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Considering t h a t  t h e r e  are two kinds of t h r e e  dimensional flows i n  a 

The pressure  d i s t r i b u t i o n  wi th in  t h e  
l abyr in th  seal, a je t  flow and a core  flow, t h e o r e t i c a l  equations are set up 
concerning t h e  motion of each flow. 
l a b i r i n t h  is ca lcu la ted ,  when the  r o t o r  sha f t  makes a s m a l l  displacement from 
t h e  center  l i n e  of t he  casing,  keeping p a r a l l e l  w i th  i t .  

the  pressure  under d i f f e ren t  labyr in th  geometries and opera t ing  condi t ions 
through these  formulas are compared with the  experimental da t a  presented by 
o ther  researchers .  The theo re t i ca l  and experimental r e s u l t s  show a 
sat i s  f ac to ry  agreement. 

The t h e o r e t i c a l  values  of c ross  coupled s t i f f n e s s  obtained by i n t e g r a t i n g  

1. INTRODUCTION 

A se l f -exc i ted  r o t o r  whi r l  s o m e t i m e s  occurs i n  high speed, high pressure  
turbo-machinery, and it i s  argued that one of the causes of t h e  v i b r a t i o n  i s  
due t o  the  l abyr in th  seal force.  Recently, c a r e f u l l y  prepared and p rec i se ly  
measured experiments have been c a r r i e d  out ,  which make poss ib l e  a f a i r l y  exact 
predic t ion  of t h e  l abyr in th  seal forces.  However, t h e  scope of va l ida t ion  of 
the  p red ic t ion  should be wi th in  t h e  range of re ference  of t h e  experiments, 
because of the complexity of t h e  phenomena, unless  t h e o r e t i c a l  formulas 
v e r i f i e d  wi th  experimental d a t a  are avai lable .  I n  r e a l i t y ,  commercial turbo- 
-machines are normally furnished w i t h  l aby r in th  seals having a number of mixing 
chambers and are operated under much higher pressure  than i n  experiments. 

This paper proposes a method of ca l cu la t ing  t h e  asymmetrical pressure  
d i s t r i b u t i o n  i n  a l abyr in th  seal caused by the  parallel  displacement of t h e  
s h a f t ,  in t roducing a new mathematical model suggest ing t h a t  t he re  exist two 
kinds of independent t h ree  dimensional flows, i n t e r a c t i n g  wi th  each o the r ,  and 
tha t  t h e  c i rcumferent ia l  v a r i a t i o n  of s ta t ic  pressure  i n  the  mixing chamber 
comes from t h e  lack  of  uniformity of the  c i rcumferent ia l  ve loc i ty  of t h e  core  
flow, which i s  p a r t l y  or ig ina ted  from the  s p i r a l  flow effect of t h e  j e t  flow. 

2. NOTATION 

ao,bor%.dl,d2,d3,eo = f ac to r s  r e l a t i n g  t o  f l u i d  f r i c t i o n  
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= Cm/s 3 = circumferent ia l  ve loc i ty  of core flow 
f , f , ,  CmZ) = cross sec t iona l  area of mixing chamber and t h a t  of core  flow, 

respect ively 

between successive seal s t r i p s  

convergency of seal clearance 

r=*  c m Z )  = cross  sec t iona l  area of j e t  flow on the meridian plane 

N , C - 3  = number of mixing chamber 
n ,  Cm-') 
p , CP,] = pressure 

p , , C f , 3  = i n l e t  pressure 
9 ,  C kg/m-s) '  m a s s  flow of leakage per un i t  t i m e  per u n i t  

c i rcumferent ia l  length 
90 9 ckg /m-s  3 = d i t t o ,  under concentric posi t ion of r o t o r  
R *  C J / k g - g )  = gas constant 

R, Cm3 = inner  radius  of casing 
r . C m 3  = radius  of ro to r  
8 .  C m l  = p i t c h  of seal s t r i p s  

s , . C m I  = wetted perimeter of core flow 
T ,  C K3 = gas temperature 

u Cm/s 3 = circumferent ia l  ve loc i ty  of j e t  flow 
uo Cm/s 3 = t angent ia l  ve loc i ty  of entry swir l  
u r  - Cm/s 3 = circumferent ia l  ve loc i ty  of ro to r  

a, C - 3  = f ac to r  of contract ion of flow 
p ,  C - 2  = pressure r a t i o ,  e x i t  t o  i n l e t  
6, ~ m ]  = t i p  clearance of seal s t r i p s  
6,, Cm) = d i t t o ,  i n  the  middle of labyrinth 

6 ,  rad ]= h e l i c a l  angle of j e t  flow 
8 , -  C rad3 = angle of expansion of j e t  flow i n  meridian plane 
i,,&,A,2,A3,[-) = coef ic ien ts  of f l u i d  f r i c t i o n  i n  c i rcumferent ia l  

d i r e c t  ion f o r  rl, nlrl P, r8 , respect ive 1 y 
g , Cf,-s 3 = v i s c o s i t y  of gas 

I-) = coef ic ien t  of car ry  over from (i-I )-th to  i - t h  chamber 
p . I kg/m3 3 = dens i ty  of gas 
r,,r2.ra.r3 C P,3 = circumferent ia l  component of shear stress due t o  f l u i d  

f r i c t i o n  between je t  flow and casing w a l l ,  between the  core 
flow and t h e  rotor,between t h e  j e t  flow and the  core flow, 
and between the  j e t  flow and the  seal s t r ip , r e spec t ive ly  

Subscript ,Superscript  
i = quant i ty  at  t he  i - t h  chamber i n  the  d i r e c t i o n 9  

i-1,i = quant i ty  at the  boundary between ( i - l l - th  and i - th  chamber 
i n  t h e  d i r ec t ion  'p 

A = q u a n t i t y  under concentric pos i t ion  of ro to r  

3.FLOW OF GAS I N  A UBYLINTH 

3.1 Jet flow and core flow 

It has been known f o r  many years t h a t  t he  meridian flow i n  a labyr in th  is 
somewhat s i m i l a r  t o  the  flow i l u s t r a t e d  i n  Fig. 1,  The flow of gas which has 
passed through the  t i p  clearance of t h e  seal s t r i p ,  here  ca l led  a jet  flow, 
expands and increases  i t s  width when it goes through the  mixing chamber. This 
flow a lso  has a circumferent ia l  ve loc i ty  due to t he  en t ry  s w i r l  and the  
per ipheral  ve loc i ty  of t he  rotor .  Thus, gas p a r t i c l e s  i n  t h i s  flow move 
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downwards along a h e l i c a l  stream l i n e , i l l u s t r a t e d  i n  Fig.2. On t h e  o the r  hand, 
t h e  gas flow i n  t h e  mixing chamber, here ca l l ed  a core  flow, forms a vo r t ex  
wi th in  the  surrounding w a l l s  on a meridian plane. This core  flow a l s o  moves i n  
a circumferencial  d i r e c t i o n  induced by the  tangent ia l  speed of t h e  r o t o r  ,and 
consequently t h e  p a r t i c l e s  i n  t h i s  flow move along a h e l i c a l  stream line i n  the  
mixing chamber, as i l l u s t r a t e d  i n  Fig. 2. 

3.2 Assumptions on t h e  flow 

The following assumptions are used t o  analyze t h e  t h r e e  dimensional 
flows : 
(a) Fluid which flows i n  t h e  l abyr in th  i s  an i d e a l  gas. 
(b) Since the  change i n  temperature caused by a change of pressure  

(c) The s t a t i c  pressure i s  constant on a meridian plane i n  a mixing chamber. 
(d) The c o e f f i c i e n t  of ' 'carry over", t he  coe f f i c i en t  of f l u i d  f r i c t i o n  and 

i s  neut ra l ized  immediately, t h e  temperature i n  t h e  l abyr in th  i s  constant.  

t he  wetted p e r i m e t e r  of t he  channel when t h e  r o t o r  is i n  a eccen t r i c  
pos i t i on ,  are t o  be the same value as those under t h e  concent r ic  
pos i t i on  of t he  ro tor .  

(e) Pressure d i f fe rence  between two adjoining poin ts  pa r t i t i oned  wi th  
a seal s t r i p  is  s m a l l .  

( f )  The boundary of t h e  j e t  flow i n  a chamber on a meridian plane is  
a tangent t o  t h e  ou te r  edge of the throa t .  

(g) Interchanging of f l u i d  m a s s  takes  place between the  j e t  flow and 
the  core flow. 

(h) The c i rcumferent ia l  component of t he  core  flow ve loc i ty  is  
constant  on a meridian plane i n  a chamber. 

( i )  Even i n  t h e  eccen t r i c  pos i t ion  of the  ro to r ,  t h e  inf luence  of t h e  
e c c e n t r i c i t y  on t h e  j e t  flow v e l o c i t y  i s  s m a l l  enough f o r  
i t s  v a r i a t i o n  t o  be neglected.  

3.3 Fluid f r i c t i o n  ac t ing  a t  t h e  boundary of t h e  flow 

The shear ing stress r ,  due t o  f l u i d  f r i c t i o n ,  ac t ing  a t  t h e  boundary of a 
turbulen t  flow which flows i n  a narrow gap between two p a r a l l e l  planes can be 
expre s s ed 

r =  hpVZ , h=O.l33Re-' 
fo  m u 1  a, by the  

Where v is  t h e  mean ve loc i ty  of t h e  flow, and R e i s  Reynold's number r e l a t i n g  
t o  the  d is tance  of t h e  planes.  

I n  order  t o  estimate t h e  fo rce  ac t ing  between t h e  flows i n  a l abyr in th  t h e  
above r e l a t ionsh ip  i s  appl ied t o  t h e  flows. Here, s ince ,  t h e  movement of f l u i d  
particles i n  both the  j e t  and t h e  core flow i n  a c i rcumferent ia l  d i r e c t i o n  is  
mainly discussed,  it becomes necessary t o  know the  r e l a t ionsh ip  between the 
shear ing stress and t h e  ve loc i ty ,  both i n  a c i rcumferent ia l  d i r ec t ion .  This 
r e l a t ionsh ip  can be obtained by consider ing t h e  r e l a t i o n  between the  circumfe- 
r e n t i a l  flow ve loc i ty  and t h e  c i rcumferent ia l  component OS shear ing stress 
ac t ing  i n  the  d i r e c t i o n  of  absolute  ve loc i ty .  
ro t a t ing  seal s t r i p s  and of t he  conditions,u<c<u, t h e  shear ing stress ~ I Y ~ Z  

and r3 ac t ing  between t h e  j e t  flow and the  casing w a l l ,  between t h e  core  flow 
and the  channel wal1,and between t h e  j e t  flow and t h e  seal s t r i p ,  respec t ive ly  
r e l a t i n g  t o  t h e  circumferent ia l  d i r ec t ion ,  can be expressed as follows: 

Thus,in case of a l abyr in th  with 
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By a s i m i l a r  p r inc ip le ,  the shearing stress ac t ing  at  the boundary between the  
j e t  flow and the  core flow i n  a circumferent ia l  d i r e c t i o n  leadsto t h e  following 
equation. 

rig = ~ P A I Z ( C - U ) ~ .  h i z = d l d z A , A z ( ~ + ~ ) - ' J Z + (  1 - e o ) 2 ~ 2 / ( ~ - ~ ) 2  (3) 

4 .  FUNDAMENTAL EQUATIONS OF THE FLOW I N  A LABYRINTH 

4.1 Equations at  the  eccent r ic  pos i t ion  of t h e  ro to r  

By the  small displacement x, y of t he  ro ta t ing  s h a f t  , as shown i n  Fig. 3, 
a s m a l l  va r i a t ion  i n  s ta t ic  pressure w i l l  be added t o  the  pressure d i s t r i b u t i o n  
of the concentric labyrinth.  When t h e  seal s t r i p s  are mounted on t h e  ro to r  and 
the circumferent ia l  ve loc i ty  of t he  j e t  flow is smaller than the  per ipheral  
ve loc i ty  of t h e  ro to r ,  the  fundamental equations dominating the  flows are 
derived i n  the following way i n  order  t o  ca lcu la te  such a va r i a t ion  i n  pres-  
sure. 
(1) Seal c learance 
From the geometrical configuration, comes the  equation, 

&-l,i=$C I - -ns(Zi  -N-22)/2 1-x cosq - J  sin9 (4 1 

(2 )  Mass flow of gas leaking through t h e  seal clearance 
Instead of neglect ing the approaching speed of gas t o  the  th roa t ,  t h e  e f f e c t s  
of "carry over" of t he  labyrinth seal is  introduced. Thermodynamic r e l a t ions  
provide : 

s:- I,% = &,i a:- ( p L  - p:> ART Is) 

( 3 )  The equation of cont inui ty  
The stream l i n e s  of the  j e t  flow i n  a mixing chamber are  approximately repre- 
sented by s t r a i g h t  l i nes  having gradient of 8% 
B i s  the  i n l e t  and the  ou t l e t  of a stream tube having a s m a l l  c i rcumferent ia l  
length rdq at t h e  center  of t he  mixing chamber, and qA and qB represent t h e  
m a s s  flow rate a t  A and B y  respectively.  Due t o  the  difference i n  t h e  mass 
flow rate 
rdydt 
ses i t s  own dens i ty  and the  rest of t he  quant i ty ,  qsi moves t o  the  core  flow 
j u s t  beneath the stream tube, so t h a t ,  

, as shown i n  Fig. 4(a).  A and 

qA-qB t he  m a s s  i n  the  stream tube segment AB i s  increased by (qA-qB)- 
i n  t h e  durat ion of t i m e  d t .  A par t  of t h e  above increase i n  gas increa- 

qsi=(qi-l,i-qi,i+l 1- 2% tanBi-(qi-t,i+q+i+l)- A a  a( -+ ifsi) 

a9 

On the other  hand, as i l l u s t r a t e d  i n  Fig. 4 (b), t he  core flow segment 
which e x i s t s  between D and E a t  t he  t i m e t  i s  t o  be sh i f t ed  circumferent ia l ly  t o  
the  pos i t ion  between D' and E' a t  the t i m e  t + d t .  

Since the  increase of m a s s  i n  t he  volume element DIE '  against  t h a t  i n  the 
volume element DE i s  equal t o  the  quant i ty  of gas having come from the  j e t  
flow, the  equation f o r  the  conservation of mass i n  a circumferent ia l  d i r ec t ion  
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provides the following equation of continuity. 

(6) a(pifi) i- a ~ f m ~ p l c l ~ + B T ,  r(q4+1-qi-t,i1 +$tan@i-(qi-l,i+qGi+i a 11- o a t  a4D a4p 

( 4 )  The equation for  the conservation of momentum of the  core flow i n  a 

As the increase of momentum i n  a circumferential direct ion i n  the volume 
element DIE' against that  i n  the volume element DE, shown i n  Fig. 4 (b), 
consists of the increase i n  the circumferential momentum of the gas coming from 
the j e t  flow, of tha t  due t o  the pressure gradient and the increase of the 
cross-sectional area of the core flow, and of that due to  the f lu id  f r ic t ion ,  
the following equation can be obtained. 

circumferential direct ion 

4.2 Relationships when the shaf t  is a t  the center l i ne  of the casing 

(1) Coefficient of "carry over" i n  a straight-through labyrinth 
The following equation, which is a s l i gh t ly  modified version of Komotori's 
equation(ref. 1)  i s  used. 

(2) Equation of conservation of momentum for  the j e t  flow 
As already mentioned, it is  assumed i n  t h i s  case F h a t , s q h a t  the posit ive 

A direction of T; ,7z ,& , 7 3  should be determined, uI<cI<ur 

5 : i n  such a direct ion that the jet flow is  decelerated 
Tr : 
z;, : 
4 : 'I 

the  c o r e  flow is  accelerated 
the je t  flow is  accelerated by the core flow 
the je t  flow is  accelerated. 

11 I 1  

I1 11 'I 

11 11 

I n  the stream tube segment AB, i l l u s t r a t ed  i n  Fig. 5, the increase i n  the 
momentum of the gas i n  a circumferential direct ion i n  the volume element A'B' 
against AB i n  a small duration of t i m e  d t  should be equal t o  the sum of the 
momentum added to  t h i s  stream tube segment by the (i-1)-th and i - th  and core 
flow i n  a circumferential direction. Thus, the following equation is  obtained. 

(3) Fundamental equations when the rotor i s  i n  a concentric posit ion 
Substituting x=y=O and a/at=a/ap= 0 for  the fundamental equations, give 

&-t,i=C% ( 1 - ( 2 i -N--2 1 3 0 

0 

(la 

2 1  "z A 

q: = ( a*&- I ,  i- % - c , i  1 ( pi-' - pi M T  

A A A  n A 

ti( ci - Ui) - A%( ur- c i l z = 0  
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5 .  SOLUTION OF THE EQUATIONS 

5 . 1  Mass flow rate, pressure ,  and c i rcumferent ia l  ve loc i ty  
of flow a t  the  concentr ic  pos i t ion  of t he  r o t o r  

These parameters can be ca lcu la ted  i n  the  following way. 

From eqs. (81, (IO) and (111, qo can be wr i t t en  as follows: 
(a) Values of $1 and Go 

9 9  
Po - hr+l d= *I * 

B i  i i  

Usinn t h e  pressure  a t  the  i n l e t  , and a t  t h e  o u t l e t  

necessary accuracy from t h e  above equation through i terative 
ca lcu la t ion .  

(b) Values of GI and 
From ea. (12)- ~ 

and,from eq. (14)and eq. (9) s u b s t i t u t e d  by eqs. (1)- ( 3 )  

A P ~ + ~ = P P , ,  . values  of qo and $,-& can be obtained wi th  t h e  

A A  

c i = 4 , i  u r f 4 , i U i  w 

For the  given va lue  of parameters a t  the  (i-1)-th chamber, zl 
can be obtained by solving the quadra t ic  equat ion (15) f o r  GI . 
However ,  t h e  values  PI, and PI,, which appear i n  t h e  c o e f f i c i e n t  
of t h a t  equation, are unfortunately a complicated funct ion of 
so t h a t  
i t e r a t i v e  ca l cu la t ion  f o r  each chamber. 

6 

u i  , 
can be obtained from t h a t  equation by applying an  

5 . 2  Pressure d i s t r i b u t i o n  when t h e  r o t o r  is located 
i n  t h e  eccent r ic  pos i t i on  

The v a r i a t i o n  of p,  c and q due t o  a s m a l l  amount of displacement of t he  
r o t a t i n g  s h a f t ,  must be s m a l l  compared wi th  those values a t  t he  concentr ic  
pos i t ion  of t h e  ro tor .  Further ,  each increment of p, c and q must be a 
per iodic  funct ion of p , so t h a t  t h e  increment can be expanded by Fourier  
series. 
fundamental equations (5),  (61, (7) can be simply put as follows. 

Taking the  terms of lowest order  of t he  series,  t h e  so lu t ion  of t h e  
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A 

p i = p r i - p o ( a i  cosF+bi  s i n q ~ l  
n 

c i = e i + u r ( d i  cosrp+ei d ~ n 5 0 1  ad 
qi-i,ii=qo+-qo(ki-l,i c o s q + I i - ; , i s i n q )  

where unknown parameters ai,bi ... are the linear function of x,y ,and 
A 

Iai cosq+bi  sinqD]<pl/po 

] d i c o s q + e i  s inq(<zl /ur  

Iki-c,i  cosF+ 11-1.i sinql<<l . 
aa 

Since the equation obtained by substituting eq.(16) into eq.(5) must hold true 
f o r  any value of 50 , the following equations can be obtained. 

A s  similar equations can be also obtained from eqs.(6) and (7) both substituted 
by%t=O,by eliminating k, 1 . d , e  f r o m  these six equations obtained, 
the following equations result eventually. 
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Equations (19 )  can be wr i t t en  f o r  i - 1  upto i = N ,  so t h a t  the  t o t a l  number of the  

i s  evident ,  t h e  unknown q u a n t i t i e s  are 8 t - w  and h - b v .  And the  t o t a l  
number i s  a l s o  2N. The so lu t ion ,  ai and bi , therefore ,  can be obtained by 
solving the  simultaneons l i n e a r  equation (1 9) consider ing the following rela- 
t ions hip.  

equation i s  2N. Since C a i - ~ l i = ~ = C b i - J ~ = ~  = Cai+llI=N= [ b i t  I ~ I = N  = 0 

- 
ai= alx--P1y . b i  =Plix+~lr 

The static pressure  d i s t r i b u t i o n  i n  a labyr in th  can be ca lcu la ted  from the  
eq. (1 6).  

5.3 Cross coupled s t i f f n e s s  

The pressure  i n  the  labyr in th ,  expressed by eq.(16),  provides the force  Fr 
and F~ , ac t ing  i n  the  negative d i r e c t i o n  of x and y a x i s  respec t ive ly  so t h a t  

The forward t angen t i a l  force  divided by the  displacement of t h e  r o t a t i n g  sha f t ,  
so  ca l l ed  t h e  c o e f f i c i e n t  of t he  c ross  coupled spr ing  constant  K,, , can be 
represented as follows. 

6 .  THE FUNDAMENTAL EQUATIONS FOR THE LABYRINTH HAVING 
DIFFElENT GEOMETRIES OR OPERATING CONDITIONS 

The preceding theory r e f e r s  t o  t h e  case when t h e  seal s t r i p s  are 
mounted on t h e  r o t o r  and when the  per iphera l  v e l o c i t y  of t he  r o t o r  i s  l a rge r  
than t h e  circumferencial  ve loc i ty  of t h e  j e t  flow. 
the  labyr in th ,  t h e  per iphera l  ve loc i ty  of t h e  r o t o r  is  smaller than  t h e  
c i rcumferent ia l  ve loc i ty  of the je t  flow, t h e  p o s i t i v e  d i r ec t ion  of rl and Ti2 

should be determined t o  be i n  such a d i r e c t i o n  t h a t  the j e t  flow is  decelera- 
ted. Similar ly ,  t h e  p o s i t i v e  d i r e c t i o n  of r2 should be t h e  d i r e c t i o n  i n  which 
t h e  core flow is  decelerated.  The equations can be obtained, i n  t h i s  case, by 
the same procedure as explained i n  t h e  previous sec t ion .  
thus obtained, t he  following equations are t h e  e s s e n t i a l l y  d i f f e r e n t  as 
compared wi th  those of the  preceding sect ion.  

A,=0-133 [ l + ( b o v ) 2 / ( ~ - ~ , ~ z ] '  [(c-u.) (2n)  

I f ,  on the  same geometry of 

Among these  equations 
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For the s t ra ight- through labyr in th ,  i n  which the  seal s t r i p s  are mounted i n s i d e  
the  casing, t h e  equations can a l s o  be obtained by modifying the  o r i g i n a l  
equations wi th  t h e  same pr inc ip le .  

7. RESULTS OF NUMERICAL CALCULATION AND THE COMPARISON 
WITH THE EXPERIMENTAL DATA PRESENTED BY OTHER RESEARCHERS 

Factors ,  aor bo. cordl  , d ~ , d ~ .  e, which are included i n  eqs. (1)-(3), as 
w e l l  as a and 8, included i n  eq.(8), are t o  be decided by t h e  observat ion of 
t he  flow i n  a labgrinth.  However, as some of t h i s  da t a  w a s  no t  ava i lab le ,  these  
f ac to r s  have been t e n t a t i v e l y  estimabed as follows throughont t h e  ca l cu la t ion  
based on t h e  procedure here  exDlained. 

ao=1-5  b0=0-5 c o = l . O  d , = 1 - 0  d2= 1.0 ds=1.0  e,=0.5 

Wachter and Benckert(ref.2) have done an experiment of t h e  static characte- 
ristics of a l abyr in th  having d i f f e r e n t  geometries under d i f f e r e n t  opera t ing  
conditions.  Results of numerical ca l cu la t ion  i n  accordance wi th  t h e  procedure 
explained i n  t h i s  paper have been compared with t h e  r e s u l t s  of t h e  above 
experiments. The r e s u l t s  of t h e i r  experiments shown i n  Fig.6 and i n  Fig.7(a) 
are obtained using a land-and-groove labyr in th ,  whereas numerical ca l cu la t ion  
i s  on a l abyr in th  which is  deemed t o  be equivalent t o  t h i s  kind of l abyr in th  
and assumed complete mixing of gas i n  t h e  mixing chamber on making ca lcu la t ion .  
As t o  the e f f e c t  of the  per iphera l  ve loc i ty  of t h e  r o t o r  on t h e  lateral force  
exc i t a t ion  constants ,  as w e l l  as the  e f f e c t  of en t ry  s w i r l  on t h e  constants ,  
ca l cu la t ions  not  only agree with experiments q u a l i t a t i v e l y ,  but a l s o  f a i r l y  
good quan t i t i ve  agreement i s  seen between t h e  two. The dimensionless lateral  
force  exc i t a t ion  cons tan ts  taken on the o rd ina te  of these diagrams, and 
the  relative admission energy ~ , f  taken on t h e  abc issa  i n  Fig.7 are the  
f o 1 lowing values  respec t ive ly  . 

Wachter and Benckert have done a f u r t h e r  experiment using a s t r a i g h t -  
through l abyr in th  with seal s t r i p s  morticed in s ide  t h e  casing,and examined the  
e f f e c t  of en t ry  s w i r l  on t h e  lateral force  e x c i t a t i o n  constants .  Comparison of 
experiments and ca l cu la t ions  have a l s o  been made in  t h i s  case, and shown i n  
Fig.7(b).  A q u a l i t a t i v e  agreement of t h e  two values  i s  obtained. However, from 
a view-point of quant i ty ,  t he  ca lcu la ted  values are much smaller i n  t h i s  case. 

Also,Jenny(ref.3) has presented h i s  t h e o r e t i c a l  formulas, which are 
composed p a r t l y  by adopting the  empir ical  r e l a t i o n  of parameters. 
ca l cu la t ion  on one example of a l abyr in th  wi th  axial admission using h i s  
formula and those by the  procedure i n  t h i s  paper are compared and shown i n  
Fig.8. These two ca lcu la ted  values agree very w e l l .  

Resul ts  of 
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It i s  sa id  t h a t ,  when s w i r l  i s  appl ied t o  a r o t a t i n g  l abyr in th  i n  an 
eccent r ic  pos i t i on ,  an add i t iona l  exc i t i ng  force i s  generated i n  it whose 
i n t e n s i t y  depends on the  i n t e n s i t y  of t h e  s w i r l .  Ca lcu la t ion  has been made t o  
see the  inf luence  of t h e  s w i r l  on the  r o t a t i n g  labyrinth.  The r e s u l t s  agree 
with the  tendency, as shown i n  Fig.9. 

Kurohashi e t  aL(ref.4) have done experiment t o  examine t h e  inf luence  of 
the  divergency of t he  seal clearance on t h e  exc i t i ng  fo rce  of a s t r a i g h t  
through labyrinth.  
da t a  i s  i l l u s t r a t e d  i n  Fig.10. With regard t o  the  statical  c h a r a c t e r i s t i c s  it 
i s  seen i n  both values t h a t  t he  diverging clearance provides a s t a b i l i z i n g  
tendency aga ins t  t h e  foreward wh i r l  of t h e  sha f t ,  and t h e  ca lcu la ted  value 
agrees q u a l i t a t i v e l y  with t h e  experimental value. 

The comparison of ca lcu la ted  values  wi th  t h e i r  experimental 

9. CONCLUSION 

On t h e  assumption t h a t  t he re  exist two kinds of t h r e e  dimensional flow i n  a 
labyr in th ,  a j e t  and a core  flow, an ana lys i s  of t he  behavior of t h e  flow w a s  
made, and a method t o  ca l cu la t e  t h e  s ta t ical  behavior of a l abyr in th  seal w a s  
shown. The r e s u l t s  of ca l cu la t ion  on some examples of labyr in ths  showed a 
f a i r l y  good agreement wi th  r e s u l t s  of experiments, and it can be s a i d  t h a t  t h i s  
method i s  usefu l  t o  p red ic t  t he  d e s t a b i l i z i n g  force,which o r ig ina t e s  from a 
l abyr in th  seal, and a c t s  on the  r o t a t i n g  sha f t .  
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Fig.1 Meridian flow in a straight-through labyrinth seal 

Fig. 3 

Fig.2 Three dimensional flow in a labyrinth 

(a) Jet flow (b) Core flow 

Flow on the development surface Fig.4 

Displacement of rotating shaft 

i-l i 

Fig.5 Stream line of jet flow 
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Fig.8 Comparison of lateral force 

spring coefficient with Jenny's formula 

Fig.6 Lateral force spring coefficient 
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(b) Labyrinth with seal  strips i n s i d e  the casing 

Fig. 7 Lateral force spring coefficient vs relative 
admission-energy of the flow ( Up=O) 

184 



kAt(+i '/a% (%I 'mt[?q 
Fig.9 Lateral force spring coefficient of a rotating labyrinth 

affected by the imposing of entry swirl 
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(b) Comparison of experiments and calculations 

Fig.10 Effect of divergency of seal clearance 

on the pressure distribution in a labyrinth 
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