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SENSITIVITY ANALYSIS FOR DISCRETE STRUCTURAL SYSTEMS - A SURVEY

Introduction

The field of sensitivity analysis is emerging as a fruitful area of
engineering research. The reason for this interest is the recognition of the
variety of uses for sensitivity derivatives. In its early stages, sensitivity
analysis found its predominant use in assessing the effect of varying param-
eters in mathematical models of control systems: see, for example, the texts
of Tomovic (1963); Brayton and Spence (1980); Frank (1978); and Radanovic
(1466) for discussions of the early development of sensitivity theory.
Interest in optimal control in the early 1960's (see, for example, Kelley,
1962), and automated structural optimization (see, for example, Schmit, 1981)
led to the use of gradient-based mathematical programming methods in which !
derivatives were used to find search directions toward optimum solutions. :
More recently, there has been strong interest in promoting systematic struc-
tural optimization as a useful tool for the practicing structural design
engineer on large problems--a process still underway. Early attempts to use
formal optimization for large structural systems resulted in excessively lony
and expensive computer runs., Examination of the optimization procedures
indicated that the predominant contributor to the cost and time was the
calculation of derivatives., As a consequence, there has been an emergence of
interest 1n sensitivity analysis emphasizing efficient computational proce-
dures. In addition, researchers have developed and applied sensitivity
analysis for approximate analysis, analytical model improvement, and assess-

ment of design trends--so that structural sensitivity analysis has become
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more than a utility for optimization, but is a versatile design tool in its
own right. Most recently, researchers in disciplines such as physiology
(Leonard, 1974), thermodynamics (Irwin and 0'Brien, 1982), physical chemis-
try (Hwang, et al., 1978), and aerodynamics (Dwyer and Peterson, 1980;

Dwyer et al., 1976; Bristow and Hawk, 1983), have been using sensitivity
methodology to assess the effects of
parameter variations in their analytical models, and to create designs which
are insensitive to parameter variation (Schy and Giesy, 1981; 1983).

This paper is a survey of methods applicable to the calculation of
structural sensitivity derivatives for finite element modeled structures.
Except for citing several general references, the paper does not deal with
continuous (distributed parameter) models. The survey principally discusses
literature published during the past two decades and the paper concentrates
on four main topics: derivatives of static response (displacements and
stresses), eigenvalues and eigenvectors, transient response, and derivatives
of optimum structural designs with respect to problem parameters. The bulk of
the survey deals with derivatives of the aforementioned responses with respect
to gage-type variables such as rod cross-sectional areas, beam cross-sectional
dimensions, an. plate thicknesses. Additionally, some works are reviewed in
which the derivatives are calculated with respect to variables which define
the shape of structural elements. Methods for calculating structural sensi-

tivity derivatives are summarized in Table 1.

Sensitivity of Static Response

General Equations .

This section of the paper focuses on the calculation of derivatives of
static structural response (displacements and stresses) computed from finite

element models. The governing equation for displacement is
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KU =F (1)

where K is the symmetric stiffness matrix of order nxn
U is the vector of displacement
F is the vector of applied forces
Both K and F are, in general, functions of design variables, v. A

typical function of displacement (e.g., a constraint) will be respresented as

- g(U,V)

<o
1

(2)

(=
]

u(v)

Finite Difference Method

A straightforward method of calculating derivatives of g 1is to use a

finite difference approximation. For example

%9_= glu(v + h), v + h] - gfu(v), v] (3)
v h

A serious shortcoming of the finite difference method is the uncertainty in
the choice of a perturbation step size h., If the step size is too large,
truncation errors may be excessive. These can be thought of as errors due to
retention of only the lowest-order terms of a Taylor series representation of
a perturbed function. If the step size is too small, condition errors may
occur. Condition errors are due to inaccuracies in the calculation of the
displacements and round-off errors in the finite difference calculation.
Gill, et al, (1980, 1983) developed an algorithm to determine the optimum
finite difference step size; i.e., one which balances the truncation and
condition errors, The algorithm is based on approximatiny the truncation
error as a linear function of step size h and the condition error as a

linear function of 1/h. This technique has been tested on functions which
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could be differentiated analytically for check purposes and was found to be
very effective, Other work on finding optimum step sizes was done by Stewart
(1967); Kelley and Lefton (1980); and Haftka and Malkus (1981). A recent
paper by Haftka (1984) describes & technique for reducing condition errors in
finite difference derivatives of response quantities obtained by iterative

methods.

Analytical Methods

Analytical calculations of derivatives of displacements and functions
thereof have been described by Arora and Haug (1976, 1979); and Haug and Arora
(197€:. In these references, three methods are described: the direct or
design space method (attributed to Fox, 1965), the adjoint variable or state
space method, and the virtual load method (attributed to Barnett and Hermann,
1968). The virtual load method is a special case of the direct method. Both
the direct and adjoint methods begin with the differentiation of equations (1)

and (2).

du _ oF K, _
Kav = "Ry (4)
T
dg _ 39 , (39) 4dU
3% 3v (aU) dv (5)

Direct Method. The direct method is to solve equation (4) for du/dv

and substitute dU/dv into equation (5). Equation (4) needs to be solved
once for each design variable (v) so that the direct method is costly when the

number of design variables is large.

Adjoint Method. The adjoint variable or state space method has been

extensively used in optimal control theory; see, for example, Kelley (1962).



The method starts by defining a vector of adjoint variables which satisfies

the equation

Kx = %& (6)

where 3g/3U is sometimes referred to as the dummy load vector.* Then using
equations (4), (5), and (6)
4929, Tk, (7)

The adjoint variable method requires the solution of equation (6) once
for each function g¢. Therefore, if the number of functions is smaller than
the number of design variables, the adjoint variable method is more efficient
and conversely if the number of design variables is smaller, the direct
approach is more efficient. Both the direct and adjoint methods involve fewer
computations than the finite difference approach which requires repeated
factorization of the stiffness matrix, whereas the direct and adjoint methods
require a single factorization with several right-hand sides.

Chon (1984) developed a variant of the adjoint method via strain energy
distribution and implemented it in a proprietary version of NASTRAN. Hsieh
and Arora (1983); and Gurdal and Haftka (1984) extended the adjoint method for
boundary conditions which require specialized treatment while Haug and Choi
(1984) suggest a generalization of the adjoint method that eliminates many of

the problems associated with multi-point boundary conditions. Adaptation of

*Note that if g is a particular displacement component, then 3g/3V
corresponds to a force of unit magnitude in the direction of the component.
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the adjoint variable method to substructured finite element models is

described by Arora and Govil (1977).

Calculation of 3K/av. An important computational task in the adjoint

and direct methods is the calculation of 3K/av. If the structural model
contains only elements whose stiffness matrix is proportional to v (such as
rods where v 1is the cross-sectional area, or membranes and shear panels
where v 1is the thickness), aK/av is a constant matrix. But for elements
having bending stiffness such as beams and plates, the stiffness matrix is a
nonlinear function of the cross-sectional dimensions and the stiffness matrix
derivatives are not easily evaluated (see Giles and Rogers, 1982). Hence, the
preferred approach is to compute 3K/av by finite differences as in Prasad

and Emerson (1982); Camarda and Adelman (1984); and Wallerstein (1984).

Derivatives with Respect to Shape Design Variables

Shape design variables typically control the shape of the boundary of the
structure--for example, variables controlling the shape of a hole (and thereby
the stress concentration factor at the hole boundary). The calculation of
derivatives with respect to shape design variables is in the early stages of
development and there are unresolved issues. Differentiating the finite
element equations to obtain equation (4) has two disadvantages. First, even
small changes of the boundary can change the entire finite element mesh and
therefore, the calculation of 3K/av can be quite costly. Second, changes in
shape can lead to the distortion of the finite elements and reduced
accuracy. Thus, the derivatives obtained from equation (4) have a spurious
component which reflects the changing accuracy of the solution when the mesh

is distorted (Botkin, 1982;Bennstt and Botkin, 1983).
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Because of the above, there has heen substantial wurk in obtaining
sensitivity derivatives by differentiating the continuum equations before
discretizing., Derivations based on the concept of material derivatives have
been proposed by Chun and Haug (1978, 1979, 1983); Rousselet and Haug (1981,
1983); Rousselet (1983b); Zolesio (1981); Choi and Haug (1983); Dems and
Mréz (1984a); Braibant and Fleury (1984); Yoo, Haug, and Choi (1984); Chof
(1984); and Yang and Chei (1984). However, computational experience using
equation (4) does not indicate that mesh-distortion-derivative errors are
significant (possibly due to the use of elements which are not sensitive to
distortion). The material-derivative approach seems to suffer from numerical
difficulties associated with the evaluation of boundary integrals (see Yang
and Choi, 1984). While some of these computational difficulties may be
eliminated by replacing boundary by volume integrals (Choi and Haug, 1984), at

the present there is no clear indication as to which method is preferable.

Calculation of Second Derivatives

A

Second derivatives of displacement and constraint functions are used for
approximate analysis (e.g., Noor ana Lowder, 1975), and for the calculation of
derivatives of optimal solutions (see subsequent section on this topic). Such

derivatives may be obtained by differentiating equations (4) and (5), for

example, ;
!
|
i
" dzu R, X aRv du .
dvz av U dv !
(8)
d%g . 2%, ,[d° ", e &
P T 230%7 '] (au) P
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However, for m design variables there are m(m + 1)/2 second derivatives,
and equations (8) need to be solved for that many right-hand sides. It is
possible to proceed with an extension of the adjoint variable method proposed
by Haug (1981b); and Dems and Mréz (1984b). However, a more efficient
approach proposed by Haftka (1982) is to use equation (6) to obtain

2 2 2 T (3R aR
dq _93%¢ 2°g | du v, %vd
dve  av * 2(’3‘0%\7) dv A (W+ SU—EW) (9)

This approach requires the solution of equation (4) for all the first
derivatives and equation (6) for all vectors of adjoint variables.

Second derivatives were also derived by Van Belle (1982), using
flexibility rather than stiffness matrices. Finally, Jawed and Morris (1984)
described a procedure for approximating higher order derivatives from the

first derivative information, which is equivalent to introducing intermediate

variables.

Stress Derivatives

The stresses in an element may be obtained from the displacements using
g=5U - @GT (10)

where ¢ 1{s a vector of element stresses

T is an element temperature

S and G are stress-displacement and stress-temperature matrices,

respectively.

Derivatives of stresses may be obtained by differentiating equation (10)

dv * v v (11)

pprapes [
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For finite elements such as rods, membranes, and shear panels, S and G are
independent of v and stress derivatives are obtained by simply substituting
dU/dv into equation (11). For bending-type elements, S and G may be

functions of v and the complete expression must be used; see Camarda and

Adelman (1984),

Nonlinear Analysis

When geometric or material nonlinearities are important, equation (1) is
no longer valid and the displacement U is calculated from a system of the

form
F(u,v) =0 (12)

where F 1is a vector of nonlinear functions. Derivatives are obtained by

differentiating equation (12) with respect to v
(13)

where the Jacobian J is 3aF/aU (often referred to as the tangential stiff-
ness matrix). The derivative of any constraint g may be calculated by
solving equation (13) for dU/dv and then substituting into equation (5)--
this is the direct method. Alternatively one can solve for the adjoint

vector A from
T =28 (14)

and calculate dg/dv from equation (7) wusing Rv from equation (13).
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Applications

Applications of displacement sensitivity derivatives for formal optimi-
zation are described, for example, in Nguyen and Arora (1982); Arora (1980);
Prasad and Haftka (1980); and Schmit and Farshi (1974). Use of displacem~
and stress derivatives to construct explicit constraint approximations 1.
described, for example, by Schmit and Farshi (1974); Storaasli and
Sobieszczanski (1974); and Noor and Lowder (1975). A basic example of such an

approximation is
* du
U(v*) =« U(v) + av AV (15)

where U(v) 1is the displacement vector for the design variable v, U(v*) is
the vector corresponding to the new design variable v* = v + av, Numerous
examples of application of stress derivatives in formal optimization are cited
in the survey by Schmit (1981). Less well known is the use of sensitivity
derivatives of stresses to effect design changes without formal optimization.
A good example of this is reported by Musgrove, et al, (1983). The most
common application of sensitivity calculations in nonlinear static response
are of derivatives of U with respect to a load parameter. Such derivatives
are useful in incremental solution procedures of equation (12) or fur reduced
basis solution of this equation (see, for example, Noor and Peters (1980).
Finally, readers interested in the topic of static response sensitivity of
distributed parameter systems are referred to Haug and Komkov (1977); Haug and
Rousselet (1980a); Haug (1981a); and Rousselet (1983a); as well as the text of
Haug, Komkov, and Choi (1984). '
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Sensitivity of Eigenvalues and Eigenvectors

The general problem is to compute derivatives of eigenvali ~s and
eigenvectors with respect to design variables or system parameters, For
. reference purposes, the most general case considered is the following

eigenvalue problem;

AX = 2BX (16)
YTA = ,¥T8 (17)
vTgx = 1 (18)

where ) 1is an eigenvalue (generally complex). The generally nonsymmetric
real nxn matrices A and B are assumed to be explicit functions of a set
of design variables v. And X and Y are right and left eigenvectors,
respectively. The first result on eigenvalue derivatives was published by
Jacobi (1846) who developea the result for the special case of symmetric A,and B = ' ;
2. 5T Ly (19)
Wittrick (1962) applied Jacobi's formula for the case of a symmetric matrix to
the derivatives of buckling eigenvalues and presented results for the change
in buckling loads of plates with respect to aspect ratio and thickness.
Lancaster (1964) developed a rigorous treatment of eigenvalue derivativ.s and,
in particular, showed that for multiple eigenvalues, the derivatives them-
selves are solutions of an eigenvalue problem., The issue of multiple eigen-
. values was also investigated by Simpson (1976); and Haug and Rousselet
(1980b), who showed that while simple eigenvalues are differentiable

(Frechet), miltiple eigenvalues are only diractionally (Gateaux)

differentiable,

11



Two methods developed for sensitivity analysis of electronic networks are
notable for their non-reliance on eigenvectors in the eigenvalue derfvative
formulas. Rosenbrock (1965) and Morgan (1966) developed formulas for efgen-
value derivatives in terms of the matrix A and its eigenvalues. According to
Morgan's own assertion however, the computational effort is not much less than
if eigenvectors were required and examination of the details of their methods
indicates that the calculations are eg-ivalent to those required for computing
eigenvectors.

Other contributions from the electronics discipline include the use of
the adjoint network theory. An adjoint network or structure s one with the
same geometry and nodal connections as the actual configuration, but the ele-
ments of the adjoint system may be linear even though the actual elements are
nonlinear, Vanhonacker (1980) has used the theory of adjoint structures *o
derive formulas for derivatives of eigenvalues and eigenvectors of structures.

Fox and Kapoor (1968) and Fox (1971) considered the special case of
symmetric A and B matrices, hut developed techniques applicable to more
general cases. For eigenvalues, their formula is

., Ta_A-\aﬁ_)
av X (av “ v X (20)

wherein it is assumed that the eigenvectors are normalized such that

xTg X = 1 (21)

For eigenvector derivatives, two methods are presented by Fox and Kapoor, The
first is to differentiate equation (16), giving a set of simultaneous equa-
tions for the eigenvalue and eigenvector derivatives. A complication here is

that the equations for the eigenvector derivatives are singular and the set is

12
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solvable only after algebraic manipulation which destroys the banded nature of
equations, a point which arises later in connection with another method. The
second method for eigenvector derivatives, deveioped by Fox and Kapoor, is to

expand the derivative as a series of eigenvectors. Thus, for the i-th eigenvector
i n
w -2 ik (22)

Tne coefficients a;, are obtained by substituting equat.on (22) into equa-
tions resulting from differentiating equation (16). In principle, it is
necessary to use all n modes in the expansion of equation (22). However, as
with the modal method generally, it should be possible to obtain reasonatle
results with fewer than n eigenvectors. Study of the convergence properties
of equation (22) is clearly called for. Fox and Kapoor's second method was
specialized by Hirai and Kashiwaki (1977) for the case of design variables
controlling only a small part of the structure., Rogers (1970) and Stewart
(1972) derived sensitivity formulas for eigenvalues and eigenvectors of the
general problem (egs. (16) and (17)). For eigenvalues, the equation is

ax _ (Tf3A _ . 28
v Y (W A 3V) X (23)

Rogers expressed the derivatives as an expansion in terms of the eigenvectors

aXi n
W :E: X
k=1
(24)
aYi n
w - 2 Pk
k=1

13
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The coefficients a;, and b;, are computed by substituting equations (24)
into an expression obtained by differentiating the eigenvalue problem and
combining it with appropriate orthogonality conditions. Plaut and Husseyin
(1973), as well as Rudisill (1974),and Doughty (1982), developed the same

results as Rogers and, in addition, developed a formula for second derivatives

of eigenvalu2s. Formulas for the second derivatives of eigenvectors are
presented by Taylor and Kane (1975). Garg (1973) investigated the case where
A and B were complex and produced formulas for the eigenvalue and eigen-
vector derivatives. His eigenvector derivative procedures are analogous to
those of Fox and Kapoor. Rudisill and Chu (1975) developed the same
eigenvalue derivative formulas as Rogers. Additionally, for eigenvector
derivatives they extended Fox and Kapoor's first formulation to the case
#here A and B are nonsymmetric. They suggest two ways to solve the
equations for the derivatives: an iterative method which converges to the
derivatives of the lowest eigenvalue and corresponding eigenvector; and an
algebraic method which is an extension of Fox and Kapoor's first method.

Andrew (1978 and 1979) provided some proofs and refinements of Rudisill's and

Chu's algorithm, Brandon (1984) showed that second derivatives of eigenvalues

may be calculated by using the first derivatives of the eigenvectors.
An alternate method for calculation of eigenvector derivatives is due to
Nelson (1976). Differentiating the eigenvalue problen of equation (16) gives

X (A mg . B \
(A - aB) o (3V v B A 3V) X (25)

The matrix A - AB is singular since ) is an eigenvalue. The method of

Nelson is to represent the eigervector derivative as

-g%=v+cx (26)

14
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where V is the solution of a reduced version of equation (25) obtained by
deleting the kth row and column from A - »B (where k is chosen arbi-
trarily), and setting the kth component of V equal to unity. The multiplier
¢ is evaluated by substituting equation (26) into an equation obtained by
differentiating equation (21). This method has certain advantages over
previous eigenvector derivative techniques: it requires only the eigenvalue
and eigenvector for the mode being differentiated, and the equation for V
retains the banded character of coefficient matrix (unlike the algebraic
methods of Fox and Kapcor, Plaut and Huseyin, and Rudisill). Cardani and
Mantegazza (1979) extended Nelson's method to transcendental flutter
eigenvalue problems. Flutter eigenvalue derivatives were also derived by
Rudisill and Bhatia (1972}, Rao (1972), Seyranian (1982), and by Pedersen and
Seyranian (1983). Derivatives of nonlinear buckling eigenvalues were obtained
by Kamat and Ruangsiliansingha (1984). Finally, for the sensitivity analysis
of eigenvectors of distributed parameter systems papers by Farshad (1974),
Haug and Rousselet (1980b) and the text by Haug, Komkov, and Choi (1984)

should be of interest to readers.

Sensitivity of Transient Response

General

The discussion of sensitivity analysis of transient structural response
is usually based on the equations of motion which are written as a system of
second order differential equations. However, this form obscures the
similarity of structural sensitivity analysis to sensitivity analysis in other
fields where first order differential equations are employed and is also less
compact than a first order formulation. For these reasons the discussion will
be based on a system of first order ordinary differential equations of the

form

15
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U= F(u,t,v)
(27)
u(0) = u,

where U is the response, F 1is a vector of functions, t is time, v is a
typical design parameter, and a dot denotes differentiation with respect to

time. In many structural applications the left-hand side of equations (27) is
AU where A is a matrix, and the methods discussed below are also applicable

to that more general form (see, for example, Haftka and Kamat, 1984).

Direct Method

The direct method of obtaining sensitivity derivatives is based on

differentiating equations (27) to obtain

dﬁ-Jg_llz.a_F
dv dv  av
(28)
du -
av-(O) =0

where the Jacobian J is 3F/3U. Note that equations (28) is a system of
linear differential equations, even if the original system, equations (27) is
nonlinear, Often, derivatives of the entire vector U are not required.
Instead it is required io obtain the derivatives of a function of U of the

form
te
gu,v) = fo p(U,t,v)dt (29)

where t¢ 1is a final time for the response calculation. The direct approach

obtains dg/dv as

16

\ 44



t T
dg . [ *fl3p, (2p\ du
a&’fo [av*(sﬁ) av]“ (30)
where du/dv is calculated in equations (28).

Green's Function Method

Equations (28) have to be solved once for each design variable, and are
costly when the number of design variables is large. When the number of
design variables is larger than the dimensionality of U, then the Green's
function approach (see Hwang, Dougherty, Rabitz, and Rabitz, 1978) is more
efficient than the direct approach. An application of this approach is
sensitivity analysis of transient structural response when the response is
computed using reduction techniques such as modal analysis (e.g., see Haftka
and Kamat, 1984; Young and Shoup, 1982). The sensitivity derivative,

du/dv, is written as

t oF
v (t) =j;) K(t,1) > (t) dr (31)

where the Green's function K satisfies (recall that the dot denotes d/dt)

K(t,'l’) =0 t <t
K(r,:) = 1 (32)
K(t,r) - J(t) K(t,7) =0 t >

The efficiency of the Green's function approach is partly governed by the
method used to integrate equations (32). A large amount of work on the
efficient i.plementation of the Green's function approach has been performed
by Rabitz and co-workers (Demirlap and Rabitz, 1981; Dougherty, Hwang, and

Rabitz, 1979; Dougherty and Rabitz, 1979, 1980; Eslava, Eno, and Rabitz, 1980;

17

N



Kramer and Calo, 1981; Kramer, Calo, Rabitz, and Kee, 1982; Rabitz, 1981).
Their approach is implemented in a general purpose computer code called AIM
(Kramer, Calo, Rabitz, and Kee, 1982). The Green's function method is also

known as the variational method (see, Dogru and Seinfeld, 1981).

Adjoint Variable Method

Further improvements in efficiency may be possible if less information is
needed. If instead of the derivatives of the entire vector U, only those of
a few functionals (e.g., eq. (29)) are required, then an adjoint variable
method is called for. The adjoint variable approach solves first for the

adjoint vector A from the differential equation

3 T, - 3P
A+ JA U
(33)
Mte) =0
It is shown by Haftka and Kamat (1984) that
da_ [t (7o) (38)
dv 0 (av v

Equation (33) is a set of linear differential equations which is integrated
backwards from t¢ to zero. As in the steady state case, the adjoint
variable approach is preferred over the direct approach when the number of
functionals is less than the number of design variables. The adjoint variable
approach has been applied to a variety of problems including dynamics (Ray,
Pister, and Polak, 1978; Haug, Wehage, and Barman, 1981), atmospheric
diffusion (Hall, Cacuci, and Schlesinger, 1982), nuclear processes (Oblow,

1976), and heat transfer in structures (Haftka, 1981).

18
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Finite Difference Method

For sensitivity analysis of static response, the finite difference
approach is almost always inferior to analytical methods. For the calculation
of derivatives of transient response this is not always the case. When
explicit methods are used for integrating the differential equations, the
linearity of the sensitivity equations does not constitute a computational
advantage. Therefore, for the case of explicit integration the finite
difference approach is often computationally superior to the direct method
(see Haftka, 1981; and Haftka and Malkus, 1981). When implicit integration
techniques are used, the finite difference approach is less attractive

computationally, but remains easier to implement than the direct approach,

FAST Method

A1l the approaches discussed above provide local sensitivity informa-
tion. The Fourier Amplitude Sensitivity Test (FAST) method (see review by
Cukier, Levine, and Shuler, 1978) provides global sensitivities. FAST is
typically used to assess sensitivities to parameter uncertainties. This is
done by systematically sampling solutions obtained by varying the parameters
which have a range of uncertainty. If there are m parameters
vi, 1 = 1,...,m, the sampling is performed in an m-dimensional space. FAST
converts this m-dimensional space to a one-dimensional space in terms of a

variable s by using the transformation

<
1]

a; + b, sinws (35)

where wj, i =1,...,m are a set of incommensurate frequencies and a;, by
are constants which depend on the range of variation v;. The solutions for a

large number of s-values are sampled and a Fourier transform of the response

19
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in terms of s 1is obtained. The coefficient of the transform associated with
w; 1is a direct measure of the sensitivity of the solution to v;. While FAST
is more efficient than a Monte Carlo sampling of the parameter space, it is
substantially more expensive than local sensitivity methods when m 1is large.

While in the literature reviewed herein FAST has been used only for
calculation of sensitivities of transient response, the method is equally
applicable to steady-state or eigenproblem sensitivity calculations. The
method has been applied extensively in physical chemistry (e.g., Koda, McRae
and Seinfeld, 1979; Tilden and Seinfeld, 1982), and a computer implementation
is described by McRae, Tilden, and Seinfeld (1982).

Other Forms of Transient Response Equations

A specialized form of transient structural response is the response to
harmonic excitation. The sensitivity analysis of that response is very
simila® to the sensitivity analysis of static response--(see, for example,
Wang, Kitis, Pilkey, and Palazzolo, 1982 and 1983, and Yoshimura, 1984).

The system of equations (27) is typically obtained by discretization of
the spatial variation (e.g., by finite elements) before the sensitivity
analysis is performed. In some applications (see, for example, the discussion
of static shape sensitivity) it may be advantageous to perform the sensitivity
analysis before discretizing. Koda, Dogru, and Seinfeld (1979); Dwyer and
Peterson (1980); and Koda and Seinfeld (1982), for example, discuss applica-
tions of sensitivity techniques to partial differential equations, while
Gibson and Clark (1977) and Cacuci (1981) present sensitivity analysis in the

general setting of functional analysis.

20
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Second Derivatives

Part of the motivation for second derivatives is that they estimate
nonlinear sensitivity effects including interaction between variables. Second
derivatives may be calculated directly. For example, differentiating
equations (28)

2" 2 2

dv2 d§2 a§2

Unfortunately m design parameters result in m(m + 1)/2 systems such as
equation (36). If second derivatives are needed only for a functional g

such as equation (29), then the calculation carn " greatly simplified. In

fact,
2 t T 2 2 \
&g =ff (&) dg(ﬁ!)-,ﬂ(ahzﬁsﬂ it (37)
dvz 0 dv du dv 3v§ av dY) {

Thus, the solution for all the second derivatives requires only first deriva-

ST

tives of U plus the adjoint variable vector. This efficient approach to

second order sensitivity calculations is not yet in use. The literature

describes somewhat less efficient direct a.J adjoint techniques (e.g., Coffee ,
and Heimerl, 1983; Haug and Ehle, 1982) or finite difference techniques (e.g.,

Behrens, 1979).

Sensitivity Derivatives of Optimal Solutions

As the use of optimization techniques has expanded, there has been an
increasing interest in the sensitivity of optimal solutions to problem
parameters, A typical situation where such derivatives are needed is the

following: Suppose the minimum weight design of an aircraft wing is obtained

21
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by varying the sizes of the structural components while the geometry of the
wing, the loading and the structural materials were fixed during the
optimization process. Now suppose the minimum weight design 1s still too
heavy and the designer needs to know which of the fixed parameters is a good
candidate for change. It would be useful to have the sensitivity of the
minimum weight design to changes in such parameters.

The information required for obtaining the sensitivity of an objective
function such as minimum weight with respect to problem parameters is composed
of a direct effect on the objective function plus an indirect effect through

the change in the constraints, For example, the optimization problem may

be posed as
Minimize f(v)

such that

gj(v) >0 J=1,0e.,m (38)

where f(v) 1is an objective function, v 1is a vector of design variables and
gj(v) represent constraints. Let v*, f* be the solution to the problem
and let p be a problem parameter. Then it is shown (see, for example,

Barthelemy and Sobieski, 1983b) that

« m 39,
=2 v - Yyt (V) (39)
J=1
where Aj are the Lagrange multipliers associated with the constraints. The
Lagrange multipliers thus have the role of the “price" of the constraints, in
that Aj is the change in the objective function due to a unit change in

93. Because most optimization algorithms yield the Lagrange multipliers or
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estimates thereof as a by-product of the solution, the sensitivity of the
objective function to problem parameters is easy to obtain,
The sensitivity of the optimum set of design variables v* with respect
to problem parameters is more complicated. Lagrange multipliers are not
sufficient and additional calculations are required. Early work by Fiacco and
McCormick (1968); Armacost and Fiacco (1974); Fiacco (1976, 1980); Bigelow
and Shapiro (1974) and Robinson (1974) concentrated on the mathematical
aspects (see also text by Fiacco, 1983). More recent papers by McKeown
(1980a,b); Sobieszczanski-Sobieski, Barthelemy, and Riley (1982); and
Vanderplaats and Yoshida (1984) discuss applications to the optimal design of
dynamic systems and to structures. The calculation of the derivatives of v* :
requires second derivatives of the objective function and constraints with
respect to the design variables, and thus poses a need for efficient computa-
tional techniques to obtain these derivatives.,
As with other sensitivity derivatives, derivatives of optimal solution !
may be used to extrapolate solutions for problem parameter changes. Unfortu-
nately, the sensitivity derivatives do not take into account changes in the
active constraint set brought about by the change of parameters (see ;
Barthelemy and Sobieski, 1983a). Consider, for example, a constraint which is
almost but not quite critical for the optimum design. The Lagrange multiplier
associated with the constraint must be zero and therefore as indicated in
equation (39) , such a constraint does not contribute to the sensitivity of the
objective function. However, a small change in the value of p can make the
constraint critical and completely change the value of the derivative. This
problem makes the use of optimal solution sensitivity derivatives more risky
than some other derivatives. Sobieszczanski-Sobieski, Barthelemy, and Riley

(1982) suggested using derivatives of the Lagrange multipliers and the optimum
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solution vector v* to anticipate changes in the active set, However, the
effectiveness of this approach is still in doubt with positive results
obtained by Schmit and Chang (1984) and negative results by Barthelemy and
Sobieski (1983a).

Concluding Remarks

This article surveys methods for calculating sensitivity derivatives for
discrete structural systems and primarily covers literature published during
the past two decades. Methods are described for calculating derivatives of
static displacements and stresses, eigenvalues and eigenvectors, transient
structural response, and derivatives of optimum structural designs with
respect to problem parameters. Methods and selected references are summarized
in Table 1. The survey is focused on publications addressed to structural
analysts, but also includes a number of methods developed in nonstructural
fields such as controls and physical chemistry which are directly applicable
to structural formulations. Most notable among the nonstructural-based
methods are the adjoint variable technique from control theory, and the
Green's function and FAST methods from physical chemistry.

For static displacements and stresses, methods are well established for
derivatives with respect to simple sizing variables. Finite difference and
analytical methods (direct and adjoint variable) are available and there are
clear guidelines giving classes of problems where the various methods are
preferred. Finite differences have long been disparaged as a method as
compared to the more elegant analytical approaches--and indeed the theoretical
effort (as measured by operation counts, for example) of finite differences
does greatly exceed that of the analytical approaches except for very small
numbers of design variables. ‘'owever, finite differences have a major

advantage--it is extremely simple to formulate and implement. This factor,
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together with the increased speed of recent and expected computers, may
explain its popularity in many applications,

Methods for derivatives with respect to shape design variables are less
well established and consequently there are no clear choices of preferred
techniques. One approach is to differentiate a set of discretized equations
from a finite element model with respect to the shape design variable;. This
method has the advantage of versatility but the disadvantage that whern the
shape changes, the finite element mesh may be distorted leadina : “umerical
inaccuracies, An alternative approach is to differentiate the curntiiuum
equations (before discretization) using a material derivative. This approach
avoids the mesh distortion problem and is potentially more efficient but is
more complex to implement.

With regard to derivatives of structural eigenvalue problems, well-
established formulas are available for both real and complex eigenvalues.
Derivatives of eigenvectors may be obtained by several methods including
expanding the derivatives as a series of eigenvectors, an algebraic approach
based on simultaneous equations for eigenvalue and eigenvector derivatives,
and a simplified but rigorous analytical approach developed by Nelson, The
method of Nelson is most appealing as it combines mathematical rigor with
computational s aplicity. The modal expansion method also merits considera-
tion but requires a study of the convergence properties of the technique.

Derivatives of transient structural response may be obtained using finite
differences, direct and adjoint variable analytical methods, a Green's func-
tion technique and the Fourier amplitude test - FAST (the latter two methods
developed by physical chemistry researchers). As in the static case, there
are established guidelines for deciding when to choose among the various

methods. Unlike the static case, the finite difference method may be
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competitive on the basis of computational efficiency. For example, if an :
explicit numerical integration algorithm is used for the nominal solution, a

finite difference calculation of the derivative may be more efficient than an

analytical method.

Methods for derivatives of optimum designs with respect to problem
parameters are reviewed. Because this is a relatively new topic, the body of
literature was not large. The derivative of the objective function can be
easily obtained by a reasonably simple formula. The derivatives of the
optimum design variables are somewhat more difficult to obtain., A complica-
tion which arises in using these derivatives to extrapolate an op.imum design
is that one must keep track of constraints which change from norcritical to
critical as a result of smali parameter changes. Finally, a significant
by-product of the interest in derivatives of optimum designs is the motivation
it has provided for research in improved methods for second derivatives of

response quantities,
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