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A research programme has been undertaken to investigate the lateral forces induced
by flow through model labyrinth glands. Circumferential pressure distributions,
lateral forces and stiffness coefficients data obtained experimentally are

presented and discussed. The force system can be represented as a negative spring
and a tagential force orthogonal to eccentricity. The magnitude of these forces
were dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size.
Tests with a pressure equalisation chamber at mid-gland resulted in significantly
reduced forces and stiffness coefficients.

INTRODUCTION

The increase in power density of turbomachinery has highlighted the need to
consider more carefully the various excitation mechanisms that may result in high
level subsynchronous. vibrations. Labyrinth seals are a possible cause of self-
excited vibration. The reduction of leakage in turbomachinery has often been
:sought after for efficiency improvements. Seal clearances and its overall
dimensions have been made smaller to achieve this improvement. However undue
attention to low leakage may result in unacceptably high forces acting on the rotor.
Rotors on the other hand have become relatively more flexible and consequently more’
susceptible to excitations. Thus a potentially highly efficient machine may prove
unreliable in service.

Examples of instabilities thought to be caused by labyrinth seals have been

reported in the literature (ref. 1,2). The subsynchronous vibrations observed on
operational machines were highly load dependent and the instability frequency
greater than half speed. Evidently the destabilising force re-excites the lower

criticals.

The possibility of lateral vibrations from labyrinth seal leakage flow dates back
to the pioneering work of ALFORD (ref. 3). Efforts had been made to quantify the
instability in the literature (ref. 4,5,6,7). However most of this work lacks
experimental verification. There is a definite need for more experimental data
to assess the nature and significance of these labyrinth leakage flow induced
instabilities. Experimental tests on single stage labyrinth gland have been
reported by WRIGHT (ref. 8). However extrapolation of single stage labyrinth
results to the more practical multistage labyrinths would not be conclusive due to
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Big seals Small seals
( Set A) (Set C&D)
Vs m/s . U=0 U=9%nm/s U=0 U =9 m/s
K _* K _* K * K * K _* K * K _* K ¥
%X xy XX Xy XX xy XX Xy
0 ~0.188 0,000 -0.188 -0.017 -0,081 -0.038 ~0.113 -0.109
6 -0.225 0.023 -0.233 0.000 ~0.105 0.013 ~0,135 -0.113
23 - - - - ~0.075 0.041 ~0.124 ~0.105

Table 1. Typical dimensionless stiffness coefficients

BENCKERT et al GREATHEAD et al CURRENT WORK
Labyrinths & Stepped Stepped Plain Combination Combination Plain Set D
Number of
Stages m =11 m =11 m =18 m = 24 m =12 m= 12
U at which
*
K evaluated 0 0 0 N/A N/A 0 94.3 n/s
~*wi 1 0.011 0.072 0.004 N/A N/A 0.005 0.005
swir ~0.100
*
Kxx -0.100 -0,067 N/A -0,010 -0.009 -0.075 ~0.124
K* 0.067 0.133 0.090 0.040 0.012 0.041 -0.105
*¥ ~0.720

N/A : Details not available from the text

Table 2. Comparison of dimensionless stiffness coefficients
with other works (ref. 10 and 12)
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the interaction in behaviour of the various chambers within in the gland. As this
current work and work elsewhere (ref. 9) has shown, the first chamber in a multi-
stage gland has a unique behaviour. The work of BENCKERT et al (ref. 9,10)
represents the first comprehensive work on multistage labyrinths. The tests and
results reported here complement the work of Benckert et al.

NOTATION

e eccentricity r rotor radius
Ecc, € eccentricity ratio (e/6) u rotor peripheral velocity
Bgwirl swirl energy index Vg entry swirl velocity
F force 0 peripheral angle,

measured from maximum gap
K stiffness coefficient

o] density

L pitch of labyrinth fins S radial clearance
m number of stages A difference
p absolute pressure w angular velocity
Po absolute pressure at inlet
Pm absolute pressure at exit
Subscripts Superscripts
i counter * dimensionless
max maximum - mean
r radial
t transverse
X,Y cartesian coordinates

EXPERIMENTAL PROGRAMME

An experimental programme to investigate lateral forces resulting from flow through
model labyrinth glands has been undertaken. The objectives and philosophy of the
programme had been discussed in the previous workshop, NASA CP 2250 (ref. 11). A
test rig was designed and manufactured for these investigations. A rigid rotor
with rigid bearings was used: this eliminated shaft flexibility and hydodynamic
effects. The fundamental mode of measurement was pressure rather than force as it
is the unequal pressure field that is responsible for the instability. Static
circumferential pressures were measured at 30° intervals at every sealing stage;
these measurements were taken off the stator. Figure 1 gives the schematic diagram
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of the test bed, and figure 2 the assembly drawing of the test rig. For scaling
and cross comparison of various seal geometry, experimental and operational, a seal
length parameter was used; defined as

cross sectional area of labyrinth chamber

seal length parameter = :
rotor radius

The geometry used was verified to have a length parameter value within those found
in operational steam turbines, with the exception of a particular geometry that was
made larger to determine the effect of size variation. The various geometry and
sealing arrangement used is given in figure 3. Set A and B are those with a big
seal dimension. Although the number of stages used could be varied to any
combination sealing stages of 12 and 6 were used for the tests. The small seals,
set C and D, are as shown; set D being the same as C except with a much higher
entry swirl velocity. A series of tests were done with a pressure equalisation
chamber in the form of a mid-gland plenum to investigate the effect of such an
arrangement. The previous seal set was used and the mid-gland plenum as shown,
set E. A short gland arrangement was also used for the smaller seals, set F; and
finally a combination seal arrangement, set G. Tests were done with low and
moderate entry swirl (Vg < Umax/3). To obtain a swirl greater than this would
necessitate the use of nozzles; this was not used as to avoid a possible pressure
bias at entry to the gland.

The experimental parameters were hence

(1) seal geometry

(ii) number of stages
(iii) inlet flow conditions (swirl)
(iv) eccentricity

(v) rotor peripheral velocity.

Pigure 4 gives the sign convention adopted for peripheral angle, eccentricity and

forces. The circumferential pressure distributions were numerically integrated
to obtain forces. A dimensionless force was defined, where
2 :
i (p Cos g dp )3
P, % = J' (l.a)
ri 0
{ po - Pm)
2 » e e
w (p Sin dav )y
Fp . * = | ; (1.b)
ti 0
(ro - Pp)
Hence Fy ¢, = Fr,¢.* x 3L ( po = pp) (2)
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and

m
Resultant force F = Zi s (3)

= 0 1

Note that no extraneous sign was introduced in the relations. A positive radial
force is a decentreing force (negative spring force) and a negative radial force a
restoring force. A positive transverse force is a forward whirl force.

The stiffness coefficients are as conventionally defined;

- *
Direct stiffness coefficient Kyx* = By (4.a)
i.e. restoring force coefficient Ag
Ft*
and Cross-coupled stiffness coefficient  Kyy* = (4.b)
Ae
Assuming linearity,
| Ryy* | = | Rxx* |
| Ryx* | = -] Kgy* | (5)
Also K = K*r L ( pg - Py ) / e (6)

EXPERIMENTAL RESULTS

Circumferential Pressure Distributions

Examples of the circumferential pressure distributions, normalised against the
_pressure drop across the gland, are given in figures 5 - 8. The pressure
distribution for the large seals {(set A) is as shown, figure 5. Moderate
asymmetric pressure field does exist, with consistently regular semi-symmetric
suction pressure in all the chambers beyond the first chamber; the first chamber
having a positive pressure field. The smaller seals (set D) had a very much more
significant asymmetric pressure field, figure 6. The positive pressure in the
first chamber was still observed. Beyond the chambers at the entry end unsymmetric
suction pressure fields were obtained, with chambers towards the exit end

developing a larger sinusoidal component. The introduction of a plenum chamber

in the mid-gland of the same seal set (set E) shows a significant alteration to

the pressure field, figure 7. The circumferential pressure variation in the
chambers prior to the plenum was reduced. The chamber immediately after the

plenum (i.e. chamber number 7) now behaved as a "first chamber" in a normal gland
assembly, thereby breaking down the build up of the pressure field in the stages
along the gland. In the sealing arrangement with a lesser number of stages, set F,
the pressure variation was greater than the long glands, figure 8. This was obvious
as the axial pressure drop per stage was  larger.

In the larger seal geometry, set A and B, there was no appreciable circumferential
pressure variation for zero eccentricity, as should be the case. However in the

191



smaller seals, significant residual asymmetric field did exist at zero eccentricity.
It was not thought to be due to pecularities in the individual seal unit or
alignment and concentricity as these were thoroughly checked:and verified. These
residual pressure fields were thought to be caused by flow dissymmetry resulting
from a random build effect and random variations in the actual fin clearances; the
chambers were sufficiently small as not to allow pressure equalisation. Such an
occurrence had also been noted by Greathead et al on a scaled model rig of an
operational machine (ref. 12).

Lateral Force Distributions

The graph of dimensionless force (pressure coefficient) plotted against seal
chamber number for the large seals, set A, is given in figure 9. An immediate
observation was that variation did exist in the force levels with respect to
chambers. The radial force in the first chamber was a restoring force and beyond
this chamber decentreing forces existed. The transverse forces were significantly
smaller than the radial forces. Variation due to eccentricity is also indicated.
The relatively larger pressure variation of the smaller seals not unnaturally gave
higher force levels than the large seals, figure 10. Variation in force levels
with chamber number was also observed. In contrast with results from the big
seals, the transverse forces were now considerably larger in magnitude, having the
same order in magnitude as the radial forces. It does suggest that small seals
are potentially more destablising than large seals. What was further obvious was
the significant force that existed even at zero eccentricity. Significant
variation in the force levels was observed as a result of variation in the rotor
velocity, figure 11. The resultant decentreing force increased significantly
with rotor velocity, and the resultant transverse force from being a forward whirl
force at U = O changed to a backward whirl force at high rotor velocity (U > vg).
Swirl slightly increased the decentreing force as well as the forward transverse
force at U = 0, figure 12. ’

The comparison of forces for the sealing arrangment with and without the plenum
chamber, figure 13, strengthens the observation already seen in the circumferential

pressure distributions. The radial force level in the chambers were generally
very much reduced, and hence the resultant decentreing force more than halved its
previous value. The transverse force was similarly reduced.

Stiffness Coefficients

Negative radial stiffness was generally obtained for most of the seal arrangements;
with either forward or backward cross-coupled stiffness: this being dependent on
several parameters. Table 1 gives a selection of the dimensionless stiffness
coefficients obtained from graphs of dimensionless force plotted against
eccentricity ratio.

For the big seals, set A, a relatively large negative radial stiffness coefficient
was obtained. The cross-coupled stiffness coefficient was significantly smaller,
figure 14. This observation was also true for the short gland seals (set B) of
the same geometry, figure 15. High rotor velocity tended to give a backward
cross-coupled stiffness coefficient; however at U = O (Vg 5 U) increasing swirl
resulted in increasing forward cross-coupled stiffness coefficient (positive ny*).
The effect of rotor peripheral velocity on the coefficients is even more evident
in the small seals (set C and D), where increasing rotor velocity increases the
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negative direct stiffness coefficients, as well as greatly altering the
characteristics of ny*. The transverse force from being a positive (forward
whirl) force changed to a negative (backward whirl) force, figure 1l6. At low or
no rotor velocity, increasing swirl rate resulted in increasing forward cross-—
coupled stiffness coefficient, figures 16 and 17.

The introduction of a mid-gland plenum was seen to have a significant moderating
effect on the force levels and the stiffness coefficients, figure 18. Force
levels and coefficients were greatly reduced. The previous observation of the
effect of swirl and rotor velocity was still true although of lesser influence.

The short gland small seals (set F) had positive direct stiffness in contrast with
the other seals, figure 19. The cross-coupled stiffness behaved in the same
manner as previously observed, i.e. effects due to swirl and rotor peripheral
velocity on ny*. The combination seals (set G) due to its design of small and
large chambers showed the influence of size variation on the pressure distributions;
and the resulting stiffness coefficients reflected this, figure 20. Variation due
to rotor wvelocity and swirl were again consistent in behaviour.

DISCUSSIONS
Lateral forces do exist as a result of flow through labyrinth glands. These
forces generally increased with eccentricity. Significant decentreing radial

forces were obtained in all the seal configurations, except for the small short
gland with restoring forces. The decentreing forces generally increased with

seal size. Transverse forces orthogonal to displacement however are of most
interest. Both forward and backward transverse forces were .obtained; very much
dependent on rotor peripheral velocity, swirl and seal size. The experimental

observations suggest that small seals are potentially more destablising than big
seals; with the smaller seals yielding a larger cross-coupled stiffness coefficient.
This would be consistent with an experience of KIRK (ref. 13) where a rotor
instability in a compressor was eliminated by replacing the labyringth seals with
seals twice the original dimensions.

.The experimental results also suggest the important influence of rotor peripheral
velocity on the resultant forces. This effect of rotor velocity was more
prominent in the small seals. Increasing rotor velocity generally increased the
decentreing force in the glands, and thus gave a negative direct stiffness
coefficient. All tests further indicated that increasing rotor velocity resulted
in negative cross-coupled stiffness coefficient. If a nett positive transverse
force Fi* already exists in the gland (by virtue of swirl for example) then rotor
velocity reduces this nett force and could give a negative Fi* (backward whirl
force). A strong self-excited backward whirl has been reported by WRIGHT (ref. 8)
on a whirling rotor model.

The moderate swirl that was obtained on the current rig indicated an increased
positive transverse force (forward whirl) with increased swirl, and yielded a
forward cross—coupled stiffness coefficient. This observation was prominent in
zero or low rotor velocity tests. However as rotor velocity increases the nett
backward transverse force resulting from inertia effects was seen to dominate the
forward transverse force originating from entry swirl. Figure 21 gives a plot
of dimensionless cross-—coupled stiffness coefficient against swirl energy for the
small seals (sets C and D). A distinct increase in ny* with entry swirl energy
was observed and indicates the strong dependence of ny on entry swirl. It is
reasonable to suppose that if a higher swirl wvelocity was used higher values of
cross—coupled stiffness coefficient would be obtained. This conclusion on the
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influence of entry swirl on the cross-—coupled stiffness is in agreement with results
obtained by BENCKERT et al with high entry swirl energy (ref. 9, 10). The effect
of swirl on the direct stiffness coefficient Ky, is not as significant. Table 2
gives a comparison of sktiffness coefficients with works elsewhere (ref. 9, 10, 12).
Results from this work compares well, recognising in particular that the work done
by Benckert et al at extremely high entry swirl was not obtained on the current

rig.

In order to appreciate the full significance of the dimensionless parameters seen
so far, a K* value of 0.050 on a 83 bar pressure drop, rotor radius 254 mm,
labyrinth pitch 8 mm and eccentricity 0.50 mm would give a stiffness coefficient of

1.8 x 10 N/m. Hence if the results from Table 2, ny* = 0.04 and Kyy,* = -0.004
and Kyy* = -0.075, were to be applied to this typical steam turbine, then the
respective coefficients are: ny = 1,5 x 106 N/m and Kyy = -2.7 X 106 N/m.

Values of similar order in magnitude for a steam turbine had been quoted by Benckert
et al (ref. 10). ’

The current work further suggests the importance of the relationship between the

rotor peripheral velocity U and the swirl velocity Vg. Apparently when Vg > U a
forward cross-coupled stiffness coefficient was obtained and when Vg < U a backward
cross—-coupled stiffness was obtained instead. This draws parallel to the

proposals of ROSENBERG et al (ref. 14) and also as noted by GREATHEAD et al (ref.
15), that a positive transverse force would be obtained when the swirl velocity
was greater than the rotor precession, and vice versa.

Results and implications from the tests involving a mid-glahd plenum were very
interesting. The direct stiffness coefficient was a mere 10% to 15% of previous
values without the plenum, and the cross-coupled stiffness coefficients 25% to 45%.
Inevitably questions would be asked on the penalty of increased leakage flow
resulting from the use of this gland with the plenum. Flowrate measurements
monitored on this gland arrangement showed no increase in mass flow for the same
pressure head. Such a pressure equalisation chamber is also relatively simple to
incorporate in existing operational machines. Suggestions had been made by KOSTYUK
et al (ref. 16) on a pressure equalisation stability unit at the entry to the gland
in an operational machine; reported of improvement to its instability threshold.
The results of this work and by Benckert et al also confirm the wisdom in recent
attempts to reduce swirl by the use of vortex brakes (ref. 17).

Shortcomings in existing theories particularly those not predicting forces or
instability with parallel rotor displacement were certainly highlighted. Tapered
seal clearances (either converging or diverging) are not necessarily a prerequisite
for instability. New theoretical attempts to formulate labyrinth forces are ‘

required and should accommodate the fact that forces do exist for parallel rotor
displacements.

CONCLUSIONS

This current work shows that an assymmetric pressure field does exist in all
chambers within a gland assembly, even for parallel eccentricity displacements
contrary to what is predicted by existing theories. The lateral forces were
dependent on eccentricity, swirl, rotor peripheral velocity and seal size. The
force system could normally be represented as a negative spring and a tangential
force orthogonal to eccentricity. Both forward and backward cross-coupled
stiffness coefficients were obtained, the direction being dependent on the ratio
between swirl and rotor peripheral velocity. Small seals were also shown to be
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potentially more destabilising. The use of a mid-gland plenum chamber showed
marked reduction in forces and stiffness coefficients, without any increase in
leakage flow.
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ADDITIONAL MATERIAL PRESENT AT WORKSHOP
R.D. Brown J.A. Hart B.E. Falconer

One of the major results from the experimental work was a confirmation that swirl energy
was a significant factor in promoting cross-coupling. A rotor kit was adapted as part of
an undergraduate project. A plenum chamber was designed around the central mass on a
flexible rotor. Four jets in the plenum discharged high velocity air in a tangential direction
on the periphery of the central mass. The synchronous critical speed of the rotor was about
3200 r.p.m.

typical results are shown in figures 22 and 23. A gauge pressure of 6 - 8 p.s.i. was maintained
in the plenum. Clearly the jet velocity was considerably less than sonic although much greater
than the peripheral speed of the rotor.

In both forward and backward flow situations a resonant whip is initiated at a rotor speed
between 4500 and 5000 rpm. Thus whirl ratio is between 0.64 and 0.70 considerably greater
than 0.5. Typical orbit pattern are shown for 4 revolutions of the rotor. It should be noted
that the orbit pattern is not stationary but rotates (as might be expected from the whirl ratio).

These experiments on a small scale rotor provide a laboratory demonstration of high
sub-synchronous whirl. The measurements presented here are purely fluid driven, i.e. no
physical contact between rotor and stator.

A more sophisticated rig is currently being assembled and experimental results will be reported
later.

APPENDIX : Test Seals Data

Set A, B 8.890mm (height) x 9.525 mm (pitch)
Fin edge thickness 0.508 mm + 0.050 mm
Bore 241,300 mm £ 0.010 mm
Nominal radial clearance 0.635 mm

_Set C,D,E,F 4.064 mm x 6.350 mm
Fin edge thickness 0.305 mm + 0.050 mm
Bore 240,665 mm + 0.010 mm
Nominal radial clearance 0.381 mm

Set G 4.064 mm, 7.620 mm x 6.350 mm
Fin edge thickness 0.305 mm + 0.050 mm
Bore (plain seal) 240.665 mm + 0.010 mm
Bore (split seal) 233.553 mm + 0.010 mm
Nominal radial clearance 0.381 mm
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Typical Orbit at 5000 rpm.

Figure 22. - Forward flow.
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Typical Orbit at 5000 rpm.

Figure 23. - Reverse flow.
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