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Introduction 

In this paper, we will present and apply a methodology for identi-

fying from experimental data the parameters in a multi-input/multi-output 

model of manual control, suitable for analysis of complex tasks. In this 

context, ucomplex tasks II refers to tasks in which multiple loop closures 

are expected to be present, such as ~ulti-axis tracking or aircraft 

landing approach, as opposed to compensatory tracking in the laboratory, 

for example~ The structur~ of the model is compatible with the well­

known[l] optimal-control model (OeM) of the human operator, and among the 

model-related parameters we seek to obtain is an estimate of the manual 

controller's objective function "weightingsu. This is considered important 

because by doing so, the modeler may obtain insight into the operator's 

strategy and perception of the task. Furthermore, the magnitude this 

function takes on has been hypothesized[2,3] to correlate with the 

operator's subjective rating of this task. Hence, an experimentally 

determined metric related to the subjective assessment of the task may 

hopefully result. 

In addition to establishing a model structure useful for identifi­

cation, we will also evaluate two procedures for the determination of 

the desired model parameters. One uses frequency-domain measurements, 

and as a result is similar to previous methods.[4,5] However, a variation 

on this technique will be presented to facilitate multi-input/multi-output 

model determination. The second procedure-proposed is based entirely 

on time-domain data. As a result, the constraints on the experimental 

procedure, such as special tracking signals, required in the frequency­

domain approaches are avoided. Results from both methods will be presented. 
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Model Structure 

Since the model structure to be used is to be compatible with the 

OCM, we wi 11 briefly note its key features. Readers unfamil i ar with this 

modeling approach are referred to the references. The hypothesis upon 

which the model is based is that the well trained, well motivated human 

controller chooses his control inputs (e.g. stick force) to meet his 

(internal) objective in the task, subject to his human limitations. This 

objective is further assumed to be expressible in terms of a quadratic 

"cost" function 

where Yp = vector of human's observed variables (e.g., attitude, accel­

eration) 

u = vector of his control inputs p 

Q,F,R = Controller-Selected (internal) weightings 

The human limitations modeled include information-acquisition and 

processing time delay, observation and control input errors, and neuro­

muscular dynamics. A block diagram of the resulting model structure is 

shown in Figure 1. 

The components of this model may be grouped into two parts, one 

dealing with the information acquisition"and state estimation, and one 

related to the control law or control policy operating on the estimated 

state. As has been shown in the references on this modeling approach, 

the "solution" for the human's control inputs, as predicted by the 

model, is expressed as 
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"-

Up = -G x - G u + v x up· u 
A 

where x = internal estimate of the system states 

Gx,Gu = control gain matrices 

vu = motor noise, or control input errors 

The system dynamics are taken as 

x = Ax + Bu 
P 

y = ex 
where y = vector of system r~sponse 

(1) 

and if a tracking task is considered, the dynamics of the tracking signal 

vector Yc may be represented as 

y = A Y + Dw c c c 

where w is a disturbance input of "white" noise. Usually, the tracking 

dynamics are combined with the system dynamics, resulting in an augmented 

state vector col[x,yc]. Finally, the manual controller is considered 

to observe delayed system responses and commands, with some observation 

error, or 

where vy = vector of observation errors. Usually, tracking error 

E = Yc - Y is observed, plus the command~ themselves if the task is that 

of pursuit •. Additionally, other system responses may be observed but 

not actually regulated or tracked. Therefore, for our purposes we will 

arrange the human's observation vector as follows (dropping the t-T 

here for brevity) 
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with Yo = Cox representing observed responses ~ther than errors and 

commands. Clearly, the above expression can always be represented in the 

form 

Yp =. Cx(t - .r) + vy 

where xT = [y~, x] and C is partitioned accordingly to yield 

C 
£ 

(2) 
----" 

Reference 1, for example gives closed-form expressions for the 

state covariance matrix E{xxT} for this structure, under assumptions of 

independence and "whiteness" on w, vu' and vy . A compatible frequency 

domain representation of the manual controller may also be obtained that 

effectively has the following form 

U (s) = T-1(S}H(S)[Y (s) + N ] + T-1(s)N 
p n p y n u 

(3 ) 

where Yp(s) = Laplace Transform of yp(t) (not delayed) 

and 

T~l(s} = Neuromotor Dynamics (= [G~lS + I]-l if Eqn. 1 is considered) 

H(s} = Manual Controller Transfer Function Matrix (Refer to Fig. 1) 

Ny,Nu = Noise Vectors - Related to Vy and Vu 

Also, the command and system dynamics expressed as 

may be combined to form 
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Then 

C e: 

Yp(s) = ex(s) = Cc x(s) 

Co 

where recall C is partitioned as jn Equation 2. If we now partition 

H(s) and Ny to be compatible with Yp(s), we may let 

b. 
H(s) = [HE(s), Hc(s), Ho(s)] 

NT = [NT NT NT] 
Y E' C' 0 

(4) 

With this structure, we may represent the system as in Fig. 2, where we 

have used the following definitions 

· C => c [1:0] (I = Identity) 
· C => [I: -Cr] E 

and · C => . 0 [O:Co] 

to make the matrices have compatible dimensions. Note that not only is 

this structure consistent with the OCM with multip1e inputs and outputs, 

but in the scalar case with Hc = Ho = 0 the structure also reduces to 

the conventional compensatory tracking block diagram. Shown in Fig. 3 

is this simpler case. 

For experimentally estimating a scalar Yp(jw~~easurements are taken 

of 0c(t), E(t), and up(t). Spectral analysis is then performed to 

obtain 
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~cu(jw) = Cross spectrum between 0c and up 

tCE(jw) = Cross spectrum between Bc and E 

and the desired relation is 

which can be derived from block diagrm algebra (see for example Refs. 

4 and -5). 

Now, as discussed in Ref. 5, special experimental conditions must 

be invoked to identify multiple human operator transfer functions, as 

in H(s) discussed above. Specifically, independent excitation of all 

inputs to H(s) must be present, and this is frequently not possible in 

many practical situations. However, some alternate expressions will be 

developed which yield identifiable transfer functions directly related 

to the general model structure discussed here, but are no~ human 

operator transfer functions, like Yp(jw) in the scalar case cited above. 

Referring to Eqns. 3 and 4 above, 'or equivalently Fig. 2, we have 

Up(s) = T~l(s)[HE(S)(E(s) +NE) + Hc(S)(Yc(s) + Nc) 

+ Ho(s)(Yo(s) + No) + NuJ 

E(S) = Yc(s) - Cr~(S)BUp(S) 

Y~(s) = Cot(S)BUp(S) 

Substituting ds) and Yo(s) into the first expression, and solving for 

Up(s) yields 
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where 

Tu (s) = [I + T-1(s){H (s)Cr - Ho· {s)Co}'~{S)B]-l[T-l{s){H (s)+Hc{s)}] c n £ . n£ 

T (s) = [I + T-1(s){H (s)Cr - Ho{S)Co}~{S)B]-lT-l(s) uu n £ n 

Substitution back into the relation for £(s) and Yo{s) yields 

where 

ds) = [T£c(s)]Yc(s) + [T£y(S)]Ny + [T£u(S)].Nu 

Yo{s) = [Toc(s)]Yc{s) + [TOy{S)]Ny + [Tou{s)]Nu' 

T£C{S) = [I - Cr~{S)BTuc(s)] 

T£y(S) = -Cr~(S)BTUY(S) 

T (s) = -Cr~{s)BT u{s) £u u 
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and 

Now the three transfer function matrices Tuc ' TeC ' and Toc are related 

to the matrices of cross-spectra betw~en up and yc' e and Yc' and Yo and 

Yc' respectively, assuming the "noises" Ny and Nu are uncorrelated with 

Yc. Or using matrix notation 

TUC(jw) = [~y u {jw)][~y y (w)]-l 
c p c C 

. 1 
TeC(jw) = [~y e(jw)][~y y (w)]-

c c c (7) 

Toc(jw) = [~y y (jw)][~y y (w}]-l 
C 0 C C 

So, if frequency-domain data were used to estimate the above spectra, 

the transfer functions in Eqn. 7 may be identified, but not necessarily 

the elements of H(s). However, these identifiable transfer functions, 

due to their direct relationship to the OeM, for example, may be used 

for model identification and/or validation in exactly the same manner 

estimates for H(s) may be used, so they are just as meani ngful·. 

Additionally, referring back to Equation 5, under the assumption 

that the noise vectors Ny and Nu consist of elements mutually uncorrelated, 

and uncorrelated with Yc' a model-related'expression for the power of 

the remnant ln each of the i'th components of up is expressible as 

(8) 
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where ~y.y.(oo) = Power spectrum of the jlth element in the noise Ny 
J J 

~u u (00) = Power spectrum of the Kith element in the noise Nu• 
k k 

So if t~r(w) i~ estimated experimentally, it is relatable to the model­

based parameters on the right hand side of the above equation for further 

model comparison or validation. Similar expressions for all the above 

dev~lopment are available in Ref. 6, for further reference. 

Parameter Search Technique 

Now that the model structure is obtained to allow direct comparisons 

between measured variables and their model-based counterparts, attention 

is now turned to obtaining the parameter set of interest. This parameter 

set, denoted p, consists of the "independentll variables of the model, 

such as objective function weights Q and R, time delay L, and noise 

covariance matrices C and C ,for example. We will make direct 
ny nu 

application of the quasi-Newton search approach of Refs. 5, 7 and 8, 

with two variations fundamental to our purpose. The first is that in 

the above references, a scalar-objective function wei9ht on tracking 

error alone was used exclusiv~ly, while we desire to estimate more complex 

expressions for the cost, or weighting matrices. Secondly, we will 

compare using two forms of experimental data, one strictly time domain 

and the other frequency domain, to determ~ne if using only time domain 

data leads to sufficiently accurate results. This;s desirable since a 

purely time domain approach is simpler and greatly reduces the requirement 

on the experimental technique for obtaining the required data. _ 

The scheme is impleMented-to minimize a scalar matching cost of 

the form 
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N 
M = L 

i=l 

2 w.e. , , 

where ei is the difference between the ith measured data point and the 

corresponding model prediction, wi is a weighting coefficient. Or in 

matrix form: 

with e = col[e1e2, ... J, W = diag[w1J. 

For a trial set of model parameters PI' we have its corresponding 

modeling cost 

For a new set of parameters P2 = PI + ~p, we obtain a new modeling 

error ~e, related to ~p by 

~e = Q~P 

de. 
where q(i, j) = ~ can be obtained by a numerical perturbation of the 

Pj 
model. The change in the parameter vector ~p yielding the minimum 

modeling error, given the initial vector e1 and the assumption of 

linearity between ~M and ~p is 

[ T J-1 T ~p = - Q WQ Q WeI 

Thus an iteration procedure is established, which proceeds until no more 

improvement in matching cost M, or the required changes in the parameters 

in ~p are very small. 

In addition to obtaining the best match to a given set of data, we 

also wish to determine some measure of the reliabi.lity of the identified 
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parameter values. A qualitative indication of parameter estimation relia­

bility can often be obtained through sensitivity analysis relating changes 

in the scalar matching cost to perturbations in the model parameters. In 

general, estimates of parameters that have a high impact on the matching 

cost can be considered more reliable than estimates of parameters having 

a smaller impact. 

As shown in Ref. 8, this sensitivity may be estimated from the relation 

where V is a column vector that has a value of unity for the ith element 

and values for remaining elements Vr as determined from 

where qi = col[qi,l' qi ,2' •.• J and the subscript r indicates vectors and 

matrices which omission of the ith row and column. 

Pursuit Tracking Analysis 

For comparing the time-vs. frequency-domain data for model determin­

ation, and to relate the above methodology to an established situation, 

a single axis pursuit tracking task is considered.[~J Subjects tracked a 

command signal generated by a sum of sinusoids 

10 
Bc = L A. sin(w.t + ~,.) 

. 1 ' , ,= 
for 100 seconds, with the frequencies wi evenly spaced between 0.25-17 

rad/sec, and amplitudes Ai selected such that the spectrum of the 

command approximated a random signal generated by 

B /w = --::-_..::..1 __ _ 
c s2 +3s + 2.25 
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with "white" noise w intensity taken to be a~ = 13.5 o(t), - o(t) 

a delta function. 

In addition to Bc' the subjects observed the plant response B(t), 

and therefore the error Be - B, where the two plants (B/op) were K/s 

and K/s2. A representative block diqgram is shown in Figure 4. (Note 

the correspondence between this block" diagram and that of Figure 2.) 

Since error, B
C

' and B are not all linearly independent, only two need 

be included for observation. Therefore, the subjects observation vector 

may be taken as 

y~ = [£, £, Be' 0cJ 

for both K/s and K/s2 plants. Finally, including the subjects' control 

input 0p in the state vector x, we may define 

For K/s xT = [Be' Be' B, 0pJ 

For K/s2 xT = 
. 

[Be' Be' B, B, 0pJ 

Referring back to Eqns. 5 and 6, one may consider Tuc(s) and T£c(S) to 

be scalars, 

From the experimental data, the state covariance matrices E[xx T] 

were estimated, as well as the cross-spectra between Be and cp' and Be 

and £ (error), or 'B 15 (joo) and 'B £(joo). Finally, although not 
c p c 

possible in more complex situations, since Tuc(s) and T (s) are scalars . £c 
in this case, an effective operator transfer function may be defined as 

~ .. \ 
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= ~e ~ (jW}/~e (jw) 
cUp c£ 

These time and frequency-domain results were used for the quasi-Newton 

parameter search to estimate 

where q , q- = objective function weights on error and error rate 
£ e: 

T = neuromotor time constant 
n 

T = observation time delay 

C = observation noise intensities (expressed as noise~to­
. ny 

signal ratios in dB relative to the variance of each 

observation) 

C = motor noise intensity (expressed as noise-to-signal ratio 
nu 

in dB relative to control input variarice) 

Two separate parameter searches were performed. One used only the 

state covariance matrix for Gomputing model matching cost, or 

" 
I N X .. -X .. 2 

M = - r {lJ lJ} TN. . (J •• 
1,J lJ 

where X .. = element in experimentally-obtained state covariance matrix 
lJ 

" X .. = corresponding element from the covariance matrix from the 
lJ 

model 

(Jij = standard deviation in the experimental value of X;j over 

the repeated runs. 
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The second used only the frequency-domain result for yp (jwi ), 
eff 

A A A 

1 N G.-G. 2 w·-w· 2 R.-R. 2 
M = - I [( 1 1) + (1 1) + (1 1)] 
F N; 0G. 0$. OR. 

1 1 1 

where Gi 1}!. = Iyp (jw. ) I, and arg yp (jwi ) ,. wi input frequenci es in 
, 1 eff ' 1 eff 

command signal, measured experimentally from spectra 
A 

G. w.= corresponding magnitude and phase of the model-estimated 
1 1 

transfer function 

Ri = estimated power of the remnant in the control input ~p' 

from experiment. Obtained from the spectrum of 0p at 

frequencies other than those in the command. 
A 

R. = remnant power obtained from the model (or Eqn. 8) 
1 

0G.,o$.'OR. = standard deviation of the experimental data 
111 

The estimates for desired model parameters p obtained using both 

approaches are listed in Tables 1 and 2, for the K/s and K/s2 plants, 

respectively. Note the estimated values of the parameters do not differ 

significantly between the results obtained from minimizing MT (time domain) 

and those from minimizing MF (frequency domain). In some case,s, the 

sensitivities in these costs to small relative change.s in these par~meters 

do vary, depending on whether frequency or time domain data is used. 

,Another interesting result is the comparison between the state 

covariance matrices obtained from the frequency-data - matched model and 

the time-data - matched model. The results for the K/s plant are Q,iven 

in Table 3, whil.e those for K/s2 are shown in Table 4. These results show 

not only excellent agreement with simulation results, but the result 

from the frequency-domain match agrees very well with the time domain 
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observation noi~e 
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'observation noise 
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on error, C e: 
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Table 3. Augmented State Covariance Matrix for K/s Plant 

simulation result: 

1.0 O. .80 .46 0c{deg) 

o. 2.25 
. 

(deg/sec) -.46 .71 e c 
.80 -.46 .93 -. 1 0 (deg) 

.46 .71 -. 1 3.7 0p (in) 

freQ.uency domain match: 

1.0 O. .77 .28 

O. 2.25 -.28 .91 

.77 -.28 .76. O . 

. 28 .91 .0 3. 5 

time domain match: 

1. o· O. .79 .29 

O. 2.25 -.29 .91 

.79 -.29 .80 O . 

. 29 .91 .0 4.0 
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Table 4. Augmented State Covariance Matrix for KIt/- Pl ant 

simulation result: 

1.0 O. .73 .46 -.3 0 (deg) c 
2.25 -.48 . 13 1.a . 

{deg/sec} o. e c 
.73 -.48 1. 27 O. -3. o . (deg) 

.13 
. 

(deg/sec) . 46 o . 2.8 -.32 0 

-.3 1.8 -:-3. ", -.32 35. <5 p ( in) 

frequency domain match: 

1.0 O. .67 .39 -.36 

O. 2.25 -.39 .36 2.0 

.67 -.39 1. 18 O. -2.7 

.39 . 36 O . 2.7 O. 

-.36 2.0 -2.7 0.· 38. 

time d oma i n match: 

1.0 O. .73 .44 -.32 

O. 2.25 -.44 :32 1.9 

.73 -.44 1. 24 O. -3.0 

.44 . 32 O . 2.9 . O. 

-.32 1.9 -3.0 O. 41. 
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model, obtained by matching these statistics. 

On the other hand, the frequency-matched model, as expected, matches 

that experimental data well, as shown in Figures 5 and 6. Note, further­

more, that the time-matched model does not do a poor job of matching 

this data as well. 

From the above results, the following is noted: 

1. The model obtained from time-domain matching is very close to the 

model obtained using frequency-domain data. 

2. The sensitivity of the match to model parameter variations, however, 

differs between the time-and frequency-domain matches. 

3. From the frequency-domain matches especially, the sensitivity of 

the match to variation in the cost function weighting on error 

rate, q., is quite large. This indicates that including this 
E 

parameter in the cost function is significant. 

Multi-Axis Tracking Analysis 

As a final example, we will summarize the results of an analysis 

of a complex multi-axis tracking task.[9] The task involves fixed-base 

simulated air-to-air tracking, with the display symbology as shown in 

Fig. 7. The si~ht sj~bol (box) is dynamic, representing a lead-computing 

sight. It's position relative to the fixed screen reference is defined 

by the coordinates hEL and hAZ. The relative position of the target 

is defined by BEL and BAZ . And the relative bank angle ~Rel between 
" 

the target and attacker is indicated by the target's bank angle on the 

screen. (Note, ~rel is zero for situation shown in the figure.) The 

linearized system dynamics are representative of tracking during a 4g, 

constant altitude turn. The input (or command) driving the closed-loop 
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system is the target's inertial (not relative) bank angle c/>T' which is 

generated by the relation 

. iT = -lIT c/>T + w 

with T = 13 sec., and the intensity of the random w selected to yield 

an rms value of c/>T of 5.25 degrees .. 

One selected set of the pilot's observed variables is 

where £(.) = 13(.) - A(.), tracking errors 

c/> = attacker's bank angle 

Other combinations of observations could also be selected, and this set may 

not be optimum. Variations on this are under investigation. The pilot's 

control input is the stick and rudder, or 0E' 0A' and oR' 

The model parameters will be estimated by a time-domain matching 

of the (16 x 16) state covariance matrix, including the three control 

inputs, obtained. from several simulation runs. The parameter set to be 

discussed includes'the (3 x 3) Tn matrix (or G~I) associated with the 

three control inputs, the cost function weights 

[q~ ,q;, ,qc- ,q' ,qo ,qo ,qo ,qo ] 
~El ~E1 ~AZ £AZ ~E1 ~E1 ~AZ ~AZ 

and the noise intensities 

(co ' Co ' Co ) = Variances on motor noises 
EAR 

(c ,c· ,c ,c· ) = Variances on measurement noises 
£E1 £E1 £AZ £AZ 

The variances on the noises associated with the additional measurements 
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were fixed at - 13 dB after some initial studies. 

As with the selected observation vector, the selection of cost 

functiDn weights is based on subjective judgement, and one set may in 

fact be more meaningful than the other. For example, the use of a 

weighting on relative. bank angle between target and attacker, rather 

than on So and SAZ could be consider"ed. For the set selected here, 

however, the results are given in Table 5, and the Tn matrix is 

for 

.27 

0. 

0. 

0. 0. 

.31 -.15 (sec) 

-.15 .30. 

Note the relatively high sensitivity on the cost weightings on BEL 

and BA2 in Table 5. This is consistent with the results of Harvey[lo.] 

in his e~aluation of a similar single-axis task, in that weightings on 

observations in addition to tracking error and error rate were significant 

in obtaining a good model match. This fact is basic to the desire to be 

able to identify more complex cost functions, as noted in the ·introduction. 

Finally, although this match used the simple-to~obtain state 

covariance matrix, comparisons or matching of frequency·domain data is 

certainly possible if available from the experiment. If not, the frequency 

domain results from the model is available as a IIpredictionll of those human 

operator charact~ristics. 

Note that slightly more general expressions for the transfer function 

matrices Tuc(s), Tec(s) and Toc(S) in Equations 5 and 6 result in the 

above example.[6] This arises due to the fact that the system dynamics 
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Table 5. Identification Result - Time Domain 
for Multiaxis Air-to-Air Tracking'Task 

oeM pilot-related 
parame'ters 

identification 
·results 

time delay, T 

weighting 
elevation 

on 
error, qfl 

.13 

1501. 

weighting on 340. 
eleva. error, rate, qEl 

weighting on 1741. 
az imuth error, qA 

weighting on 
azimu. error 

320. 

weight. on target 1575. 
elevation angle, qs 

E1 
weight. on target 248. 
eleva. angle T'ate, q' 

SEl 
weight. on target 1556. 
azimuth angle, qSA 

weight. on.target 226. 
azimu. anglerate;q' 

SA 
elevator noise, Co 

E 
aileron noise, Co 

A 
rudder noise, Co 

R 
meas. noise on 
eleva. error, C 

E~ 

meas. noise on 
eleva. error rat~ C· 

EE 
meas. noise on 
azimuth erroT', C 

€A 

-21. 3 

":'20.6 

-19.2 

-12.8 

-13.2 

-13.3 

meas. noise on -13.2 
a z imu. error T'ate, c· 

EA 
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sec 

db 

db 

db 

db 

db 

db 

db 

sensitivity 

.2 

3.4 

.,1 

2.4 

. 1 

.2 

1. 

.2 

1. 

2.0 

.4 

1.3 

.8 

1. 4 

1.1 

. 9 



are not decoupled into command and plant dynamics, as assumed previously. 

As a result, the equation for Up{s) and £(s) (Eqns. 5 and 6) are developed 

from the relation 

where 

In the development of Eqns. 5 and 6, A~ in A was assumed zero. With this 

change, the development of the desired matrices proceeds directly, along 

with modifying Figure 2 accordingly. 

Summary and Conclusions 

An approach has been presented for identifying and/or validating 

multi-input/multi-output models for the manual controller in complex 

tracking tasks. In the more general case, the conventional human 

describing functions may not be directly identifiable, but measurable 

transfer matrices directly related to the. model were derived. In terms 

of model identification or validation, these transfer matrices are just 

as useful and meaningful as the conventional describing functions .. 

Model-parameter identification using strictly time-domain data 

was demonstrated to yield excellent results for the single-axis pursuit 

task. The use of this approach avoids the necessity of obtaining 

frequency domain data, sometimes a practical constraint. However, shown 

in Ref. 11, time-series techniques may be used effectively to obtain 

frequency-domain representations directly compatible with the parameter 

identification methpd presented here. Furthermore, the time-series methods 
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would appear to circumvent several of the practical problems in obtaining 

frequency-domain representations - such as the necessity to be able to 

define the command signal characteristics. Therefore, model parameter 

estimation using frequency-domain representations are certainly of 

interest, and will remain useful. 

The results obtained from evaluation of atwo-axis air-to-air tracking task 

with complex, high-order dynamics were briefly noted, primarily to 

demonstrate the type of analysis possible with this approach. 
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