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ABSTRACT

In order to soften the effects of rub, the smooth
stators of turbine gas seals are sometimes replaced by
a honeycomb surface. This deliberately roughened
stator and smooth rotor combination retards the seal
leakage and may lead to enhanced rotor stability.
However, many factors determine the rotordynamic co-
efficients and little is known as to the effectiveness
of these "honeycoih seals" under various changes in
the independent seal parameters. This analysis
develops an analytical-computational method to solve
for the rotordynamic coefficients of this type of
compressible-flow seal.

The governing equations for surface roughened
tapered annular gas seals are based on a modified Hirs'
turbulent bulk flow model. A perturbation analysis is
employed to develop zeroth and first-order perturba-
tion equations. These equations are numerically
integrated to solve for the leakage, pressure, density,
and velocity for small motion of the shaft about the
centered position. The resulting pressure distribution
is then integrated to find the corresponding rotor-
dynamic coefficients. Finally, an example case is used
to demonstrate the effect of changing from a smooth to
a rough stator while varying the seal length, taper,
preswirl, and clearance ratio.

NOMENCLATURE

C(2) = Centered position seal clearance

C = (C#C,)/2 = Nominal seal clearance

c =C/R = Dimensionless nominal seal clearance
o = Specific heat at constant volume

¢, o = Direct and cross-coupled damping

coefficients of Eq. (1)
é ¢ = Dimensionless direct and cross-coupled
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darping coefficients defined by
Eq. (26)

= Shaft diameter

Local seal clearance
Dimensionleéss clearance

Entrance loss coefficient

Direct and cross-coupled stiffness
coefficients of Eq. (1)

Dimensionless direct and cross-coupled
stiffness coefficients defined by

Eq. (25)

Seal length

Dimensionless seal length

Mach number

Coefficients for Hirs' turbulent
lubrication equations

Pressure coefficient

Pressure
Dimensionless pressure

Shaft radius
Centered position, axial Reynolds
number

Circumferential Reynolds Number

Centered rosition, nominal
circuaferential Reynolds number

pPerfect gas constant

Temperature
Time



U =Ry = Velocity of rotor surface

Uz' Ue =FJ'.uid Yelocityinthezande
directions

Y = Up/(R) . pimensionless tangential and axial

u, = Uz / (Rw) velocities

Z, R8 = Axial and circumferential seal
coordinates illustrated in Fig. (1)

z=3/L, 6 = Dimensionless seal coordinates

¥ = r."p/cV = Specific heat ratio

€ = Dimensionless seal eccentricity ratio

e/2C = Relative surface roughness

¥ = Viscosity

P = Density

p=0lo, = Dimensionless density

Tgr Ty = Shear stress illustrated in Fig. (2)

T=Tw = Dimensionless time

Q = Shaft orbital velocity

{4 =0/ = Shaft whirl ratio

W = Shaft angular velocity

Subscripts:

a, e x,b = Reservoir, entrance, exit, and sump
conditions, respectively

0, 1 = Zeroth and first-order perturbations
in the dependent variables

s, ¢ = Stator surface and rotor surface,
respectively

INTRODUCTION

Figure 1 illustrates the basic geametry of the
convergent tapered annular turbine gas seal. In this
figure both the rotor and the stator elements of the
seal are shown to have the same nominally smooth sur-
faces. In practice, however, the smooth stator is
sometimes replaced by a honey conb or other deliberate-
ly roughened surface. The purpose of this roughened
surface is to soften the effects of rub from the rotor
and to retard leakage. But in addition, the smooth
rotor and rough stator cambination may have significant
influence on the seal's rotordynamic coefficients. In
fact, von Pragenau [1] suggests just such a concept for
an incampressible-flow "damper seal" which he believes
will enhance rotor stability.

As related to rotordynamics, seal analysis has the
objective of determining the reaction force acting on
the rotor as a result of the shaft motion. For small
motion about a centered position, the relation between
the reaction-force components and the shaft motion can

be written
-m M Y

F X k X ¢ ¢
- X = o +
Fy -k K Y - C

The off-diagonal coefficients (k, e, m) are referred to
as the cross-coupled stiffness, damping, and added-mass
temms, respectively. These cross-coupled terms arise
from the fluid's circumferential velocity component.
This phenomenon is usually referred to as the effects o‘F
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w
control volume
Figure 1. Smooth Tapered Annular Seal.
swirl. The circunferential velocity component is in

part a function of the stator and rotor surface
roughness. A rough stator and smooth rotor will tend
to reduce the circumferential velocity, leading to a
reduction in the destabilizing cross-coupled cerms.

Fleming {2,3] made a separate analysis for the
direct stiffness X, and for the direct damping C of
smooth tapered annular gas seals. However, he did not
include the effects of swirl and thus could not cbtain
the cross-coupled terms, Childs [4] developed an
analysis for both direct and cross-coupled terms of in-
campressible~-flow by using Hirs® (5] turbulent bulk-
flow model and a perturbation technique., WNelson [6]
used a similar approach to develop a numerical solution
for the direct and cross~-coupled stiffness and damping
of smooth compressible-flow seals, The present analy-
sis modifies the solution of reference [6] to include
the effects of different stator and rotor surface con-
ditions and then demonstrates the ‘analysis on a -
specific seal example.

GOVERNING EQUATIONS

The control volume element shown in Fig. 1 has
been enlarged and redrawn in Fig. 2. Note that the
smooth stator surface has been replaced by a roughened
honeycamb surface. The shear stresses tg and T, are
the net wall shear stresses resulting from both the
pressure induced flow and the drag induced flow. Hirs'
turbulent bulk~flow model assumes that these stresses
can be written as

mO
) 2 UmH)

T = %DUmn Y m (2)
where is the mean flow velocity relative to the
surface upon which the shear stress is acting. Hirs'

constants n, and m, are generally empirically deter-
mined fram pressure flow experiments. For the control



Figure 2. Control Volume fébr a Seal with
a Honeycomb Stator.

volume in Pig. 2, ng and mg represent Hirs' constants
relative to the stator surface and n, and m,. represent
those relative to the rotor surface. Substituting the
mean flow velocity relative to each surface into

Eq. (2) and then taking the appropriate component of
the shear stress in the Z and 6-dirvection, the axial
and circumferential momentum equations are
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The bulk-flow continuity equation is
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And for adiabatic flow the energy equation is
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Assuming a perfect gas (¢, T=p/p(y-1) and using the
dimensionless parameters defined in the Namenclature,
the above governing equations take the following
dimensionless working form,
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PERTURBATION ANALYSIS

The governing Egs. (4a) through (4d) define the
relationship between the dimensionless clearance, pres-
sure, density, axial velocity, and circumferential
velocity (b, B, P, Uy, up) as functions of the inde-
pendent dimensionlesgs spatial variables (g, -z) and the
dimensionless time 1. Expansion of these equations
in the perturbation variables ‘

h=h°+eh1 p=po+§pl ne=ueo+€u91
i3’_"5»’04'&:151 uz=uzo+"3uzl )

yields the zeroth and first-order equations as shown



in Appendix A.
Zeroth-Order Solution

The zeroth-order equations describe the steady
flow resulting from a centered position rotating shaft.
Before these equations can be integrated, values for
Hirs' constants mg and n, nust be established.
Lacking experurentalngata for these constants, values
can be approximated by the use of Colebrook's
formula [7}.

1

\ongl?

= -2 log (6)

For a given relative roughness a least-squares fit is
used to determine ng, and m, over a range of Ry (say
5000<R£1000000) .

Integration begins by guessing an entrance zeroth-
order Mach number M,(0). Defining an entrance loss
coefficient k in a manner similar to Zuk (8], the
following equations give the initial zeroth-order
pressure and density.

1

B (0) = )
° (v-1) (l+k)M02 (0)] v/ (y=1)
t—
(11 2 (0)
N L P
B,(0) = 5 @
[ (r-1)Crekom (0)] v/ (y-1)
1+ '
2
In the first application, k is assumed to be 0.1. Ex~

panding the Mach number as defined in the namenclature
in terms of the perturbation variables gives the
following zeroth~order entrance egquation

20
u,.2(0)3,(0)

1 2(0) = 22
¥, (),

9)

From this equation, the initial zeroth-order axial
velocity u,,(0) can be found. Having now P,(0), B (0},
and u,,(0), the centered position axial Reynolds

mmber Rgo is determined and used to approximate a new
loss coefficient from the data of Deissler [9] as

K=, (5' “37Tog R ~ 1.0

For Rap>200,000, k is set equal to zero. This new loss
coefficient is then used to determine new entrance
conditions and the procedure repeated until a consis-
tent result for k is found. Finally, the initial
zeroth~order circumferential velocity, ugil), is a
given mdependent variable which indicates the amount
of prerotation given to the entering fluid.

(10)

Having now the zeroth-order initial conditions,
Egs. (A.la) through (A.ld) are numerically integrated
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along the seal length. - The guess for the entrance Mach
mumber is continually adjusted until: (a) the Mach
number at the exit just reaches one and the exit pres-
sure remains greater than the sump pressure for choked
flow, or (b) until the exit pressure Just matches the
sump pressure and the Mach number remains less than
one for unchoked flow. All intemmediate values of the
pressure, density, and velocities and their deriva-
tives are then stored for later use in solving the
first-order perturbation equations. Also, the leakage
is determined from these zeroth-order values.

First-Order Solution

The first-order Egs. {(A.2a) through (A.2d) define
p1{z,8,7), P1(2,8,7), uz1(2,6,1), and ug1 (2,8,1)
resulting from the seal clearance function h, (z,8,1).
If the shaft center moves in an elliptical orbit, then
the rotation displacement vector to the shaft center
has coordinates

X =Cxcost , Y= Cyos:'.nﬂt (11)
and the clearance function is
h, = -x cosflicos® = Y Sintsing (12)

The assumed harmonic response is

B = (§;cos§1+§:six\ﬁr)cose+(§;cosﬁt+§;sin§'r) sind
x O 8 . X NC xS .=
f = pxcosQr+pxsmﬂ'r) cost+ (pycosﬂﬂpysnﬁh) sin6
G S . X (TS - S S
u,, = (uxcosﬂrmxsmﬂr)cose+ (uycosQHu ys.mQT) sind
u61 = (vgcosﬂ'r-rv:sinm)oos% (v;cosfzﬁ-v;sinﬂﬂ sin®

(13)

Substitution of Egs. (12) and (13) into the first-order
Egs. (A.2a) through (A.2d) yields sixteen first-order
ordinary differential equations which can be written
in the fom

dx
[a(z)} az + {B(2) ]_)S = XOC(Z) + YOE(Z) (14)
where
§=(§ [ Be PCIP;IE::I p::o;:o;lu!c(luxlu;lu;l": vslvglvy)'

The coefficients of [Al, (Bl, C, and D are given in
Appendix B, These coefficients ‘are completely deter—
mined from the values obtained in the zeroth-order
solution.

The necessary sixteen boundary conditions for
Eq. (14) are now written by examining the perturbation
conditions that must exist at the entrance and exit
for choked or unchoked flow. For ease in writing
these conditions, the following definitions are made:

~C c c
Py U %
~S s s
- X " Yy a Y
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Y Y b4
+S s S
u
% y Vy
(15)



{d~1) For choked flow, the first-order perturbation in
in the exit Mach number is set equal to zero.
Using the definition of the Mach number, the
first-order perturbation is

M, = s W S (16)
%125 u 25
o 20 o

This yields
_él(l) +Ezl (83 _ El(ll

2B, w () 2B

(a.2) For unchcked flow, the first-order perturbation
in the exit pressure is zero giving

B (1) =0 (18)

(17)

(b) At the entrance, the circumferential velocity
perturbation is zero, i.e.

uel(O) =0 (19)

(c) Expansion of the pressure loss Eq. (7) in tems
of the perturbation pressure and the perturba-
tion Mach number from Eq. (16) yields the
following first-order pressure loss equation
which must be satisfied at the entrance:

25, (0) (ﬁl(m . 2uzl(0)> i

By (0) + — ~
2po(0)-r pO(O) uZO(O) (20)
where
Y0t 1)B_ (M % (0)
r = 5 (21)
M (0)

1+(y-1) (k+1) ——

(d) A similar expansion for the density change at
the entrance defined by Eq. (8) gives

5,0 ::po(m (2“21(0’_ ?1(0)> -
By (0)4rs Ul B (22)
vwhere
1,2 (0) (k1) -2]
s = 1+(y-1) T mea (23)

Solution of the differential Eq. (14) in temms of the
above sixteen boundary conditions can be found by
numerical integration techniques. The solution will
take the form

X =xf(z) +yglz) (24)

Dynamic Coefficient Definitions

As shown in reference [6] if the added mass temms
are neglected, the dynamic seal coefficients can be
obtained by numerically integrating the appropriate
solution coamponent of Eq. (24), i.e.,

1 1
- ¢ kG
K=-1;I£-c—=1r ffl(z)dz k=}%L—=-1rI f3(z;dz
a 0 a 0 (25
_ 1 - 1
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paRL 3 paRL
0 o (28

NOMERICAL EXAMPLE

For the compressible flow seal with different
stator-rotor surface roughness treatments, there are
fourteen independent gecmetric and fluid dynamic seal
variables. Assuming a perfect gas, these variables
can be reduced to ten dimensionless parameters. One
possible set is P_=p./(p,w2R2), R.a= 0 CuR/l,

Pa/Pos Ys L/D , Ga/Cx, C/R, eg/2C, e/ C and
ug(0)=Ug (0) / wR). Due to this large number of inde-
pendent parameters, it is unreasonable to attempt to
describe the leakage and dynamic coefficient's depen—
dence in the form of a camplete set of design charts.
Thus, a specific seal geometry and flow condition was
chosen, ard only the length, taper, fluid prerptation,
and clearance ratio (L/D , Cg/Cys ugp(0), and C/R)
were independently varied. The particular seal
selected is equivalent to the turbine interstaye seal
of the High Pressure Oxidizer Turbopump (HPOTP) of the
Space Shuttle Main Engine operating .at Rated Power
Level, The rotor is smooth and the stator is a honey-
comb surface, resulting in the following seal
parameters as supplied by Jackson [10]:

P, = 34.05 MPa (4938 psia)
B, = 26.41 MPa (3830 psia)
T, = 773°K (1391°R)
R = 7.282 cm (2.867 in)
C_=0.38Lm (0.015 in)
c, = 0.254mm (0.010 in)
L = 2.527 cm (0.995 in)
Yy =1.4
Ry = 2480 meN/kg°K (461 £t-1b/Lon°R)
= 2.05 x 107 Pa-s (1.38 x 107> 1b_/ft-s)
Ug, (0) = 0.25
@ = 28352 rpm
e /% = 1.54 x 1072 >m_ = -0,0251, n =0.01534

_ -4 L -
er/ZC = 3,08 x 10 >m, = 0.1691, n; 0.03976

Results obtained for this seal are shown in
Table 1. The first row of data represents the seal
with the given smooth rotor and rough stator. ‘'The
second row represents the results if both the stator
and rotor are smooth. As expected, the rough stator
decreases the leakage and cross-coupled stiffness.
However, it also has the effect of significantly-
reducing the direct stiffness and slightly decreasing
the direct damping.

b kx10 ka10”! ¢ o
(kg/s) (N/m). N/m) {N+s/m) (Nes/m)

rough 1.23 3.07 0.147 1770 13.0
swooth 1.35 3.40 0.160 1800  -0.9

Table 1. Leakage and Rotordynamic
Coefficients for the HPOIP Turbine Interstage Seal

Results obtained by varying the seal gearetry are
plotted in Figs., 3 through 6. In these graphs, the
broken lines represent the given rough stator and the
continuocus lines reoresent a smooth stator. The
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vertical broken line represents the actual value of
the independent variable for the HPOTP seal. Cross-
coupled damping is not shown since it was found to be
relatively insignificant.

Figure 3 shows the effect of fluid prerotation
{preswirl). Clearly, prerotation has no effect on
P, X, or C. However, there is a direct linear
relationship for k.

Figure 4 shows the effect of changing the nominal
clearance C (convengent taper was held constant).
Within the range shown, decreasing the clearance
results in an exponential increase in all coefficients
and a linear decrease in leakage.

Figure 5 shows the effect of convergent taper,
Ce/Cx. For these results, the exit clearance was
held constant and the entrance clearance increased.
It should be noted that this also has the effect of
increasing the nominal clearance. Thus 1.0€Ce/C 2.5
results in 0.0035¢<C/R<0.0061. As might be expected
from Fig. 4, increasing the taper in this manner
increases p and decreases k and . However, X shows
roughly a 50% increase when the seal is changed fram
straight to having a convergent taper ratio of
Ce/Cx=2.

Finally, Fig. 6 shows the effect of seal length.
Generally, as L/D increases, the coefficients increase
and the leakage decreases. However, for a very long
seal (i.e., L/D=0.8), X does reach a maximum and
thereafter decreases,

CONCLUDING REMARKS

An analysis has been presented which calculates
the leakage and rotordynamic coefficients for tapered
annular gas seals in which the rotor and stator have
different surface roughness treatments. To demon-
strate this analysis, the effect of changes in seal
length, taper, clearance and fluid prerotation was
shown for the HPOTP turbine interstage seal. General-
ly, changes in the abovementioned seal parameters
resulted in major changes in the leakage and
rotordynamic coefficients.

In terms of the honey comb stator enhancing
rotor stability, the results appear mixed. There is a
favorable 9% reduction in cross-coupled stiffness and
leakage. But at the same time, direct damping de-

creases almost 2% and direct stiffness decreases 10%.
Thus, general statements concerning the problems of
instability and critical speeds can only be addressed
by considering the entire rotordynamic system-clearly
a problem outside the scope of this analysis. It
should also be kept in mind that the selection of Hirs'
constants may not accurately reflect the actual shear
stresses developed over the honey camb surface.
Experimental tests need yet to be performed to
determine the correct values for these constants.
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APPENDIX A: PERTURBATION ©BQUATIONS

Zeroth-Order Equations
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First-Order Equations

-pP 3P P 5, op 1
—£-1- TCZL]; —2+— Yoo 51ty
[ ol 9z 02 9z ch s
hy
+ (uzl-uzo E) (fsl+frl)]
- Uy +u g - _u_zg_ auzl zl auzo
2T 8o 99 % 2z L 3z



= W)/ g2 +u P

_ ~ a =
FeB I, € Jhy ) ®
~ = go \"sl 30
., 39 Th h N 12 2
() o) o b= (n'll:.+l)/[('-le':> 1+ u,, ]
h .
- Y APPENDIX B: MATRIX COEFFICIENTS
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All coefficients ave zero except those defined
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