171121 May 1984

CR-171122 May 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171123 August 9, 1984
N84-29902

CR-171124 May 30, 1984
Application of TOS/AMS to TDRS E & F. NAS8-35617. Martin Marietta Corp.

CR-171125 April 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171126 March 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell Inc.

CR-171127 July 20, 1984

CR-171128 June 1984
Research Pressure Instrumentation for NASA Space Shuttle Main Engine. NAS8-34769. Honeywell, Inc.
CR-171129 July 1984

CR-171130 April 20, 1984

CR-171131 January 1984
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville.

CR-171132 July 1984
Spacecraft Servicing Demonstration Plan. NAS8-35496. Martin Marietta.

CR-171133 June 10, 1984

CR-171134 August 1984
Quarterly Progress Report for May 1, 1984-July 31, 1984. NAS8-34137. The University of Alabama in Huntsville.

CR-171135 August 6, 1984
Co-Investigator Tasks on Sepac Experiment for the First Spacelab Mission for the Period May 1, 1984 to July 31, 1984. NAS8-32580. TRW, Inc.

CR-171136 July 1984
System Analysis for the Huntsville Operational Support Center Distributed Computer System. NAS8-34906. Mississippi State University.

CR-171137 April 1984

CR-171138 August 31, 1984
PDSS/IMC Reflight Certification Software Design Specifications. NAS8-33825. Intermetrics, Inc.

CR-171139 July 5, 1984
Plasma Source for Spacecraft Potential Control. NAS8-35339. The University of Alabama in Huntsville.

CR-171140 July 1984
Simulation Requirement for the Large Deployable Reflection (LDR). NAS8-34904. The Charles Stark Draper Laboratory, Inc.

CR-171141 June 1984
MCT Crystal Growth. NAS8-34957. University of Alabama.

CR-171142 September 1984
The Study of Efficient Low-Power Diffraction Designs. NAS8-31170. The University of Alabama in Huntsville.

CR-171143 July 1984
Research Study of Pressure Instrumentation. NAS8-35015. Mechanical Technology, Inc.

CR-171144 August 10, 1984

CR-171145 July 31, 1984

CR-171146 September 6, 1984
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. Springborn Lab., Inc.
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171147 August 31, 1984

CR-171148 September 1984

CR-171149 March 1984

CR-171150 April 10, 1984

CR-171151 August 21, 1984

*White cover reports printed at MSFC.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ALLEN, DAVID W. ED44

ALEXANDER, MARGARET B. ED42
CAMP, DENNIS W. ED42
Analysis of Low-Altitude Wind Speed and Direction Shears. For publication in the AIAA Journal of Aircraft.

ALTER, WENDY S. EH22
PARR, RICHARD A.
JOHNSTON, MARY H.
STRIZAK, JOSEPH P.

ANDERSON, B. JEFFREY ED43
BOWDLE, DAVID A. (USRA)
KELLER, VERNON W.
VAUGHAN, OTHA H.
Cloud Formation in Low Gravity During Thermal/Pressure Wave Forcing. For presentation at the First International Aerosol Conference, Minneapolis, Minnesota, September 16-21, 1984.

APPARAO, KRISHNA M. V. ES62

APPARAO, KRISHNA M. V. ES62

APPARAO, KRISHNA M. V. ES62

ARNOLD, JAMES E. ED44

AUSTIN, ROBERT E. PS03
Orbit Transfer Vehicles. For presentation to the Twenty-First Space Congress Canaveral Council of Technical Societies, Cocoa Beach, Florida, April 24-26, 1984.

BAILEY, C. R. EP23
DeSANCTIS, CARMINE E.
SCHULTZ, DAVID N.
NICAISE, P. D.
Payload Isolation and Stabilization by a Suspended Experiment Mount. For presentation at the Space Shuttle Experiment and Environment Workshop, New England College, Henniker, New Hampshire, August 5-10, 1984.

BAYUZICK, R. J. ES74
EVANS, N. D.
HOFMEISTER, W. H.
ROBINSON, M. R.
A Review of Long Drop Tubes as a Supplement/Alternative to Space Experiments. For presentation at the 25th Plenary Meeting of the Committee on Space Research, Graz, Austria, July 2-5, 1984, and for publication in the Proceedings.

BENTON, E. V. ALMASI, J. CASSOU, R. HENKE, FRANK ROWE, V. PARNES, T. A. SCHOPPER, E.

Radiation Measurements Aboard Spacelab 1: Preliminary Results. For publication in Science, Journal of AAAS.

BIAT, BILYAR N.

BIDDLE, ALAN P.

Evidence for Ion Heat Flux in the Light Ion Polar Wind. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

BILBRO, J. W. EMMITT, G. D.

BRANDON, LARRY B.

BRANTLEY, LOT T W., JR.

BROOK, M. (NMIT) RHODES, C. (NMIT) VAUGHAN, O. H. ORVILLE, R. VONNEGUT, B. (Sunya)

BROWN, ROBERT A.

The Role of Scientists in Developing and Operating Space Telescope. For presentation to the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 11-15, 1984.

BROWN, ROBERT A.

BROWN, S. C. JEFFRIES, W. R., III

A New NASA Cloud Cover Data Base. For publication in the Journal of Climate and Applied Meteorology.

BUCHANAN, HARRY J.

Space Station Attitude Control -- An Overview of Requirements and Solutions. For presentation at the AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985.

BURNETT, T. H. PARNELL, T. A.

Interaction Characteristics of Heavy Nuclei on Various Targets at Energies 20-100 GeV/AMU from the JACEE-3 Hybrid
Counter-Emulsion Chamber Experiment. For presentation at the Quark Matter 84 Conference, Helsinki, Finland. June 17-21, 1984.

CAMP, DENNIS W. ED42
FROST, WALTER
Seventh Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems. For publication in the Bulletin of the American Meteorological Society.

CAMPBELL, C. WARREN ED42
CAMP, DENNIS W.
SANDBORN, V. A.
FROST, WALTER

CAMPBELL, C. WARREN ED42
CAMP, DENNIS W.
SANDBORN, V. A.
FROST, WALTER

CHANDLER, M. O., NRC ES53
CHAPPELL, C. R.
Velocities of the Major Ions in the Plasma-Sphere. For presentation to the Twenty-fifth Plenary Meeting and Associated Activities/COSPAR, Graz, Austria, June 25-July 7, 1984.

CHANDRA, D. ED72 (USRA)
SZOFRAN, F. R.
WANG, J. C.
COTHREAN, E. K.
LEHOCZKY, S. L.
Effect of Growth Parameters on Compositional Variations in Directionally Solidified HgCdTe Alloys. For presentation to the Sixth American Conference on Crystal Growth in conjunction with Sixth International Conference on Vapor Growth and Epitaxy, Atlantic City, New Jersey, July 15-20, 1984.

CHAPPELL, CHARLES R. ES51

CHAPPELL, C. R. ES51

CHAPPELL, C. R. ES53

CHAPPELL, C. R. ES51
KNOTT, KARL (ESA/ESTEC)
Spacelab — A New Capability for Space Science Research. For presentation at the 1984 Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

CHRISTIAN, HUGH J. ED43
A Technique for the Detection of Lightning from Geostationary Orbit. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 5-10, 1983.

CHRISTIAN, HUGH J. ED43
Simultaneous Observations of Lightning from Above and Below Thunderstorms. For presentation at the Fall Meeting of The American Geophysical Union, San Francisco, California, December 5-10, 1983.
CHRISTIAN, HUGH J. ED43
The Spectrum of Lightning as Measured from Above Cloud Top. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 5-10, 1983.

CHRISTIAN, HUGH J. ED43

CHRISTIAN, HUGH J. ED43
The Optical Characteristics of Lightning as Measured from Above Cloud Tops. For presentation to the VII International Conference on Atmospheric Electricity, Albany, New York, June 4-8, 1984.

CHRISTIAN, HUGH J. ED43
VAUGHAN, W. W.
DODGE, J. C.
A Technique for the Detection of Lightning from Geostationary Orbit. For presentation at the VII International Conference on Atmospheric Electricity, Albany, New York, June 4-8, 1984.

CLIFTON, K. STUART ES55
OWENS, JERRY K.
IEM Optical Contamination Measurements on Early Shuttle Missions. For publication in Applied Optics.

COMFORT, R. H. ES53
WAITE, J. H., JR.
CHAPPELL, C. R.
Response of Plasmapheric Ion Thermal Structure to Geomagnetic Activity. For presentation at the 1984 American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

CONNERNEY, J. E. P. ES53
WAITE, J. H., JR.

COURTES, G. ES61/ES52
VITON, M.
SIVAN, J. P.
DECHER, R.
GARY, A.
The SLI Very-Wide-Field Ultraviolet Sky-Survey. For publication in Science, Washington, D.C.

CRAFT, HARRY G., JR. JA11

CRAVEN, P. D. ES53
Olsen, R. C.
CHAPPELL, C. R.
KAKANI, L.
The Measurement of the Molecular Ions N_2^+, O_2^+, NO^+ Up to 3RE. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

DABBSS, JOSEPH PS02
ROUTH, DONALD
TANDBERG-HANSSEN, EINAR
DANIELS, J. G.
LEDBETTER, F. E. III
CLEMONS, J. M.
PENN, B. G.
Thermogravimetric Analysis of Silicon Carbide-Silicon Nitride Fibers at Ambient to 1000°C in Air. For publication in the SAMPE Quarterly, Covina, California, May 15, 1984.

DAVIS, BILLY G.

DELOACH, A. C.
HAGYARD, M. J.
RABIN, D.
MOORE, R. L.
SMITH, J. B., JR.
WEST, E. A.
TANDBERG-HANSSEN, E.

DERRICKSON, J.
EBY, P.
WATTS, J.
Effect of the Mott Cross Section on Charge Identification in the HEAO-3 Heavy Cosmic Ray Experiment. For presentation at the Nuclear Instruments and Methods Conference, Amsterdam, Holland.

DESSLER, A. J.
Magnetospheric Phenomena Powered by Planetary Spin: Jupiter, Saturn and Uranus. For presentation to the Astronomy Department, University of California at Berkeley.

DESSLER, A. J.
ISBELL, J. T.

DESSLER, A. J.
Shuttle Airglow. For presentation at the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 11-14, 1984.

DESSLER, A. J.
Spacecraft Glow. For publication in the Journal of the Society of Photo-Optical Instrumentation Engineers.

DESSLER, A. J.

DESSLER, A. J.
Non-Rigid Rotation of the Magnetic Fields of Jupiter and Saturn. For presentation at the 1984 Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

DEXTER, CAROL
McCAY, T. DWAYNE

DING, Y. J. (Yunnan Observatory)
HONG, Q. F.
HAGYARD, M. J.
DELOACH, A. C.

DOZIER, JAN D.
HACKETT, ROBERT M.

ELSNER, RONALD F.
LAMB, F. K.
University of Illinois
Plasma Entry Into the Magnetospheres of Accreting Neutron Stars. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada, January 8-11, 1984 and for publication in the AAS Bulletin.

ETHERIDGE, E. C.
CURRERI, P. A.
PLINE, D.
Glass Formation Studies in Ga$_2$O$_3$-CaO and Al$_2$O$_3$-CaO Systems. For presentation to The American Ceramic Society, Pittsburgh, Pennsylvania, April 29-May 3, 1984, and for publication in Ceramic Bulletin.

ETHERIDGE, E. C.
CURRERI, P. A.
THEISS, J.
ABBASCHIAN, G. J.

ETHERIDGE, EDWIN C.

EVANS, ROSS W.
PEARSON, STEVEN D.

FEREBEE, ROBIN C.
JONES, JESS H.
Comparison of Miles' Relationship to the True Mean Square Value of Response for a Single Degree of Freedom System. For presentation to the Shuttle Dynamic Environments and Loads Prediction Workshop, JPL, Pasadena, California, January 24, 1984.

FERNANDEZ, KENNETH R.
Robotic Applications on Earth and In Space. For presentation at the Witchita Conference on Computers and Robotics, Witchita, Kansas, June 8, 1984.

FERNANDEZ, KENNETH R.

FISHMAN, GERALD J.
Gamma Ray Burst Observations. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada on January 8, 1984 and for publication in the Bulletin AAS.

FISHMAN, G. J.
Balloon-Borne Observations of Gamma-Ray Bursts. For presentation at the COSPAR Meeting, Graz, Austria, June 1984.

FOWLIS, WILLIAM W.
Analytical and Numerical Investigations of Thermocapillary Convection in a Rapidly Rotating Float Zone. For presentation to the Mechanical Engineering Department, University of Alabama in Huntsville.

FOWLIS, WILLIAM W.
ROBERTS, GLYN O.
GALLAGHER, D. L. ES53
MENIETTI, J. D.
PERSON, A. M.
WAITE, J. H.
CHAPPELL, C. R.
Evidence of High Densities and Ion Outflows in the Polar Cap During the Recovery Phase. For presentation to the Spring AGU Meeting, Cincinnati, Ohio, May 13-18, 1984.

GALLAGHER, D. L. ES53

GALLAGHER, DENNIS ES53
WAITE, HUNTER
CHAPPELL, C. R.
OLSEN, R. C. et al.
A Detailed Analysis of the Ion Motions and Electric Field During Pc5 Event. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984, and publication in EOS.

GARY, D. E. ES52
DULK, G. A.
HOUSE, L. L.
ILLING, R.
HILDNER, ERNEST, et al.

GOODMAN, S. J. (USRA) ED43
CHRISTIAN, H. J.
RUST, W. D.
MACGORMAN, D. R. (NSSL)
ARNOLD, R. T. (U. of MI)

GRAHAM, MARCELLUS H. AH33
GOEDDE, VINCE P.

GREEN, JAMES L. ES53

GREEN, JAMES ES53
SIX, N.
GULKIS, SAM
MENIETTI, J.
Identification of a Night-Side Component of DAM as a Jovian Counterpart to AKR. For publication in the Geophysical Research Letters.

GREEN, JAMES L. ES53
HORWITZ, JAMES

GREEN, JAMES ES53
THOMAS, DOUG
PETERS, DAVE
Data System Technology Program (DSTP) and Space Plasma Computer Analysis Network (SCAN). For presentation at the 1984 Spring DECUS U. S. Symposium, Cincinnati, Ohio, June 4-8, 1984.

GREEN, J. L. ES53
WAITE, J. H.
CHANDLER, M. O.
CHAPPELL, C. R.
Observations of Ionospheric/Magnetospheric Coupling; DE and Chatanika Coincidences. For publication in the Journal of Geophysical Research, Washington, D.C.

GREEN, J. L. ES53
BAKER, D. N.
ZWICKL, R. D.
Span Pilot Project Report. For publication in EOS, Washington, D.C.
GREEN, J. L. 	ES53
Spacelab Data Analysis Using the Scan System. For presentation at the National Symposium and Workshop on Optical Platforms, Huntsville, Alabama, June 1984, and for publication in the Proceedings.

GREEN, J. L. 	ES53
WAITIE, J. H.
CHANDLER, M. O.
CHAPPELL, C. R. et al.
Comparative Ionospheric Studies Using DE-1, 2 and Ground-Based Radars. For presentation to the Recent Programmes in Magnetospheric and Ionospheric Physics, Toulouse, France, May 22-25, 1984.

GREEN, J. L.	ES53
CHAPPELL, C. R.
DOUJNIK, J. R.
HEELIS, R.
Observations of Ionospheric/Magnetospheric Coupling: DE and Chatanika Coincidences. For presentation at the USRI XXI General Assembly, Florence, Italy, August 26 through September 6, 1984.

GREEN, J. L. 	ES53
MENIETTI, J. D.
Three-Dimensional Raytracing of IO-dependent Jovian Decametric Radiation. For presentation at the USRI XXI General Assembly, Florence, Italy, August 26 through September 6, 1984.

GREEN, J. L. 	ES53
GALLAGHER, D. L.
The Detailed Intensity Distribution of the AKR Emission Cone. For publication in the Journal of Geophysical Research.

GUEST, S. H. 	ED24
DOUGHERTY, S.
Scale Model Acoustic Test of SSV for VAFB. For presentation to the JPL Shuttle Payload Dynamic Environment and Load Prediction Workshop, JPL, California, January 24-26, 1984.

GUiffin, TON 	EL23

GUYNES, BUDDY V. 	JA11

HAGYARD, M. J. 	ES52
SMITH, J. B., JR. (NOAA)
TEUBER, D.
WEST, E. A.

HAGYARD, M. J. 	ES52
WEST, E. A.
TANDBERG-HANSSEN, E.
HENZE, W. JR.
The Vertical Gradient of Sunspot Magnetic Fields. For publication in the Proceedings of Kunming Workshop on Solar Physics and Interplanetary Travelling Phenomena.

HAGYARD, M. J. 	ES52
WEST, E. A.
SMITH, J. B., JR.
Electric Currents in Active Regions. For publication in Proceedings of Kunming Workshop on Solar Physics and Interplanetary Travelling Phenomena.

HAGYARD, M. J. 	ES52
CUMINGS, N. P.
WEST, E. A.
HAGYARD, M. J.
MOORE, R. L.
EMSLIE, A. G.

HANNAKAM, L.
GARY, G. ALLEN
TEUBER, D. L.
Computation of Solar Magnetic Fields from Photospheric Observations. For publication in Archive of Electrical Engineering, Berlin, Germany.

HARDEE, PHILIP E.
(ASEE Summer Faculty)

HASTINGS, LEON J.

HENDRIX, J. C.
CURRERI, P. A.
STEUFANESCU, D. M.

HERRMANN, FREDERICK T.
ES73
Laminar Flow Effects in the Coil Planet Centrifuge. For publication in the Journal of Chromatography, Amsterdam, Holland.

HILCHEY, JOHN D.
GUSTAN, EDITH
RUDIGER, C. E.

HILDNER, E.
WILSON, R. M.
Are Interplanetary Magnetic Clouds Manifestations of Coronal Mass Ejections at 1 AU? For presentation at the 164th Meeting of the American Astronomical Society and for publication in the Bulletin of the AAS.

HOFMEISTER, W. H.
EVANS, N. D.
BAYUZICK, R. J.
ROBINSON, M. B.
Undercooling of Nb-Ge Alloys in a 100-Meter Drop Tube. For presentation at the 5th International Conference on Rapidly Quenched Metals and for publication in the Proceedings, Warzburg, West Germany, September 3-7, 1984.

HOLLAND, LAWRENCE ROZIER
ES72

HOLLAND, LAWRENCE ROZIER
ES72/UAH
VLS Growth to Purify Te and Cd. For presentation to the Sixth American Conference on Crystal Growth in conjunction with Sixth International Conference on Vapor Growth and Epitaxy, Atlantic City, New Jersey, July 15-20, 1984.

HOLMES, RICHARD R.
EH43

HOPKINS, MIRIAM
ED15
HAHN, E.
Bendix Corp.

HORWITZ, J. L.
ES53/UAH
Relationship of Dusk Sector Radial Electric Field to Energy Dispersion at the Inner

HORWITZ, J.
COMFORT, R.
CHAPPELL, C. R.
Thermal Ion Composition Measurements of the Formation of the New Outer Plasmasphere and Double Plasmapause During Storm Recovery Phase. For publication in the Geophysical Research Letters.

HORWITZ, J. L.
Relationship of Dusk Sector Electric Field to Energy Dispersion at the Inner Edge of the Electron Plasma Sheet for Non-Equatorially Mirroring Electrons. For publication in the Journal of Geophysical Research, Washington, D.C.

HORWITZ, J. L.
Features of Ion Trajectories in the Polar Magnetosphere. For publication in Geophysical Research Letters.

HORWITZ, J. L.
BRACE, L. H.
COMFORT, R. H.
CHAPPELL, C. R.
Near-Conjugate Measurements of Plasmasphere and Ionosphere Structure. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

HORWITZ, J. L. (NRC)
FOREST, G.
LOCKWOOD, M.
Ion Trajectories in the Polar Magnetosphere and DE-1 Observations. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

HOWELL, LEONARD W., JR.

HUBER, WILLIAM G.
CRAMBLIT, DAVID C.

HUETER, UWE

HUIF, HAROLD II.

HUNG, R. J.
SMITH, R. E.

HUNG, R. J.
LIU, J. M.
TSAO, D. Y.
SMITH, R. E.

HUNG, R. J.
TSAO, D. Y.
SMITH, R. E.
Case Study of Pampa, Texas, Multicell Storms. For publication in Pure and Applied Physics.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHNSTON, GARLAND D.
Paper on SSME Steerhorn Modal Test. For presentation at the SESA – Society for Experimental Stress Analysis, Salt Lake City, Utah, October 21, 1983.</td>
<td>KAUFMAN, JOHN W.
In-Phase Gusts and Moment Force Wind Loads Over the First 150 Meters at KSC, Florida. For presentation at the 16th Joint Meeting of U.S.-Japan Panel on Wind/Seismic Effects, May 14-18, 1984, Washington, D.C.</td>
</tr>
</tbody>
</table>
KAUKLER, WILLIAM F. ES74/USRA

KAUKLER, WILLIAM F. ES74
FRAZIER, DONALD O.
Observations of a Monotectic Solidification Interface Morphology. For publication in the Journal of Crystal Growth, Amsterdam, The Netherlands.

KAUKLER, W. F. ES74
TCHERNESHOFF, L. M.
STRAITS, S. R.
Critical Point Wetting Drop Tower Experiment. For publication in the Proceedings of the Second Symposium on Space Industrialization.

KELLER, V. ED43
OWEN, R.
VAUGHAN, O.
LORD, A.
HALLETT, J.
Influence of Convective Velocity on Dendritic Growth from Solution. For presentation to the Sixth American Conference on Crystal Growth, Atlantic City, New Jersey, July 15-20, 1984.

KELLER, V. W. ED43

KORNFIELD, D. ES73
VANDERHOFF, J. W.
EL-AASSER, M.
MICALE, F.
SUDOL, E.
TSENG, C.
SILWANOWICZ, A.
VICENTE, F.

KOS, LAWRENCE D. ED23
CHRISTIAN, DAVID C.

KROES, R. L. ES72
REISS, D.
SILBERMANN, E.
MORGAN, S.
Diffusion of TGS in Aqueous Solution. For publication in the Journal of Physical Chemistry, Los Angeles, California.

KROES, R. L. ES72
REISS, D.

KROES, R. ES72
WILCOX, W.
LAL, R.
VAN DEN BERG, L.

KROSS, D. A. ED22
RODIER, R.
Pioneer Parachute Co.
MOOG, R.
Martin Marietta Corp.

KROSS, DENNIS A. ED22
SCHMIDT, ALBERT A.
LEHOCZKY, S. L.
SZOFRAN, F. R.
CHANDRA, D.
WANG, J. G.

Growth Rate Dependence of the Axial Compositional Variations in Bridgman-Growth Hg$_1$-xCd$_x$Te Crystals. For presentation at the Fall meeting of the American Physical Society, San Francisco, California, November 20-23, 1983.

LEHOCZKY, S. L.
SZOFRAN, F. R.

LEHOCZKY, S. L.
SZOFRAN, F. R.

Further Comments on Segregation During Bridgman Growth of Cd$_x$Hg$_{1-x}$Te. For publication in the Journal of Crystal Growth (Letters), Amsterdam, The Netherlands.

LENOX, HERBERT M.

LOCKWOOD, M.
WAITE, J. H.
MOORE, T. E.
JOHNSON, J. F. E.
CHAPPELL, C. R.

LOCKWOOD, M.
WAITE, J. H., JR.,
MOORE, T. E.
CHANDLER, M. O. et al.

Mass and Energy Dispersions of Ionospheric Ions Injected into the Magnetosphere Near the Cusp. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 3-7, 1984, and for publication in EOS.

LOGAN, EARL
LIN, SHU HO

ALEXANDER, MARGARET B.

Wakes from Arrays of Buildings. For publication in the Journal of Atmospheric and Oceanic Technology.

LYONS, L. R.

EVANS, D. S.

An Association Between Discrete Aurora and Energetic Particle Boundaries. For publication in the Journal of Geophysical Research.

LYONS, L. R.

LYONS, L. R.

LYONS, L. R.

Electron Energization in the Geomagnetic Tail Current Sheet. For presentation to the American Geophysical Union Spring Meeting and for publication in the EOS, Cincinnati, Ohio, May 14-18, 1984.

LYONS, L. R.
DUSENBERY, P. B.

LYONS, L. R.

A Simple Model for Polar Cap Convection Patterns and Generation of Theta-Aurora. For publication in the Journal of Geophysical Research, Hanover, New Hampshire.
LYONS, L. R. ES53

LYONS, LAWRENCE R. ES53

McBRIDE, JAMES E.
HARRISON, PHILLIP M.

McCAY, THURMAN D.
VANZANDT, D. M.
ESKRIDGE, R. H.

McINTRYE, STANLEY D.
Technology Drivers and Benefits for Advanced OTV Propulsion. For presentation at the OTV Propulsion Issues, LeRC, Cleveland, Ohio, April 3, 1984.

McKANNAN, E. C.

McNIDER, Robert T.
JEDLOVEC, GARY
WILSON, GREGORY

McPHerson, W. B.
For presentation at the Advanced High Pressure O₂H₂ Technology Conference, MSFC, Alabama, June 27-29, 1984.

Maldonado, Juan E. EP13

MARSHALL, WILLIAM R.
PA01
Shuttle-Derived and Heavy Lift Launch Vehicles. For presentation to the Twenty-First Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, Florida, April 24-26, 1984.

MEEGAN, C. A.
FISHMAN, G. J.
WILSON, R. B.
The Frequency of Weak Gamma-Ray Bursts. For presentation at the 163rd AAS Meeting, Las Vegas, Nevada, on January 8, 1984, and for publication in the AAS Bulletin.

MEEGAN, CHARLES A.
ES62
Detection Efficiency for Weak Bursts. For presentation at the Gamma Burst and Neutron Star Physics Workshop, Stanford University, Stanford, California, July 29-August 3, 1984.

MENDE, S. B.
ES53
SWENSON, G. R.
CLIFTON, K. S.
Preliminary Results of the Atmospheric Emissions Photometric Imaging Experiment. For publication in Science Magazine, Washington, D.C.

MENIETTI, J. D.
ES53
GREEN, JAMES LAUER
GULKIS, SAM
SIX, N. FRANK
Three Dimensional Ray Tracing of the Jovian Magnetosphere in the Low
Frequency Range. For publication in the
Journal of Geophysical Research.

MENIETTI, J. D. ES53
GREEN, J. L.
GULKIS, S.
SIX, N. F.
Jovian Decametric Arcs: An Estimate of the
Required Wave Normal Angles from Three-
Dimensional Ray Tracing. For publication in
the Journal of Geophysical Research, Washington, D.C.

MENIETTI, J. D. ES53
WINNINGHAM, J. D.
BURCH, J. L.
PETERSON, W. K.
WAITE, J. H., JR.
WEIMER, D. R.
Enhanced Ion Outflows Measured by the
DE-1 High Altitude Plasma Instrument in
the Dayside Plasmasphere During the Recovery
Phase. For publication in the Journal of Geophysical
Research, Washington, D.C.

MENIETTI, J. DOUGLAS ES53
GREEN, JAMES L.
Identification of Decametric Radiation from
the Southern Hemisphere of Jupiter. For
publication in the Journal of Geophysical
Research, Washington, D.C.

MICHEAL, JAMES D. ED15
Rendezvous and Docking with Remote
Piloted Vehicles. For presentation at the
1984 Annual Rocky Mountain Guidance

MICHEL, F. CURTIS ES01
DESSLER, A. J.
Stability of the Accretion Disk of a Milli-
second Pulsar in a Supernova Event. For

MILLER, T. L. ES74
FOWLER, W. W.
Baroclinic Instability at Small Richardson
Number. For presentation at the 36th
Meeting of the American Physical Society
Division of Fluid Dynamics, Houston,
Texas, November 20-22, 1983.

MILLER, T. L.
On the Energetics and Non-Hydrostatic
Aspects of Symmetric Baroclinic Instability.
For publication in the Journal of Atmospheric
Sciences.

MILLER, T. L.
ANTAR, B. N
Three-Dimensional Baroclinic Instability at
Small Richardson Number. For presentation
at the 37th annual Meeting of the Division
of Fluid Dynamics, Providence, Rhode

MOORE, R. L. ES52
RABIN, D. M.
On the Formation of Magnetic Shear Clues
from a Well-Observed Active Region. For
presentation at the 164th Meeting of the American Astronomical Society and for
publication in the Bulletin of the AAS.

MOORE, THOMAS E. ES53
Polar Wind and Ion Acceleration. For publica-
tion in Revs. Geophys. Space Phys.,
Washington, D.C.

MOORE, T. E.
Production of Fast Neutral Atoms by Ion
Heating in Planetary Plasmas. For presenta-
tion at the 1984 Yosemite Conference on
Planetary Plasma Environments, Yosemite,
California, January 30 through February 3,
1984.

MOORE, T. E.
WAITE, J. H. JR.
Comment on “O+ Charge Exchange in the
Polar Wind” by Barakat and Schunk. For
publication in the Journal of Geophysical
Research, Washington, D.C.

MOORE, T. E.
CHAPPELL, C. R.
LOCKWOOD, M.
WAITE, J. H.
Superthermal Ion Signatures of Auroral
Acceleration. For publication in the Journal
of Geophysical Research, Washington, D.C.
MOORE, T.
Upwelling O+ Ions: A Case Study. For presentation at the AGU Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

MORGAN, S. H.
SILBERMAN, E.
KROES, R. L.
REISS, D.
Diffusion Coefficients of TGS (Triglycine Sulfate) and Its Dissociation Products in Aqueous. For presentation at the 50th Meeting of SESAPS, Columbia, SC, and for publication in Bulletin APS, Woodbury, New York.

MORRIS, DANIEL J. (NAS Fellow)
Monte Carlo Simulation of Atmospheric Gamma-Ray Scattering. For publication in the Proceedings of the Sixth Santa Cruz Summer Workshop in Astronomy and Astrophysics, Santa Cruz, California.

MURPHY, G.
DeANGELO, N.
PICKETT, J.
SHAWHAN, S.
SAMIR, U.
STONE, N.
WRIGHT, K. H., JR.
Elevated Plasma Temperature in the Near Wake of the Shuttle Orbiter. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984.

NAGAI, T.
WAITE, J. H.
GREEN, J. L.
CHAPPELL, C. R.
OLSEN, R. C.
COMFORT, R. H.
First Measurements of Supersonic Polar Wind in the Polar Magnetosphere by DE1/RIMS. For publication in Geophysical Research Letters, Washington, D.C.

NAGAI, T.
HORWITZ, J. L.
ANDERSON, R. R.
CHAPPELL, C. R.
Structure of the Plasmapause from ISEE 1 Low Energy Ion and Plasma Wave Observations. For publication in the Journal of Geophysical Research.

NAUMANN, ROBERT J.

NAUMANN, R. J.
MILLER, T. L.
On the Fluid Dynamics of Crystal Growth from the Vapor in a Cylindrical Ampoule. For presentation at the 37th annual meeting of the Division of Fluid Dynamics, Providence, Rhode Island, November 18-20, 1984.

NESMAN, THOMAS E.

NICHOLAS, DAVID P.

NUNES, A. C., JR.
BAYLESS, E. O., JR.
JONES, C. S., III
MUNAFIO, P. M.
BIDDLE, A. P.
WILSON, W. A.

NURRE, GERALD S.
The Pointing System for Space Telescope.

NURRE, GERALD S.

OLSEN, R.
GALLAGHER, D.
CHAPPELL, C. R.
GREEN, J.
SHAWHAN, S.

OLSEN, R. C.
GALLAGHER, D. L.
CHAPPELL, R.
GREEN, J. L.
SHAWHAN, S.

OLSEN, R. C.
PEDERSEN, A.
DECREAU, P. M. E. (NAS/NRC)
CHAPPELL, C. H.
GREEN, J. L.
WAITE, J. H.
GURNETT, D.
COMFORT, R. H.

OLSEN, R. C.
CHAPPELL, C. R.
Observations of Conical Ion Distributions at 1 RE-Observations from the Acceleration Region. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

OMENYI, SAMUEL N.
HERREN, BLAIR J.
SNYDER, ROBERT S.
The Surface Charge of Quartz as Modified by Surfactants. For publication in Industrial and Engineering Chemistry Fundamentals, Washington, D.C.

OMENYI, SAMUEL N.
HERREN, BLAIR J.
SNYDER, ROBERT S.
SEAMAN, G. V. F.
Comparative Isothermic Ion Adsorption for Minerals. For publication in the Journal of Colloidal and Interface Science.

OWEN, ROBERT B.
JOHNSTON, M. H.
LAL, R. B.

PARNELL, T. A.
BURNETT, T. H.
DAKE, S.

PENN, B. G.
CLEMONS, J. M.
LEDBETTER, F. E., III
DANIELS, J. G.
THOMPSON, L. M.
Effects of Water During Cure on the Interlaminar Shear and Compressive Strengths of a Carbon/Phenolic System. For publication in the SAMPE Quarterly.

PENN, B. G.
CROUSE, D. J.
LEDBETTER, F. E. III
DANIELS, J. G.
CLEMONS, J. M.

PENN, B. G.
DANIELS, J. G.
LEDBETTER, F. E., III
CLEMONS, J. M.
CROUSE, D. J.

Thermogravimetric Analysis of Silicon Carbide-Silicon Nitride Precursors: Polycarbosilazane Derived from Tris (N-Methylamino) Phenylsilane. For publication in Polymer Communications.

PENN, B. G.
DANIELS, J. G.
WHITE, W. T.
THOMPSON, L. M.
CLEMONS, J. M.

Preparation of Kevlar Reinforced Neoprene Composites. For publication in the SAMPE Quarterly, Covina, California.

POWELL, LUTHER E.

Space Station Concept Development Group Studies. For presentation at the Thirty-Fifth International Astronautical Federation Congress, Lausanne, Switzerland, October 7-13, 1984.

PRAHARAJ, SARAT C.
FOSTER, L. D.

PRIEST, C. C.
WOODCOCK, G. R.

Mission Modes for a Return to the Moon. For presentation to the Second Symposium on Space Industrialization, Huntsville, Alabama, February 13, 1984.

RABIN, DOUGLAS
MOORE, RONALD L.

RABIN, D. M.
MOORE, R. L.
HAGYARD, M. J.

RAY, C. D.

REASONER, DAVID L.

Analysis of Electron Spectra Produced by Sepac Electron Beams from Spacelab 1. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

REAVES, JOHN H.

REICHHMANN, EDWIN J.

The Sun - Skylab and SMM Observations. For presentation at the IAPP-Dyer Symposium, Nashville, Tennessee, November 18, 1983.
REICHMANN, E. ES52
WEST, E.
HENZE, W. Teledyne Brown
Image Data from Ultraviolet Spectrometer and Polarimeter Post Repair of Solar Maximum Mission Satellite. For presentation at the 1984 American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

REINLEITNER, L. A. ES53
NIELSEN, E.
Self-Consistent Analysis of High-Velocity Measurements with the STARE System. For publication in the Proceedings of the ARCAD3 Conference, Toulouse, France, July 1984 Meeting.

REINLEITNER, L. A. ES53 (NRC)
NIELSEN, E.
Self-Consistent Analysis of Electron Drift Velocity Measurements with STARE and SABRE Systems. For presentation at the American Geophysical Union Fall Meeting, San Francisco, California, December 3-7, 1984, and for publication in EOS.

REISS, D. A. ES72
KROES, R. L.
ANDERSON, E. E.
KROES, R. L.

RHODES, P. H. ES73
ROBERTS, G. O.
SNYDER, R. S.

ROBERTS, D. H. PD01
MORGAN, S. H.

BURKE, B. F.
JORDAN, J. F.
PRESTON, R. A.
HAMILTON, E. C.

ROBERTS, WILLIAM T. PS02

ROBINSON, GLENN A. PM01
CUSHMAN, ROSS J.

ROBINSON, MICHAEL B. ES74
WILLS, FRED D.

ROBINSON, MICHAEL B. ES74
LACY, LEWIS L.

ROTHINGERMEL, J. (USRA) ED42
KESSINGER, C. (USRA)
DAVIS, D. L.
Dual Doppler Lidar Measurements of Winds in the Jaws Experiment. For publication in the Journal of Atmospheric and Oceanic Technology, Boston, Massachusetts.

SCHMIEDER, B. ES01
MALHERBE, J. M.
MEIN, P.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

TANDBERG-HANSSEN, E.

SCHNIEDER, B.
MEIN, P.
MARTRES, M. J.
TANDBERG-HANSSEN, E.

SCHOCK, RICHARD W.
An Investigation Into the Probabilistic Combination of Quasi-Static and Random Accelerations. For presentation at the Shuttle Payload Dynamic Environments and Loads Prediction Workshop, Jet Propulsion Laboratory, Pasadena, California, January 25, 1984.

SCHOCK, RICHARD W.

SCHRAMM, FRED
CHANNELL, JANE (DOD)

SELTZER, SHERMAN M.
WAITES, HENRY B.
NASA/MSFC Ground Experiment for Large Space Structure Control Verification. For presentation at the 1984 ACC Conference, San Diego, California, June 6-8, 1984.

SHACKELFORD, BEN W.
Filament Wound Case Effects on Shuttle Booster Internal Ballistics. For presentation at the 1985 JANNAF Propulsion Meeting, San Diego, California, April 8-13, 1984.

SMALLEY, LARRY L.
ES63
Application of Fourier Transforms on a 1/2-Integer Lattice to the Discrete. For publication in Journal of Mathematical Physics, Murray Hill, New Jersey.

SMALLEY, LARRY L.
ES63

SMALLEY, LARRY L.
ES63
Spectral Resolution of the 4-D Dirac Equation on a Half-Integer Lattice. For publication in the Journal of Mathematical Physics, Murray Hill, New Jersey.

SMALLEY, LARRY L.
ES63
Riemann Curvature Tensor in Nonholonomic Coordinates and Non-Riemannian Space-Times. For publication in the International Journal of Theoretical Physics, New York.

SMITH, JAMES E., JR.
FRAZIER, D. O.
KAUKLER, WILLIAM F.
A Redetermination of the Succinonitrile-Water Phase Diagram. For publication in Scripta Metallurgica, Elmsford, New York.

SMITH, JESSE B.
HAGYARD, M. J.
The Correlation of Flare Occurrence with the Observation of Magnetic Shear. For presentation to the SMA Symposium, COSPAR, Graz, Austria, June 25-July 7, 1984.

SMITH, RALPH R.
CM11

SMITH, RALPH R.
CM11

57
SNYDER, ROBERT S.
HARRIS, J. MILTON
CASE, MARTHA G.

SNYDER, ROBERT S.

STEINCAP, JAMES W.

STONE, N. H.
SAMIR, U.
WRIGHT, K. H., JR.

STRONG, K. T.
BENZ, A. O.
DENNIS, B. R.
LEIBACHER, J. W.
MEWE, R.
POLAND, A. I.
SCHRIJVER, J.
SIMNETT, G.
SMITH, J. B.
SYLVESTER, J.

STURROCK, P. A.
KAUFMANN, P.
MOORE, R. L.
SMITH, D. F.

SUÈSS, S. T.
THOMAS, B. T.
NERNEY, S. F.
Theoretical Interpretation of the Observed Interplanetary Magnetic Field Radial Variation in the Outer Solar System. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, California, December 5-10, 1983 and for publication in EOS.

SUÈSS, S. T.
WILCOX, J. M.
HOEKSEMA, J. T.
HENNING, H.

SUÈSS, STEVEN T.

SUÈSS, S. T.
HILDNER, E.
Deformation of the Heliospheric Current Sheet. For presentation at the 164th Meeting of the American Astronomical Society and for publication in the Bulletin of the AAS.

SUÈSS, S. T.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

SUSS, S. T. ES52
Large Scale Phenomena in the Heliosphere.
Contributed to IAU Commission 49's

SWALLEY, FRANK E. PD21
OMV Utilization for Large Observatory
Mission Support. For presentation at the
Rendezvous and Proximity Operations
Workshop, Houston, Texas, October 16-19,
1984.

SWENSON, G. R. ES53
SHARP, W. E.
(Dept. of Atmospheric and Oceanic Sci.)
A Refinement of Auroral O^+2P Continuity
Theory Using E-Region Data. For presenta-
tion at the Fall Meeting of the American
Geophysical Union, San Francisco, Cali-
ifornia, December 5-10, 1983, and for
publication in EOS.

SZOFRAN, F. R. ES72
LEHOCZKY, S. L.
High Temperature Electrical Properties of
HgTe. For presentation at the Fall Meeting
of the American Physical Society, San
Francisco, California, November 20-23,
1983.

SZOFRAN, F. R. ES72
LEHOCZKY, S. L.
A Method for Interface Shape Control
During Bridgman-Type Crystal Growth in
HgCdTe Alloys. For publication in the
Journal of Crystal Growth, Amsterdam.

SZOFRAN, F. R. ES72
LEHOCZKY, S. L.
A Method for Interface Shape Control
During Bridgman Type Crystal Growth of
HgCdTe Alloys. For presentation at the
Sixth American Conference on Crystal
Growth, Atlantic City, New Jersey, July

SZOFRAN, F. R. CHANDRA, D.
WANG, J. C.
COTHRAN, E. K.
LEHOCZKY, S. L.
Effect of Growth Parameters on Composi-
tional Variations in Directionally Solidified
HgCdTe Alloys. For publication in the
Journal of Crystal Growth, Amsterdam.

TAKAHASHI, Y. ES62
EBY, P. B.
PARNELL, T. A.
GREGORY, J. C.
Direct Electron-Pair Method for Energy
Measurement of Very High Energy Cosmic
Ray Iron Group Nuclei. For presentation at
the Spring Meeting of the American Physical
Society, Washington, D. C., April 25-26,
1984.

TANDBERG-HANSSEN, E. ES01
HENZE, W., JR.
Results from the Ultraviolet Spectrometer
and Polarimeter: Non-Flare Investigations.
For publication in Memorie della Societa
Astronomica Italiana, Italy.

TANDBERG-HANSSEN, EINAR A. ES01
The Ultraviolet Spectrometer and Polarime-
ter (UVSP). For presentation at the 1984
Fall Meeting of the American Geophysical
Union, San Francisco, California, December
3-7, 1984, and for publication in EOS.

TAYLOR, KENNETH R. PS05
Opportunities for Commercial Participation
in Materials Research in Space. For presenta-
tion to the Twenty-First Space Congress,
Canaveral Council of Technical Societies,
Cocoa Beach, Florida, April 24-26, 1984.

TELESCO, CHARLES M., et al. ES63
Ongoing Star Formation in NGC 3310: An
Infrared Perspective. For publication in the

TRUCKS, HOWARD F. TA81
Space Telescope Maintenance and Refurbish-
ment Program. For presentation at the
National Symposium and Workshop on
Optical Platforms, Huntsville, Alabama, June
TRUCKS, HOWARD F.
Space Telescope Maintenance. For presentation at the AIAA Conference, Atlanta, Georgia, October 8-9, 1984.

TURNER, GARY F.
Lockheed Missiles and Space Company, Inc.
ST5 41-D Solar Array Flight Experiment. For presentation to the 21st Space Congress, Cocoa Beach, Florida, April 24, 1984 and for publication in the proceedings.

URBAN, E. W.
LADNER, D. R.

VAN ZANDT, DAVID M.
MCCAY, THURMAN, D.

VANDERHOFF, J. W. et al.
Lehigh University
KORNFELD, D. M.
Preparation of Large-Particle-Size Monodisperse Latexes in Space: The STS-3, STS-4, STS-6, and STS-7 Mission Results. For publication in Science, Washington, D. C.

VAUGHAN, W.
ED41
ROBERTSON, P.
USRA Visiting Scientist
FICHTL, G.
ED41
WILSON, G.
ED41

VINZ, FRANK L.
EB44

VINZ, FRANK
EB44

VON PRAGENAU, GEORGE L.
ED14
Damping Seals for Turbomachinery. For presentation at the Advanced High Pressure O₂H₂ Technology Conference, MSFC, Alabama, June 27-29, 1984.

VON TIESENHAUSEN, GEORG
PS01

WAITE, J. H.
ES53
CHAPPELL, C. R.
WAITE, J. H., JR.
Meeting Report on Yosemite Conference on Planetary Plasma Environments. For publication in EOS.

WAITE, J. H., JR.
MOORE, T. E.
BIDDLE, A. P.
CHAPPELL, C. R.
OLSEN, R. C.
Thermal Ion Signatures of Auroral Acceleration Processes. For presentation at the AGU Spring Meeting, Cincinnati, Ohio, May 14-18, 1984, and for publication in EOS, Washington, D. C.

WAITE, J. H., JR.
NAGAI, T.
JOHNSON, J. F. E.
CHAPPELL, C. R.
BURCH, J. L., et al.

WAITE, J. H., JR.
CHAPPELL, C. R.

WAITE, J. H., JR.
DESSLER, A. J.
ISBELL, J. T.

WAITES, HENRY B.
SELTZER, SHERMAN M.

WDOWIAK, THOMAS J.
CLIFTON, K. STUART

WEGRICH, RICHARD D.
STOLL, ROY

WEISSKOPF, M. C.
RAMSEY, B.
ELSNER, R. F.
WILLIAMS, A. C.
DARBRO, W.

WEISSKOPF, MARTIN C.

WEISSKOPF, M. C.

WEST, E. A.

WILKES, R. J.
PARNELL, T. A. et al.
Nucleon-Nucleus Interactions from JACEE. For presentation at the Spring Meeting of
WILLIAMS, ALTON
Atoms on the Surface of Neutron Stars—Intense Magnetic Field Effects. For presentation at the 163rd AAS Meeting in Las Vegas, Nevada, on January 8-11, 1984, and for publication in the AAS Bulletin.

WILLIAMS, ALTON C.

WILLIAMS, A. C.
DARBRO, W.
WEISSKOPF, M. C.
ELSNER, R. F.

WILLIAMS, JOHN R.
JA64

WILLS, FRED D.
ES55

WILLS, FRED D.
EH12
Spacelab Molecular Contamination Modeling Predictions. For publication in Applied Optics, Newton Highlands, Massachusetts.

WILSON, GREGORY S.
ED44

WILSON, ROBERT M.
TEUBER, D. L.
REICHMANN, E. J.
Description of Sunspot Cycles by Orthogonal Functions. For publication in Astronomy and Astrophysics (Main Journal), Meudon, France.

WILSON, ROBERT M.
REICHMANN, EDWIN J.
TEUBER, DIETER L.

WILSON, ROBERT M.
RABIN, DOUGLAS
MOORE, RONALD L.
Bimodality of the Solar Cycle. For publication in Science.

WITHEROW, W. K.
ES74
FACEMIRE, BARBARA R.
Optical Studies of a Binary Miscibility Gap System. For publication in the Journal of Colloid and Interface Science.

WRIGHT, K. H. JR.
ES53
STONE, N. H.
SAMIR, U.
A Comparison Between the Interactions of the Space Shuttle and Small, Unmanned Satellites with the Ionosphere. For presentation at the Fall American Geophysical Union Meeting, San Francisco, California, December 3-7, 1984.

WU, S. T.
ES01
HU, Y. Q.
NAKAGAWA, Y.
TANDBERG-HANSSSEN, E.
WU, S. T. (UAH) E552
CHANG, H. M. (UAH)
HAGYARD, M. J.

WYMAN, CHARLES L. EE01

YARBROUGH, LEONARD S. ER01
Managing for High Technology Development. For presentation at the Institute of Management Sciences Joint Meeting of Huntsville and Birmingham Groups, Huntsville, Alabama, November 4, 1983.