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	 CHAPTER 1.

INTRODUCTION

1.1 Background

The Space Shuttle will be carrying on many of its

missions a facility called Spacelab to support scientific

investigations. Spacelab is a set of equipment installed in

the Shuttle payload bay (as shown in figure 1) which

transforms the Shuttle into an orbiting laboratory for space

science. Spacelab will be equipped with computers to

support operations of the Spacelab equipment and its

scientific payload of experiments. The software that the

computers use is stored on a magnetic tape storage device

called a Mass Memory Unit or MMU.

The Spacelab design. [24] was established in the

mid-1970s, and in turn, the flight-qualified computer

systems were constrained to computers with only 65,536

sixteen-bit word memories and the magnetic tape mass storage

i
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device. Because of the small memory size, and the large

number of functions supported by the experiment computer,

software must be retrieved frequently froc the MMU tape.

Since the MMU tape drive is the only space flight qualified

mass storage device available, the time required to access

software can be large by today's standards. Software access

times will vary with the tape travel necessary to reposition

from one software module to another. That is, the greater

the distance between two software modules on the tape, the

longer the time needed to access one and then the other. It

is, therefore, desirable to minimize the tape travel, and

thus the software access time.

The accesses of MMU software modules, commonly called

data-sets, are made to support hundreds of operations during
	 I

a Spacelab flight. These operations may involve setting up

an experiment, conducting an experiment, displaying

information to the Spacelab astronauts, and many other

functions. Because of the potential for large MMU access

times, there are concerns that these software operations

might take longer to perform than is expected or necessary.

Unexpectedly long access times might even result in

operations performed incorrectly or at the wrong time.

Spacelab missions may have specific operations which need

small access times. It may also be desired that tape travel

is minimized for all of the operations performed. Thus, the

definition of good tape positions for the data-sets will
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vary with the needs of the specific mission.

In the past, the tape positions of the data-sets have

been selected in the following manner (see Figure 2): A

list of all the data-sets and their si z es was made by the

flight software developer, IBM. This list was provided to a

person at the National Aeronautics and Space Administration

(NASA) who was familiar with the Spacelab flight operations

and software. Using his best judgement, this person ordered

this list so that the data-sets called close together in

time during the Spacelab flight would appear close together

in the list. The reordered list was then returned to Iv^f.

IBM then used the reordered list as an input to an algorithm

which determines the data-sets' tape positions. The

algorithm packs the data-sets on the tape as densely as

possible when it is loaded before launch. The loaded MMU

tape must be integrated into Spacelab and checked to assure

it is operational. While the MMU is installed, it is not

possible to revise the tape layout. There are no preflight

tests of the Spacelab that exercise the MMU as is expected

during the flight.

IBM	 NASA	 IBM

!List all	 !	 !Order	 !	 'Reordered ;	 MMU
!MMU Data- !--> ! data-set ; --> list into ! -- > TAPE
!sets	 ;	 !list	 !	 !algorithm !	 LAYOUT

Y^

Figure 2.	 Tape Layout Process
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1.2 Problem Definition

The current method of selecting the MMU tape layout

does not provide adequate assurance that MMU tape travel

I

will be minimized. This is due to several reasons. First,

the data-set utilization has not been systematically

examined by the NASA person before he or she orders the

data-set list. Next, the NASA person does not have

immediate knowledge of the layout algorithm logic. Also,

1BM is not knowledgable on Spacelab operations which require

MMU acces=es. Thus, the list order is an educated guess by

NASA.

1.3 Solutioa Aoor.Q&"

The problem must be approached using the existing

layout algorithm so there will be no change to the IBM

activities. Thus, improving NASA's method of ordering the

data-set list is required. A rigorous method of ordering

the input to the layout algorithm will be developed such

that the resulting tape layout will minimize tape travel for

expected sequences of data-set accesses.

To do this, three questions must be-addressed:

1. When are data-sets expected to be used?

2. Will large MMU tape movements occur for a tape layout

given the expected data-set utilization? If so, what

are the associated data-sets?
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3. Can a proposed data-set list be ordered 6ifferently to

decrease tape travel?

To answer these questions in a rigorous way, the following

actions will be performed: First, the utilization of the

MMU data-sets will be systematically identified. This

utilization will be correlated to Spacelab operations

involving data-sets. Next, the tape travel output variable

will be modeled using a sequence of data-set accesses as the

independent variable and the layout algorithm input list as

the decision variable. This model will be used to evaluate

the tape travel associated with different orders of the

data-set list that is input to IBM's layout algorithm.

Measures of performance will be established for comparing

tape travel of different tape layouts.

1.4 Summary

Spacelab I information will be used in this study.

This first Spacelab flight was a multi-discipline mission

involving over forty experiments in solar physics, life

sciences, space plasma physics, earth observations,

astronomy, and material science studies. To support this

large number and variety of experiments, Spacelab I had 182

data-sets of different sizes to be positioned in 8192

possible tape locations. This indicates the large number of

potential list order3. The Spacelab I MMU layout was

determined using the simulation discussed herein. The



effectiveness of the solution methods was demonstrated by

the flight of Spacelab I and will be discussed.

The experiment operations on Spacelab I are typically

sensitive to MMU acce<.s time. By studying this problem for

Spacelab I the possibility of the loss of science data was

decreased. Future Spacelab missions should be able to use

the techniques described herein to decrease their MMU tape

travel.

r

1
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CHAPTER 2.

SYSTEM DEFINITION

This chapter will identify and describe the overall

system and environment involved with the MMU access problem.

A "black box" overview will be presented showing the input,

decision variable, process, and output of the system. Each

of these components will be discussed in detail.

2.1 System Overview

Figure 3 is a black box overview of the overall system.

This figure shows that before launch a list of MMU data-sets

is made. This list is input to an algorithm which selects

tape positions for the data-sets. The data-set positions

can be controlled indirectly by changing the order of the

data-sets list. Thus, the order of this list is the system

decision variable. Before the Shuttle launch, the data-sets

are loaded onto the MMU tape in the positions allocated by

f
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the layout algorithm. The MMU tape then becomes a component

in the command and data management subsystem (CDMS) on

Spacelab.

ORDERED
i LIST OF
DATA-SETS:

i LAYOUT
:ALGORITHM

i

BEFORE	 y.--
LAUNCH	 :	 MMU

TAPE
LAYOUT

i

- - - - - - - - - - - - - - - - - - - : - - - - - - - -
DUxING FLIGHT

i

SCHEDULED ----> 1 	 — 3_
OPERATIONS	 :	 CDMS	 i	 i MMU :	 MMU

+------------>1	 CDMS 1-----1--------->: OPERATIONS : —	 i RESPONSE
UNSCHEDULED -->:
OPERATIONS

Figure 3. System Overview

The CDMS consists of many components, including the

MMU. The CDMS hardware and software support a variety of

mission operations during a Spacelab flight. The CDMS also

provides a variety of interfaces for the flight and ground

crews through which MMU operations may be initiated.

CDMS operations are the input to the overall system

which cannot be controlled. CDMS operations can be divided

into two groups. The first group is the set of operations
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scheduled at specific times during the Spacelab flight. The

second group is the set of operations which occur on an

unscheduled basis, i.e., at times not known before flight.

As both groups of CDMS operations occur during a flight,

requests to retrieve software from the MMU will be made.

The system output of interest is the delay incurred

while retrieving software from the MMU. If an MMU access

delay is larger than expected, the operation supported by

the software might not be performed correctly or on time.

This might lead to a loss of scientific data. This delay

varies with the amount of tape travel between successive

data-set accesses.

2.2 Command and Data hMan"ement Subsysteg 	
1i

The Command and Data Management Subsystem (CDMS) is the

hardware and software that provides command and data

capabilities to the astronauts and ground control personnel

in the operation of Spacelab and its payload of experiments

[24). The primary elements of the CDMS are depicted in

figure 4 and described below. These descriptions are

provided to assist the reader's understanding of how MMU

data is used in the system.

1. Mass Memory Unit (MMU): The Mass Memory Unit is the

mass storage device for the CDMS. It is a magnetic tape

drive which uses a tape with one control track and eight

data tracks [4,143. As figure 5 shows, the eight

i

4
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ON SPACELAD

ON THE GROUND

FIGURE 4. CDMS SYSTEM OVERVIEW
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parallel data tracks are divided into eight files

consisting of eight subfiles each. Each subfile is 32

blocks long and each block contains 512 sixteen bit

words. The even tracks (0, 2, 4, and 6) are considered

as primary and the odd tracks (1, 3, 5, and 7) as

backups. Data on the primary tracks must be duplicated

on the backup tracks [4]. Therefore, 8192 different

data blocks may be stored on the MMU.

2. Experiment Computer: The experiment computer may be

used in the operation of Spacelab experiments. On

Spacelab I, the majority of MMU accesses are inititated

through this computer. It will recall application

programs, crew display formats, data files, files of

time-tagged commands, and memory loads for dedicated

experiment processors. Also, data may be written to the

MMU tape from the experiment computer [4,51.

3• Experiment Computer Input/Output Unit (ECIO Unit): The

ECIO unit interfaces the experiment computer to other

CDMS components [24].

4. Subsystem Computer: The subsystem computer is used in

the operation of Spacelab subsystems. On Spacelab I,

the subsystem computer interfaces with the MMU when it

is initialized and when commanded from the ground

_e,
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[20,21]. Initialization of this computer should occur

once at the beginning of the mission. The ground will

command the subsystem computer to access MMU data

approximately 155 times.

5. Subsystem Computer Input/Output Unit (SSIO Unit): The

SSIO unit interfaces the subsystem computer to other

CDMS components.

6. Data Display System (DDS): The Data Display System is a

display and keyboard which provides access to the

subsystem and experiment computers by the Spacelab

astronauts. As a result of commands through the DDS,

MMU data will be accessed [4,5,237.

7. Multiplexer Demultiplexer (MDM): The Multiplexer

Demultiplexer provides access to the computers and MMU

from the Shuttle orbiter and Payload Operations Control

Center (POCC) [4,5,241. 	 In the POCC, experimenters and

engineers can send commands through the MDM when there

is a need to change an MMU data-set's contents. On

S p acelab I, frequent data-set updates through the MDM

are anticipated.

2.3 MMU Data- sets

The MMU tape contains the software data-sets for both

the subsystem computer and experiment computer. The

subsystem computer software represents only a small portion
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of the data-sets on the tape for Spacelab I. It includes

the subsystem computer executive and support software and

the High Rate Multiplexer (HRM) telemetry formats.

•

	

	 Most of the software stored on the Spacelab I tape is

used by the experiment computer. It may be divided into two

main groups, system and payload. System software consists

of the program code and data tables that support the entire

Spacelab payload rather than one specific experiment [4,51.

Payload software generally supports one experiment during

the time it is scheduled to operate. Five types of software

are used to support experiment operations [20,21,231:

application tasks, displays, user data-sets, Experiment

Computer Operating System (ECOS) timelines, and dedicated

experiment processor loads. Table 1 summarizes the types of

experiment computer data-sets used on Spacelab I. The first

character of the data-set name identifies its type.

Table 1. Experiment Computer Data-set Types

--------------------------------------------------
Type	 Description.	 1st Char.

Task	 Executable program code	 A or X
Display Crew display formats	 T
UDS	 User data files	 U
ECOS TL Time-tagged command sequences	 M or S
DEP Load Dedicated Efp't Processor S/W 	 D
---------------------------------------------------

Application tasks are the first type of software. They

are computer programs used to monitor and control

experiments. There are two special tasks which support the

ECOS timelines described later. These special tasks have

names beginning with an "X"

^	 3
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Another type of MMU data-set is a crew display.

Display format definitions for the DDS terminals are defined

by this type of data-set. Some displays are designed to

work within the capabilities of the operating system and are

available on the DDS terminal at any time. Other displays

depend upon an application task for support. These display

data-sets will be accessed when a task is run or an

astronaut requests the display while the task is executing.

User data-sets (UDSs) are another type of data-set

which is used to store general blocks of data. Through the

experiment computer, these; data-sets may be read or written

by an application task or by ground command. Typically,

instrument settings or timing 'values are stored in UDSs and

will need revision based upon the review of experiment

telemetry data. Most of these updates will made by using 	
ik

commands sent from the POCC through the MDM.

Another type of data-set stored on the MMU consists of

time-tagged command sequences called ECOS timelines. These

sert;ences come in two forms, master timelines (MTLs) and

subordinate timelines (STLs). MTLs initiate experiment

operations by sending commands directly to the experiment

or, more commonly, by initiating a subordinate timeline.

STLs typically contain commands dedicated to a specific

experiment. The timing of MTL and STL commands is

determined by the Spacelab experiment and the operations

scheduling. Like UDSs, MTLs and STLs will be revised

frequently due to changes in the scheduling of experiments

it	 -
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or the need to change experiment settings.

The last type of data-set is called a dedicated

experiment processor (DEP) load. Program loads for

microprocessors that are provided by the experiment may be

stared on the MMU and loaded into those processors via the

I
	 experiment computer.

Often when one data-set is called, other data-sets must

be called to support an operation. For example, when an

application task is run, a root segment may call other

program segments, a display data-set, user data-set, and/or

an ECOS timeline. This sequence of software calls is the

same for each performance of an operation.

2.4 Operations Znvolvin¢ MMU Data-sets

The Spacelab CDMS operations are the drivers of MMU

data-set accesses. Many operations are scheduled at

specific times [22], but unscheduled events may also cause

data-set accesses. CDMS operations may be divided into two

types; scheduled and unscheduled. scheduled operations have

predefined times of occurrence. Unscheduled operations

occur at undefined times and are associated with routine

activities or contingencies. The following paragraphs

describe the relationships between CDMS operations and the

use of MMU data-sets.

The operations of the Spacelab experiments are

carefully scheduled to assure that the Spacelab resources

will be available to study a scientific phenomenon when it

_D^
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is apparent [22]. Some of these phenomenon are apparent at

a precise time and for only a short time. Thus, any delay

in experiment performance could preclude the collection of

scientific data.

Spaeelab operations are scheduled in the following

manner. ,First, the flight time is divided and allocated to

different experiment disciplines as shown in Figure 6. The

time slices are selected such that the conditions arc

conducive to sup.ort the experiment operations. At these

times, the Shuttle and Spaeelab will be operated according

to the experiment needs. As examples, the Shuttle payload

bay will be pointed to the sun for solar physics

experiments, to the earth for earth observation experiments,

and to various galaxies and stars for astronomy experiments.

The solar and earth observation experiments will be

scheduled during the sunlit portions of the orbits while the

astronomy experiments will typically be scheduled in

darkness. During these time slices, experiments sharing an

interest in the scientiific phenomenon may be operated in

parallel and sequentially.

Before a Spaeelab flight, individual operations are

identified and encoded into a mission planning computer

system 1221• In this ground computer, a data-base is

defined wheeein each scheduled function is given a label and

broken into numbered steps. Each step represents an

operation in the performance of a functional objective. The

mission planning system software creates a file scheduling

n	
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these operations at specific times.

Table II shows a segment of the Spacelab I mission

schedule stored in the mission planning system. From left

to right, the table identifies which astronauts are to

support the operation step, the operation label and step

number, a description of the step, and the scheduled start

and completion times for the operation. A scheduled

operation may or may not require that software be accessed

on the MMU according to the operation's procedures. This

table shows that twenty two operations are scheduled between

hours 38 and 39. For this hour, thirteen of these

operations will involve data-set accesses.

Some of the software stored on the MMU tape supports

operations which do not appear in the mission schedule.

Routine unscheduled functions and some contingencies may

involve data-set accesses. These accesses will occur during

a flight with some estimated frequency distribution. ECOS

timeline maintenance, user data-set maintenance, and crew

display calls are examples of unscheduled operations.

2.5 Data-set Positioning on the Taoe

The position of each data-set on the MMU tape is

selected b y an MMU tape allocation program. normally run by

the Spacelab software integration contractor. This program

reads down a list of the MMU data-sets and allocates tape

NO,	 —
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positions for each. Table 3 shows a portion of this list

which identifies the data-set name, description, size,

initial position (if fixed), and whether its position is

fixed or variable. By changing the order of the data-set

input list, different MMU tape layouts result.

r Table	 3•	 A	 Partial	 List	 of
---------------------------------------------------------

Data-sets

-. Size Pos.(2)
Name Description (1) T F 5 B Control

SBOOTP
-------------------------------------

SCOS BOOTSTRAP PRIME 2
 --------------------

0	 0 0 0 FIXED
SBOOTP: SCOS BOOTSTRAP REDUNDANT 2 0 7	 7 0 FIXED
SCOSAM SCOS IPL AMI 126 0	 0	 0 2 FIXED
SSCDIR SCOS MMU DIRECTORY 1 0	 1	 0 0 FIXED
S1S ECOS 39 0	 0 0 0 VAR
sic ECOS 138 0	 0	 0 0 VAR
A13DO ECOS 3 0	 0	 0 0 VAR
T13D ECOS 2 0	 0 0 0 VAR

`	 A13EO
e

ECOS 4 0	 0	 0 0 VAR
T13E

^-
ECOS 2 0	 0	 0 0 VAR

---------------------------------------------------------

 (1)	 Number of 512 word blocks.
(2)	 T	 = Track;	 F	 =	 File;	 S	 =	 Subfile; B	 = Block

In the algorithm, rules on the positioning of data-sets

are as follows:

1. Interface agreements and system requirements constrain

some software to occupy specific tape positions. These

data-sets are said to be fixed on the MMU tape. Tape

must be allocated to fixed data-sets first. The

remainder of the data-sets will be positioned in any

tape blocks not already allocated. The first four
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entries in Table 3 are examples of "fixed" data-sets.

2. Odd numbered tracks must contain redundant versions of

the even numbered tracks. For example, the data on

track 1 is identical to track 0.

3. Data-sets which are larger than a file (256 blocks) must

be positioned at the start of a file.

4. Data-sets larger than a subfile but smaller than a file

must be positioned at the start of a subfile.

5. Data-sets smaller than a subfile must be contained

completely within a subfile. That is, a data-set less

than 32 blocks long may not cross subfile boundaries.

6. Experiment computer displays may not be positioned in

subfiles 0, 1, 6, or 7 of any file.

7. Data-sets should be positioned such that tape movement

across the boundary of files 3 and 4 is minimized.

The allocation algorithm sequentially reads each

data-set in the order listed and allocates tape positions

for each data-set within the above constraints. The search

for unallocated tape is started at file 6, subfile 0, block

0, track 0. As soon as a valid position is found for a

data-set, the algorithm permanently allocates that space to

it. The program searches the files in the order 6, 5, 7, 4,

3, 2, 1, 0. If the file number is greater than 5, the

subfile search order is 0 to 7 and the block order is 0 to
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31.	 Otherwise, the order is 7 to 0 and 31 to 0,

respectively. The even tracks are always searched in the

order 0, 2, 4, 6.

2.6 MMU Rem nse_tQQata-s gt--gQcesses

The MMU response to data-set accesses is the system

output variable of interest. The way that the MMU performs

data-set accesses determines the access times and is

described below [4,14].

When a data-set is read, the tape moves from its

current position to the closest block of the desired

data-set and then reads the MMU tape blocks to the end of

the data-set. As an example, suppose the data-sets named

A34RO and T14A are positioned on the tape as shown in Table

4.

Table	 4. Example Data-set Tape Positions

Data-set Size Track
-----------------------------------------------------

File Subfile	 Blocks

--------
A34RO

----
12

-----
6

----
6

-------	 ------
1	 15-26

T14A 1

-----------------------------------------

2 5 5	 30------------

If data-set A34RO is read from track 6 in the forward

direction, the tape will stop moving positioned at file 6,

subfile 1, block 28. To read another data-set, T14A, the

tape will skip 124 blocks while moving to file 5, subfile 5,

block 30 to read from track 3 in the reverse direction.

DI
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When a data - set is accessed, the startup and stop time of

the tape movement is about 550 milliseconds. Approximately

26 milliseconds are required to read a block. To skip an

entire subfile, 820 milliseconds are required [14].

Only one factor can be controlled that affects data-set

access times. It is the tape positions of the data-sets.

Thus, to minimize the access time, two data-sets that are

often sequentially accessed should be positioned close

together on the tape for minimal tape travel.

2.7 Summary of Svstem^^^	 risties

The overall system consists of the MMU tape layout

process, the operations inputs, the CDMS system (including

the MMU tape) and the MMU tape movement. The system input

is the scheduled and unscheduled operations that require

data to be retrieved from the MMU. The CDMS processes these

operations. It consists of many interfacing components

including the MMU. The tape positions of software data-sets

are determined before flight. The data-set positions on the

tape can be controlled by changing their input order to the

MMU tape layout algorithm. The overall system output of

interest is the response time of the MMU. The MMU access

time will vary with the tape travel between data-set

accesses. By minimizing tape travel, the probability of

large access times which adversely impact science data

collection will be decreased during Spacelab flights.
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CHAPTER 3.

SELECTION OF A SOLUTION APPROACH

In this chapter, the problem will be generalized and

classified to identify a solution approach. The

relationship between the independent, decision, and output

variables will be examined. Potential solution methods will

be assessed that will provide an acceptable solution in

reasonable time.

3.1 General Problem Statement

To access a data-set, the MMU tape must be moved to the

data-set. If the tape should happen to be positioned at

that data-set already, then no time delay will occur due to

repositioning of the tape. Thus, if two data-sets are

accessed together, they should be positioned together on the

tape. Often within an operation, several data-sets are

always accessed sequentially. Since these accesses always

}

1
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occur together, the distance between them on the tape should

be minimized. In a similar way, several operations will

always occur together. If these operations have data-set

accesses, the data-sets associated with this group of

operations should be positioned closely together. The

objective will be to find a tape layout that minimizes tape

travel for all data-set accesses within and between

operations.

Tape travel can be examined in several ways according

to the operations the data-set accesses are associated with.

As an example, measurements could be made on tape travel for

each data-set access within an operation. The tape travel

within an operation would indicate the operation's delay

times due to data-set accesses. Also, the tape travel
1

between operations could be measured. This travel would be

indicative of the wait time to start a new operation.

Any two arbitrarily selected data-sets could be

positioned together on the MMU so that there could be no

travel between them. But on Spacelab I, there are 166

data-sets to be positioned that will support one or more of

over 1000 operations. The objective is to find a "balanced"

tape layout that minimizes tape travel for all the

operations' data-set accesses expected during a flight. To

evaluate whether a layout is "balanced," averages of the

maximum travel within an operation and between operations

can be calculated. Various tape layouts can be compared

using these averages so the best layout can be chosen for
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use.

For Spacelab I, let us identify tape travel measures

MTI and ATB where, over the flight, MTI is the average of

the maximum travel for a data - set access within any

operation, and ATB is the average travel between operations.

These will be the system outputs of interest [10,11,19,27].

Let us represent them collectively by the set 0 where

0 = (MTI, ATB).

If MTI is minimized, the average time to complete a

CDMS operation will be minimized. If ATB is decreased, the

travel between operations is decreased which decreases the

average delay incurred at the start of an operation.

The independent variable is the time of occurrence of

CDMS operations that require data-set accesses. Many of

these operations are scheduled for a Spacelab flight and are

to be performed at their scheduled times. The times of

these operations may be considered deterministic if no

deviations from the operations schedule are assumed. Thus,

if we were given only these operations, the sequence of

data-set accesses would be completely known. Let us

represent these scheduled operations by the time ordered set

L12J

W = (w(i)}	 i = 1 to m

where
w(i) is the ith of m scheduled operations.

Note that an operation, let it be called s, may be scheduled

more than once so

^	 fI
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s = w(i) = w(j) is possible for 1 ! i,j < m.

For Spacelab I, m is about 400.

As noted in Chapter 2, a significant portion of CDMS

operations can be expected to occur on an unscheduled basis,

i.e., at random points in time, interleaved with the

scheduled operations. Let the unscheduled operations be

represented by the time ordered set

V = (v(i) )	 i = 1 to n
where

v(i) is the ith of n unscheduled operations.

Note that an unscheduled operation, let it be called u, may

be occur more than once so

1

u = v(i) = v(j) is possible for 1 S i,j < n.

The number of unscheduled operations, n, for Spacelab I is

estimated to be over 600.

Now, the total set of CDMS operations can be given by

the time ordered set, I, where

1 = w U V

which contains m + n total operations. Because the times

that unscheduled operations occur are random, the sequence

of all operations (i.e, the order of I) is stochastic.

he decision variable is the order of the data-set list

input to the layout algorithm. The list can be represented



30

as an ordered set

DV = (d(i)1

where d(i) is data-set i of K data-sets having variable tape

positions. The order of the list of data-sets is the

decision variable because different list orders determine

different tape layouts.	 Each d(i) has two attributes, a(i),

the data-set type; and b(i), the data-set size, that affect

where a data-set may be positioned by the tape layout

algorithm. Since the algorithm assigns tape positions for

the data-sets in the order the data-sets are listed (i.e.,

the order of DV), the sizes and type: of all the data-sets

listed before a specific data-set can affect where that

data-set will be positioned. So, the position of any one
n

data-set can be given by

PCd(i)] = g(DV)

where the function, g, is not a mathematical relationship

but the set of rules and contraints incorporated into the

tape layout computer program.

Now, the tape travel represented by the set of outputs,

0, will be a function of the sequence of inputs, I, and the 	 u

order of the data-set list, DV. That is,

F
0 = f(I,DV).	 II

The general problem is to find a DV related to I that

achieves an objective function of the set of outputs, 0.
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3.2 Solution ^ DrO g^}y_A^gggg^ggpl^

The general problem statement gives an insight into the

problem type and the possible techniques available to solve

it. As noted before, the positioning of the data-sets is

determined by an algorithm that does not have a typical

mathematical representation. Also, the tape travel is

related to a discrete ordering of the data-sets and a

stochastic, time-related sequence of operations. The

problem cannot easily be formulated as a linear programming

(e.g., the transportation or assignment problems) or

queueing theory problem [10] so that an analytical solution

could be attempted. This is because there are a large

number of variables and constraints that can readily change

and/or are not immediately apparent. Also, the system had

not ever been observed in operation before the first

Space.lab flight. Thus, the model must be able to predict

the system response and allow the system to be investigated

under varying conditions.

Methods are needed to (1) predict MMU tape travel for a

candidate data-set list, and (2) determine a good order for

the list that minimizes tape travel.

There are two ways to reliably predict the tape travel

before a Spacelab flight. One would involve using the

flight hardware and operating it on the ground as it is

expected to be operated during flight and measuring the

actual tape motion. There would be many programmatic and

logistical problems involved with experimenting with the

v
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flight systems. Also, the turnaround time would be

excessive for changing tape layouts. The alternative is to

simulate the tape motion with a computer model of the tape

layout and CDMS operations. Because using the flight

hardware is not a viable solution, a simulation will be

required.

A technique must be selected to solve problem (2),

i.e., to find a good input order, DV. 	 One possible

technique would be to use exhaustive enumeration [27]

wherein all possible list orders were evaluated. This would

not be feasible for Spacelab 1 which has 166 data-sets that

could be listed in 166 factorial different orders.

Therefore, a good ordered set, DV, will need to be found in

a limited subset of all possible DV.

The number of DV evaluations must be restricted in a

reasonable way. If the layout algorithm is examined, the

general tape position of a data-set, d(i), in DV can be

predicted according to the position of d(i) in DV. For

example, data-sets listed near the top of the list will be

positioned close to file 6, subfile 0. Also, it is

reasonable to assume that any two consecutive data-sets in

DV will be assigned positions close together on the tape.

But due to the constraints in the algorithm associated with

data-set size and type, these intuitive predictions are not

very accurate. This can be illustrated by interchanging the

list positions of two data-sets in the list. Potentially,

the positions of all of the data-sets may change depending

k
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on the sizes, types, and list positions of the two data-sets

selected.

With this inaccurate but usable predictability, one can

reasonably assume that by starting with a DV ordered

according to some prior knowledge of data-set utilization, a

tape layout will result that is better than one using an

arbitrarily ordered DV. To determine how to best order the

list of data-sets, the simulation can be used to determine

the sensitivity of tape travel to different methods of

ordering. By using the sensitivity knowledge, the number of

possible orderings eau be constrained reasonably. Then,

experiments can be performed with different but contrained

orderings to determine one that provides good tape travel

measures compared with orders selected without the

sensitivity information.

Each different data-set list order will need to be

compared with other list orders. Also, the potential for

further tape travel improvement needs to be examined. This

can be done by comparing the outputs, 0, for a layout with

other layouts evaluated. If after some number of list order

evaluations there is no tape travel improvement, then an

"optimal" (quotes indicating that this is not a rigorous

optimization) layout has been found.

3.3 Solution Method Selection

Simulation techniques are diverse and may be applied to

a broad range of problems 11,3,6,11, 16,17,19,277• 	 Computer

t
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simulation is good technique for evaluating MMU tape motion.

Shannon (191 cites advantages for using simulation that

apply to this problem. As noted previously, use of the

flight hardware has several disadvantages, such as

disrupting the preparation for flight and excessive

operational cost which does not allow much opportunity for

experimentation. Also, simulation allows the MMU

utilization over a typical sever.-day flight to be compressed

into minutes. Final ly, another advantage of computer

simulation is the accessibility of existing computer data

and routines. The simulation can be designed to access the

mission schedule data-base directly. By using it directly,

data translation errors cannot occur.

3.4 Simulat i on  Method Selection

Given the above reasons for using simulation, the next

question is one of simulation method. Simulations may be

written in general purpose or special purpose languages

[19J. General purpose languages like FORTRAN ( 19,25,261 or

PL/I may be used in a wide range of applications besides

simulation.	 Special purpose languages [1,3,11,16,171, such

as GPSS, SIMSCRIPT, SIMULA, or SLAM , have been developed

specifically for simulation work. There are advantages and

disadvantages for each language category [ 191. For this

problem, FORTRAN was selected because it is the most

familiar and accessible language, the problem does not

require any complex random variate routines, and many

^O
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FORTRAN routines already exist that may be used in the

simulation.

3.5 Summary

To find a good tape layout, the following approach will

be taken. First, a computer simulation of the MMU tape and

its motion in response to CDMS operations will be developed.

Then for the Spacelab I data-set list, an investigation will

be performed on how tape travel varies with revisions to the

order of data-set list. The simulation will then be used to

experiment with different list orders, but the variations in

the ordering will be constrained using the results of the

investigation. This experiment with different list orders

will continue until the ability to improve the tape travel

is difficult to achieve. The list that yields the best

simulated tape travel will be selected for use.
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CHAPTER 4.

SIMULATION MODEL

This chapter describes the computer simulation model of

the MMU tape and its motion in response to CDMS operations.

The simulation creates a tape layout with the layout

algorithm using a candidate data-sets list. The simulation

also uses inputs that define the sequences of CDMS

operations and the data-sets accessed during these

operations. MMU tape travel within and between these CDMS

operations is measured for analysis. The ta p e motion is

	

	 y
i

summarized by averaging the tape movements and identifying

the ten largest tape movements. Figure 7 shows an overview

of the simulation. A complete listing of the FORTRAN 77

[25,26] program is provided in Appendix A.



37

ORDERED DATA-SET LIST
MISSION TIMELINE DATA-BASE
(SCHEDULED OPERATIONS' USE OF DATA-SETS

UNSCHEDULED DATA-SET OPERATIONS
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FIGURE 7.	 SIMULATION OVERVTF14



4.1	 Input Data

MMU data-set accesses are associated with scheduled and

unscheduled CDMS operations that occur during a Spacelab

flight. The tape travel between data-set accesses is a

function of the sequencing of the operations, the sequencing

of the data-set acccesses within each operation, and the

data-set positions on the tape. The following sections

describe and discuss the simulation inputs.

4.1.1 Scheduled Ooerationa

The scheduled CDMS operations that require data-set

accesses are a subset of the mission timeline data-base of

fi
all scheduled operations. This data-base was used to define

I
the sequence of scheduled CDMS operations by identifying the

pertinent subset of these operations that have data-set

accesses. In addition, the sequence of data-set accesses

during these operations had to be identified since this is

not a part of the mission timeline data-base.

	

	 1
i

Persons familiar with the flight operations and

software can most readily identify the operations that have

data-set accesses and the sequence of data-set accesses.

Spacelab I experts were able to efficiently identify the

data-sets to be accessed during the flight with a minimal

review of the operations procedures and software design.

38
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Someone with little understanding of the Plight software

operations can be expected to have a more difficult time

identifying the data. For the Spacelab I problem, the

following procedure was performed to define the data-set

accesses associated with scheduled operations:

1. A printout of all the scheduled operations in the

mission timeline data-base was received from the mission

planners.

2. The procedures for each operation were reviewed with the

flight operations experts to determine if any data-set

accesses are to occur during the operation.

3• If data-set accesses are expected, the sequence of

data-set accesses within the operation was determined

from the the operations procedures and the design of the

software involved and verified by the operations

experts.

Examples of the data defined with these steps are shown in

Table 5.
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Table 5.	 Example Data-Set Access Sequences
for Scheduled Operations

Scheduled 1st
------------------------------------------------------------

2nd 3rd
Operation, Data-set Data-set Data-set	 .	 .	 .	 .	 .	 .	 .	 .	 .

Step Accessed Accessed Accessed

N1F97A8,2 S1S
------------------------------------------------------------

Sic
N2C/OF01,3 S02 A02AO A02AO1	 T02A	 T02G
013-FO1,5

----------------------------------

S13 A13AO A13AO1	 T13A	 U13APC
--------------------------

This e,ample shows that during scheduled operation N1F97A8,

step 2, data-set S1S will be accessed first and then S1C.

The simulation allows up to fifteen data-sets to be

correlated to a given step.	 (Though it is possible for more

than fifteen accesses to occur during a given operation, the

maximum number for Spacelab I was ten.) The complete set of

this data for Spacelab I is given in Appendix B.3.

4.1.2 Unscheduled Coer"ions

Many data-set accesses are associated with operations

that are not scheduled in the mission timeline. Again, the

Spacelab I unscheduled operations are best determined by

Spacelab operations and flight software experts. It would

be desirable to determine this input based on the experience

or previous Spacelab flights, as well, but this was not

Possible for Spacelab I since it was the first Spacelab

flight. The following procedure was used to define data

relevant to these operations:
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1. The list of data-sets was reviewed to identify the ones

that support unscheduled operations.	 (Note that a

data-set that supports a scheduled operation may also be

accessed on an unscheduled basis.)

2. A set of unscheduled operations were defined where each

operation was represented by a sequence of data-set

accesses. The sequence was determined by the flight

software design and procedures for the unscheduled

operations.

3. For each unscheduled operation, a frequency and earliest

and latest times of occurrence were estimated.

Examples of this data are given in Table 6.

Table	 6. Example Input	 for Unscheduled Operations

Fre- Start End
----------------------------------------------------------

1st 2nd 3rd
quen- time time Data-set Data-set Data-set	 .	 .	 .	 .
cy (hrs) (hrs) Accessed Accessed Accessed
----
155

-----
4.0

------
159.0

--------
TMEM

------- --------	 --------

44 4.0 159.0 MMA
7 4.0 159.0 XTLMO XTLM01 XTLMO2	 TTLM

14 4,0 159.0 XTMNO TTMN
28 4.0 159.0 AOFDO TOFD U05PMU
14 24.0 144.0 Sts
14 24.0

-----------------------------
144.0 sic

------------- ----------------

This example shows seven different unscheduled operations.

The first one represents the flight crew's request for the

experiment computer memory management display, data-set

TMEM. It is expected to be accessed 155 times after 4.0 and

before 159.0 hours into the flight. The second unscheduled
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operation represents the use and revision of the master

timeline (MTL), data-set MMA. The simulation allows up to

fifteen accesses to define a single unscheduled operation.

(Again, it is possible to have more, but the maximum

encountered on Spacelab I was four.) The complete set for

Spacelab I is given in Appendix B.4.

4.1.3 MMU Data-gets-List

To examine MMU tape travel, the data-set tape positions

are needed. The data-set positions are determined by the

tape layout algorithm as a function of the order of the

data-sets list. This ordered list is the decision variable,

DV, of Chapter 3• The list identifies all of the data-sets

that will be loaded on the MMU tape according to the

mission's flight software requirements [20,211. Each

data-set's size and whether it has a fixed or variable

position are specified. A complete Spacelab I list of

data-sets as it is input to the simulation is shown in

Appendix B.1.

4.2 Simulation Process

The simulation processing of the inputs was broken into

several phases to be detailed in this section. In the first

phase, the MMU tape layout was determined. In the next

phase, a set of unscheduled operations was defined in time

order. In the third phase, these unscheduled operations and
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the scheduled operations were processed in time order to

determine the data-set accesses. The tape travel was

computed for the data-set accesses associated with the

operations. Fir,aliy, when every operation had been

examined, the tape motion was summarized.

4.2.1 Tape Lavout_Process

The positions of the MMU data-sets are determined by

the tape layout algorithm using the input of the data-sets

list. The layout algorithm models the MMU tape as a large

array in which each element of the array represents an MMU

block. The algorithm sequentially reads the data-set list

and assigns the data-sets to unused array elements. As the

block assignments are made, each data-set's starting

position on the tape is stored. Once the assignments are

made for all of the data-sets in the list, the stored

starting positions can be used to model the MMU tape in the

simulation.

A listing of IBM's PL/I program that lays out the MMU

was received and translated to FORTRAN 77 for the

simulation. The translated program uses the same data-set

list and generates the key reports of the PL/I program.

(See appendices B.1 and C.1, C.2, and C.3 for examples.) To

assure no discrepencies arose in translation, a test using

identical inputs assured the reports fr=m both versions were

the same.

-v!
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4.2.2 Determination of Unscheduj_gL_Operatio"

A sequence of unscheduled operations is defined using

the unscheduled operations input data. For each one of

these operations, a set of times is selected at random

between the earliest and latest times. The number of times

selected is equal to the expected frequency of occurrence

specified. Random times are selected for all of the

unscheduled operations and integrated into a single,

time-ordered file. This file then defines the sequence of

all unscheduled operations and the sequence of data-sets

accessed during each operation.

4.2.3 Determination of Scheme;l-el CDMS Operations

To determine the sequence of scheduled CDMS operations,

each scheduled operation in the mission timeline data-Dace

is examined and checked against the list of operations that

have data-set accesses. If the operation is in the list,	
In

then the sequence of data-sets defined in the list can be

used to determine the sequence of MMU accesses. This, in

turn, defines the positions the tape must travel to at the

start of the operation, within the operation, and after the

operation is completed.

4.2.4 Tape Travel ^,4mputation

After a time-ordered set of scheduled operations and a

time-ordered set of unscheduled operations have been
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defined, the tape travel for data-set accesses was

determined as follows:

The simulation starts assuming the tape is positioned

at file 6, subfile D, block 0.	 (Note that the track number

does not affect tape travel since tracks are side-by-side on

the tape.) This position was assumed because it will be

close to the data-sets (i.e., it is the first tape position

assigned). This avoided a large tape movement that could

have masked the identification of a large movement during

the simulation.

The first simulated CDMS operation to occur in flight,

scheduled or unscheduled, 37 then selected from the defined

sequences.	 As described in sections 4.1.1 and 4.1.2, each

operation will have one to fifteen data-set accesses

identified in order. The simulation computes the number of

blocks skipped to reposition the tape from its current

position to the closest block of the first data-set accessed

during the operation. (The closest block may be used since

data-sets may be accessed in either direction.) Let us call

this number NSK(1). Then, the tape is repositioned to the

next block past the end of the data-set as it would be after

the access is completed.

Figure 8 depicts a portion of the MMU tape to show an

example of how the travel is computed. If the first

data-set to be accessed is in file 6, subfile 1, blocks 0

through 4, NSK(1) would be 32 since there are 32 blocks in

subfile 0 to be skipped to reach the data-set. In the
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figure this represents a move from position A to position B.

the data-seL access is simulated by the move over blocks 0 -

4 in subfile 1 to a position at the start of block 5, i.e.,

from position b to position C.

File 6
Subfile 0	 Subfile 1

Block No.=:O 1 2 3 ..................31;0 1 2 3 4 5 6......

-+-+-}-+----------------+--
I	 I	 I	 I	 i	 I	 I	 I	 I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I

1-}-}-}-}----------------}--I_}-}-}_}-}_+-------

< ---- 32 blocks skipped ---- > <Access-->

Position A	 B	 C

Figure 8. Example 'Pape Positions

If another data-set is to be accessed within the

operation, the simulation computes 'he number of MMU blocks

skipped to get to the next data-set. Let this number be

KSKIPI(1). If k data-sets ( k > 1 ) are accessed within the

operation, KSKIPI(2), KSKIPI(3), through KSKIPI(k-1) are

computed. The simulation will keep track of the largest

value of KSKIPI computed within an operation. Let this

number be KSK(1) where

KSK(1) = max (KSKIPI(1), KSKiP1(2), ..., KSKIPI(k-1)1,

By summing these values of KSKIPI, the total number of

blocks skipped within this operation can be computed. Let

this number, JSK(1), be given by the following equation:

JSK(1) = KSKIPI(1) + KSKIP1(2) + ... 4- KSKIPI(k-1)
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If only one data-set is accessed during the operation, JSK

is not defined for that operation.

Now, the next operation to occur during the flight is

selected from the sequences of operations and NSK(2) and

JSK(2) are computed as before. This process continues until

all m scheduled operations and all n unscheduled operations

have been simulated. Thus, m + n values of NSK and c values

of JSK (where c < (m + n) and represents the number of

operations where k > t) are determined for the simulated

flight.

Replications of the mission simulation using the same

tape layout and scheduled operations with another set of

randomly selected unscheduled operations can be requested.

The number of replications is determined by the number of

random number seed values stored in another input file.

(Appendix B.5 defines the format of this file called

SEEDS.DAT.) To stop the simulation replications, a seed

value of zero should be specified.

4.3 Reports

The simulation generates reports that permitted the

evaluation of the tape layout. Three reports are generated

to show the pertinent tape layout information. The first

report is a listing of the data-set input file. The next

report lists each data-set's name, description, size,

assigned track, file, subfile, and block, and whether its

position was fixed or variable. The data-sets are listed in



48

the same order as they were input and processed. The third

report is an overview of the MMU tape after all the

data-sets have been positioned. It indicates the number of

blocks used in each subfile where the characters "., 1, 2,

U, V, and W" correspond to 0, 1, 2, ..., 30, 31, and 32

olocks used. These reports are shown in Appendix C.1, C.2,

and C.3, respectively. They permitted the examination of

the data-set positions assigned by the layout algorithm.

The remaining two reports are related to the simulation

of tape travel. The fourth report traces chronologically

both scheduled and unscheduled operations and their tape

travel. Scheduled operations are identified with the

mission timeline model name and step number. Unscheduled

operations are identified with the r.an e of the first

data-set accessed (i.e., there is no comma and number at the

end). For each operation, the blocks skipped from the last

operation (NSK) and the blocks skipped within the operation

(JSK) are shown.	 Also, the tape position (file, subfile,

and block) after the operation is complete is listed, also.

(An example page from this report is shown in Appendix C.4.)

The fifth report is produced at the completion. of each

simulated mission and consists of tables that summarize the

data-set accesses. This report is shown in Appendix C.5.

The mission run number for the tape layout proposal is

listed in the title line followed by the date and time of

the simulation. Next, the ten largest values of NSK(i) (the

blocks skipped between operations), JSK(i) (the total blocks
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skipped within an operation), and KSK(i) (the maximum travel

for a single access within an operation" are listed. These

three tables give the time of the operation, the operation

identifier, and the number of blocks skipped. At the bottom

of each table, the total number of blocks skipped and number

of observations over the mission are listed. Finally, the

mean, variance, and coefficient of variation [157 of NSK,

JSK, and KSK are given for the simulated mission.

4.4 S ummary

The simulation uses the following data:

1. The list of MMU data-sets.

2. Unscheduled operations data.

3• The mission timeline data-base of all scheduled

operations.

4. Data-set access sequences for scheduled operations.

5. A random number seed for each simulation replication.

'The simulation starts by creating a candidate tape

layout based on the list of data-sets. This is achieved via

IBM's tape layout algorithm developed to define the data-set

positions. Next, a set of unscheduled operations are

randomly scheduled within the appropriate time windows and

with the frequencies defined by the flight operations

experts. These operations represent the predicted use of

i
ll
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the MMU that is not scheduled in the mission timeline. The

sequence of scheduled operations is derived from the mission

timeline data-base of all scheduled operations. A sequence

of data-set accesses are identified for each of these

operations that need data-set accesses. The simulated tape

layout is then used to determine the tape travel between the

operations and within the operations. Replications using

the same tape layout and different times for the unscheduled

operations can be made. The number of replications is

specified by the number of random number seeds provided.

Reports are generated that will permit the tape layout and

the tape travel to be reviewed and analyzed for improvement.
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CHAPTER 5.

STRATEGY AND TACTICS OF MODEL OPERATION

This chapter defines how the computer simulation was

used to select a "good" order for the list of Spacelab I

data-sets. For Spacelab I, there were 166 data-sets to be

positioned on the tape which results in 166 factorial

possible list orders. Since the simulation typically uses

about an hour to simulate five flights for a candidate list,

only a selected subset of possible input orders can be

examined. This chapter describes how a reduced set of lists

were identified for evaluation based upon experience gained

using the simulation. The following aspects will be 	 r

discussed: ii
g-

	

	 First, measures of performance will be established so

different tape layouts can be quantitatively compared. A

criteria function based upon these measures will be defined

to evaluate the tape travel expected for a tape layout.

Second, the factors that affect tape travel will be
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investigated using the simulation. This is needed because

Spacelab MMU tape travel has not been studied before and

these factors have not been well understood.

Third, using the knowledge gained from this

investigation, the list ordering factors will be categorized

as to which ones should be experimentally varied and which

ones should be held constant.

Fourth, a procedure will be defined to group data-sets

using the prior knowledge of data-set utilization within

operations. By fixing the orders within the groups, the

order of the complete data-set list will be constrained.

Finally, a heuristic will be defined in which the

experimental factors to be varied will be investigated. The

experiment results should identify a data-set list that

results in less tape travel than other lists evaluated.

5.1 Measures o E_-P-Pr formance

The measures of performance for Spacelab I MMU tape

travel were established in Chapter 3 as MTI and ATB where,

MTI is an average over the flight of the maximum travel

within each operation and ATB is an average of the travel

between each of the flight operations.	 For a given tape

layout, these measures are found in the simulation summary

tables report for each simulation replication. For example,

using the summary table report given in Table 7, MTI is 28.6

blocks and ATB is 61.7 blocks.

Since the sequence of CDMS operations is stochastic,

k^	 -	 ^:
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replications of the simulated flight should be performed to

gather several samples of the measures of MTI and ATB. The

narrowing of the confidence intervals with increased samples

was balanced against the additional simulation time required

per sample. The confidence intervals were computed using

the fixed sample size procedure described by Law and Kelton

Ell] assuming the measures are normally distributed random

variables. The general formula for the confidence interval

is given by

s(n)
X(n) + t

- n-1,1-or/2	 r
n

where

X(n) is	 the	 sample mean
s(n) is the	 sample standard	 deviation
a is	 the	 sample size

and	 t
n-1'1-,41i

is	 the	 value of a Student-t
distribution for	 n-1	 degrees	 of
freedom and	 a (1-,C/2)	 degree	 of
confidence.

A test run of five mission replications was made which took

55 minutes to complete. The data-set list order was defined

in the same way NASA has previously determined the list

order, that is, without tape travel evaluations and list

order revisions.	 The results of this t'esl. are shown in

'Fable. B.

I
a

i^mom. ^-.^.'^"	 - __.__--- ---. _ - _ -•.
	 __
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Table T. Example Statistical Summary Report

TEN LARGEST "SKIP TO"
HRS MODEL,STEP	 BLK

23.98 019-F1/2,2 44'T
52.42 TMEM 374
38.98 013-F2/3,1 331
45.32 022-FO2C,2 320
144.00 U13APS 352
85.57 013-F2/3,8 331
96.47 017-F01B,1 372
116.57 U34AST 384
100.35 N2FO9/8C,1 416
10.83 MMA 288

TEN LARGEST "SKIP IN"
HRS MODEL,STEP BLK

82.43
---------------- '-----

022—FO2K	 1
----
147

32.98 N/F07B34,2 99
40.79 022—FO2C,l 147
76.87 022—FO2M,1 147
84.16 005—F01A,1 122
64.38 021—F1/2,1 98
10.63 033—F1/4,2 130
61.45 NlF07A6B,2 99
34.56 013-F2/3,2 275
51.18 005-FO1C,3 227

TOTAL	 "SKIP TO": 65078
NO.	 OF	 OBS.: 1054

MEAN	 : 61.7
VARIANCE: 3514.7

C V ( % ) : 96.o

TOTAL	 "SKIP IN": 13094
NO.	 OF	 OBS.: 240

MEAN	 : 54.6
VARIANCE: 3774.3

CV(%): 112.6

TEN LARGEST MAX TRAVEL IN (MTI)
HRS MODEL,STEP BLKS ACC

84.16
--------------------'------------

005—F01A,1 63 3
34.56 013-F2/3,2 61 6
64.38 021—F1/2,1 59 4
82.43 022—F02K,l 63 5
32.98 N1F07B34,2 99 2
61.45 N1FO7A6B,2 99 2
10.63 033-F1/4,2 124 3
51.16 005—FO1C,3 74 8
40.79 022—FO2C,1 63 5
76.87 022—FO2M,1 63 5

TOTAL	 MTI	 s 6855
NO.	 OF	 OBS.: 240

MEAN	 : 28.6
VARIANCE: 472.2

CV(%): 76.1
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Table 8. Test Data for Confidence Intervals

Replication MTI ATB

1
------------------------------------------------

32.5 56.7
2 32.6 57.5

'	 3 32.1 55.6
4 31.7 57.0
5 32.9 56.3

Mean
------------------------------------------------

32.4 56.6
Std.	 Dev. 0.47 0.72
Deg.	 of Confidence 0.98 0.98

Confidence
------------------------------------------------

Interval
--------------------

32.4±0.7-------------------56.6±1.1

---------

A 98 percent degree of confidence for each measure was

selected. The confidence levels were chosen such that 4,

the overall degree of confidence for both measures'

confidence intervals, would be less than 0.05. This

confidence level is given by (11)

1000 -cc) percent = 1 - (ac,,	 + a(^rp ).

Thus,

100(1 - i) = 1 - (0.02 + 0.02) = 96 percent.
To put these intervals in perspective, a range of one

block is equivalent to about 0.05 seconds in access time

which is imperceptively small. Thus, there is reasonable

assurance that the means computed using five simulation

•

	

	 replications will be representative of the true :weans of the

measures MTI and ATB. So, for each layout determined by a

candidate data-set list, the means of MTI and ATB over five

simulation replications will De used to measure the list's
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performance.

5.2 Criter3a_Functioil

Using the measures of performance, a criteria function

can be established to compare data-set lists. This function

was defined with both MTI and ATB but with greater

importance given to MTI. This is achieved by using a

scoring function [2,6,18] which is defined as follows:

(BETA)  MTI(i)	 i1_=_@ETAI
SC =	 +

MTI(0)	 ATB(0)

where

MTI(i) is the mean

14TI(0) is the mean

ATB(i) is the mean

ATB(0) is the mean

BETA is a weightin

MTI versus ATB.

for 5 replications for layout i,

for 5 replications for layout 0,

for 5 replications for layout i,

for 5 replications for layout 0

r for the relative importance of

The weighting factor, BETA, was set to 0.75 for Spacelab I

to favor the MTI measure of performance.

This function uses an initial layout, called layout 0,

for comparison purposes. The score of the initial layout

will be 1.0 by definition. If SC for a layout is less than

1.0, it is better than the initial layout. A perfect layout

would have an SC score of zero. The initial layout

3'p

1



J 1

57

represents the best possible guess at tt(e list order NASA

would have made without the benefit of the simulation. So

any improvement from this candidate represents an

improvement over the way the layout was previously

determined by NASA. The method of selecting the initial

order will be discussed later.

5.3 Investigation oL the Factgrs_Affecting Tape Travgj

MMU tape travel will vary with many factors -- some

that can be controlled and others that cannot. To

investigate the sensitivity of tape travel to these factors,

several exploratory simulation runs were made. These runs

indicated that the factors listed in Table 9 affected the

tape travel within an operation and 'between operations.
t

Each of these factors were categorized as suggested by

Bartee C21:

A - A boundary condition (to be held constant in the

experiment).

E -.	 B - An unmeasured experimental factor contributing to

experimental error. (In this case, the experimental

error is the variation in MTI and ATB between flight
fi	

replications.)r

'j	 C - A measured factor in the experiment.
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Table 9. Factors Affecting Data-set
Positioning and Tape Travel

-----------------------------------------------------------
FACTOR	 CATEGORY

-----------------------------------------------------------
1. Total number of data-set blocks	 A
2. Data-set size	 A
3. Data-set type	 A
4. Sequence of unscheduled operations	 B

5. Sequence of scheduled operations	 A
6. The relative list positions of data-sets

accessed during an operation	 A
7. The relative list positions of data-set

groups associated with an experiment 	 A
b. The relative list positions of data-sets

groups associated with experiment disciplines C
9. The list position of data-sets shared by

several experiments 	 C
10. The list order of the discipline groups

of data-sets	 A
11. The direction of tape access	 B
12. The number of data-sets listed before the

first 11TH ty p e data-sat	 Ar-
------------------------------	 -------------------------	 -1

i

1
Factors 1, 2, and 3 are determined by the flight software	 t

requirements. Factor 4 is determined by the schedule of
F

operations and can be assumed to be a boundary condition if
e

one assumes the performance of the operations is per the

schedule. Factors 5 and 11 fluctuate with the random

occurrence of unscheduled operations. Factors 6 through 10

and 12 are all associated with the order of the data-sets.
i

It was found that by constraining the order of the data-sets 	
I

according to the sequence of accesses expected during CDMS

operations, the tape travel could be decreased. The

ordering factors 6 and 7 will be controlled by fixing the

order of groups of data-sets according to their sequence of

access during an operation. Factor 10 can be fixed based

upon the time criticality of the disciplines' operations.
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Factor 12 will be held constant by listing enough data-sets

before the first display data-set (type "T") to fill file 6,

subfiles 0 and 1. This leaves factors 8 and 9 as the ones

to be varied during the experiment.

Hypo theIjA_5t iktA®gat

Assuming the data-sets are grouped and sufficient

data-sets are listed before the first display data-set is

listed, the tape travel as measured by SC is dependent upon

the list positions of data-sets shared by several operations

and the order of the experiment data-set groups within each

discipline group.

5.4 Grouping of Data.-_a"a.

To group the data-sets by experiment and discipline,

each one was assigned a three character code where the first

character identified the discipline that the data-set

supports and the second and third characters identified the

experiment or function it supports. Table 10 summarizes the

codes. The discipline identified as "common" represents

those data-sets that may be called at any time. The

"remainder" discipline represents data-sets that are not

expected to be accessed during experiment operations. These

assignments were then included in the description field of

the data-set list.	 (See Appendix B.1.	 as an example.)



60

Table 10. Data-set Grouping Codes

---------------------------------------------
Discipline	 Codes

Solar Physics s16 S21
Astron-nmy A05 A22
Plasma	 Physics P02 P03 P19	 P20
Earth Observation E13 E17 E33	 E34
Common COF C99 CTL	 CTM
Remainder

--------------------------

REM

------ -------------------------

With the codes assigned, data-sets having the same code

were grouped together in the order they are accessed during

the operations. Then, the experiment groups were collected

together by discipline. The common and remainder

disciplines groups need not be collected together as they

highly independent of one another. The following procedure

was used to define the initial ordering:

1. Each scheduled operation's sequence of data-set accesses

was reviewed and its data-sets were assigned a grouping

code.

2. If more than one data-set is accessed during the

operation, those data-sets were grouped together.

3. Steps 1 and 2 were repeated for the unscheduled

operations.

4. The remaining data-sets were assigned to the "remainder"

discipline.

.

___D J
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5. With the operations groups of data-sets now defined, any

groups or individually accessed data-sets that support

different operations of the same experiment were merged.

6. The experiment groups were then combined into discipline

groups.

7. The total number of blocks for the data-sets listed

before the first display data-set was determined. When

this total is less than 256 (4 tracks x 2 subfiles x 32

blocks), enough data-sets should be placed before this

display data-set to assure the first two subfiles are

filled. Data-sets identified as "common" should be

used, if possible.

8. The remaining data-sets that have not been grouped up

till now were added to the bottom of the list.

Lei, us demonstrate this procedure with an example using

Tables 11 and 12. Table 11 shows a portion of the sequence

of data-set accesses that are expected during scheduled

operations. For the operations identified as 034-TC3, steps

1 through 7, the data-sets were grouped as shown in Table

12. Note that this same group will support several

operations, i.e., 034-FC3, 034-FC4, 034-FC6, and 0?,4-FC7.

The complete list of data-sets ordered using this procedure

is given in Appendix. B.I.
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Table 11. Example Scheduled Data-set Access Sequences

Operation	 Data-sets

034-FC3,1 S34 A34RO U34ALM
0 34-FC3,3 U34AST
034-FC3,5 U34AST
034-FC3,7 U34AST
034-FC4,1 S34 A34RO U34ALM
034-FC4,3 U34AST
034-FC4,5 U34AST
034-FC4,7 U34AST
034-FC6,1 S34 A34RO U34ALM
034-FC6,3 U34AST
034-FC6,5 U34AST
034-FC7,1 S34 A34RO U34ALM
034-FC7,3 U34AST
0 34-FC7,5

----------------------------
U34AST

---- -------------------------

Table 12. Example Group of Data-sets

S34 ECOS E34 15 0 0 0 0 VAR
A34RO EGOS E34 12 0 0 0 0 VAR
U34ALM ECOS E34 1 0 0 0 0 VAR
U34AST ECOS

-----------------------------
E34 100

----------------
0 0

---
0

--
0

----
VAR
---

To show that selecting the initial order as described

above will yield a good tape layout, the following test was

performed. The data-sets were listed as prescribed above

and the means of MTI and ATB were computed. This layout

will be assumed to be the initial layout, so SC = 1.00. Two

alternative lists were made by ordering them in other ways

to c gmpare the values of SC for each. The first alternative

list was ordered alphabetically starting with the first

character of the data-set name. The second alternative list

was ordered alphabetically starting with the second

character of the data-set name. A comparison of the results

^j
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is tabulated in Table 13. This table shows that

significantly lower tape travel was experienced when using

the grouping procedure.

Table 13. Comparison of Initial Ordering Methods
----------------------------------------------------------

Grouping	 Alphabetic by	 Alphabetic by
Method:	 Procedure	 1st Character	 2nd Character

Value of SC:	 1.00	 6.43	 2.84
----------------------------------------------------------

5.5 Experiment Design

A heuristic [191 will be used to decrease the number of

layout evaluations. In this method, a candidate layout will

be compared with previously evaluated layout candidates

using the heuristic rules. The heuristic is defined as

follows:

1. Define an initial input order for the list of data-sets

per the grouping procedure given above.

2. Run the simulation and compute the means of MTI and ATB

for the five flight replications.

After reviewing the simulation reports, revise the order

of the data-set groups that have the greatest tape

travel. Use the revision strategy as given in the next

section.
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4. With the revised list, run the simulation and compute SC

for the new tape layout.

5. Compare SC for the revised order with the minimum value

of SC computed for all of the previous candidate orders:

Let

SC(n) be SC for candidate list n,

and	 SC(min) be the minimum value of SC for all

previous candidates.

If SC(n) < SC(min), then go to step 3.	 If SC(n) >

SC(min), then increment a value NNI by 1 where NNI

represents the number of list order revisions that have

not improved since SC(min) was found.

6. If NNI < 5 then go to step 3.

7. STOP. Select the list with the minimum value of SC.

5.6 Strategy of Re y_j ina the_L-tatOrr s1er

After the simulation is run, the simulation reports

were reviewed to determine how the input order might be

changed to decrease the blocks skipped between data-set

accesses. The statistical summary was reviewed to determine

which operations skip the largest number of blocks within

the operation. Then, the tape positions of the data-sets

accessed during these operations was reviewed to determine

why the number of blocks skipped was comparatively larger.

The position of data-sets shared across disciplines



65

should be tested first and most thoroughly. Varying the

order of experiment groups within a discipline group should

be tested next. Several groups may be reordered in a single

revision to minimize the number of list evaluations.

5.7 Example of a List Order Revision

'To demonstrate how the list order was revised, examine

the statistical summary in Table 7 shown earlier. Note the

seventh entry of the ten largest values in the table for

"MAX TRAVEL IN (MTI)" is associated with the data-set

accesses of operation 033-F1/4,2. The operation/data-set

correlation input data in Appendix B.3 shows these

operations involve the data-sets 533, A33AO, T33A, and

U33ACC. Table 14 shows that U33ACC is positioned in file 5,

subfile 0 and the others are in file 6, subfiles 3 and 4.

It would be better if these data-sets were positioned more

closely to file 5. This was accomplished by revising the

input order as shown in the optimized input file in Appendix

B.2. By moving these data-sets up in the list, they were

positioned in subfiles 1 and 2 of file 6 as shown in Table

15.

I
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Table 14. Initial Earth Observation Data-set Positions

Size Pos.(2) Gon-
Name Description (1) T F S B trol

S13 EGOS
------------------------------------------------------------

E13 18 6 6 2 11 VAR
A13AO EGOS E13 12 0 6 3 0 VAR
A13AO1 EGOS E13 4 0 6 3 12 VAR
A13AO2 EGOS E13 5 0 6 3 16 VAR
A13AO3 EGOS E13 5 0 6 3 21 VAR
A13Ao4 EGOS E13 3 4 6 1 29 VAR
A13AO6 EGOS E13 4 --, 6 3 26 VAR
T13A EGOS E13 2 6 6 2 29 VAR
U13APC EGOS E13 1 0 6 1 31 VAR
U13APS EGOS E13 9 4 6 3 0 VAR
A13GO EGOS E13 4 4 6 3 9 VAR
T13G EGOS E13 3 4 6 3 13 VAR
A13AO5 EGOS E13 4 4 6 3 16 VAR
517 EGOS E17 11 4 6 3 20 VAR
A17AO EGOS E17 6 6 6 3 0 VAR
T1'(A EGOS E17 2 0 6 3 30 VAR
U17AO1 EGOS E17 8 6 6 3 6 VAR

S 33 EGOS E33 44 0 6 4 0 VAR
A33AO EGOS E33 6 6 6 3 14 VAR

T33A EGOS E33 2 6 6 3 20 VAR
U33ACC EGOS E33 250 0 5 0 0 VAR
534 EGOS E34 15 2 6 4 10 VAR
A34RO EGOS E34 12 4 6 4 0 VAR
U34ALM EGOS E34 1 0 6 2 31 VAR
U34AST ECOS

------------------------------------------------------------
E34 100 6 6 4 0 VAR

(1)	 Number	 of 512	 word	 blocks.
(2)	 T	 = Track; F	 =	 File;	 S	 =	 Subfile;	 B = Block
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i
Table 15.	 Revised Earth Observation Data-set Positions

d. -------------------------------------------------------'----
Size Pos.(2) Con-

'' Name Description (1) T F S B trot

S33 EGOS
------------------------------------------------------------

E33 44 4 6 1 0 VAR
A33AO EGOS E33 6 6 6 1 0 VAR

T33A ECOS E33 2 0 6 2 4 VAR

i U 33AC C ECOS E33 250 0 5 0 0 VAR

{ S17 ECOS E17 11 6 6 1 6 VAR
A17AO ECOS E17 6 6 6 1 17 VAR

T17A ECOS E17 2 0 6 2 6 VAR

U17AO1 ECOS E17 8 6 6 1 23 VAR

S34 EGOS E34 15 o 6 2 8 VAR
F A34RO ECOS E34 12 4 6 2 12 VAR

U34ALM ECOS E34 1 6 6 1 31 VAR
U34AST ECOS E34 100 6 6 L; 0 VAR s

513 EGOS E13 18 o 6 3 0 VAR

A13AO ECOS E13 12 0 6 3 18 VAR
A13A01 ECOS E13 4 0 6 2 23 VAR

A13AO2 ECOS E13 5 0 6 2 27 VAR

A13AO3 EGOS E13 5 4 6 2 24 VAR
èI A13AO4 ECOS E13 3 4 6 2 29 VAR

A13A06 ECOS E13 4 4 6 3 0 VAR
T13A EGOS E13 2 0 6 3 30 VAR E

U13APC EGOS E13 1 4 6 3 4 VAR
U13APS ECOS E13 9 4 6 3 5 VAR
A13GO ECOS E13 4 4 6 3 14 VAR
T13G ECOS E13 3 4 6 3 18 VAR

A13AO5 ECOS E13
--4

--4 6 3 21 VAR 7

------------- ------ - -----
F

(1)	 Number of 512	 word	 blocks.
}(2)	 T	 = Track; F	 =	 File;	 S	 =	 Subfile; B	 =	 Block



CHAPTER 6.

EXPERIMENT RESULTS, CGNCLUSIONS, AND RECOMMENDATIONS

In this chapter, the results of the simulation

experiment will be summarized. Tape travel data will be

presented for the data-set input orders evaluated, the best

input order will be discussed, and conclusions will be made

concerning the computer simulation and the data-set list

ordering for Spacelab I. Finally, recommendations will be

made for improving the simulation and using it to order

data-set lists for other Spacelab flights.

6.1 Experiment Q t"

After the exploratory runs to determine the sensitivity

of the tape travel to the ordering of the data-sets,

fourteen different list orders were evaluated in the

experiment. The initial order was determined using the

grouping procedure derived after the investigation. of

68
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ordering variations and is given in Appendix B.1. Table 16

tabulates the measures of performance for the tape layouts

evaluated. The first two revisions of the list order

resulted in greater tape travel than the initial order. In

these orders an experiment group became split between files

6 and 5. This ind.cates that the tape travel may increase

greatly if groups are split between different files. These

two list orders were discarded as unreasonable. The order

of the data-sets list was then revised eleven more times per

the experiment procedure. Revisions 6 and 7 had the same

value of SC so NNI was determined by selecting the order

with the lower MTI mean. The eighth revision resulted in

the minimum value of SC. This list order was selected as

the best one evaluated and is shown in Appendix B.2.

-----------------------------------------------------
TABLE 16. Measures of Performance Values

ORDER MTI ATB	 SC NNI
--------

0
------
28.7

------	 ------
62.8	 1.00

---------
0

1 92.9 56.3	 2.65 (Note 1)
2 93.2 102.9	 2.85 (Note 1)
3 22.0 55.6	 0.80 0
4 27.3 56.1	 0.94 1
5 26.6 55.1	 0.91 0
6 18.8 50.6	 0.69 0
'T 17.9 56.4	 C.69 1 (Note	 2)
8	 n 11.9 55.4	 0.53 0
9 13.4 56.5	 0.58 1

10 15.4 55.'	 0.62 2
11 18.4 52.3	 0.69 3
12 12.1 55.8	 0.54 4
13 18.4 52.3	 o.69

-----------------------------------------------------
5

Note	 1: Discarded as an unreasonable order.
Note	 2:

1

Tie broken by

-----------------------------------------------------

selecting minimum mean of MTI.

i
i
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6.2 Discus s ion of_jht Bast Order

The tape travel data for the eighth list order is

detailed in Table 17.

Table	 17.	 "Best"	 Order Tape Travel Statistics

Replication MTI

-----------------------------------------------------

ATB
-----------

1
----
12.0

----
53.8

2 11.9 54.6
3 11.9 56.0
4 10.6 54.7
5 13.0 58.1

Mean 11.9 55.4
Std.	 Deviation 0.85 1.68
Coefficient of

Variation 7.2	 % 3.0	 %
98%	 Confidence

Interval 11.9±i.3 55.4±2.6

Some important attributes can be identified in order 8,

the best order, that help minimize tape travel. First, the

large, "common" group data-sets, excluding the "T" type are

listed closer to the top of the list to fill subfiles 0 and

1 in file 6. With these subfiles filled, experiment groups

will not be separated when they include "T" type data-sets.

Second, within the same discipline, the experiment groups

with large data-sets are listed before groups with smaller

data-sets. In this case, more contiguous tape space is

available to position the large data-sets and the smaller

data-sets then fill in the smaller, unallocated gaps

remaining. Third, the data-set U33ACC, which is 250 blocks

large, was listed so it was positioned in file 5. This

permitted the remaining experiment ar.d "common" data-set
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groups to be positioned in file 6. Fourth, the more

frequently accessed data-sets are positioned toward the

center of the list. This tends to distribute as many

data-sets to the left as to the right of them on the MMU

tape. Finally, the data-set U05PMU was listed with the S21

group. In this position it was centered on the tape

relative to the different groups that include its access.

6.3 SensifLivity Analysis

To investigate the sensitivity of changes in the

assum p tions made about MMU use, several test cases were

defined. In the test cases described below, the "best"

order's simulation ;input data was changed in ways that might

actually occur. Table 18 summarizes the statistical data

for the best order and each test case.

Case g_ Unexpected L= Ac eogeg

For the best order, an unscheduled set of operations

that seemed likely to occur and cause MMU accesses was

simulated. In this test case, the sensitivity of tape

travel to additional unscheduled operations was examined.

(This situation occurred during Spacelab L and will be noted
later.) This case was defined by adding 28 unscheduled

accesses of i_h= data-sets TVTR and TVID. As Table 18 below

shows, the simulation predicts an increase in travel between

operations (ATB) with little change in travel within the

0

i

3
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operations (MTI).

Case B: Fewer Data-p_ to. Lisj_qLd $efore the First Ulplay

Data-set

In the best order, enough data-sets were listed before

the first display data-set (type "T") to keep the display

data-set positioned close to the other members of its

experiment group. In this test case some of the data-sets

listed before the first display data-set were moved down in

the list. The simulation predicts, in this case, that the

average travel within an operation increased while the

travel between operations remained nearly the same.

Case C: Change [_ g_j Positions gj $Ile Commo_Q aijUlp ine

group

Another assumption made to reduce the number of list

evaluations was that the order of the discipline data-set

groups could be fixed. Consistent with this, the data-sets

identified as "common" i.e., not belonging to one

discipline, were listed centrally between the other

disciplines. In this test case, these "common" discipline

data-set groups were moved ahead of the astronomy discipline

data-sets. The tape travel within Lhe operations increased

while the travel between operations decreased sli,,htly.
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Case D: Data=aet 5_j.yg ^j1anggq

The sizes of the data-sets were assumed to be given and

unable to be changed. Actually, data-set sizes can be

changed early in the flight software development period. To

investigate the effect of a size change, the data-set U33ACC

was decreased from 250 to 25 blocks. When this was done,

U33ACC was positioned in file 6 rather than file 5• The

average tape travel within an operation within an operation

increased significantly while the travel between operations

decreased.

Case E: Delgtion of Qpgrdt3ons

Contingencies can occur immediately before or in flight

that could cause some scheduled operations to be canceled.

This is a deviation from the assumption that the operations

would be performed per the schedule. This aituation was

tested by deleting the data-set accesses associated w=th an

experiment. The simulation indicated no significant change

in tape travel in this case.

Case F: Changes to t.!La Qrder o£ Data_net ggcesses

The sequence of data-set accesses associated with an

operation could possibly change if the operation's

procedures change. To test the sensitivity of tape travel

to changes in the assumed sequences, the data-sets

associated with an experiment were re-ordered in the

u__
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data-set list. The order of the data-sets in the list was

then different from the operation's defined order of

accesses. The simulation predicts an increase in average

travel within operations with no change in travel between

operations.

Table 18. Sensitivity Analysis Summary

---------------------------------------
98% Confidence Intervals

MTI	 ATB

"Best" Order 11.9±1.3 55.4±2.6
Case A 10.9±1.5 64.5±1.1
Case B 18.2±1.1 53.3±2.5
Case C 19.5±1.2 51.4±2.1
Case D 21.3±0.5 51.0±1.9
Case E 11.8±1.3 55.4±2.6
Case F

--------------------------------
14.1±1.3 55.9±2.6

--------------------------

6.4 Wgiahting_of__Lhe	 FerfQLUaII4g

A change in the weighting factor, BETA, could affect

which list order was selected. The variation of SC with

changes in BETA was investigated using the fourteen

candidates' measures of performance. Table 19 shows how SC

varied for BETA = 0.25, 0.50, 0.65, 0.75 and 0.85.	 The data

indicates that the same data-set list order would be

selected for all values of BETA tested except when BETA =

0.25.

t
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g	 Table	 19. SC Computed for Various Values of BETA
--------------------'----'--------------------------------
ORDER	 BETA = 0.25 0.50 0.65 0.75 0.85

'.	 0 1.00 1.00 1.00 1.00 1.00
E_	 1 1.48 2.07 2.42 2.65 2.89

2 2.04 2.44 2.68 2.78 3.01
3 0.86 0.83 0.81 0.80 0.78
4 0.91 0.92 0.93 0.93 o.94
5 0.89 0.90 0.91 0.91 0.92
6 0.77 0.73 0.71 0.69 0.68
7 0.83 0.76 0.72 o.69 0.66

t	 C	 ^' 0.77 0.65 0.58 0.53 0.48
9 0.79 0.68 0.62 0.58 0.53

10 0.79 0.71 0.66 0.62 0.59
11 0.78 0.74 0.71 0.69 0.67
12 0.77 0.66 0.59 0.54 0.49
13

--------------------
0.78 0.74

------

0.71,
------

0.69
------

0.67
-------------------

6.5 MMU Ooerat_j ns Durin¢_,5.&g&elab I

The Spacelab I flight took place November 28 through

December 8, 1983. The layout for the flight MMU tape was

determined using a preliminary version of the computer

simulation discussed in this thesis. Tape layout studies

similar to the ones discussed herein were done but a

different schedule of experiment operations was used. After

the tape layout was determined based upon a schedule for a

September 30, 1983 launch date, the flight was delayed to

the November 28, 1983 and a revised schedule of experiment

operations had to be produced by the mission planners. The

MMU layout was unable to be revised using the new schedule

because the MMU had already been integrated into the

Spacelab and thus could not be reformatted.

Even though a different schedule was used in the

simulation to determine the flight MMU layout, the MMU

i)
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access times during the flight were satisfactory except for

two cases. In one case, an experiment operation was not

performed as planned because of an unexpected access of a

data-set positioned far from the experiment data-sets

resulted in the next access taking significantly longer than

expected. This incident demonstrated that timely MMU

accesses can be important. The second case was a complaint

by the astronauts during post-flight debriefings that the

crew displays defined by data-sets TVID and TVTR took

exceptionally long to become available when requested. This

was because the astronauts used these displays more often

than expected. The simulation input data did not reflect

that these displays would ever be used and thus they were

positioned some distance 1rom the other data-sets. This

demonstrated that the frequency of use of each data-set must

be carefully estimated.

6.6 Conclusi gns

As a result of this study, the following conclusions

can be made concerning the simulation and the list ordering

of the Spacelab I data-sets for decreased MMU tape travel.

The computer program provided an independent means for NASA

to determine a tape layout by ordering the list of data-sets

for the flight software integration contractor. As a part

of the simulation, the tape travel that would be expected

for the resulting tape layout is predicted using the

schedule of Spacelab operations and simulated unscheduled
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operations. The integration of the EIMU layout algorithm,

the data-base of scheduled operations, and the simulated

unscheduled operations into a single computer program

provided a rapid way of assessing various data-set lists.

With the capability to quickly assess an ordered list of

data-sets, various data-set list orders could be

investigated to determine ordering strategies. Grouping the

data-sets by experiment and science discipline reduced

travel and restricted the possible list orderings.

Simulation experiments were performed based on these

strategies and a better list order was determined to define

the MMU layout for flight.

The simulation was used to determine the MMU tape

layout for Spacelab I. The data-set access times were

satisfactory during the flight with the exception of the two

display data-sets discussed earlier. The simulation would

have indicated this flight problem had the frequency of

these display accesses been predicted correctly.

0.7 Recommendations

The following recommendations are made regarding the

simulation and data-set list ordering for future Spacelabs.

First, the simulation's trace report should be made optional

to decrease the printout produced for simulation runs that

do not require the detailed data. Next, understanding the

factors that will affect tape travel is particularly

important to determine good ordering strategies. Thus, a
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generous number of simulation runs should be allocated to

studying these factors. It is also recommended that the
r

t:	 data which correlates data-sets to operations be thoroughly

-	 reviewed and defined with operations personnel familiar with

various aspects of the Spacelab flight. This data will be

critical to the validity of the the simulation results.

(

	

	 Finally, the simulation should routinely be used to perform

Oata-set ordering analyses for Spacelab flights with a

significant volume of MMU accesses (especially if astronaut

initiated) or with accesses that must be timely.
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APPENDIX A

PROGRAM LISTINGS

This appendix contains listings of the simulation

program. The program consists of seventeen FORTRAN 77

routines. The converted MMU allocation program is

represented by the main program and the first five

subroutines. The remaining subroutines were developed to

support the simulation of data-set accesses.
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UUU1 C23456789	 IZ3456789 123456789 123456789 123456789	 123456789 1234567890 12
UUU2 C STMT 2-24
JUO3 C MMU ALLOCATION PROGRAM
0004 C
ODU5 C MMUALL PROGRAM SPECIFICATION STATEMENTS
0006 INTEGER NUMBLOCKS(300),TRACK(300),FILE(300),SUBFILE(300)
UUJ7 INTEGER BBLOCK(1UO),NUMENTRIES,MMUMAP(16384)
0008 CHARACTER OSNAME(300)+d,DESCRIPTION(300)*30,RELOCATABLE(300)15
UUUY CHARACTER COMM'BNTS(300)-IC,DUMMEP(30U)-9
OUIU COMMON /3LK1/NUMBLOCKS,TRACK,FILE,SUBFILE,BLOCK
OU11 COMMON /3LKZ/NUMENTRIES,MMUMAP
UU1Z COMMON /BLK3/DSNA)IE,DESCRIPTION,RELOCATABLE,COMMENTS,DUMMEP
OU13 OPEN(UNIT=5,READONLY,TYPE='OLD')
OU14 DPEN(UNIT=6,TYPE='NEW',
OU15 •CARRIAGECONTROL='FORTRAN')
OJ16 C ALL BLOCKS ARE FLAGGED AS AVAILABLE
OU17 CALL LOAD	 !LOAD	 INPUT DIRECTORY
U01d CALL MAPFIKED	 !FLAG FORCED ALLOCATIONS IN MMUMAP
UU1Y CALL ASSIGN	 !ALLOCATE DATA SITS BY ALGORITHM
OUCJ CALL PRINT	 !PRINT OIREC70RY IN SAME ORDER AS INPUT
0021 CALL PRINTMAP	 !PRINT MAP OF MMU UTILIZATION
OUZZ CLOSE(UNIT=5)
UO23 C THE FCLLOWING ROUTINES PROVIDE FOR THE SIMULATION
OU24 CALL REAOMODIN
OU25 1 CALL	 UNSCM(ISTOP)
DU26 IF(ISTOP.ED.1)GOTO99
OU27 CALL	 SIM(NSK,NSK2,NTO,INSKIP,INSD,IN,MSKIP,MSSO,MN)
OUZd CALL	 SUMRY(NSK,NSK2,NTO,INSKIP,INSC,IN,MSKIP,MSSO,MN)
UULY GOTO 1
OU30 99 CLOSE(9)
DUST CLOSE(UNIT=6)
OU32 STOP - END OF MMU LAYOUT PROGRAM'
0033 ENO
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DUU1 C
OUO£ C--------------------------------------------------------------
0003 C STMT 25-32
UUU4 SUBROUTINE LOAD	 !LOAD	 INITIAL	 INPUT DIRECTORY
0005 C MMUALL	 PROGRAM SPECIFICATION STATEMENTS
JUU6 INTEGER	 NUMBLOCKS(300).TRACK(3UO),FIL?(300).SUBFILE(300)
UUU/ INTEGER BLOCK(300),NUMENTRIES,MMUMAP(16384)
UUUd CHARACTER DSNAME(30U)-d,DESCRIPTION (300)- 30,RELOCATABLE(300)*5
UUU9 CHARACTER COMMENTS(300)-10,DUMMEP(300),9
0010 COMMON /BLKI/NUMBLOCKS,TRACK,FILE,SUBFILE,BLOCK
UU11 COMMON /GLK2/NUMENTRIES,MMUMAP
UU1£ COMMON /BLK3/DSNAME,DESCRIPTION,RELOCATABLE,COMMENTS,DUMMEP
OU13 NUMENTRIES =O
OU14 1U NUMENTRIES=NUMENTRIESt1
UU15 INK=NUMENTRIES
UU16 READ(5,100,ENO=90)DSNAME(INK),OESCRIPTION(INK),
0017 -NUMBLOCKS(INK),TRACKCINK),FILE(INK),SUBFILE(INK),
UU18 +BLOCK(INK),RELOCATABLECINK),COMMENTS(INK),DUMMEP(INK)
UU19 IOU FORMAT(AB, lX,A30, 2Y,I3,2X, Il,lX, 11,IX,11,7X/I2,7X,AS,IX,A10,A9)
UU£U NRITEto, 101 )DSNAME(INK),DESCRIPTION(INK),
UU£1 •NUMBLOCKSCINK),TRACK(INK),FILE(INK),SUBFILE(INK),
OU22 •BLOCK(INK),RELCCATABLE(INK),COMMENTS(INK),DUMMEP(INK)
OU£3 101 FORMAT(7X,AB, IX, A30, 2X, I3, 2X,I1,1X, I1,1X,I1,1X,I2,TK,A5,1X,A10,A9)
OU£4 IF( DESCRIPTION(INK)(1:3).NE."END-)GDTO	 10
OU25 NUMENTRIES=NUMENTRIES-1
U0£6 90 RETURN
UU£/ END
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	 C

UUU2
0003
	

C
UVU4
0005
	

C
UUU6
0007
UUUM
UUU9
Oulu
Dull
UU12
UU13
UU14
UU15
UU16
	

IOU
Dull
OUT 
UJiy
UU20
UU21
UU22
OU23
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STMT 33-40
SUBROUTINE MAPFIKEO
MMUALL PROGRAM SPECIFICATION STATEMENTS
INTEGER NUMBLOCKS(300).TRACK(300).FILE(300) i SUBFILE(300)
INTEGER BLOCK(3U0).NUMENT2IES.MMUHAP(16384)
CHARACTER OSNAME(SOU)•B,DESCRIPTION(30U)•30.RELOCATA3LE(300)•5
CHARACTER COMMENTS(SOO)-1U.OUHMEP(3UU)•9
COMMON 13LK1/BUMBLOCKS.IRACK.FILE.SUBFILE,BLOCK
COMMON /BLKL/NUMENTRIES.MMUMAP
COMMON /BLKS/DSNAME.DESCRIPTION.RELOCATABLE,COMMENTS.DUMMEP
00 I=I.NUMENTRIES

IF(RELOCATABLE(I).EQ.'FIKEO')TMEN
CALL AVAIL(I,IOUT)
IF(IOUT.EQ.0)THEN

NRITE(6.1UO)D5NAME(I)
FORMAT(lKi'DiQaDMMU ADDRESSING ERROR FOR ',A8)

ELSE
CALL RESERVE(I) ! UPOATE MMUMAP FOR FORCED DATA

ENO IF
END IF

END 00
RETURN
END

STMT 41-45
SUBROUTINE RESERVE(I)	 !SUBR TO UPDATE MMUMAP FOR ASSIGNMENT
MMUALL PROGRAM SPECIFICATION STATEMENTS
INTEGER NUMBLOCKS(300).TRACK(300).FILE(300).SUBFILE(300)
INTEGER BLOCK(300).NUMENTRIES.MMUMAF(16384)
CHARACTER OSNAME(300)•8.DESCRIPTION(300)•30,RELOCATABLE(300)*S
CHARACTER COMMENTS(3Q0)*lD,DUMMEP(3OU)-9
COMMON /5LK1/NUMBLOCKS.TRACK.FILE,SUBFILE.BLOCK
COMMON /BLKL/NUMENTRIES.MMUMAP
COMMON /BLKS/DSNAM2.OC-SCRIPTION.RELUCATABLE.COMMENTS.DUMMEP
IF(FILE(I).EQ.O.AND.SUBFILE(I).EQ.O.AND.BLOCK(I).EQ.0

• .ANO.TRACK(I).E0.6)TMEN	 !LAST MMU ADDRESS MEANS NO SPACE
YRi TE(6.IO0)DSNAME(I)
FORMAT(IX,'SSSSSMMU SPACE NOT AVOILABLE FOR '.AB)

ELSE
00 J=I.KUMBLOCKS(I)
MMUMAP(TRACK(I).2U4BrFILE(I)•256+SUBFILE(I)*32FJ+BLOCK(I))=1
END 00

ENO IF
RETURN
END

UUul
	

C
Uuu2
	

c
UJU3
	

C
UU 04
0005
	

C
UUU6
UUU/
UUUd

F
	 UUUV
f
	

UUIU
UU17
UUl2
UU13
UU14
UU15
UU1b
Oil 
UU18
	

IOU
Uuly
UU2U
OUL1
0022
UU23
OJ24
UU45



VUJ1
UUUL
UUUS
UJU4
UOU5
UUUC
UU U 
DUOS
Out)9
Oulu
UU11
Oult
Ouli
UU14
UU15
0016
UU17
0016
OU19
OULU
UU21
OU22
OU23
OU24
UU25
0046
UJ27
OU28
Uu29
UU3U
0uAl
LIU32
0033
OU34
OU35
OU36
0037
OU38
UJ39
DOW
0041
OU42
U043
OJ44
OU45
OU46
OU47

86

d

C
--------------------------------------------------------------

SUBROUTINE AVAIL(I.ICUT) ! SUER TO TEST AVAILABILITY 3 ADDRESSING
C	 M.MUALL PROGRAM SPECIFICATION STATEMENTS

INTEGER NU48LOCKS ( 3UO).TRACK ( 3UO).FILE(300),SUBFILE(300)
INTEGER BLOCK(30U)/NU82NTRI=S•MMUMAP(16384)
CHARACTER DSNAME ( 3CU)•8.DESCRIPTION ( 300)•SO.RELOCATABLE (300)•5
CHARACTER COMMENTS(3OO)•lO/DUMMEP(SUU)•9
COMMON /BLK1/NUMBLCCKS,TRACK•FILE•SUBFILE.BLOCK
COMMON 7BLK2/NUMENTRIES,MMUMAP
COMMON 79LK3/DSNAME.DESCRIPTION.RELOCATABLE.COMMENTS.DUMMEP
IF(DESCRIPTION ( I)(1:4).Ep.'ECOS'.ANO.

•	 DSNAME(l) (1:1).EU."T".AND.
•	 SOBFI.LE(I).NE.2.AND.
•	 SUBFILE(I).NE.3.AN0.
•	 SUBFILE(I).NE.4.AND.	 i
•	 SUSFILE ( I).NE.5)THEN	 !ALLOC ECOS DISPLAYS ONLY IN SF 2-5

IOUT=U
RETURN

END IF
IF(NU 1iBLOCK S (I).GT.256)THEN	 !OATA SET .GT. FILE

C	 ASSURE START OF FILE AND ROOM ON TAPE(
Ir((SUBFILE ( I).EO.O.AND.BLOCK ( I).EO-O.AND. (FILE (I) • 256	 t

•	 +NUMBLOCKS(I)).LE.2C48).ED..FALSE.)THEN
IOUT=O	 f
RETURN

END IF	 )I!^
ELSE IF(NUM8LOCKS(I).GT.32)THEN	 !.LE. FILE
IF((BLOCK(I).EO.O.AND.(SUBFILE(I) • 32+NUMBLOCKS(I))	 F

• . LE.256).EQ..FALSE.)THEN	 p

IOUT=U	 pl
RETURN

ENDIF
ELSE IF(3LOCK(I)+NUMBLOCKS(I).GT.32)THEN

IOUT=O
RETURN

END IF
DO II=1/NUM3LOCKS(I)
IF(MMUMAP(TRACK(l)•2048+FILE(I)•256+SUBFIL=_(I)

•	 •321'3LDCK(I)+II).NE.0)THEN
IOu T=U
RETURN

END IF
END 00
IOUT=1
RETURN

END

b'
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UUUI C
JOULC-------------------------------------------------------------
UJO3 L STMT	 63-44
UJU4 SU3ROUTINE	 ASSIGN
UUUS C MMUALL PROGRAM SPECIFICATION STATEMENTS
ODU6 INTEGER NUMBLOCK5(300),TRACK(300),FILE(300),SUBFILEC300)
OUJI INTEGER	 BLOCK(300),NUMENTRIES,MMUMAP(16384)
DUOS CHARACTER	 DSNA14E(300)•B,DESCRIPTION(300)-30,RELOCATABLE(300)-5
ODUV CHARACTER COMMENTS(300)•1O,DUMM£P(SOU)*9
Oulu INTEGER	 JOROER(B)
UU1l COMMON /ELK1/NUMBLCCKS,TRACK,FTLE,SUSFILE,BLOCK
Dull COMMON /BLKZ/NUMENTRIES,MMOMAP
OU13 COMMON /BLK3/DSNA4E,DESCRIPTION,RELOCATABLE,COMMENTS,DUMMEP
UU14 DATA JOR^-ER/6,5,7,4,3,2,1,O/	 !FILE ALLOCATION ORDER
OU15 00 I=1,NUMENTRIES
UU16 IF(RELJCATABLE(V (2:4).EO. - VAR')THEN	 !SKIP FIXED ASSIGNMENTS
UU1/ DO NN=1,B
UU1d FILE(I)=JORDER(NN)
UO1V 00 K=0,7
Ou2U I'F(JOROER(NN).GE.6)THEEN
OU21 SUBSILE(I)=K
0022 ELSE
0023 SUBFILE(I)=7-K
UU24 END IF
OU25 00 L=0,6,2
OU26 TRACK(I)=L
OU17 00 M=0,11
DO 2B IF(JORDER(NN).GE.6)THEN
DULY BLOCK(I)=M
OU30 ELSE
UU31 SLOCK(I)=31-M
OU32 ENO IF
UO33 CALL AVAIL(I,IOUT)
DU34 IF(IOUT.ED.1)THEN
UU35 CALL RESERVE(I)
OU36 GO TO 10
OJ37 ENO	 IF
Uu3B ENO 00
Uu3v END 00
OU40 ENO 00
0041 END 00
Ou42 -END	 IF
OU43 10 CONTINUE
OU44 ENO 00
OU45 RETURN
0046 ENO

*`1



sa

0001 C

0003 c STMT	 85-90
UUU4 SUBROUTINE	 PRINT	 !PRINT	 DIRECTORY
UUU5 C MM.UALL	 PROGRAM	 SPECIFICATION STATEMENTS
0006 INTEGER	 NUMBLUCK5(300),TRACK C 300), PILE(JUU)• SUBFI LE 1300)
UOU/ INTEGER	 BLOCK(3U0),NUMENTRIES,MMUMAP(16384)
UUUd CHARACTER DSNAME(300).8,DESCRIPTION(300)•30,RELOCATABLE(300)*5
UUUY CHARACTER COMMENTS(3U0)-10,DUMMEP(3OU)•9
UUIU COMMON /3LK1/NU'MBLOCKS,TRACK, FILE, SURF ILE, BLOCK
UU11 COMMON /BLKL/NJMBNTRI:S,MMUMAP
UUIe COMMON /BLK3/DSNAM°_,DESCRIPTION,RELOCAT4BLE,COMMENTS•DUNMEP
UU13 WRITE(6,102)
UU14 tot FORMAT('1ALLOCATED	 DIRECTORY'/)
OU15 00	 INK=I,NUMENTRIES+1
OU16 WRITE(6,101)DSNAMECINK),DESCRIPTION(ZNK),
OU17 •NL'M5LOCKSCINK),TRACK(INK),FILE(INK),SU5FILE(INK),
UU15 •SLOCKCINK),RELOCATABLE(INK),COMMENTS CI NK),OUMMEP(INK)
JULY 101 FORMAT(TK•AB,lX,A30,2X,I3.2X,I1,1X,I1,1X•I1,1K,IZ,1X•A5,lX,A10,A9)
UULU ENO DO
OUtI RETURN
OJZC END

UuU! C
0002 C______________________________________________________
0003 L STMT	 715-147
UU04 SUBROUTINE	 PRINTMAP
UUU5 CHARACTER	 MMUdUSY(B•8)•1/64-'
UUU6 C MMU MAP WITH ONE CHARACTER PER SUBFILE
OUJI CHARACTER BLOCKCDUNTS(33)•l
0008 INT25ER SUBPILESIZE•MMUMAP(16384)
0009 COMMON	 /BLK2/NUMENTRIES•MMUMAP
UUIU CATA	 dLOLKL0UNT3/'.'•"1'•'2'•'3'•'4','5': `6','7"•'d",'9" 	 I
Dull •,'a','d','L','0'•'E",'F','G",'M','I','J','K','L",'N'•'N' 	 '

OU13 WRITt(6,100)
0014 TOO FORMAT("l',11X,-FIL2	 U	 FILE	 1	 FILE	 2	 FILE	 3
UU15 *'FILE	 4	 FILE	 5	 FILE 6	 FILE 7')
U016 GO 10	 I=1,0,2	 !COMPUTE AND PRINT 8 LINES, 	 7/TRACK
UU1/ 00 20 J=1,8	 !COMPUTE 8 FILES OR	 EACH LINE	 (TRACK)
UU18 00 30 K=1,3	 !COMPUTE 8 SUBFILES	 FOR	 EACH FILE
UUIY C
uudu SUdPILESIZE=O	 !INITIALIZE TO ZERO
UOdl 00	 40	 1-=1,3E	 !CMEC)( ALL	 BLOCKS	 WITHIN SUBFILE
UULt ISUd=(I-1),-1048+(J-1)-2564(K-1)-32tL
UU23 IF(MBUMAP(ISUB).NE.0)	 THEN
UUt4 SUdFILESIZE=SUBFILESIZE+l
UUZ5 END	 IF
UU16 40 CONTINUE
uuzf MM,UBUSYCK,J)=BLOCKCOUNTS(SUBFILESIZE+1)
OUt8 31) CONT 1NUE
UJLY 2U CONTINUE
UU50 WRIT--(6,101)(I-1),MM08USY
OU31 lul FORMAT('	 TRACK	 ',I1,3X•d(8A1,1X))
OU32 WRIT:(6,101)I,MMUBU5Y
OU33 00 60	 II=1,8
OU34 DO 60	 JJ=1,8
UU35 60 MMUbUSY(II,JJ)='
UU36 1U CONTINUE
0037 RETURN
0035 ENO



I

P3 9

{

ouUl
UUU2
UUUS
UUJ4
UUUS
0006
UUU7
ODUB
UUO9
UU I 
UUII
Ou12
UU13
OU14
OU15
UU16
oulI
ould
oily
OUZU

SUBROUTTNE REAOMOOIN
CHARACTER MOOST-12.O5N(15)•10
N=C

OPEN(2.STATUS =' SCRATCH".CRGANIZATICN=' INDEXED'.
.ACCESS='KEYED'.CECOROTYPE='VARIABLE'.FORM='UNFORMATTED'.
•RECL=4I.KEY=(1:12:CHARACTER))
OPEN(3.NAME='MSDS.DAT'.ST:TUS='OLD-.READONLY)
OPE ): (V.NAME='SEECS.DAT'. STATUS=' OLD'. READONLY)

1 N=N+1
READ(3.1O.EN0=90)MCD3T.DSN

10	 FORMAT(Al2.15A10)
WRITE(L.ERR=91)MOO5T.DSN
GOTO 1

91 WRITE(6.20)N.MOOST.OSN
2U F O R M A T( / IX,'---ERROR WRITING M00 22L FILE LINE:'.
•/1XrI3.1X.Al2.6A10/17X.6A10/17X.3A10)
GOTO I

9U CLOSE(3)
RETURN
ENO

0001	 C
UUU2	 C----
UUUS	 C
DOUG
	

SU?ROUTINE UNSCH(ISTOP)
0005
	

CHARACTER • lU DSN(15)
OUJ6
	

COMMON / SLKS/ISEEO
0007	 C
	

WRITE(1.150)
UUUB	 C 150 FORMAT(1X."INPUT A LARGE 000 INTEGER FOR A SEED(87654321):-.5)
UUUS
	

REAG(9.151.END=92)ISEED
U010	 151 FORMAT(IB)
OU11
	

IF(ISEEO.EQ.0)TKLN
OU12	 92
	

ISTOP=1
OU13
	

RETURN
0014
	

ENO IF
0!)15
	

WRITE ( 6.152)ISEED
OU16	 15Z
	

FORMAT(//" NEXT SEED VALUE='.110)
0017
	

OPEN ( 4.STATUS='SCRATCH'/DRGANIZATION =' INDEXED'•
UU18
	

•ACCESS="KEYED'.RECOROTYPE='VARIABLE".RECL=39.KEY:(1:4:INTEGER)
0019
	

•.FORM='UNFORMATTED')
OU20
	

OPENI7.NAP.t='UNSCHE.DAT".STATUS='OLD'.REAOONLY)
OU21	 20 READ(7.10.EN0=9U)N.START.ENO.DSN
OUZ2	 1U FORMAT ( I4.2F8.3.15A10)
0023
	

DO II=1.N
UUZ4
	

CALL UNIFRM(START.END/TIME)
OU25
	

TI4E=TIME-3600.
0010
	

ISEC=IFIX(TIME)
UUZ7	 to
	

WRITE(4.IOSTAT=IERR)ISEC.OSN

UU28
	

TMRS=TIME/3600.
UU29
	

IF(IERR.EQ.SO )TMEN
UU3U
	

WRITE(6.60)TMRS
UU31	 60
	

FORMAT(' D330IAG: OUPLICATt UNSCHEO TIME ='.FB.2.' HRS-)
0034
	

ISEC=ISEC+1
UU33
	

GOTO 77
UU34
	

ELSE IF(IOSTAT.NE .0)TM`-N
OU35
	

WRITE(5.11)
0036	 11
	

FORMAT(" ••• ERROR IN WRITING UNSCHEDULED ACCESSES FILE')
OU31
	

ENO IF
OU38
	

ENO DO
0039
	

GO TO 20
OU40	 90 CLOSE(7)
0041
	

RETURN
OU42
	

END

^N1



N

f

90

OD )1
	

c
UUU2
	

C----------------------------
UUUS
	

C
UU04
	

SUGROUTINE UNIFRM.(A,B/X)
JJU5
	

COMMON /3LK5/ISEED
UUU6
	

RN=RAN(ISEEO)
UUD/
	

%=AF(B-A).RN
UUUB
	

RETURN
OJO9
	

END

ODU1
	

C
0002
	

C--------------------------------------
DUU3
	

C
0004
	

SUBROUTINE ENCMODST(OATA.MODST)
0005
	

CHARACTER-12 MODST.MODEL.E•STEP•4
0006
	

REAL-4 OATA(15)
UuU)
	

CALL TRANR_C(DATA,5.6.HOGEL)
UUUB
	

CALL TRANR-C(OATA.7,7,STEP)
0009
	

DO II=2.4
UUlu
	

IF(STEP(II:II).NE." ')GOTO 30
OU11
	

END DO
0012
	

SO	 GOTO (1,2,3)(II-1)
OU13
	

1	 MODST=MO3EL/1'.'//STEP(II:4)
OU14
	

RETURN
OU15
	

2	 MOUST=MODEL//"."//STEP(II:4)//'
UU16
	

RETURN
(JulI
	

S	 MODST=MODEL//'."//STEP(II:4)//"
OU1B
	

RETURN
UU19
	

ENO

0001
	 C ...

uuut
	

SUBROUTINE TRANR-C(DATA.ISTW.IENOW.STRING)
0003
	

CHARACTER STRING•(•)
0004
	

REAL-4 DATA(15)
UUUS
	

C ISTN=START WORD OF OATA(15) --- IENDW=END WORD.
UUU6
	

NOW=(IENOW- ISTW.1)
U9UJ
	

L=NOW•4
UUUB
	

ENCODE(L.101.STRING(i:L)) (DATA(I),I=ISTW.IENOW)
OJU9
	

101	 FORMAT(<NOW> W
0010
	

C.
UU 11
	

RETURN
UU12
	

ENO

a	 _



,mieR
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0001	 C
0002	 c--------------------------------------------------------------
0003	 C
ODU4	 SUBROUTINE SIM(NSK,NSK2,NTO,INSKIP,INSO,IN,MSKIP,MSSO,MN)
0005	 CHARACTER DSN(15)•1U,MO0ST•12,FIO(3)•4
UUU6	 REAL-4 DATA(15),NSK2,INSD
0007	 COMMON /3LK5/ISEED
UUUB	 DATA FIO/'MMUA','LL.P',-RT
UUU9	 NSK=O
uulu	 NSK2=0.
OU11	 NTO=O
OU12	 INSKIP=O
Uuis	 INSD=O.
OU14	 IN=D
OU1.'i	 MSKIP=O
0016	 MSSO=O
UU17	 Mh=D
OUId	 NEXT=T
DUTY	 NREAD=-1
UU20	 NRITE(5,50)
UU21	 50 FORMAT("1',10X,"S I M U L A T E 0 	 M 1 5 S I 0 N	 0 F',
DULL	 M M U	 U S E	 "/1X.74(' )/
OU23	 •'	 I-------BLOCKS SKIPPED ------------ 1-/
OU24	 MET	 OPERATION	 I BEFORE I TOTAL I MAX	 ON I',
0025	 LAST POSITION'/
OUG6	 (HRS) (MOOEL,STEP) (ACCESS 011 	 IN I	 IN ACCESSSI',
UUC/	 •' FILE	 SF	 BLK")
OU2B	 LF=6
OOZY	 LSF=O
0030	 LB=O
UU31	 OPENS,NAME='EXPERIMNT.FIN',STATUS='OLD'
OU32	 •,READONLY.ACCESS='DIRECT',RECORDSIZE=15)
0033	 90 CONTINUE
UU34	 IF(NREAO.EO.-I)ThEN
0035	 CALL REAOOF(8,FIC,5,NEXT,NS,DATA,•llY9)
OU36	 READ(4,KEYGE=O,KEYID=O,END=99)ISEC,OSN
XFORT-N-INVENDKEY, Invalid END= keyword, ignored

LEYID=D,END =99)3 in module SIM at line 36

Ou37	 END IF
OU38	 IF(NREAD.ED.0)CALL READOF(B,FID,5,NEXT,NS,DATA,•1199)
UU3Y	 IF(NREAD.ED.1)READ(4,END=99)ISEC,DSH
UU40	 SHRS=DATA(2)
OU41	 UHRS=ISEC/3600.
0041	 IF(SMRS.LE..UMRS)THEN
OU43	 NREAD=O
OU44	 CALL ENCMOOST(OAYA,MODST)
004^	 REAOC2,KEY=MOOST,KEYIO=O,ERR=90,END=YO)MODST,DSN
XFORT-W-INVENUKEY, Invalid END= keyword, ignored

LERR= YO,ENO =90)3 in module SIM at line 45

OU45	 GO TO 20
(3U47	 ELSE
OU45	 NREAD=1
Ou4Y	 REAO(4,KEY=ISEC,KEYID=C,END=99)ISEC,OSN
%FORT-N-INYENDKEY, Invalid END= keyword, ignored

LEYID=0,ENO = 99)3 in module SIM et line 49



UU50 MODST=DSN(1)1/'
OJ51 END	 IF
UU52 20 CALL	 SKIPPED(LF,LSF.L8,NSKIPT.OSN(1))
OU53 NSK=NSK*NSKIPT
UU54 NSK2=NSK2+CFLOAT(NSKIPT))--2
OUSJ NTO=NTO+1
01.)56 DO	 II=2.15
OU57 IF(OSN(II).ED.'	 ')GOTO	 10
0058 CALL SKIPPED(LF.LSF,LB.KSKIPI.USN(II))
UU5V C
0060 IF(KSKIPI.GT.KSK)THEN
OU61 KSK=KSKIPI
0062 KAC=II
UJ63 ENO	 IF
OU64 JSK=JSK+KSKIPI
OU65 END DO
OU66 10 IF(II.E0.2)THEN
0067 KAC=O
OU68 JSK=O
OU69 GOTO 30
OU70 ENO IF
OU71 INSKIP=INSKLP+JSK
UU71 INSD=INSO+CFLOAT(JSK))•-2
OU73 IN=IN+1
OU74 C
0075 M5KIP=MSKIP+KSK
OU76 MSSO=LASSO+(FLOAT(K5K))--2
0077 MN=MN+1
outs C
0079 30 CONTINUE
OUBJ IP(N9:SAD.EO.0)THEN
OUdI HRS=SHRS
0082 ELSE
OU63 HRS=UHRS
0084 END IF
OU85 CALL CCMPARE(MODST.NSKIPT.JSK.HRS.SSK,KAC)
OJ86 WRITE(6.51)HRS,MOO.ST ,NSKIPT,JSK,KSK.KAC,LF,LSF,LB
UU87 51 FORMAT(IX.F6.2.2X.Al2.3X.I5.5Xi15.5(4X,13))
UU88 C 0 WRITE(5.52)NT(;-NSK,NSK2i IN.INSKIP.INSD
OUBY C 0	 51 FORMAT('+'.60X.1(I6.1X.IB.IX.E13.8.2X))
UUYU NP=NP+1
OU91 IF(NP.ED.51)THEN
OUY1 WRITE(5.50)
UUY3 N7=0
OU94 ENO IF
OUYS JSK=O
OOV6 KAC=O
UJY7 KSK=U
UJY8 GO TO YU
UUVY 1199 NREAO=1
0100 GOTO 90
0101 99 CLOSE(8)
oluz CL05E(4)
0103 RETURN
0104 END

92
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OU07
0002
ODU3
0004
	

SUBROUTINE SKIPPEO(LF,LSF,LB,NSK,DSN)
UJUS
	

CHARACTER•10 OSN,OOSN
ODU6
	

MMUALL PROGRAM SPECIFICATION STATEMENTS
ODU7
	

INTEGER NUMBLOCKS(300),TRACK(300).FILE(300),SUBFILE(S00)
Duud
	

INTEGER 6LOCK(3UO),RUMENTRIES,MMJMAP(16784)
UUJ9
	

CHARACTER OSNAME(500)•B.DESCRIPTION(30U)-30,RELOCATA8LE(300)•5
Uulu
	

CHARACTER COMMENTS(300)-)O,DUMMEP(3OU)•9
Oull
	

COMMON /3LK1/NUMBLOCKS,fRACK,FILE,5U5FILE,BLOCK
DU1z
	

COMMON /BLKZ/NUIIENTRIES,MMUMAP
0013
	

COMMON /BLK3/OSNAME,0ESCRIPTION,RELOCATABLE,COMMENTS,DUMMEP
OU14
	

IF(OOSN.EO.DSN)GOTD 10
DO 15
	

DO I=1,300
UU16
	

IFCDSNAME(I).EO. AfiN(1:8))GD TO 10
out)
	

END DO
UU1d
	

MRITE(6,100)DSN
DU19
	

100
	

FORMAT(' ---DATA SET: ',AID,' NOT IN TABLE!!-)
UUZU
	

RETURN
Outt
	

10
	

IPOS=FILE(I)-Z56+SUBFILE(I)-32+BLOCK(I)
UUZ2
	

LPO5=LP-256+LSF*32+'L3
00"
	

IF(IPOS.LT.LPOS)THEN	 !READ RT TO LEFT
U0z4
	

NSK=IAOSCLPOS-IPOS-NUMBLOCKS(I))
OU25
	

IEND=IPOS
OU26
	

ELSE	 !READ LEFT TO RT
OU27
	

NSK=IPOS-LPOS
0028
	

IENO=IPOStNUMBLOCKS(1)
OU29
	

END IF
UU3U
	

ODSN=DSN
0031
	

I.F=IEN31256
OU3z
	

IEND=IENO-LF+256
OU33
	

LSF=IEND/32
^_034
	

Ld=IENO-LSF*32
0035
	

RETURN
OU36
	

END

iO



l

C

94

0001 C
UUU2 c--------------------------------------------------------------
UUU3 C
0004 SUBROUTINE COMPARE(MOOST,NSKIPT,JSK,HRS,KSK,KAC)
0005 CHARACTER MOOST,I2,TMOOST(lU)•12,IMOOST(10)-12,KMOOST(10)-1Z
0005 INTEGER	 LST(10),LSI(10),LSK(10),LSP(10)
DUUI REAL	 TMRS(lO),XHRS(I0),KHRS(l0)
OUOB COMMON /iLK41TMODST,IMODST,KM00ST
UUUY COMMON /BLK6/LST,LSI,TMRS,XMRS,LSK,KHRS,LSP
0010 C DETERMINE	 IF ENTRY	 IS ALREADY	 IN TABLE
OU11 00	 J=1,10
Ou12 IF(MOOST.EO.TMOOST(J))GOTO 20
OU13 EN0 DO
0014 JJ=1
OU15 MIN=LST(1)
0016 C FIND SMALLEST ENTRY IN THE TABLE
001/ 00 K=1,10
UUIB IF(LST(K).LE.MIN)TMEM
UUIY JJ=K
0020 MIN=LST(K)
0021 END	 IF
OU22 END DO
0023 IF(NSKIPT.GT.MIN)THEN
UUZ4 LST(JJ)=NSKIPT
0025 TMODST(JJ)=MOOST
OU26 THRSCJJ)=MRS
UUZ7 END	 IF
OUZ6 GOTO 100
(;U2Y 20 IF(NSKIPT.GT.LST(J))THEN
Uu3U LST(J)=NSKIPT
OU31 THRS(J)=HRS
OU3Z END IF
UU33 100 00	 J=1,10
OU54 IF(MDDST.EO.IMODSTCJ))GOTO 	 120
OU35 END DO
0036 JJ=1
0037 MIN=L SI(1)
UU38 C----------------FIND SMALLEST ENTRY 	 IN TABLE
OU3Y 00 K=1,10
OU4U IF(LSI(K).LE.MIN)THEN
0041 JJ=K
OU42 MIN=LSI(K)
OU43 END IF
OU44 END DO
UU45 IF(JSK.GT .MIN)THEN
0046 LSICJJ)=JSK
OU41 IMOOST(JJ)=MOOST
OU43 XHRSCJJ)=MRS
UU49 END	 IF
OU50 GOTO 2100
UU51 1Z0 IFCJSK.GT.LSI(J))THEN
Uu52 LSI(J)=JSK
OU53 XHRS(J)=HRS
OU54 END IF
UU55 C
UU56 C TABLES	 FOR	 MAX	 BLOCKS	 SKIPPED IN AN OPERATION
0u^7 2100 00 J=1,10

1

i

I

i
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COMPARE

UU56	 IF(MOOST.EO.KMOOST(J))GOTO 2120
OU)9	 ENO 00
UObU	 JJ=1
OU61	 MIN=LSK(1)
UU62	 C----------------- FIND SMALLEST ENTRY IN TABLE
UU53	 00 K=1,10
OU64	 IF(LSK(K).LE.MIN)TMEN
OU65	 JJ=K
OU66	 MIN=LSK(K)
0067	 END IF
OU68	 ENO DO
OU69	 IF(KSK.GT.MIN)TMEN
0070	 LSK(JJ) =KSK
OU71	 KMOOST(JJ)=MODST
OU72	 KHRS(JJ)=MRS
OU73	 LSP(JJ)=KAC
q U74	 END IF
OUTS	 RETURN
OU76	 2120	 IF(KSK.GT.LSK(J))TMEN
UU77	 LSK(J)=KSK
U075	 KMRS(J)=MRS
OU79	 END IF
UUSU	 RETURN
0051	 END



UUU1
um
OU33
UUU4
JUU5
UUU6
uJU/
uUUB
oUJY
Oulu
Dull
UJ72
Uu13
OU14
outs
Oulo
UU1I
UuIB
oUIY
OUZU
UU41
OUZZ
UU23
0uZ4
uu25
Ou Zo
UU27
OoZ8
OUZY
UUSU
OU31
OU34
UU33
UU34
ou35
OU36
Du3/
uus6
u('.$Y

uu40
0041
UU42
OU45
OU44
UU45
OU46
OU41
UU48
uu4Y
UU50
U051
OU52
UU53
0054
OU55
UU56
0057
0058
OU59
U06U
OU61
UU6Z
UU63
UU64
OU65
UU66

96

C
C-----------------------------------------------------------
C

SU?RDUTINE	 5UMRY(NSK,NSKZ.NTO.INSKI_P,IN50,IN,MSKIP,MSSO,MN)
CHARACTER	 ROAT'e•9,RTIME•8,M00ST(10).12,IMOOST(10)•12
CHARACTER	 TMODST(10)•1Z,KMOD5T(IU)•1Z

ill

INTEGER	 LST(lU),LSI(IO),LSK(10),LSP(1O)
REAL	 NSK2,INSO,THRS(IO),XHRS(10),KMRS(10)
COMMON /3LK4/TMOU5T,IMOOST,KMOOST
COMMON /3LK6/LST,LSI,THRS,XHRS,LSK,KMRS,LSP
IRUN=IRUNFI
CALL DATE(RDATE)
CALL TIME(RTIME)
AV2T=FLOAT(NSK)/FLOAT(NTO)
AVEI=FLOAT(INSKIP)/FLOAT(IN)
AVEK=FLOATCMSKIP)/FLOAT(MN)
VART=(FLOAT(NTO)•NSK2-(FLOAT(NSK))••Z)/FLOAT(NTO•(NTO-1))
VARI=(FLOAT(IN)•INSO-(FLOAT(INSKIP))••Z)/FLOAT(IN•(IN-1))
VARK=(FLOAT(MN)•MSSO-(FLOAT(MSKIP))••2)/FLOATCMN•(MN-1)) d
CVT=SORT(VART)/AVET•10U.
CVI=3OR7(VARI)/AVEI.90O.
CVK=SORTCVARK)/AVEK•100.
WR ITE(6, 200) IRUN, ROATE, RTIME

ZU0 FORMAT('1	 5	 T	 A	 T I 5 T	 I	 C	 A	 L",
-	 S	 U	 M M	 A	 R	 Y	 RUN',13,5X,A9,ZX,AB/1X,72('-')/14X,

- - TEN LARGEST "SKIP 70"',9X, - TEN LARGEST "SKIP IN"'/
• 2(7X,'MRS	 MOOEL,STEP	 NSLK"),/
•4X,26('-̀),4X,26('-')) •II
00 J =1,10 1
WRITE(6,30)THRS(J),TMOOST(J),LST(J),XMRS(J),IMOOST(J),LSI(J)

30 FORMATCIX,F9.2,ZX,AI2,ZX,I4,IX,FY.2,ZX,Al2,2X,I4) {
ENO DO J

c 1
WRITE(6,40)NSK,INSKIP,NTO,IN,AVET,AVEI,VART,VARI,CVT,CVI 3

40 FORMAT(///5X,'TOTAL "SKIP TO":	 ",I8,5X,'TOTAL "SKIP 	 IN":',1X,18
•/9X,"NO.	 OF	 OBS.:	 ',I8,9X,'NO.	 OF	 OBS.:	 ',I8, -
• /15X,'MEAN	 :	 ',F5.1,15X,-MEAN	 :	 ',F5.1/
• 12X,'VARIANCE:	 -,F8.1,12X,"VARIANCE:
•15X,"CV(X):	 ',F5.1,15X,'CV(%):	 ',F5.1)

C )
WRITE(6,50)

50 FORMAT(//,20X,'TEN LARGEST MAX TRAVEL IN	 CMTI)'/
•	 ZOX,'	 MRS	 MODEL,STEP	 .VBLKS	 ACCN-/ZDX,32('-'))
00 J=1,10
WRITE(6,31)KHRS(J),KMOOST(J),LSK(J),LSP(J) 1

31 FORMAT(16X,F9.Z,2X,Al2,ZX,I4/2X,14)
END DO
WRITE(6,41)MSKIP,MN,AVEK,VAR.K,CVK f41 FORMAT(////2'1X,"	 TOTAL MTI	 ',IS

-/24X, - NO.	 OF OSS.:	 ',I8
• /30X,'MEAN	 :	 ',F5.1/
•27X,'VARIANCE:	 -,FB.1/
•3U W CV(%):	 -,F5.1)
00	 I=1,10 e.

TMOOST(I)='
IMOOST(I)="
KMOOST(I)="
LST(I)=0
LSI(I)=0 -
LSK(I)=0
TMRS(I)=J.
XHRS(I).=U. -
KHR5(I)=U.

END 60
RETURN
END

[7Yi
^I
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APPENDIX B

INPUT DATA FILES

i
This appendix contains listings of the input files used

by the simulation computer program. The MMU allocation

program input files are are given for the initial order and

for the improved order. The inputs needed by the mission

simulation portion of the program are also included.
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B.1 INITIAL DATA-SET LIST
Data-set Description
Name

SCOSAM SCOS IPL AMI
ECOSAM ECOS IPL AMI
UECOS2 ECOS IPL AMI
UECOS5 ECOS IPL AMI
UECOS4 ECOS IPL AMI
UECOS3 ECOS IPL AMI
UECOS6 ECOS IPL AMI
UECOS8 ECOS IPL AMI
UECOS7 ECOS IPL AMI
SSCDIR SCOS MMU DIRECTORY
EXCDIR ECOS DIRECTORY 1ST LEVEL
TEST ECOS 'PEST DATA SET
EBOOT ECOS BOOTSTRAP
EBOOTR ECOS BOOTSTRAP
SBOOTR SCOS BOOTSTRAP REDUNDANT
SBOOTP SCOS BOOTSTRAP PRIME
S15 ECOS C99
Sic EGOS C99
D02A01 ECOS REM
A24RO ECOS C99
A34AO ECOS REM
A34EO ECOS REM
MMA ECOS C99
SOP EGOS C99
S99 EGOS C99
HRMFMT SCOS C99 HRM FORMATS
A03BO ECOS REM
A34BO ECOS REM
A19EO ECOS REM
S05 ECOS REM
A16GO ECOS RE14
A20EO ECOS REM
A16AO ECOS S16
T16A ECOS S16
S21 ECOS S21
A21AO ECOS S21
T21A ECOS S21
S22 ECOS A22
A22AO ECOS A22
T22A ECOS A22
A05AO ECOS A05
T05A ECOS A05
U05TGL ECOS A05
U05PMU ECOS A05 E13	 S21
TOF'D ECOS COF
AOFDO ECOS COF
S13 EGOS E13
A13AO ECOS E13
A13A01 ECOS E13
A13A02 ECOS E13

INPUT FILE
Size T
(Blk)

126 0
6 4

	

16	 4

	

16	 4

	

16	 4

	

16	 4

	

16	 4

	

14	 4

	

16	 4

	

1	 C

	

1	 4

	

1	 4
2 C
2 C
2 C
2 C

	

39	 0

	

138	 C
47 C

	

1	 C

	

4	 C

	

4	 C
32 C

	

10	 C

	

18	 C
3 0

	

1	 0
4 0

	

3	 C

	

1	 C

	

4	 C

	

4	 C

	

4	 C
2 C
23 C

	

6	 C

	

2	 C
26 C

	

6	 0
2 C

	

5	 C
2 C
2 C

	

1	 0
2 C
4 0

	

18	 0

	

12	 C
4 C
5 C

F S B Poe.

0 0 2 FIXED
1 7 0 FIXED
2 1 0 FIXED
2 7 0 FIXED
2 5 0 FIXED
2 3 0 FIXED
3 1 0 FIXED
3 5 0 FIXED
3 3 0 FIXED
1 0 0 FIXED
3 7 0 FIXED
3 7 1 FIXED
0 4 0 FIXED
7 3 0 FIXED
7 7 0 FIXED
0 0 0 FIXED
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR
0 0 0 VAR

V
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FILE	 (CONTINUED)
Size T F S	 B
(Blk)

5 0 0 0	 0
3 0 0 0	 0
4 0 0 0	 0
2 0 0 0	 0
1 0 0 0	 0
9 0 0 0	 0
4 0 0 0	 0
3 0 0 0	 0
4 0 0 0	 0

11 0 0 0	 0
6 0 0 0	 0
2 0 0 0	 0
8 0 0 0	 0

44 0 0 0	 0
6 0 0 0	 0
2 0 0 0	 0

250 0 0 0	 0
15 0 0 0	 0
12 0 0 0	 0

1 0 0 0	 0
100 0 0 0	 0

2 0 0 0	 0
1 0 0 0	 0
2 0 0 0	 C
1 0 0 0	 C
2 0 0 0	 C
1 0 0 0	 C
2 0 0 0	 C
1 0 0 0	 C
4 0 0 0	 C
2 0 0 0	 C
2 0 0 0	 C
2 0 0 0	 C
3 0 0 0	 C
2 0 0 0	 C

10 0 0 0
6 0 0 0	 C
2 0 0 0
2 0 0 0	 C
1 0 0 0
2 0 0 0

33 0 0 0
5 0 0 0
2 0 0 0
1 0 0 0
2 0 0 0
5 0 0 0	 1
1 0 0 0	 l
2 0 0 0
6 0 0 0

Pos.

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

r

B.1 INITIAL DATA-SET LIST INPUT
Data-set Description
Name
-------- --------------°---- -
A13AO3	 ECOS E13
A13AO4	 ECOS E13
A13AO6	 EGOS E13
T13A	 ECOS E13
U13APC	 ECOS E13
U13APS	 ECOS E13
A13GO	 ECOS E13
T13G	 ECOS E13
A13AO5	 ECOS E13
S17	 ECOS 317
A17AO	 ECOS E1'l
T17A	 ECOS E17
U17AO1	 ECOS E17
S33	 EGOS E33
A33AO	 ECOS E33
T33A	 ECOS E33
U33ACC	 EGOS E33
S34	 ECOS E34
A34RO	 EGOS E34
U34ALM	 ECOS E34
U34AST	 ECOS l:34
TMEM	 ECOS C99
TEJB	 ECOS C99
TDPM	 ECOS C99
TVFI	 ECOS C99
TPTC	 ECOS C99
TNBD	 ECOS C99
TPLS	 ECOS C99
T2'1A	 ECOS C99
XTLMO	 ECOS CTL
XTLM01	 ECOS CTL
XTLMO2	 ECOS CTL
TTLM	 ECOS CTL
XTMMO	 ECOS CTM
TTMN	 ECOS CTM
A02AO	 ECOS P02
A02AO2	 ECOS P02
T02A	 EGOS P02
T02G	 ECOS P02
A02A01	 ECOS P02
T02S	 ECOS P02
S02	 ECOS P02
A03AO	 EGOS P03
T03A	 EGOS P03
THRZ	 ECOS. C99 P03

0 P20- AMAGO ECOS C99	 P02	 P	 3
A19GO ECOS P19
S19 ECOS P19
T19G ECOS P19
A19AO ECOS P19

,^:n



B.1 INITIAL DATA-SET LIST INPUT
Data-set Description
Name

U19AO1 --
T19A
S20
T20A
U20AO1
A20AO
A3HAO
T3HA
D300A
A13EO
A13DO
A13CO
T20E
T14A
TVID
TVTR
u16GO1
T13E
T199
D03AO1
T34E
T16G
T34A
T13D
T13C
T34B
TITM
TVR6
324
VER101
D3000
F1
TCDT
TVR7
TVR3
VER102
XBUGO
VER103
VER104
TVR2
TVRB
TXB2
TV R9
TVR8
TVR4
VER10
TXB1
TXB1
TVRA
TVR1

r':Os P19
SCOS P19
ECOS P20
ECOS P20
EGOS P20
ECOS P20
ECOS C99
EGOS C99
ECOS C99
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
EGOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM
ECOS REM

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR,
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

4D
I

100

B Pos.
FILE	 (CONTINUED)

Size T F S
(Blk)

1 0 0 0
2 0 0 0
9 0 0 0
2 0 0 0
9 0 0 0
5 0 0 0
3 0 0 0
2 0 0 0

58 0 0 0
4 0 0 0
3 0 0 0
4 0 0 0
2 0 0 0
1 0 0 0
2 0 0 0
2 0 0 0
1 0 0 0
2 0 0 0
2 0 0 0

76 0 0 0
2 0 0 0
2 0 0 0
2 0 0 0
2 0 0 0
2 0 0 0
2 0 0 0
1 0 0 0
1 0 0 0
8 0 0 0
5 0 0 0

58 0 0 0
2 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
4 0 0 0
1 0 0 0
5 0 0 0
2 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
9 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
2 0 0 0
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B.1 INITIAL DATA-SET LIST INPUT FILE	 (CONTINUED)
Data-set Description Size T F S B	 Pos.
Name (Blk)
--------
TAC1

-------
ECOS

---
REM

----------------' ---
1

-
0

-
0

- '-
0

-'---
0	 VAR

TDEP ECOS REM 2 0 0 0 0	 VAR
TAC2 ECOS REM 1 0 0 0 0	 VAR
TGRP ECOS REM 2 0 0 0 0	 VAR
S32 EGOS REM 4 0 0 0 0	 VAR
TGMC ECOS REM 2 0 0 0 0	 VAR
S31 EGOS REM 8 0 0 0 0	 VAR
QRTN ECOS REM 5 0 0 0 0	 VAR
FP ECOS REM 1 0 0 0 0	 VAR
QRTN ECOS REM 5 0 0 0 0	 VAR
308 EGOS REM 16 0 0 0 0	 VAR
TAPP ECOS REM 3 0 0 0 0	 VAR
EPP10 ECOS REM 3 0 0 0 0	 VAR
TFC3 ECOS REM 1 0 0 0 0	 VAR
D300B ECOS REM 58 0 0 0 0	 VAR
FED1 EGOS REM 18 0 0 0 0	 VAR
TXB2 ECOS REM 1 0 0 0 0	 VAR
TVR5 ECOS REM 1 0 0 0 0	 VAR
FCDP ECOS REM 3 0 0 0 0	 VAR
MM1 ECOS REM 56 0 0 0 0	 VAR
TADO ECOS REM 2 0 0 0 0	 VAR
THPS ECOS REM 1 0 0 0 0	 VAR
TMA SCOS FCO2, DISPLAY 3 0 0 0 0	 VAR
MCONO2 SCOS FCO2, MCO2 DIRECTORY 1 0 0 0 0	 VAR
TFFD00 SCOS FCO2, G-AMI 2 0 0 0 0	 VAR
MCON01 SCOS FG01 DIRECTORY 1 0 0 0 0	 VAR
FFDSSC SCOS FCO2 DIRECTORY 1 0 0 0 0	 VAR
FCDRIV SCOS FCO2, G-AMI 1 0 0 0 0	 VAR
SRW SCOS FCO2, DISPLAY 1 0 0 0 0	 VAR
MMJINI SCOS FC01 DIRECTORY 1 0 0 0 0	 VAR
AUD SCOS FCO2, DISPLAY 2 0 0 0 0	 VAR
MCIAMIS SCOS FCO1, MC01	 AMI'S 35 0 0 0 0	 VAR

END
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B.2 OPTIMIZED DATA-SET LIST INPUT FILE
Data-set Description Size T F S B Pos.
Name (Blk)
--------
SCOSAM

-------
SCOS

----------
IPL AMI

---------- ---
126

-
0

-
0

-
0

--
2

-----
FIXED

ECOSAM ECOS IPL AMI 6 4 1 7 0 FIXED
UECOS2 ECOS IPL AMI 16 4 2 1 0 FIXED
UECOS5 ECOS IPL AMI 16 4 2 7 0 FIXED
UECOS4 ECOS IPL AMI 16 it 2 5 0 FIXED
UECOS3 ECOS IPL AMI 16 4 2 3 0 FIXED
UECOS6 SCOS IPL AMI 16 4 3 1 0 FIXED
UECOS8 ECOS IPL AMI 14 4 3 5 0 FIXED
UECOS7 ECOS IPL AMI 16 4 3 3 0 FIXED
SSCDIR SCOS MMU DIRECTORY 1 0 1 0 0 FIXED
EXCDIR ECOS DIRECTORY 1ST LEVEL 1 4 3 7 0 FIXED
TEST ECOS TEST DATA SET 1 4 3 7 1 FIXED
EBOOT ECOS BOOTSTRAP 2 0 0 4 0 FIXED
EBOOTR ECOS BOOTSTRAP 2 0 7 3 0 FIXED
SBOOTR SCOS BOOTSTRAP REDUNDANT 2 0 7 7 0 FIXED
SBOOTP SCOS BOOTSTRAP PRIG_. 2 0 0 0 0 FIXED
Sts EGOS C99 39 0 0 0 0 VAR
Sic ECOS C99 138 0 0 0 0 VAR
MMA EGGS C99 32 0 0 0 0 VAR
SOP ECOS C99 10 0 0 0 0 VAR
S99 ECOS C99 18 0 0 0 0 VAR
A34BO EGOS REM 4 0 0 0 0 VAR
A34AO ECOS REM 4 0 0 0 0 VAR
A34EO ECOS REM 4 0 0 0 0 VAR
A03BO ECOS REM 1 0 0 0 0 VAR
A24R0 EGOS C99 1 0 0 0 0 VAR
MCONO2 SCOS FCO2,	 MCO2 DIRECTORY 1 0 0 0 0 VAR
F1 EGOS REM 2 0 0 0 0 VAR
S05 ECOS REM 1 0 0 0 0 VAR
XTMMO EGOS CTL 4 0 0 0 0 VAR
XTLM01 ECOS CTL 2 0 0 0 0 VAR
XTLMO2 ECOS CTL 2 0 0 0 0 VAR
TTLM ECOS CTL 2 0 0 0 0 VAR
XTMNO ECOS CTM 3 0 0 0 0 VAR
TTMN ECOS CTM 2 0 0 0 0 VAR
S33 EGOS E33 44 0 0 0 0 VAR
A35AO ECOS E33 6 0 0 0 0 VAR
T33A ECOS E33 2 0 0 0 0 VAR
U 33A C C EGOS E33 250 0 0 0 0 VAR
S17 ECOS E17 11 0 0 0 0 VAR
A17AO ECOS E17 6 0 0 0 0 VAR
T17A ECOS E17 2 0 0 0 0 VAR
U17AO1 ECOS E17 8 0 0 0 0 VAR
53 4 ECOS E34 15 0 0 0 0 VAR
A34RO ECOS 934 12 0 0 0 0 VAR
U34ALM EGOS E34 1 0 0 0 0 VAR
034AST ECOS E34 100 0 0 0 0 VAR
S13 ECOS E13 18 0 0 0 0 VAR
A13AO ECOS E13 12 0 0 0 0 VAR
A13AO1 ECOS E13 4 0 0 0 0 VAR
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B.2 OPTIMIZED DATA-SET LIST INPUT FILE (CONTINUED)
Data-set Description	 Size T F S B Pos.
Name	 (Blk)
-------- ---------------------------	 --- -	 - -- -----
A13AO2	 EGOS E13	 5 0 0 0 0 VAR
A13AO3	 EGOS E13	 5 0 0 0 0 VAR
A13A04	 EGOS E13	 3 0 0 0 0 VAR
A13AO6	 EGOS E13	 4 0 0 0 0 VAR
T13A	 EGOS E13	 2 0 0 0 0 VAR
U13APC	 EGOS E13	 1 0 0 0 0 VAR
U13APS	 EGOS E13	 9 0 0 0 0 VAR
A13GO	 EGOS E13	 4 0 0 0 0 VAR
T13G	 EGOS E13	 3 0 0 0 0 VAR
A13AO5	 EGOS E13	 4 0 0 0 0 VAR
TOED	 EGOS COF	 2 0 0 0 0 VAR
AOFDO	 EGOS COF	 4 0 0 0 0 VAR	 1
522	 EGOS A22	 26 0 0 0 0 VAR
A22AO	 EGOS A22	 6 0 0 0 0 VAR
T22A	 EGOS A22	 2 0 0 0 0 VAR
AG5A0	 EGOS A05	 5 0 0 0 0 VAR
T05A	 EGOS A05	 2 0 0 0 G VAR
U05'TGL	 EGOS A05	 2 0 0 0 0 VAR
S21	 EGOS S21	 23 0 0 0 0 VAR
A21AO	 ECOS S21	 6 0 0 0 0 VAR	 1
T21A	 EGOS S21	 2 0 0 0 0 VAR
U05PMU	 EGOS A05 E13 S21	 1 0 0 0 0 VAR
A16AO	 EGOS S16	 4 0 0 0 0 VAR
T16A	 EGOS S16	 2 0 0 0 0 VAR	

g

HRMFMT	 SCOS C99 HAM FORMATS 	 3 0 0 0 0 VAR
TVFM	 FGOS C99	 2 0 0 0 0 VAR
TEJB	 EGOS C99	 1 0 0 0 0 VAR	 1
TDPM	 EGOS C99	 2 0 0 0 0 VAR
TVFI	 EGOS C99	 1 0 0 0 0 VAR
TPTC	 EGOS C99	 2 0 0 0 0 VAR
TNBD	 EGOS C99	 1 0 0 0 0 VAR
TPLS	 EGOS C99	 2 0 0 0 0 VAR
T27A	 EGOS C99	 1 0 0 0 0 VAR
A19GO	 EGOS P19	 5 0 0 0 0 VAR
S19	 EGOS P19	 1	 0 0 0 0 VAR
T19G	 EGOS P19	 2 0 0 0 0 VAR
A19AO	 EGOS P19	 6 0 0 0 0 VAR
U19AO1	 EGOS P19	 1 0 0 0 0 VAR
T19A	 EGOS P19	 2 0 0 0 0 VAR
S20	 ECOS P20	 9 0 0 0 0 VAR
T20A	 ECOS P20	 2 0 0 0 0 VAR
U20AO1	 EGOS P20	 9 0 0 0 0 VAR
A20AO	 EGOS P20	 5 0 0 0 0 VAR.
THRZ	 EGOS C99 P03	 1 0 0 0 0 VAR
AMAGO	 EGOS C99 P02 P03 P20	 2 0 0 0 0 VAR
A03AO	 EGOS P03	 5 0 0 0 0 VAR
T03A	 EGOS P03	 2 0 0 0 0 VAR
S02	 EGOS P02	 33 0 0 0 0 VAR
A02AO	 EGOS P02	 10 0 0 0 0 VAR
A02A01	 EGOS P02	 1 0 0 0 0 VAR
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B.2 OPTIMIZED DATA-SET LIST INPUT
Data-set Description
Name

A02A02	 ECOS P02
T02A ECOS P02
T02G ECOS P02
T02S ECOS P02
A3HAO EGOS C99
T3HA ECOS C99
D300A ECOS C99
A19EO ECOS REM
T14A ECOS REM
TVID ECOS REM
TVTR ECOS REM
D02A01 ECOS REM
A13EO ECOS REM
A13DO ECOS REM
A13CO ECOS REM
A16GO ECOS REM
A20EO ECOS REM
T20E ECOS REM
U16C01 ECOS REM
T13E ECOS REM
T19E ZCOS REM
D03A01 ECOS REM
T34E ECOS REM
T16G ECOS REM
T34A EGOS REM
T13D ECOS REM
T13C ECOS REM
T34B ECOS REM
TITM ECOS REM
TVR6 ECOS REM
S24 ECOS REM
VER101 ECOS REM
D3000 ECOS REM
TCDT ECOS REM
TVR7 ECOS REM
TVR3 ECOS REM
VER102 ECOS REM
XBUGO ECOS REM
VER103 ECOS REM
VER104 ECOS REM
TVR2 ECOS REM
TVRB ECOS REM
TXB2 ECOS REM
TVR9 ECOS REM
TVRB ECOS REM
'CVR4 ECOS REM
VER10 ECOS REM
TXB1 ECOS REM
TXB1 ECOS REM
TVRA EGOS REM

FILE	 (CONTINUED)
Size T F S B Pos.
(Blk)

6 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
3 0 0 0 0 VAR
2 0 0 0 0 VAR

58 0 0 0 o VAR
3 0 0 0 0 VAR
1 0 0 0 0 VAR
2 0 0 0 0 VAR.
2 0 0 0 0 VAR

47 0 0 0 0 VAR
4 0 0 0 0 VAR
3 0 0 0 0 VAR
4 0 0 0 0 VAR
4 0 0 0 0 VAR
4 0 0 0 0 VAR
2 0 0 0 0 VAR
1 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR

76 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAR
2 0 0 0 0 VAH
1 0 0 0 U VAR
1 0 0 0 D VAR
8 0 0 0 0 VAR
5 0 0 0 0 VAR

58 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
4 0 0 0 0 VAR
1 0 0 0 0 VAR
5 0 0 0 0 VAR
2 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 C VAR
9 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR
1 0 0 0 0 VAR

`I
I

C^
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B.2 OPTIMIZED DATA-SET LIST INPUT FILE	 (CONTINUED)
Data-set Description Size T F S B Pos.
Name (Blk)
--------
TVR1

-----
ECOS

------
REM

---------------- ---
2

-
0

-
0

-
0

--
0

-----
VAR

TAC1 ECOS REM 1 0 0 0 0 VAR
TDEP ECOS REM 2 0 0 0 0 VAR
TAC2 ECOS REM 1 0 0 0 0 VAR
TGRP EGOS REM 2 0 0 0 0 VAR
S32 ECOS REM 4 0 0 0 0 VAR
TGMC ECOS REM 2 0 0 0 0 VAR
831 ECOS REM 8 0 0 0 0 VAR
QRTN ECOS REM 5 0 0 0 0 VAR
FP ECOS REM 1 0 0 0 0 VAR
QRTN ECOS REM 5 0 0 0 0 VAR
S08 ECOS REM 15 0 O 0 O VAR
TAPP ECOS REM 3 0 0 0 0 VAR
EPP1O ECOS REM 3 0 0 0 0 VAR
TFC3 ECOS REM 1 0 0 0 0 VAR
D300B ECOS REM 58 0 0 0 0 VAR
FEDI ECOS REM 16 0 0 0 0 VAR
TXB2 ECOS REM 1 0 0 0 0 VAR
TVR5 ECOS REM 1 0 0 0 0 VAR
FCDP ECOS REM 3 0 0 0 0 VAR
MM1 ECOS REM 56 0 0 0 0 VAR
TADO ECOS REM 2 0 0 0 0 VAR
THPS ECOS REM 1 0 0 0 0 VAR
TMA SCOS FCO2, DISPLAY 3 0 0 0 0 VAR
TFFD00 SCOS FCO2, G-AMI 2 0 0 0 0 VAR
MCONO1 SCOS FC01 DIRECTORY 1 0 0 0 0 VAR
FFDSSC SCOS FCO2 DIRECTORY 1 0 0 0 0 VAR
FCDRIV SCOS FCO2, G-AMI 1 0 0 0 0 VAR
SRW SCOS FCO2, DISPLAY 1 0 0 0 0 VAR
MMUINI SCOS FC01 DIRECTORY 1 0 0 0 0 VAR
AUD SCOS FCO2, DISPLAY 2 0 0 0 0 VAR
MCIAMIS SCOS FC01, MC01	 AMI'S 35 0 0 0 0 VAR

END
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B.3 DATA-SET TO MISSION TIMELINE CORRELATION DATA

The data file shown in this section defines the

sequence of data-set accesses associated with individual

scheduled operations. Each scheduled operation that will

have data-set accesses should have an input record. Each

record must contain the flight operation label and step

number delimited by a comma, left justified in characters 1

- 12. The data-set names to be called during the step must

be left justified and begin in positions 12, 22, 32, ...,

152. The order of the input records is not important.

F

i

i

i1►

I

a
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B.4 UNSCHEDULED DATA-SETS UTILIZATION DATA
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ischeduled

of times it is

it expected, and

are defined. Up

in one

This input file defines the expected u

operations. For each operation, the number

expected to occur, the time period in which

the data-sets accessed during the operation

to fifteen accesses may be defined to occur

unscheduled operation.

r
i_

'r.
r

-	 i

I

f^
f

I

I

No.
of Start End Data-sets	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
Perf.(Hrs) (Hrs)
----
155

-----
4.0

------
159.0

--------	 -------	 --------	 --------
TMEM

44 4.0 159.0 MMA
7 4.0 159.0 TDPM
7 4.0 159.0 XTLMO	 XTLM01	 XTLMO2	 TTLM

14 4.0 159.0 XTMNO	 TTMN
28 4.0 159.0 AOFDO	 TOFD	 U05PMU

7 4.0 159.0 TPLS
7 4.0 159.0 TPTC
'T 4.0 159.0 TEJB
7 4.0 159.0 TNBD

15 4.0 159.0 U05PMU
14 24.0 144.0 S15
14 24.0 144.0 Sic
14 24.0 144.0 S13
14 24.0 144.0 S33
14 24.0 144.0 S34
14 24.0 144.0 S17
14 24.0 144.0 S20
14 24.0 144.0 S99
14 24.0 144.0 U13APS
14 24.0 144.0 0.17A01
14 24.0 144.0 U20AO1
14 12.0 144.0 U33ACC
14 12.0 144.0 U34AST
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B.5 RANDOM NUMBER SEEDS FILE

This input file defines the random number seed for each

simulation run. The number of simulation runs is also

determined by the number of seeds included in the file. The

file is named SEEDS.DAT.

The random numbers are generated by a subroutine that

provides a uniformly distributed set of values. This

subroutine uses the '!AX 11/780 computer provided random

number generator. This generator uses the multiplicative

congruent method for the number g eneration [251. Each seed

value must be a large odd integer number.

To assure the random number streams are consistant from

one layout proposal to another, the same seed values were

used on each replication. The seed values below were used

for each layout proposal.

Random Number Seeds File

1	 2
COLUMN= 12345678901234567890

--------------------
SEED 1= 87654321
SEED 2= 99335427
SEED 3= 85736459
SEED 4= 79827411
SEED 5= 39475893
STOP = 00000000



APPENDIX C

SIMULATION REPORTS

This appendix shows examples of the reports generated

by the computer ,program. The first three reports indicate

the how the MMU tape has been laid out for the list of

data-sets. These reports are in C.1, C.2, and C.3. 	 The

remaining reports are associated with the simulation of the

data - set accesses using the tape layout. They are in C.4

and C.5.
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C.4 TRACE OF MMU UTILIZATION
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APPENDIX D

OPERATING THE SIMULATION

This appendix defines how to run the simulation. The

simulation model is designed to run on the Digital Equipment

Corporation (DEC) VAX 11/780 computer with FORTRAN 77. The

data, command, and program files required and their

directory locations will be given. Procedures are presented

for setting up the simulation and for running it.

Establishing—the F3lea

The model is currently established in MSFC's VAX4

computer in account QS1:[EL121.NONEMAN]. The input files

should reside with the program in the same directory or

subdirectory. They should be defined as desribed in Table

20.
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File Name

MMUALL DAT

MSDS.DAT

UNSCHE.DAT

SEEDS.DAT

Table 20. User Defined Files

Contents	 Record Format

Data-set Definitions	 A8,1X,A30,2X,13,2X,
3(I1,1X),I2,1X,I10,19

Mission Timeline/
Data-set Correlations 	 Al2,15A10
Unscheduled Data-sets
Utilizations	 I4,2F8.3,15A10
Random Number Seeds	 I8

The following procedure should be followed to set up

for simulation runs:

1. Copy the data-set definition data from the MMU

generation information into MMUALL.DAT.

2. Define the mission timeline/ data-sets correlation data

in file MSDS.DAT.

3• Define the unscheduled data-sets utilization data in

file UNSCHE.DAT.

4. Define the random number seeds in SEEDS.DAT. One

mission simulation will be performed for each seed

entered. The last record of this file must contain a

seed value set to zero to stop the simulation.

5. Copy the time-ordered mission timeline experiment ON/OFF

file defined by the mission planners to

QSAI:CEL121.NONEMANIEXPERIMNT.FIN.
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Running t^►tg^,}^ylatgrl

Once the	 files are established,	 the simulation may be

run from the terminal or in a batch mode. 	 All of the

reports are directed to disk files which may be reviewed

after the run at the terminal or from a line printer

r

listing. Since the run time of the simulation for five

missions typically is greater than fifteen minutes

i

interactively, the batch mode is often preferred.	 To invoke
{

the model interactively,	 enter the	 following command:

$ @MMUALL

A batch run may be submitted at the terminal by entering the

command,

$ SUBMIT MMUALL

By either method, the command file MMUALL.COM , listed

below will be executed.

$ SET DEF [EL121'.NONEMAN]
$ ASSIGN MMUALL.DAT FOR005:
$ ASSIGN MMUALL.PRT FOR006:
$ ASSIGN TT: FOR001:
$ RUN MMUALL
$ PRINT MMUALL.PRT
$ PRINT MSDS.DAT,UNSCHE.DAT

This command file runs the program and prints the reports

file. It is assumed that the executable file MMUALL.EXE

exists in the same directory containing the input files.
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Proaram Sourcg

Should there be any reason to modify the simulation

code, the program sources are defined as follows. The

modified MMU allocation source is in MMUALL.FOR. The

simulation routines which supplement this code are in

MMUSUB.FOR. When the programs are linked the subroutine,

READOF, which reads the mission timeline schedule file, must

be included by using the object library

QS1:[EL121.ES'T]ESS.OLB. The link command is in MMULNK.COM

listed below.

$ LINK MMUALL,MMUSUB,QS1:[EL121.EST]ESS/LIB

I
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