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Considering that there are two kinds of three dimensional flows in a
labyrinth seal, a jet flow and a core flow, theoretical equations are set up
concerning the motion of each flow. The pressure distribution within the
labirinth is calculated, when the rotor shaft makes a small displacement from
the center line of the casing, keeping parallel with it.

The theoretical values of cross coupled stiffness obtained by integrating
the pressure under different labyrinth geometries and operating conditions
through these formulas are compared with the experimental data presented by
other researchers. The theoretical and experimental results show a
satisfactory agreement.

1. INTRODUCTION

A self-excited rotor whirl sometimes occurs in high speed, high pressure
turbo-machinery, and it is argued that one of the causes of the vibration is
due to the labyrinth seal force. Recently, carefully prepared and precisely
measured experiments have been carried out, which make possible a fairly exact
prediction of the labyrinth seal forces. However, the scope of validation of
the prediction should be within the range of reference of the experiments,
because of the complexity of the phenomena, unless theoretical formulas
verified with experimental data are available. In reality, commercial turbo-
-machines are normally furnished with labyrinth seals having a number of mixing
chambers and are operated under much higher pressure than in experiments.

This paper proposes a method of calculating the asymmetrical pressure
distribution in a labyrinth seal caused by the parallel displacement of the
shaft, introducing a new mathematical model suggesting that there exist two
kinds of independent three dimensional flows, interacting with each other, and
that the circumferential variation of static pressure in the mixing chamber
comes from the lack of uniformity of the circumferential velocity of the core
flow, which is partly originated from the spiral flow effect of the jet flow.

2. NOTATION

20rbos €o,didp,dy,e, = factors relating to fluid friction
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¢c,(m/s)
T (m®)

circumferential velocity of core flow
cross sectional area of mixing chamber and that of core flow,
. respectively
f:. {m"3 = cross sectional area of jet flow on the meridian plane
between successive seal strips
N, (-] = number of mixing chamber
n,(m '3 = convergency of seal clearance
p,(P,J) = pressure
Po»(P,J) = inlet pressure
9, (kg/m-s)= mass flow of leakage per unit time per unit
circumferential length
9% (kg/msJ = ditto, under concentric position of rotor
R, (J/kg-K) = gas constant
R,,» (m) = inner radius of casing
r,(m) = radius of rotor
5,(ml = pitch of seal strips
5o » (m) = wetted perimeter of core flow
T,( K] = gas temperature
u,(m/s) = circumferential velocity of jet flow
u, , (m/sJ= tangential velocity of entry swirl
u.,(m/s)= circumferential velocity of rotor
a,(—1 = factor of contraction of flow
B.,C(-) = pressure ratio, exit to inlet
§,(m) = tip clearance of seal strips
8,.(m)= ditto, in the middle of labyrinth
0, Cr2d 3= helical angle of jet flow .
0,,Crad) = angle of expansion of jet flow in meridian plane
H:22,2y2,43,(—) = coeficients of fluid friction in circumferential
direction for T,7eTinfs ,respectively
p,(Pu-s) = viscosity of gas
¥yy.4 (=1 = coeficient of carry over from (i-1)-th to i-th chamber
p,Ckg/m*)= density of gas
Ty T2 Tes T3 L Pp) = circumferential component of shear stress due to fluid
friction between jet flow and casing wall, between the core
flow and the rotor,between the jet flow and the core flow,
and between the jet flow and the seal strip,respectively
Subscript,Superscript
i = quantity at the i-th chamber in the directiong
i~Li= quantity at the boundary between (i-1)-th and i-th chamber
in the direction @
~ = quantity under concentric position of rotor

U]

3.FLOW OF GAS IN A LABYLINTH
3.1 Jet flow and core flow

It has been known for many years that the meridian flow in a labyrinth is
somewhat similar to the flow ilustrated in Fig. 1. The flow of gas which has
passed through the tip clearance of the seal strip, here called a jet flow,
expands and increases its width when it goes through the mixing chamber. This
flow also has a circumferential velocity due to the entry swirl and the
peripheral velocity of the rotor. Thus, gas particles in this flow move

174



downwards along a helical stream line,illustrated in Fig.2. On the other hand,
the gas flow in the mixing chamber, here called a core flow, forms a vortex
within the surrounding walls on a meridian plane. This core flow also moves in
a circumferencial direction induced by the tangential speed of the rotor,and
consequently the particles in this flow move along a helical stream line in the
mixing chamber, as illustrated in Fig. 2.

3.2 Assumptions on the flow

The following assumptions are used to analyze the three dimensional
flows:
(a) Fluid which flows in the labyrinth is an ideal gas.
(b) Since the change in temperature caused by a change of pressure
is neutralized immediately, the temperature in the labyrinth is constant.
(c) The static pressure is constant on a meridian plane in a mixing chamber.
(d) The coefficient of "carry over", the coefficient of fluid friction and
the wetted perimeter of the channel when the rotor is in a eccentric
position, are to be the same value as those under the concentric
position of the rotor. )
(e) Pressure difference between two adjoining points partitioned with
a seal strip is small. ‘
(f) The boundary of the jet flow in a chamber on a meridian plane is
a tangent to the outer edge of the throat.
(g) Interchanging of fluid mass takes place between the jet flow and
the core flow.
(h) The circumferential component of the core flow velocity is
constant on a meridian plane in a chamber.
(i) Even in the eccentric position of the rotor, the influence of the
eccentricity on the jet flow velocity is small enough for
its variation to be neglected.

3.3 Fluid friction acting at the boundary of the flow

The shearing stress r, due to fluid friction, acting at the boundary of a
turbulent flow which flows in a narrow gap between two parallel planes can be
expressed by the formula -

Pr y the N r=120v? , 1=0.138Re ™%
Where ¥ is the mean velocity of the flow, and Re is Reynold's number relating
to the distance of the planes.

In order to estimate the force acting between the flows in a labyrinth the
above relationship is applied to the flows. Here, since, the movement of fluid
particles in both the jet and the core flow in a circumferential direction is
mainly discussed, it becomes necessary to know the relationship between the
shearing stress and the velocity, both in a circumferential direction. This
relationship can be obtained by considering the relation between the circumfe-
rential flow velocity and the circumferential component of shearing stress
acting in the direction of absolute velocity. Thus,in case of a labyrinth with
rotating seal strips and of the conditions, u<e{ur the shearing stress TuT2
and Ts acting between the jet flow and the casing wall, between the core flow
and the channel wall,and between the jet flow and the seal strip, respectively
relating to the circumferential direction, can be expressed as follows:
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3 -4
T, = -}-p).lu’-, A, =0.133(1 +(vru) B C aoqous{puv)J * 4)]

z -1

ta =1 phaCup—c Fo 2:=0.133 01+ (bov)/(ur=10)"I% ((ur=c)cofmp/ (50) ) * @
r3=%pl,(u,-— w)? . Ay =dgdy @
By a similar principle, the shearing stress acting at the boundary between the

jet flow and the core flow in a circumferential direction leadsto the following
equation.

Tz = 7}- Phale—u)?, Az =dideAs Az (/Ard, +/A2d27 2 /1+(1 ~e, X v/ (u—c)? ®

4. FUNDAMENTAL EQUATIONS OF THE FLOW IN A LABYRINTH
4.1 Equafions at the eccentric position of the rotor

By the small displacement x, y of the rotating shaft , as shown in Fig. 3,
a small variation in static pressure will be added to the pressure distribution
of the concentric labyrinth. When the seal strips are mounted on the rotor and
the circumferential velocity of the jet flow is smaller than the peripheral
velocity of the rotor, the fundamental equations dominating the flows are
derived in the following way in order to calculate such a variation in pres-~
sure.
(1) Seal clearance
From the geometrical configuration, comes the equation,

01-1,1 =00 1-ns(2i ~N—2) /2 )—xcos —y sing )

(2) Mass flow of gas leaking through the seal clearance

Instead of neglecting the approaching speed of gas to the throat, the effects
of "carry over" of the labyrinth seal is introduced. Thermodynamic relations
provide:

9§—1,1=3§—1,1‘a§- wi{pi-1—pi) /(RT) ©)

(3) The equation of continuity

The stream lines of the jet flow in a mixing chamber are approximately repre—
sented by straight lines having gradient of % , as shown in Fig. 4(a). A and
B is the inlet and the outlet of a stream tube having a small circumferential
length rdp at the center of the mixing chamber, and 9 and 95 represent the
mass flow rate at A and B, respectively. Due to the difference in the mass
flow rate 4,"9% the mass in the stream tube segment AB is increased by (9,~9*
rdpdt  in the duration of time dt. A part of the above increase in gas increa-
ses its own density and the rest of the quantity, q.,; moves to the core flow
just beneath the stream tube, so that

961 =(qs-1,4= a1+ ) — 5% tanb; 3%;( Q-1+ 91141) = ﬂ%‘—iﬁl

On the other hand, as illustrated in Fig. 4 (b), the core flow segment
which exists between D and E at the time t is to be shifted circumferentially to
the position between D' and E' at the time ¢+a4t

Since the increase of mass in the volume element D'E' against that in the
volume element DE is equal to the quantity of gas having come from the jet
flow, the equation for the comservation of mass in a circumferential direction
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provides the following equation of continuity.

a(pif f
r s (621t 1) o a( m52¢1c1)+RT( r(qsae1—qi-r,0) ‘*"%"naiga;(qx-:,r('qu.u))s 0 ®

(4) The equation for the conservation of momentum of the core flow in a
circumferential direction
As the increase of momentum in a circumferential direction in the volume
element D'E' against that in the volume element DE, shown in Fig. 4 (b),
consists of the increase in the circumferential momentum of the gas coming from
the jet flow, of that due to the pressure gradient and the increase of the
cross—sectional area of the core flow, and of that due to the fluid friction,
the following equation can be obtained.

c—u] d(pfads es _ f(c—ude a(me)i (2c~w)s dex RTL’-E-1 [ —u)? & (up- z]=o 7,
[pfm dt +-a_;prfmr i 09 . aso pir 99 & (c—u)"—& (ur-c) h )

where & = A2S/4fg , B = 180/ 4fn

4.2 Relationships when the shaft is at the center line of the casing

(1) Coefficient of "carry over" in a straight-through labyrinth
The following equation, which is a slightly modified version of Komotori's
equation(ref.1) is used.

~ ~ -1 ~ 31—- Y4
1__ 31-—1 i —&—Ai-t(Z-At—l)] z, A= 2,171 @

"i—x i-— ~ a
—5 3~1* @+ 3 tan
i—z,i—- P11 01 2,11 o

(2) Equation of conservation of momentum for the jet flow
As already mentiomed, it is assumed in this case that.so that the positive

direction of T 73,22, should be determined, d1es{ur
Z, :in such a direction that the jet flow is decelerated
rA " " the core flow is accelerated
o " " " the jet flow is accelerated by the core flow
Z: " " " the jet flow is accelerated.

In the stream tube segment AB, illustrated in Fig. 5, the increase in the
momentum of the gas in a circumferential direction in the volume element A'B'
against AB in a small duration of time dt should be equal to the sum of the
momentum added to this stream tube segment by the (i-1)-th and i-th and core
flow in a circumferential direction. Thus, the following equation is obtained.

(01—01—1)(104'. = f ('— Tl,i—-l + r‘z’i_l + tg,i-‘ ta.nao) sdt + 9 (— t"i‘l’ T]z.j_+ Tg’j. tano°> sdt ‘9)

(3) Fundamental equations when the rotor is in a concentric position
Substituting x=y=0 and 3, g = ds0p=10 for the fundamental equations, give

81,1=0, [(1-22 (21 -n-2) ] tw
=(a'gi—l,i";b-l,i)z(;zi—l‘?i)mT ]
2 (er—0g) = Filur~c1)?=0 ©
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5. SOLUTION OF THE EQUATIONS

5.1 Mass flow rate, pressure, and circumferential velocity
of flow at the concentric position of the rotor

These parameters can be calculated in the following way.
(a) Values of P, and 9q,

From eqs. (8), (10) and (11), qo can be written as follows:

~2
Pe P4t
‘!o NEl
2 5
~ RT -2 > -2 A ~ V
Bi=ogy7 |1 1T i —N-2)F — 2 1122 - 0)f e (2=Bem) 5]
(ad,) 2 Pi-t 2

Using the pressure at the inlet ﬁg—ﬁ, , and at the outlet

Puei=Pp, . values of qo and ?,~Py can be obtained with the
necessary accuracy from the above equatlon through iterative
calculation.

(b) Values of @1 and &
From eq. (12)
ci—Az iu,+A| iui 1]
and, from eq. (14)and eq. (9) substituted by egs. (1)-(3)

”~ N "~
[391( 1‘ 1—51)]‘, +[ SPiEi “r]: Jgpi—l(x,i—l‘Ei—l):l\%—l
8RT 4RT 7L 8RT

”~ ”~ 2 Fa YN ”~ ~
s5pi—1 Ef—j-up\ ~ Sur(PiEi+Pi—l'Ei—l)]
— Qo+ =2olX - — =
+( o 4RT >“‘ ' 8RT 0

are derived, where

~

”~ o ~ ~
E1=R,,,1{Az,i}2+d3 A, ranf, , Az, 1=1—A4

1
— K {s/s¢o . (1— eo)Vi}]‘
1+]/i2’1/7«,,1+1{ s/ 50 wi—e1

For the given value of parameters at the (i~1)-th chamber, o,
can be obtained by solving the quadratic equation (15) for a1 .
However, the values ,, and 1, which appear in the coefficient
of that equation, are unfortunately a complicated function of 1w
so that uy can be obtained from that equation by applying an
iterative calculation for each chamber.

2

’

5.2 Pressure distribution when the rotor is located
in the eccentric position

The variation of p, ¢ and q due to a small amount of displacement of the
rotating shaft, must be small compared with those values at the concentric
position of the rotor. Further, each increment of p, ¢ and q must be a
periodic function of ¢ , so that the increment can be expanded by Fourier
series. Taking the terms of lowest order of the series, the solution of the
fundamental equations (5) (6),(7) can be simply put as follows.
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Pi=pi+polai cosP+by sing}
c1=’c\1_+ur(d1 cos@+es sing ) ]

41-1,1i =qo + 9ol ki~y,1 cos @+ 15-1,1 sing]}

where unknown parameters 2ibi...are the linear function of X,y ,and
l;1 cosP+bs singo' <;1/p°
ldi cosP+ey aingﬂl<::\1/u,-

02
|k1.|,1 cos P+ 13—y 1 sin§0l<<l .

Since the equation obtained by substituting eq.(16) into eq.(5) must hold true
for any value of ¢ , the following equations can be obtained.

”~ Ea ) ”~~ /» -~
a5 kiy,3=Po Dy, 1(Ps~y 24—y = ps 31) ‘(/P\f—-x"m_)nz,l x
~ ‘A ~ ~ —’\2 ”~
qZ 11—1,1=P0D'11( Pi~y by~ = ps by) —(pi—,—P1) Dz 1 ¥ ®
As similar equations can be also obtained from eqs.(6) and (7) both substituted
by94¢=0,by eliminating k.1l,d,e from these six equations obtained,
the following equations result eventually.

Aga-181—1+F By s—1bi~1 +Ay 121+ By abi+ A1 a4 ag4 + Bi,s+1b1+1=X1x+V3-y

@9

“By,s—ra1-1 F Ay 3 by-y —Bi,324 +A3 1b1—Bs 1418141 FA b ==Y x+ Xy y

where

”~~ ~
A i1 =—{1/q, JRTrp, Dy g P1y
A i=2pormy iy 3 C(es—u1)ei1+RTI(ur—us )/ Mi+ (1/90) RTr po 1,441 1,4) pi
Ay 14+1=—(1/90) RTr po D1, 41 P14t
Bi 1—1=RTs poJi D1 1 pi~1/ (2q0)
Bii=—po fn,i ((ci—ui) et +RTI(2c1—~ui) /Mi +RTs po J1U Dy 141 —D1,1Jp1 9o
”~ N ~
By, 1+1=—RTs po J1 D, 141 Pi+1/(2q0)
NN ~ ”~ PaN Pa Y
X1=2(1~a)s rms py o (cr—u1) (ur—ug)/ My
”~ ) o~ Q Pey ”~,
—(1/q0) RTr(_Dz,i;)}—l —{D2,1+Dg, 141} pi + D2 41 Piyq J
N ~ N ”~ ”~~
Yi=(1l~a) s;i ’c\it 1—(ei—ug)(2cs—ug) /MiJ
~ ~ Lo} ~ /*z
+RTsJi (Bz'i,};jz.-l +(]’)\z'1+1 ~ D2,i) pi— Dz it1 Pit+t 3/ (2qe)
~ 2 ~ A~ 2
Mi=C2rmiCup—us) ) +(2er—uy)
~ 2 o2 n . 2
Dii=a 05 %_,,1{1—% (2i—N~— 2)} 7 (BT)
Dri=a" 8, 3%y, {1- 3P (2i—N=-2)}/(BT)

?m,i-":s [Ro—r—‘;-- Lanao—aao{ l—%‘- (2i~N~ 2)}]
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~ ~ -~ ~ ~ ~
J1=“1/v1 m1=fAz’1+"Al,i

Equations (19) can be written for i=1 upto i=N, so that the total number of the
equation is 2N. Since  (ag-1Jdi=1=bioJi=1=C(as4+)san={bys;di=ny=0

is evident, the unknown quantities are ai~a» and b~bw., And the total
number is also 2N. The solution, 23 and b; , therefore, can be obtained by
solving the simultaneons linear equation(19) considering the following rela-
tionship.

81=31X°Bi}' , bi“‘ﬁlx“'aﬂ

The static pressure distribution in a labyrinth can be calculated from the
eq. (16).

5.3 Cross coupled stiffness

The pressure in the labyrinth, expressed by eq.(16), provides the force Fx
and F, , acting in the negative direction of x and y axis respectively so that

N 21 o
Fr=2 s~rf P coBPAP=T srpozai
1= o & o

N 2
Fy=1§l s-r/; P1 sin§0d§0==n'srpib1

=t

The forward tangential force divided by the displacement of the rotating shaft,
so called the coefficient of the cross coupled spring constant Kyy , can be
represented as follows.

B vl
ny=—7rsrp°i§‘ﬂi
6. THE FUNDAMENTAL EQUATIONS FOR THE LABYRINTH HAVING
DIFFERENT GECMETRIES OR OPERATING CONDITIONS
The preceding theory refers to the case when the seal strips are

mounted on the rotor and when the peripheral velocity of the rotor is larger
than the circumferencial velocity of the jet flow. If, on the same geometry of
the labyrinth, the peripheral velocity of the rotor is smaller than the
circumferential velocity of the jet flow, the positive direction of 7, and Tw
should be determined to be in such a direction that the jet flow is decelera-
ted. Similarly, the positive direction of r, should be the direction in which
the core flow is decelerated. The equations can be obtained, in this case, by
the same procedure as explained in the previous section. Among these equations
thus obtained, the following equations are the essentially different as
compared with those of the preceding section.

2 4
A,=0.133 [1+(bov)2/(c—u,)2]‘ [(c—u,) cofmp/(soll)] 4 (2a)

N . ”~ SN ”~ el ”~ ~
[Spi(}:,;'*'p-a)] T2, [ sp, Ey “r] o+ [5 py— (A s +E. dul_,
BRT T (32T 4 RT 1 8RT
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_ Pt ;_, “u, S“f-(PiEi‘l'Pi—!'El—') =0 (14a)
qo+

4RT P 8RT
c—u]| d(pfy) dey (e~u)e d(pfy) (2e¢~u), de
[‘;?;]i—aﬁ“"'ﬁ* Srv e P 7 E R I )
RT dp . o -
vk T G C R (1)

For the straight—-through labyrinth, in which the seal strips are mounted inside
the casing, the equations can also be obtained by modifying the original
equations with the same principle.

7. RESULTS OF NUMERICAL CALCULATION AND THE COMPARISON
WITH THE EXPERIMENTAL DATA PRESENTED BY OTHER RESEARCHERS

Factors, 26,bos¢0:d1,d2,ds, €0 which are included in eqs.(1)-(3), as
well as g and ¥, included in eq.(8), are to be decided by the observation of
the flow in a labgrinth. However, as some of this data was not available, these
factors have been tentatively estimabed as follows throughont the calculation
based on the procedure here explained.

30=1.5 Dbe=0.5 ¢o=1.0 dy=1.0 dp=1.0 d3=1.0 eo=0.5

Wachter and Benckert(ref.2) have done an experiment of the static characte-
ristics of a labyrinth having different geometries under different operating
conditions. Results of numerical calculation in accordance with the procedure
explained in this paper have been compared with the results of the above
experiments. The results of their experiments shown in Fig.6 and in Fig.7(a)
are obtained using a land-and-groove labyrinth, whereas numerical calculation
is on a labyrinth which is deemed to be equivalent to this kind of labyrinth
and assumed complete mixing of gas in the mixing chamber on making calculation.
As to the effect of the peripheral velocity of the rotor omn the lateral force
excitation constants, as well as the effect of entry swirl on the constants,
calculations not only agree with experiments qualitatively, but also fairly
good quantitive agreement is seen between the two. The dimensionless lateral
force excitation comstants K taken on the ordinate of these diagrams, and
the relative admission energy g taken on the abcissa in Fig.7 are the
following values respectively.

2
* b‘ony * Uo

K= rsNP(1-3) ' E°=2(1—ﬂ)RT+C2RoquT/P°(R§—rz))2

Wachter and Benckert have done a further experiment using a straight-
through labyrinth with seal strips morticed inside the casing,and examined the
effect of entry swirl on the lateral force excitation constants. Comparison of
experiments and calculations have also been made in this case, and shown in
Fig.7(b). A qualitative agreement of the two values is obtained. However, from
a view-point of quantity, the calculated values are much smaller in this case.

Also,Jenny (ref.3) has presented his theoretical formulas, which are
composed partly by adopting the empirical relation of parameters. Results of
calculation on one example of a labyrinth with axial admission using his
formula and those by the procedure in this paper are compared and shown in
Fig.8. These two calculated values agree very well.
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It is said that, when swirl is applied to a rotating labyrinth in an
eccentric position, an additional exciting force is generated in it whose
intensity depends on the intensity of the swirl. Calculation has been made to

.see the influence of the swirl on the rotating labyrinth. The results agree
with the tendency, as shown in Fig.9.

Kurohashi et al.(ref.4) have done experiment to examine the influence of
the divergency of the seal clearance on the exciting force of a straight
through labyrinth. The comparison of calculated values with their experimental
data is illustrated in Fig.10. With regard to the statical characteristics it
is seen in both values that the diverging clearance provides a stabilizing
tendency against the foreward whirl of the shaft, and the calculated value
agrees qualitatively with the experimental value.

9. CONCLUSION

On the assumption that there exist two kinds of three dimensional flow in a
labyrinth, a jet and a core flow, an analysis of the behavior of the flow was
made, and a method to calculate the statical behavior of a labyrinth seal was
shown. The results of calculation on some examples of labyrinths showed a
fairly good agreement with results of experiments, and it can be said that this
method is useful to predict the destabilizing force,which originates from a
labyrinth seal, and acts on the rotating shaft.

REFERENCES

(1) Komotor,K.:A Consideration on the Labylinth Paking of Straight
Through Type. Trans.Jpn.Soc.Mech.Eng. 23-133(1957),617
(2) Wachter,J.and Benckert,H.:Querkrdfte aus Spaltdichtungen-Eine
mogliche Ursache fur die Laufunruhe von Tourbomaschinen.
Atomkernenergie Bd.32 (1978),239 (See also NASA CP-2133, 1980, pp- 189-212.)
(3) Jenny,R.:Labylinth as a Cause of Self excited Roter Ocillations in
Centrifugal Compressors. Sulzer Tech.Rev. 4(1980),149
(4) Kurohashi,M. et al:Spring and Damping Coefficients of the Labylinth
Seals. Int.Conf.on Vibrations in Rotating Machinery, Cambridge, (1980)

182



Fig.1 Meridian flow in a straight-through labyrinth seal
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Fig.3 Displacement of rotating shaft

Fig.2 Three dimensional flow in a labyrinth
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Fig.4 Flow on the development surface . . i
. Fig.5 Stream line of jet flow
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(b) Labyrinth with seal strips inside the casing

Fig.7 Lateral force spring coefficient vs relative

admission-energy of the flow (Ur=0)
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Fig.9 Lateral force spring coefficient of a rotating labyrinth

affected by the imposing of entry swirl
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(b) Comparison of experiments and calculations

Fig.10 Effect of divergency of seal clearance

on the pressure distribution in a labyrinth

185

+

=3



