Model Estimation and
Identification of.
Manual Contr611er Objectives
in Complex Trackiﬁg TaskS
o "
David K.'Schmidt* and Pin-Jaf Yuan**
Schod] of Aeronautics and Astrdnautics
Purdue University

 West Lafayette, IN

A methodology is presented for estimating the parameters in an
optimal-control-structured model of the manual controller from experimental
data on complex, multi-input/multi-output tracking tasks. Special attention
is devoted to estimating the appropriate objective function for the task,
as this is considered key in understanding the objectives and "strategy"
of the manual controller. The technique is applied to data from single-
input/single-output as well as multi-input/multi-output experiments, and

‘results discussed.

*Professor
**Doctoral Candidate

117



Introduction

In this paper, we will prééent and apply a methodology for identi-
fying from experimental data the parameters in a multi-input/multi-output
model of manual control, sditab1e fdr analysis of complex tasks. In this
context, "complex tasks" refers to tasks in which multiple loop closures
are expected to be present, such as mu1t1 ax1s tracking or aircraft
1and1ng approach, as opposed to compensatory tracking in the laboratory,
for example. The structure of the model is compatible with the well-
known[l] optimal-control model (OéM)'of the human operator, and among the
model-related parameters we seek to obtain is an estimate of the manual
~controller's objeétive function "weightings". This is considered important
because by doing so, the modeier may obtain insight into the operator's
strategy and perception of the task. Furthermore, the magnitude this
function takes on has been hypothesized[2’3] to correlate with the

operator's subjective rating of this task. Hence, an experimentally

determined metric related to'the subjective assessment of the task may
hopefully resu1t. |

In addition to establishing a model structure useful for identifi-
cation, we will also evaluate two procedures for the determination of
the desired model parameters. One uses frequency-domain measurements,
and as a result is similar to previous me‘chods.m’s:| waever, a variation
on this technique will be presented to faci]itate multi-input/multi-output
model determination. The second procedure-proposed is based entirely
on time-domain data. As a result, the constraints on the expgrimenta]
proéedure, such as special tracking signals, required in the frequency-

domain approaches are avoided. Results from both methods will be presented.
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Model Structure

Since the model structure to be used is to be combatib]e with the
OCM, we will briefly note its key features. Readers unfamiliar with this
modeling approach are referred to the references. The hypothesis upon

which the model is based is that the well trained, well motivated human

controller chooses his control inputs (e.g. stick force) to meet his
(internal) objective in the task, subject to his human Timitations. This
objective is further assumed to be expressible in terms of a quadratic

"cost" function
T

Tim 1 Tay T *To
J =E = Y QY +u_Fu_ + d
p [T—m T fo( pQp * Upfip + UpRuy) tl
where Yp = vector of human's observed variables (e.g., attitude, accel-
eration) |
u, = vector of his control inputs

Q,F,R = Controller-Selected (internal) weightings

The human Timitations modeled include information-acquisition and

~ processing time delay, observation and control input errors, and neuro-
muscular dynamics. A block diagram of the resu]tihg model structure is
shown in Figure 1.

The components of this model may be grouped into two parts, one
dealing with the information acquisition and state estimation, and one
related to the control law or control policy operating on the estimated
state. As has been shown in thé references on this modeling approach,
the "solution" for the human's'contro1 inputs, as predicted by the

model, is expressed as
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~

U = -G.x - G

b « uup v, o : - (1)
where x = internal estimate of the system states
Gx’Gu = control gain matrices
u =-motor noise, or control input errors

The system dynamics are taken as

X = Ax + Bup H y = Cx
where y = vector of system response

and if a tracking task is considered, the dynamics of the tracking signal
vector Yo may be represented as

Ye = Acyc + Dw
where w is a disturbance input of "white" noise. Usually, the tracking
dynamics are combined with the system dynamics, resulting in an augmented
state vector co1[x,yc]. Finally, the manual controller is considered

to observe delayed system responses and commands, with some observation

error, or

where vy = vector of observation errors. USua]ly, tracking error

€= Y.~ is observed, plus the commands themselves if the task is that
of pursuit.. Additionally, other system responses may be observed but
not actually regulated or tracked. Thekefore, for our pdfposes we will
arrange the human's observation vector as follows (dropping the t-t

here for brevity)

T T*T.T :T T T
.yp = [Es €, ‘yC’ .ch .Yo] + Vy
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with yof= Cox representing observed responses other than errors and
commands. Clearly, the above eXpression can always be represented in the
form

v = i .
.Vp i Cx(t - 1) V.y

where }F = [yz, x] and C is partitioned accordingly to yield

(2)

o
il
(ep]

Reference 1, for example gives closed-form expressions for the
state covariance matrix E{XXT} for this structure, under assumptions of
independence and "whiteness" on w, vy and vy, A compatible frequency
domain representation of the manual controller may also be obtained that

effectively has the following form
- -1 -1
Up(s) = T R(SIH(SHY(s) + N T + T (SN, (3)

where Yp(s) = Laplace Transform of yp(t) (not delayed)

T-}(s) = Neuromotor Dynamics (= [6%s + 117! if Eqn. 1 is considered)

H(s) = Manual Controller Transfer Function Matrix (Refer to Fig. 1)

Ny’Nu = Noise Vectors - Related to Vy and vu

Also, the command and system dynamics expressed as

Yc(s) = tsI - Ac]"lDW(s) = ¢C(S)DW(§)
and
X(s) = [sI - A]'lBUp(s) = @(s)BUp(s)

may be combined to form
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Y.(s)|  [e (s)Du(s)

x(s) =] © =
X(s) @(S)BUp(s)
Then
_Ce__
Yp(S) = Cx(s) = Ce. x(s) (4)
CO

where recall C is partitioned as in Equation 2. If we now partition

H(s) and Ny to be compatible with Y _(s), we may let

P

H(s) = [H_(s), H.(s), H(s)]
T _ T T T
Ny = [N Nes N3

With this structure, we may represent the system as in Fig. 2, where we

have used the following definitions

c
C => [IZ—Cr]

€

C.=> [1:0] (1 = Identity)

and o= [0ic]

o 7 Y

to make the matrices have compatible dimensions. Note that not only is
this structure consistent with the OCM with multiple inputs and outputs,
but in the scalar case with HC = Ho = 0 the structure also reduces to
the convent{onal compensatory tracking b]oék diagram. Shown in Fig. 3
is this simpler case.

For experimentally estimating a scalar Y _(ju), measurements are taken

p

of ec(t), e(t), and u_(t). Spectral analysis is thén'performed to

p
obtain
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@cu(Jw) = Cross spectrum between € and u,

¢C€(jm) = Cross spectrum between 6¢ and ¢

and the desired relation is

Yp(jw) = o, (Ju)/e__(Ju)
which can be derived from block diagrm a]gebra'(see for example Refs.
4 and 5).
Now, as discussed in Ref. 5, special experimental conditions must
be invoked to identify multiple human operator transfer functions, as
in H(s) discussed above. Specifically, independent excitation of all
inputs to H(s) must be present, and this is frequently not possible in
many practical situations. However, some alternate expressions will be
developed which yield identifiable transfer functions directly related
to the general model structure discussed here, but are not human
operator transfer functions, Tlike Yp(jw) in the scalar case cited above.
Referring to Egns. 3 and 4 above, or equivalently Fig. 2, we have

Uy(s) = THSIH () (=) + NO) + He($)(Y(s) + No)

FH((s) £ M)+ 0T
e(s) = Yc(s) - Cr®(s)BUp(s)
YQ(s) = COQ(S)BUP(S)

Substituting e(s) and Yo(s) into the first expression, and solving for

Up(s) yields
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Figure 3. Scalar Model

Up(s) = [T, (s)I¥ () + [Ty (SYIN + [T ()N,

(5)

T,o(s) = [T+ T-Hs)H_(s)e, - Ho(s)coj¢<s)B]“l[j;1<s){ue(s)+Hc(s)}]

Toy(s) = [T+ ToH(s)H (s)C, - Ho(s)Co3a(s)BI T LT (s )IH, (s):H (s):H, ()1

T,,(5) = [T+ T-H(s)H_(s)C, - H (s)C 2e(s)BI 7 T-1(s)

“Substitution back into the relation for e(s) and Yo(s) yields

e(s) = [T (s)I¥e(s) + [T (s)INy + [T, ()N, )

o(s) = [Too()IYe(s) + ITo ()N, + [Ty, ()TN,

where
Tec(s) = [I - Cré(s)BTuc(s)]

T_,(s) = -C,o(s)BT  (s)

ey y
T, (s) = ~Ca(s)BT,, (s)

Toc(s) = COQ(S)BTUC(S)
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Now the three transfer function matrices Tuc’ Tsc’ and Toc are related
to the matrices of cross-spectra between up and Yoo € and Yeo and Yo and
Yoo respectively, assuming the "noises" Ny and Nu are uncorrelated with

Ye Or using matrix notation

. 3 . -1

T cldw) = [¢ycup(aw)][¢ycyc(w)]
. -1

T c(Ju) = [ (Jw)]l?I> Cyc(w)] (7)
L . -1

Toc(du) = [¢ycyo(3m)][¢ycyc(w)],

So, if frequency-domain data wére used to estimate the above spectra,

the transfer functions fn Eqn. 7 may be identified, but not necessarily

the elements of H(s). However, these identifiable transfer functions,

due to their direct relationship to the OCM, for example, may be used

for model identification and/qr validation in exactly the same manner

eﬁtimates for H(s) may be used, so they are just as meaningful.
Additionally, referring back to Equation 5, under the assumption

that the noise vectors Ny and Nu consist of elements mutually uncorrelated,

and uncorrelated with Yoo @ model-related "expression for the power of

the remnant in each of the i'th components of up'is expressible as

i _ . 12
ool - sziywl oy
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where ¢ (w)
Y5¥3
o] (w)
UYk

Power spectrum of the j'th element in the noise N.y

Power spectrum of the K'th element in the noise N, .

So if ®;r(m) is estimated experimentally, it is relatable to the model-
based parameters on the fight hand side of the above equation for further
model comparison or validation. Similar expressions for all the above

development are available in Ref. 6, for further reference.

Parameter Search Technique

Now that the model structure is obtained to allow direct comparisons
between measured variables and their model-based counterparts, attention
is now turned to obtaining'thg parameter set of interest. This parameter
set, denoted p, consists of the "independent" variables of the model,
such as objective function weights Q and R, time delay t, and noise
coyariance matrices Cn and Cnu, for examb1e. We will make direct
application of the quasi-Newton search approach of Refs. 5, 7 and 8,
with two variations fundamental to our purpose. The first is that in
. the above references, a scalar.objective function weight on tracking
error alone was used eXc]usivé]y, while we desife to estimate more complex
expressions for the cost, or weighting matrices. Secondly, wé will
compare using two forms of éxperimenta] data, one sfrict]y time domain
and the other frequency domain, to determine if using only time domain
data leads to sufficiently accurate results. This is desirab]e since a
purely time domain approach is simpler and greatly reduces the requirement
on the experimental technique for obtaining the required data. .

The scheme is implemented to minimize a scalar matching cost of .

the form
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th measured data point and the

where e, is the difference between the i
corresponding model prediction, W, is a weighting coefficient. Or in

matrix form:

M= eTWe

with e = co1[e1e2, er]s W= diag[wlj.
For a trial set of model parameters p,, we have its corresponding

modeling cost

_ T
M1 = eIWe1

For a new set of parameters p, = py t Ap, we obtain a new modeling

error Ae, related to ap by

Ae = Qap
oe, ' -
where q(i, J) = 35? can be qbtained by a numerical perturbation of the
model. The change in the parameter vector Ap yielding the minimum
mode]ing error, given the initial vector ei and the assumptioﬁ 6f

Tinearity between AM and Ap is

-1.T

op = -[Q"Wa]"'Q "W,

Thus an iteration procedure is established, which proceeds until no more
improvement in matching cost M, or the required changes in the parameters
in Ap afe very small.

In addition to obtaﬁning the best match to a given set of data, we

also wish to determine some measure of the reliability of the identified
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parameter values. A qualitative indication of parameter estimation relia-
bility can often be obtained through sensitivity analysis relating changes
in the scalar matchihg cost to perturbations in the model parameters. In
general, estimates of parameters that have a high impact on the matching
cost can be considered more reliable than estimates of parameters having

a smaller impact.

As shown in Ref. 8, this sensitivity may be estimated from the relation

abij = VTQ WV (ap,)?

th

where V is a column vector that has a value of unity for the i™" element

and values for remaining elements Vr as determined from

T

_ T -1
V,. = -[Q Q.1 QN

where q; = co1[qi,1,‘q1’2, ...] and the subscript r indicates vectors and

matrices which omission of the ith row and column.

Pursuit Tracking Analysis

For comparing the time-vs. frequency-domain data for model determin-
ation, and to relate thé above methodology to .an established situation,
a single axis pursuit tracking task is considered.[ﬁ] Subjects tracked a
command signal generated by a sum of sinusoids

10
0 = Z

1
for 100 seconds, with the frequencies ws evenly spaced between 0.25-17
rad/sec, and amplitudes A, selected such that the spectrum of the

command approximated a random signal generated by

1
0 /W=
c 2 +35 +2.25
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with "white" noise w intensity taken to be 65 = 13.5 §(t), - 5(t)
a delta function. |

In addition to ec,,the subjects observed the plant response o(t),
and therefore the error 0. - © where the two plants (o/ap) were K/s
and K/sz. A representative block diagram is shown in Figure 4. (Note
the correspondence between this block diagram and that of Figure 2.)
Since error, 6¢> and © are not all Tinearly independent, only two need
be included for observation. Therefore,.the subjects observation vector

may be taken as

T _ . ..
yp - [e’ 8” ec’ ec]

for both K/s and K/s2 plants. Finally, including the subjects' control

input Gp in the state vector x, we may define

T _ .
For K/s , x = [ec, Ocs ©s sp]
T . .
[@c{ 6cs 05 05 ep]

For K/s2 , X

- Referring back to Eqns. 5 and 6, one may consider Tuc(s) and Tec(s) to

be scalars,

_ 1 , -1
Tuc(s) = ;;g;T [Hl + SH2 + H3 + SH4][1 + F(H1+SH2)/(TnS+1)]
TeC(S) = [1 - F(H3+5H4)/(Tn5+1)][l + F(H1+SH2)/(THS+1)]_1
From the experimental data, the state covariance matrices E[xxT]
were estimated, as well as the cross-spectra between 60 and Gp, and 8,
and ¢ (error), or %% & (jw) and 2 s(j@). Finally, although not

cp c , ‘ _
possible in more complex situations, since Tuc(s) and Tec(s) are scalars

in this case, an effective operator transfer function may be defined as

—\
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These time and frequency-domain results were used for the quasi-Newton

parameter search to estimate

T T
p = [q s oy T 5 Ty c ,¢C ]
€ € n ny nu :

where q.s q: objective function weights on error and error rate
T, = neuromotor time constant

T = observation . time delay

ACn = observation noise intensities (expressed as noise-to-
¢ signal ratios in dB relative to the variance of each
observation) |
Cn = motor noise intensity (expressed as noise-to-signal ratio
u

in dB relative to control input variance)
Two separate parameter searches were performed. One used only the

state covariance matrix for computing model matching cost, or

A

N X

_1 ¥ Xi57%45,2
MT " N-;Z.( R )
LPN 1)
where Xij = element in experimenta11y-ob£ained state covariance matrix
' iij =‘corresponding element from theicovariance matrix from the
- model
ofj = standard deviation in the experimental value of Xij over

the repeated runs.
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The second used only the frequency-domain result for yp e (jwi)’
e

é 2 w.-J,. 2 R,-R, 2
(=L + L]

g o
Gi ¥y R

N
=.l
Ngt

(jw,)|, and arg y (jwi),-wi inbut frequencies in
Peff = 7 Peff
command signal, measured experimentally from spectra

where 61 Vs = |y

-

[ep B3
<
H

corresponding magnitude and phase of the model-estimated

transfer function |

R. = estimated power of the remnant in the control input ép,
from experiment. Obtained-from the spectrum of ap at
frequencies other than those in the command .

R, = remnant power obtained from the model (or Egn. 8)

i
= standard deviation of the experimental data

OG.i ,C)'.‘p.i ’ORi

The estimates for desired model parameters p obtained using both
approaches are 1isted in Tables 1 and 2, for the K/s and K/s2 plants,
respective1y; Note the estimated values of the parameters do not differ
-significant]y between the results obtained from minimizing MT-(time domain)
and those froh minimizing MF (frequency doﬁain)f In some cases, the
sensitivities in these costs to small relative changes in these parameters
do vary, depending on whether frequency or time domain data is used.

. Another interesting result is the comparison between the state
covariance matrices obtained from the frequency-data - matched model and
the fime—data - matched model. The results for the K/s plant are given
in Table 3, whj}e thoée for K)s2 are shown in Table 4. These results show

not only excellent agreement with simulation results, but the result

from the frequency-domain match agrees very well with the time domain
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GET

Time Match Frequency Match

OCM.pilot-related identification sensitivity ;
parameters results identification sensitivity
tesults
time delay, t .14  sec .47 .13 sec 10.
weighting on error, q_ 2707. .19 ' 2380. .2
weighting on error,qé 348, ' . 09 377. 4. 1
rate ' :
motor noise, Cu -18. db 1.39 -18. db 3.2
u .
observation noise -&. db .21 ~7.  db 2.2
of command, c '
Ye
observation noise - -10. db . 68 -10. db 2.9
of command rate, C:
- Ye _
observation noise - =11, db . 02 =11. db 3.5
of error, c ‘
[
observation noise - =10. db .05 -10. db 3.4

of error rate, Cé

neuromotor lag, T, .09 sec

Table 1. Matching Results - K/s Plant



9¢1

Time Match Frequency Match

QCNrpilot—rélated identification sensitivity idénti¥ication sensitivity

parameters Tesults : ‘result
:time delay, © . .10 sec . &5 .09 sec 10
~weighting.on error, q. 2130. .25 2320. 1
weighting on error 319. .18 ' o v
rate, q: 380. 2.8
-motor no1se,cuu . =19, db 1.20 -19. “db .3
observation noise =7.1 db . 48 _5 g db 2.1
on command, C : : ' ’ )
Ye , _
observation noise =7.5 db .34 W -9. 5 db 1. 4
on command rate, C- e o
, , ‘ o _
observation noise : -13. db .67 ' -11 db 1

on error, C_

observation noise -9.7 . db . 99 | -10 db - 1.5
on error rate., Cé : ' . '

neuromotor lag T, .20 sec

Table 2. Matching Results - K/s®Plant



Table 3. Augmented State Covariance Matrix for K/s Plant

simulation result:

1.0 0. . .80 . 45 o (deg)
0. 2.25 -. 45 .71 6. (deg/sec)
.80  —.46 .93 -1 o (deg)
.46 .71 -1 3.7 5 (in)

frequency domainmatch:

1.0 0. .77 .28
0. 2.25 -.28 .91
.77 -.28 .76 0.
.28 .91 .0 3.5

time domain match:

1.0 0. .79 . 29
0. 2.25 -.29 .91
.79 -.29 .80 0.

. 29 .91 .0 4.0
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Table 4. Augmented State Covariance Matrix for K/s?Plant

simulation result:

1.0
0.

.73
.44

-3

frequency domain

1.0
0.

. &7
.39

-. 36

time domain match:

1.0
o.
.73

.44

-. 32

0.

2.25

—~. 48

.13

1.8

0.
2.295
-.-39
.36

2.0

0.
.25
. 44
.32

1.9

.73

-.48 -

-3.

match:
.67
-. 39

1.18
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.46 -. 3
.13 1.8
o - -a.
2.8 -, 32
~. 32 as

. 39 ~-. 36
. 36 2.0
0 -2.7
2.7 0

0 38.

. 44 -.32
.32 1.9
0 -3.0
2.9 )

0 41,

éc (deg)
éc (deg/sec)
o ;(deg)
(deg/sec)

De

Gp (in)



model, obtained by matching these statistics. |
-On the other hand, the frequency-matched model, as expected, matches
that experimental data well, as shown in Figures 5 and 6. Note, further-
more, that the tfme-matched model does not do a poor job of matching
this data as well.
From the above results, the following is noted:
1. The model obtained from time-domain matching is very close to the
model obtained using frequency-domain data.
2. ‘The sensitivity of the match to model parameter variations, héwever,
differs between the time-and frequency-domain matches.
3. From the frequency-domain matches especially, the sensitivity of
the match to variation in the cost function weighting on error |
rate, q:s is quite large. This indicates that including this

parameter in the cost function is significant.

Multi-Axis Tracking Analysis

As a final example, we will summarize the results of an analysis
of a complex multi-axis tracking task.[g] The task involves fixed-base
simulated air-to-air tracking, with the display symbology as shown in
Fig. 7. The sight symbol (box) is dynamic, representing a lead-computing
sight. It's position relative to the fixed screen reference ié defined
by the coordinates Ap and Ap5. The relative position of the target
is'defined by Bl and Baz- And the relative bank angle dpe] between ]
the target and attacker is indicated by the target's bank angle on the

screen. (Note, ¢ is zero for situation shown in the figure.) The

rel
linearized system dynamics are representative of tracking during a 4g,

constant altitude turn. The input (or command) driving the closed-loop |
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system is the target's inertial (not relative) bank angle b1 which is

generated by the relation
br= -1/t ¢q + W

with t = 13 sec., and the intensity of the random w selected to yield
an rms value of o1 of 5.25 degrees.

One selected set of the pilot's observed variables is

T

Yp = Tegre Spe saze Bz Bee PeLe Faz Baze ¢

where €.) T B T My tracking errors

i

¢ = attacker's bank angle
Other combinations of observations could also be selected, and this set may
not be optimum. Variations on this are under investigation. The pilot's
control input is the stick and rudder, or Sps 8ps and Sp-

The model parameters will be estimated by a time-domain matching
of the (16 x 16) stéte covariance matrix? including the three control
inputs, obtained from several simulation runs. The parameter set to be

discussed includes‘the (3 x 3)'Tn matrix (or Gal)'associated with the

three control inputs, the cost function weights

[q » ¢ s ¢ » 9 09, - ¢ s g ,Q']
3 R R VAR A B R YA

and the noise intensities

(c6 s caA, CSR) = Variances on motor noises
E

(¢ ,c+ ,¢c  ,ce )= Variances on measurement noises
E1 °E1 Az CAZ

The variances on the noises associated with the additional measurements
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were fixed at - 13 dB after some initial studies.

As with the selected observation vector, fhe se1ection.of cost
function weights is based on subjective judgement, and one set may in
fact be more meaningful than the other. For example, the use of a
weighting on relative bank angle between target and attacker, rather

than on 8., and BAZ could be considered. For the set selected here,

El
however, thé results are given in Table 5, and the Tn matrix is

(27 o 0 ]
T, s 0 .31 -.15} (sec)
0 -.15 30
, T _ ‘ .
for up = (GE, 6A’ aR).

- Note the relatively high sensitivity on the cost weightings on éEL

and éAZ in Table 5. This is consistent with the results of Harvey[lo]
in his evaluation of a similar single-axis task, in that weightings on
observations in addition to tracking error and error rate were significant
in_obtaining‘angood model match. This fa;t is basic to the desire to be
able to identify more complex cost functions, as noted in the introduction.

Finally, although this match used the simple-to-obtain state
covariance matrix, comparisons or matching of frequency domain data is
certainly possible if available from the éxperiment. If not, the frequency
domain results from the model is available as a "prediction" of those human
operator characteristics.

Note that slightly more general expressions for the transfer function

matrices Tuc(s), Tec(s) and Toc(s) in Equations 5 and 6 result in the

above examp]e.[s] This arises due to the fact that the system dynamics
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Table 5. Identification Result - Time Domain
for Multiaxis Air—to—Air Tracking Task

OCM pilot-related identification sensitivity
parameters - results
time delay, ¢ .13 sec .2
weighting on 1501, 3.4
elevgtion error,qEI
weighting on 340. .1
eleva. error rate, qél ‘
weighting on ) 1741. . 2.4
azimuth erronr, dap
weighting on 320. _ .1
azimu. error rate qA
weight. on target 1373. .2
elevation angle, q
BE1 |
weight. on target 248, 1.
eleva. angle rate, Qé
_ El
weight. on target 1556. .2
azimuth angle, g ~
Ba | |
weight.'on,target 2264. 1,
azimu.. angle rateg'qé :
elevator noise; Cs -21.3 db 2.0
E . .
aileron noise,cs -20.6 db .4
A .
rudder'noise,cs : -19. 2 db 1.3
R ;
meas. noise on -12.8 db .8
eleva. error, C
°E
meas. noise on -13. 2 db 1.4
eleva. error rate c° ‘
°E
meas. noise on -13. 3 db 1.1
azimuth error, C_
meas. noise on -13. 2 db .9

azimu. errvor rate, cé
A
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are not decoupled into command and plant dynamics, as assumed previously.

As a result, the equation for Up(s) and e(s) (Eqns. 5 and 6) are developed

from the relation

W(s) = [sI - Z\]‘l[ﬁup(s) + Bu(s)]

where

In the development of Eqns. 5 and 6, Aé in A was assumed zero. With this
change, the development of the desired matrices proceeds directly, along

with modifying Figure 2 accordingly.

Summary and Conclusions

An approach has been presented for identifying and/or validating
multi-input/multi-output models for the manual controller in complex
tracking tasks. In the more general case, the conventional human
describing functions may not be direct]ylidentifiab1e, but measurable
transfer matrices diréct]y related to the model were derived. In terms
of model identification or validation, these transfer matrices are just
as useful and meaningful as the conventional describing functions.

Model-parameter identification using strictly timeFdomain data
was demonstrated to yield excellent results for the single-axis pursuit
task. The use of this approach avoids the necessity of obtaining
frequency domain data, sometimes a practical constraint. However, shown
in Ref. 11, time-series techniques may be used effectively to obtain
frequency-domain representations directly compatible With the parameter

jdentification method presented here. Furthermore, the time-series methods
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would appear to circumvent several of the practical problems in 6btain1ng
frequency-domain representations - such as the necessity to be able to
define the command 51gna1 characteristics. Therefore, model parameter
estimation using frequency-domain representations are certainly of
interest, and will remain useful.

The results obtained from evaluation of atwo-axis air-to-air tracking task
with complex, high-order dynamics were briefly noted, primarily to

demonstrate the type of analysis possible with this approach.
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