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SYMBOLS

ai perpendicular distance between Zi_I and Zi

E elbow of robot arm

H hand of robot arm

H3 integer used in figure 5 to cause 83 = 83,p

h integration step size

i integer to indicate different axis systems and associated parameters,
i = 1,2.... , 6

J1 Jacobian matrix relating waist, shoulder, and elbow joint rates to transla-
tional velocity commands (in base coordinates) to robot hand

K3 proportionality constant in equation (7)

k integer

L transformation matrix from hand axis system to base axis system

Lij row and column of L

£ perpendicular distance of wrist from line of rotation of waist joint

IES length from elbow to shoulder

IHW length from hand to wrist

INO length from neck to base

ISN length from shoulder to neck

IWE length from wrist to elbow

IWS length from wrist to shoulder; changes as elbow bends

M maximum absolute value of 03

N neck of robot arm

0 base of robot arm

P projection of wrist position onto X I

i
Ri_1 rotational transformation matrix from coordinate system i to i - I

ri distance between coordinate systems i - I and i along Zi_I

S shoulder of robot arm

t time
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+
V translational velocity vector

VT,Vp,VR linear velocity component in direction of thrust, pitch, or rotation,
respectively

Vx0,Vy0,Vz0 components of translational velocity vector in base axis system

Vx2,Vy2,Vz2 components of translational velocity vector in axis system X2,Y2,Z2

Vx6,Vy6,Vz6 components of translational velocity vector of robot hand in hand axis
system

W wrist of robot arm

X0,Y0,Z0 base axis system

X6,Y6,Z6 robot hand axis system

ai angle between Zi_1 and Zi, measured positively about positive Xi

6min minimum value for 63

63,_23 specified positive constant in equations (8) and (28), respectively

8i joint angle with initia! value corresponding to initial position of robot
arm in figure I

8'i joint angle between Xi_I and Xi, measured positively counterclockwise
about Zi_I

8i(k) value of @i at time kh

83,p particular value of 83

83 last 83 in resolved-rate branch of computer program prior to entering
singular elbow region of robot arm (fig. 5)

0 angle to indicate pitching motion (fig. 4)

o angle which is coordinated with 83 to extend and retract robot arm along
a straight line (fig. 4)

eX6,0_6,_Z6 rotational velocity components of robot hand, expressed in hand axis
system (X6,Y6,Z6)

Subscripts:

0 base axis system

6 hand axis system

A dot over a symbol indicates the first derivative with respect to time.
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INTRODUCTION

A robot arm should obey movement commands from an operator or computer program
as closely as possible. Singularities in the mathematical equations that translate
these commands into arm movements hinder this objective. One solution is simply to
avoid the singular position of the robot arm that causes a singularity (refs. 1
and 2). However, in using resolved-rate equations (ref. 3), an operator generally
issues commands to the robot hand, and to move the hand as commanded, the arm may
inadvertently pass through a singularity. Erratic motion may result until the arm
moves sufficiently far from the singularity. A better solution appears to be the use
of a different set of equations at or near singularities (ref. 4). Of course, the
transition from one set of equations to the other should produce the overall motion
that an operator wants.

This paper discusses the kinematic equations of motion for a six-degree-of-
freedom manipulator with which the hand is positioned (translated) by three rota-
tional joints (waist, shoulder, and elbow) and oriented by three additional rota-
tional joints (wrist). When the elbow joint angle is zero, the robot arm is fully
extended (straightened) and the regular resolved-rate equations (refs. 4 and 5, for
example) become singular (division by zero). This paper presents equations which can
be used, instead of the regular resolved-rate equations, to translate the robot hand
in the neighborhood of the singularity. These equations are demonstrated in a kine-
matic simulation of a robot arm with the same geometric parameters assumed in refer-
ence 4. As the robot arm is being fully extended to the singular elbow position,
motions (joint angles and joint angle rates) are compared for these equations and the
regular resolved-rate equations. Finally, two integration methods (Euler and Adams-
Bashforth second-order predictor integration methods) are compared for three integra-
tion step sizes.

ANALYSIS

A robot arm and its joint axis systems are illustrated in figure I. Similar
arms are used in manufacturing by moving the arm through a sequence of prerecorded
joint angles. Another method of control is teleoperation, where an operator can

command either joint angle rates or tran31ation rates and rotation rates with respect
to some axis system, and then a computer resolves the commands into appropriate joint

angle rates (51, i = I, 2, ..., 6). A simplifying assumption is that wrist rotation

does not translate the robot hand axis system.

Operator translational velocity commands in the hand axis system are tranformed
to the base axis system by

+= L V6 (I)



where L is a transformation matrix (appendix A). The waist, shoulder, and elbow
joint rates then satisfy the equation

111Vo = J1 82 (2)

83

where J1 is an appropriate Jacobian matrix (appendix A).

The inverse of equation (2) is

11 Vx
2 = J11 Vy0 (3)

83 _Vz0'

-I
provided the inverse matrix J1 exists. Equation (3) is the translational part of
the resolved-rate equations that gives the joint rates necessary to move the robot
hand axis system as commanded by an operator.

The determinant of J1 is (appendix A)

3
det (J1) = [sin 02 + sin(02 + 03)]sin 83 IEs (4)

Singularities occur whenever this determinant is zero. Since IES _ 0, the singular
conditions are:

sin 83 = 0 (5)

sin @2 + sin(@2 + @3) = 0 (6)

In equation (5), 83 = 0°, which means that the robot arm is at its maximum

extension. (83 = ±180° is not achievable with the robot arm in fig. 1. See table I
for geometric parameters of the robot arm.) Equation (6) means that the robot wrist

is at its minimum distance (%SN) from the line of rotation of the waist joint.

Analysis and simulation were conducted to develop techniques to maintain
resolved-rate control in the vicinity of (or at) the singularity. Subsequent sec-
tions describe the method that was developed. The equations presented are used in
the vicinity of the singularity and allow continued translation control. Outside of
the singular region the regular resolved-rate equations (appendix A) are applicable.
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Robot Arm Movement To Handle Elbow Joint Singularity

The singular position of the robot arm is illustrated in figure 2(a). To
retract the robot hand, the elbow (83) must bend either positively (fig. 2(b)) or

negatively. Simultaneously, the shoulder joint (e2) moves in the opposite direction
to keep the robot hand moving along the dashed straight line passing through the
shoulder and wrist of the robot arm (points S and W in figs. I and 2).

VT, Vp, and VR rates.- The operator's translational control inputs are
resolved into the velocity components shown in figure 2(b). The velocity component

VT lies along the dashed line from the shoulder to the wrist; Vp is perpendicular

to the dashed line and, with respect to figure 1, is parallel to Y2; VR is

parallel to Z2 in figure I and completes a right-hand coordinate system with .VT
and Vp. Movement of the robot arm is based on these rates. The arm pitches (82) in
proportion to Vp, rotates (81) in proportion to VR, and extends (83) in proportion
to VT. An additional function of the shoulder joint (82) is to null any movement of

the robot hand off the dashed line which is caused by retraction or extension (_3).
Expressions for VT, Vp, and VR are in appendix B.

Elbow joint angle rate 83"- The table inset in figure 3 indicates the direction

of 03 for the different signs on 83 and VT. For example, if 83 is positive
and VT is positive, then _3 must be negative to move the robot hand outward.

Notice that the sign of @3 is opposite to the product of VT and the sign of
83. The joint angle rate is made proportional to VT as

83 = -K3VT sgn 83 (7)

where K3 is a specifiedconstant,which is assumedto be unity in this paper.

A region about the elbow joint singularityis definedas

J831 < 63 (8)

where 63 is an assigned constant. Whenever the condition in equation (8) is

detected, equation (7) is applied until the sign of 83 changes, which means 83
passes through 0° and is approximately 0°. The arm holds this extension (but is

still free to move in pitch and yaw) until a negative VT is commanded to retract
the arm. This is better explained later in a flow diagram for the translational
equations.

If the maximum absolute value of @3 is M and if the integration step size

is h, then 63 in equation (8) should exceed

6min = Mh (9)



Thus, _or h = 1/32 sec and M = 0.5 rad/sec, _min = 0"895° or 0.0156 red. For
test applications in this paper, 63 was chosen as I°.

Shoulder joint angle rate 82.- The joint angle rate 62 is the sum of two

other rates: _ and p. The $ component coordinates with @3 to keep the robot
hand on the dashed line in figure 4. The component p accounts for a pitching com-
mand from an operator.

First, consider the rate $. By the law of cosines

2 2 2
IWS = IES + IWE + 2%ES _E cos @3 (I0)

where iWS is the distance between the wrist and shoulder (points W and S in
fig. 1). Differentiating equation (10),

IWS_WS = -IESIwE(Sin 83)63 (11)

By the law of sines,

-IWE sin 83
sin _ = (12)

%WS

By the law of cosines,

2 2 2
_ES + IWS - IWE

cos _ = (13)
2IESIWS

Differentiate equation (12) to obtain

-IwE iws(COS 83)83 - (sin 83)_WS= (14)
cos _ 2

%ws



With equations (11) and (13), equation (14) is

Cc 1= 2 2 2 OS @3 + 2 03 (15)

%ES+ *ws- _WE _WS

Second, consider the rate _ to pitch the robot arm in response to an

operator's command. The robot wrist has a moment arm IWS relative to the shoulder
of the robot arm. Hence, the linear pitching rate Vp is the product of this moment
arm and the angular pitch rate p so that

= Vp
IWS

where

12 2IWS = ES + 1WE + 21ES_E cos @3 (16)

In this paper, 1ES = IWE, and the pertinent equations to compute the shoulder
joint angle rate 02 are as follows:

= -032 (17)

%WS = %ES _2(I + COS 83) (18)

_=Vp (19)
IWS

_2 = _ + _ (20)



waist joint angle rate 81 .- The component of the commanded translational

velocity in the direction of Z2 in figure I is (from eqs. (B6) and (B7))

VR = -sin 81 VX0 + cos 81 Vy0 (21)

If the robot wrist (point W in fig. 1) projects onto the negative Xl-axis , a posi-

tive waist rotation (81) is needed to cause a positive linear rate VR along Z2.

But, if the wrist projects onto the positive X1-axis , a negative o6_ rotation isneeded for a posihive linear rate VR along Z2. The projection the robot wrist

position onto the X1-axis is

P = -sin(@2 + 83) lWE- sin @2 IES (22)

Therefore,

-VR

61=-i- sgnP (23)

translates the robot wrist located at a distance (fig. 4)

_//2 2£ = SN + P (24)

from the line of rotation of the waist joint with a linear rate VR. The case of

IWE = _ES and P = 0 (that is, at the singularity sin 82 + sin(@ 2 + 63) = 0
(eq. (4))) is considered later.

Logic flow for translational equations.- The logical flow for computing the

joint angle rates 81' 82' and 83 is shown in figure 5. In the block diagram, an
operator issues translational velocity commands to the robot hand. These commands

are then transformed from the robot hand axis system (X6,Y6,Z 6) to the base axis sys-

tem (X0,Y0,Z0). If @3 does not fall within t_e singular region I1831 < _3)' the

regular resolved-rate equations are used and @3 is equated to 83 for later use.
The resolved-rate equations yield joint angle rates which are integrated to get joint

angles to drive the robot arm. The operator observes the resulting motion and issues
new commands.

If 83 does fall within the singular region, the equations indicated in the

dashed box (fig. 5) are used. As an example, suppose the robot arm is initially in

position I in figure 6 and, in the next time increment, moves to position 2 where 83

is within the singular region. On the first pass through the dashed box, 83 is

positive (since 83 was positive at position I) and the current @3 at position 2

is positive, so their product is positive. Thus, 63 is computed with equation (7)
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and, for positive VT, is negative. When 83 becomes negative in the singular

region, the product of 83 and the current 83 is negative. Therefore, for posi-
tive VT, no further change in 83 is allowed (53 = 0). However, suppose a
negative VT is commanded. Since 83 is now negative and VT is negative, 53
is negative (table in fig. 3), and the robot arm retracts by bending the elbow joint
in a direction opposite to that with which it entered the singular region. If an

elbow bend does not suit an operator, he simply straightens (83 = 0°) and retracts
the robot arm again.

If the elbow of a robot arm is bent down (position 2 in fig. 6) and an operator

commands negative VT to retract the robot arm before it straightens, then the arm
will maintain a downward bent elbow as it retracts.

In this study, an Adams-Bashforth second-order predictor integration method

oi : (,) - ] + (k) c25

is used with a nominal value of h = 1/32 sec to integrate the joint angle rates to

get the joint angles. When @3 falls into the singular region, and the arm is fully

extended with VT ) 0, 53 = 0 in figure 5. In figure 5, 83,p is then used to
hold the current value of 83; this is required because equation (25) would compute a

new 83, different from the current value, since the equation contains both present
and past values of 53. If Euler integration

@i(k+1) = h@i(k) + @i(k) (26)

is used, 83,P would not be required since only the current value of @3 appears in
equation (26).

Pitching robot arm at full extension.- For discussion purposes, let the robot

hand in figure 7 be oriented the same as that in figure I. Then if an operator com-

mands a pitch down with VX6, the arm will pitch down according to equation (19).
However, in this paper, the robot arm stops when 83 changes sign so that @3 is
not exactly zero. Hence, in figure 7(b), when the operator attempts to pitch the arm

down, there is a negative VT, which causes the arm to retract as it pitches down.
Pitching the arm up would not cause any retraction because the VT rate would be
positive. Since the arm is in the stopped extended position and VT > 0, the arm
will not retract.

To have the robot arm maintain its full extension (whether pitching up or down)

until specifically commanded by an operator to retract, simply replace VT ) 0 in

figure 5 with VZ6 ) 0. The arm will then only retract from the stopped extended
position if the operator commands a negative VZ6.



Robot Arm Movement To Handle Wrist-Waist Singularity

With variations in 81 (fig. I), the robot hand generates a circle about Z0.
Equation (6), or equivalently,

83 = -282 (27)

means that the minimum radius for this circular motion has been reached (fig. 8) and
the resolved-rate equations are singular.

In this paper, when

[sin 82 + sin(82 + 83)[ < 623 (28)

where 623 is chosen as 0.001 to prevent erratic motions at the singularity, equa-

tions (7), (20), and (23) are used. In equation (23), £ = ISN _ 0 for the wrist-
waist singularity.

Robot Arm Movement in Cylindrical-Type Coordinates

Thus far, the operator's translational velocity command to the robot hand has.

been V6, which is then resolved into joint angle rates in the robot arm. In the+

singular elbow region, V6 is resolved in directions of thrust, pitch, and rotate in
figure 4 to obtain the rates VT, Vp, and VR, which are then used to move the robot
arm according to equations (7), (20), and (23). As an alternate means of control,

the operator can be given the option of directly specifying VT, Vp, and VR with
his controller inputs. This mode does not constitute movement in true cylindrical

coordinates because of the shoulder offset ISN from the waist station (fig. 4).

Inside the singular region (]83] < 63)' 53 can be made proportional to VT
(eq. (7)); however, outside the singular region (]83[) _3)' the robot hand should

extend and retract along _WS in figure 4 with the actual commanded VT rate. The
appropriate equation for 83 follows immediately from equation (11) with the
substitution

_WS = VT (29)

as

IWS VT
03=

%ESlWE sin 83 (30)



Notice that the sign of 83 is consistent with the table in figure 3; that is,

when VT is positive and @3 is negative, 83 is positive.

RESULTS AND DISCUSSION

The kinematic equations for translation control, including the equations to be
used in the singularity region, were programmed on a CDC® CYBER 175 computer operat-
ing in real time, interfaced to an ADAGE GPS/340 graphics system, and the manned con-
trol station in the Intelligent Systems Research Laboratory (ref. 6).

To command translational movements of the robot hand, an operator used a three-

axis hand controller: one degree of freedom for each of the robot hand speeds VX6 ,

Vy6, and VZ6. For example, in figure I, the robot hand axis system is (X6,Y6,Z6),
and the operator commanded the hand to move in the X6-direction by moving the con-
troller in the direction corresponding to VX6.

Based on kinematic equations, a graphically simulated robot arm was driven in
response to an operator's velocity inputs to the robot hand. The operator observed
the movement on a monitor and issued new commands. This simulation was primarily to
spot potential operational problems and debug the computer program prior to using a
real industrial robot arm.

A simple simulation experiment was conducted to compare the following two sets
of equations, which can be used to control the robot arm in translational movement:

I. Translational equations in the present paper (eqs. (A6) to (A12) in conjunc-
tion with eqs. (7), (20), and (23))

2. Regular resolved-rate equations (eqs. (A6) to (A12))

Variations in the joint angles 82 and 83 and the joint angle rates e2 and 83
were compared for both extension and retraction movements of the robot arm.

A second simulation experiment was conducted with the translational equations in
the present paper to evaluate the effects of two different numerical integration
techniques (Adams-Bashforth second-order predictor and Euler), three different inte-
gration step sizes (I/16, 1/32, and 1/64 sec), and combinations of the numerical
integration techniques and step sizes.

Simulated Arm Movement Through Elbow Singular Region

The robot arm was initially positioned for the extension maneuver with the joint

angle values 82 = -30° and @3 = -60°. Then, with a switch located on a real-time
control console, a computer operator issued a translational velocity command

VZ6 = 40 mm/sec to extend the robot arm.

The variations in joint angles @2 and @3 and their rates _2 and e3 for
both control algorithms are plotted in figures 9 and 10 against time.

Equations in present paper.- With respect to the elbow joint singularity

(83 = 0°), the equations developed in the present paper are used when 83 is within
_1° of full arm extension (83 = 0°); that is, 63 = I° in equation (8). In

9



figure 10, the final zero joint rates 82 = 0 and @3 = 0 stop the robot arm in the
extended position (83 = 0° and 82 = -63° in fig. 9). Although the robot arm is

fully extended, the operator maintains the input command VZ6 = 40 mm/sec, which
causes 82 in figure 9 to increase slightly with time. The reason for this con-

tinued variation is that the arm stops extending at a small positive value of @3
(the value depends on the integration step size). With the robot hand oriented with

respect to the forearm as shown in figure I, a small positive 83 with

VZ6 = 40 mm/sec produces a small pitch-down component (positive Vp). By equa-
tions (19) and (20), 52 increases with Vp. This small variation is not antici-
pated to be a problem. By visual observation, the operator can issue commands to

nullify any significant variations. Alternate approaches are to replace VT ) 0
with VZ6 > 0 in figure 5, or switch to cylindrical-type coordinates while the robot
arm is fully extended.

Resolved-rate equations.- After 3.5 sec in figure 10, the regular resolved-rate

equations produce undesirable high frequency oscillations in 82 and @3" The
oscillation for 83 lies between the upper and lower limits of joint angle rate of

£28.6 deg/sec. The oscillation in 82 is half that in 83 (eq. (17)) or approxi-
mately ±15 deg/sec. These oscillations totally obscure the region between the oscil-

lation boundaries. The joint angles 82 and 83 in figure 9 also show high
frequency oscillations with amplitudes of about I°.

For the retraction maneuver, the robot arm was initially positioned with joint
angle values of 82 = -60° and 83 = 0° for both the regular resolved-rate equa-
tions and the equations of the present paper. As with the extension maneuver, a

switch was used to issue a negative translational velocity command VZ6 to retract
the robot arm. No differences in joint angles or their rates were seen between the
two control algorithms.

Comparisons of Integration Schemes and Step Sizes

The nominal integration scheme and step size used in the present paper are
Adams-Bashforth second-order predictor and 1/32 sec, respectively. The question
arose as to whether a simpler integration scheme and/or a different step size would
have any effect on the system as defined for this study. The reason for this ques-
tion was that another user might be constrained by computer capacities especially if
real-time operation were required. Runs were conducted by using the translational
control algorithms of the present paper to answer these questions.

Comparisons are presented in figure 11 of joint angle movements and joint angle
rates determined by using, first, the Adams-Bashforth second-order predictor scheme
and, then, the simpler Euler scheme for the extension maneuver. The step size for
both calculations was 1/32 sec. The only difference seen between the two schemes

occurs at the end of the extension maneuver. This difference appears to be caused by
the arm extending to slightly different positions (83) because of the differences in
the integration schemes. Thus, the user could take advantage of the simpler Euler
integration scheme.

To look at the effect of step size, the simpler Euler integration scheme was
chosen for presentation in the present paper, since with the Adams-Bashforth scheme,
no meaningful differences were observed. Comparisons with different step sizes,
1/16, 1/32, and 1/64 sec, are presented in figure 12. Little or no differences exist
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between 1/32 and 1/64 sec. The difference which occurs for 1/16 sec in the extension

maneuver is caused by the deadband around @3" One other difference which occurs at
the end of the extension maneuver for the step size of 1/16 sec is the slightly exag-

gerated effect caused by the small pitch (82 ) component which exists when 83 is not

exactly zero as was discussed earlier in this paper (fig. 7). It appears that a user

could take advantage of using the Euler integration scheme and a step size of

1/16 sec when using the system modelled in this paper. It is advisable, however, for

the user to examine his situation carefully before making this decision.

CONCLUDING REMARKS

An operator commands the robot hand to move in a certain direction by commanding

a velocity in that direction. Resolved-rate equations relate the operator's commands

to joint angle rates in the robot arm to move the hand. However, when the arm is

fully extended, the equations become singular in the elbow joint variable. The pre-

sent paper has presented a set of equations that enable control of the robot arm

within the singular region.

The resolved-rate equations are used, except when the elbow joint angle falls

within a specified region (which includes the singular position). In this region,
the commanded translational velocity is resolved relative to a straight line passing

through the shoulder and wrist of the robot arm. The elbow joint angle rate is then

made proportional to the component lying along the line. The shoulder joint moves in

the opposite direction to that of the elbow so that the hand retracts and extends

along this line. Also, within this region, the shoulder joint pitches the robot arm

in response to pitch command, and the waist joint rotates the robot arm about its
base.

The equations in this paper give the operator the option to bend the robot arm

at the elbow in either the up or down direction. The operator simply extends the arm

and backs it up again to automatically reverse the direction of the elbow bend.

The equations which handle the elbow joint singularity and the equations which

allow cylindrical-type movement of the robot arm were applied to move a graphically
simulated robot arm. The desired motions were obtained, and the equations will be

used in other experimental tests.

At the elbow joint singularity, undesirable joint rate oscillations result from

an implementation of the regular resolved-rate equations but not in the translational

equations presented in the present paper.

Finally, a simple experiment was conducted to compare two integration methods
(Adams-Bashforth second-order predictor and Euler) and three integration step sizes

(I/16, 1/32, and 1/64 sec). There were little or no differences seen in either set
of tests. Therefore, it appears that if a user is constrained in the area of com-

puter power, the simpler Euler integration scheme with a step size of 1/16 sec can be

11



used. However,it is advisablefor the user to examinethe situationcarefully
before making a decision.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
September 19, 1984
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APPENDIX A

MATRICES L and J1

With respect to the robot hand axis system, an operator commands the transla-+

tional velocity V6, which is then transformed to the base coordinate system by

+ +

V0 = L V6 (A1)

With the robot arm parameters in reference 4 (table I), the equations to compute the
elements of the transformation matrix L in reference 5 become

Q1 = cos 84 cos 85 cos 86 - sin 84 sin 86
Q2 = sin @4 cos @5 cos @6 + cos @4 sin @6
Q3 = -cos 84 cos 85 sin 86 - sin 84 cos 86
Q4 = -sin 84 cos 85 sin 86 + cos 84 cos 86
PI = -c°s(@2 + 83)
P2 = -sin(82 + 83) (This represents a correction to ref. 5.)

TI = -sin 81
T2 = -cos 81 P2
T3 = cos @I
T4 = -sin @I P2

(A2)
L11 = -cos 81PIQI + TIQ2 - T2 sin 85 cos 86
L21 = -sin 81PIQ I + T3Q2 - T4 sin @5 cos 86
L31 = P2QI + PI sin @5 cos @6

L12 = -cos 81PIQ3 + TIQ4 + T2 sin 85 sin 86
L22 = -sin 81PIQ3 + T3Q4 + T4 sin 85 sin 86
L32 = P2Q3 - Pl sin @5 sin @6

L13 = -cos @1PI cos @4 sin @5 + TI sin 84 sin @5 + T2 cos @5
L23 = -sin 81 P1 cos 84 sin 85 + T3 sin 84 sin 85 + T4 cos 85
L33 = P2 cos @4 sin @5 - P1 cos 85

Rotations about the waist, shoulder, and elbow move the robot hand. This rela-
tionship is expressed as



APPENDIX A

where J1 (from ref. 4) is (assume _ES = IWE)

-sin 81[sin 82 + sin(82 + 83)]%ES - cos 81 ISN cos 81[cos 82 + cos(82 + 83)]IEs cos 81 cos(82 + 83) IESI

I
J1 = cos 81[sin 82 + sin(82 + 83)]IES sin 81 _SN sin 81[cos 82 + cos(82 + 83)]%ES sin 81 cos(@2 + 83) IES ]

J0 -[sin 82 +sin(@ 2 + 83)]IES -sin(B2 + 83) _ES

(A4)

The determinant of J1 is

3
det (J1) = [sin @2 + sin(@2 + @3)]sin 83 IES (A5)

Equation (A3) can be solved for the joint angle rates as follows:

2
(Vx0 sin 81 - Vy0 cos 81)bIiES

$1=
det (J1) (A6)

2
(Vx0b2 + Vy0b3)sin(@2 + @3 ) IES + Vz0[Sin 82 + sin(82 + 83)]cos(82 + 83).IES

det (J1)

(A7)

{-Vx0b2 + Vyob3 + Vz0[COS @2 +cos(@ 2 + @3) 1ES]} [sin @2 +sin(@ 2 + 83).]1ES
83 =

det (J1)

(A8)

where

b I = sin 82 cos(@2 + 83) - cos 82 sin(82 + 83) = -sin 83 (A9)

b 2 = cos 82[sin 82 + sin(82 + 83)]_ES - sin 81 tSN (AI0)

b 3 = sin el[sin @2 +sin(@ 2 + @3)],ES + cos @I %SN (All)

14



APPENDIX A

The only problem with these equations occurs when det (J1) = 0. In this paper,
det (J1) is replaced by

det (J1) = 10-5 sgn [det (J1)] (A12)

whenever Idet (J1)l < 10-5 to circumvent computational problems. The sign of

det (J1) is considered positive when det (J1) = 0. This paper presents a set of
translational equations which are not affected by this condition.
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APPENDIX B

THRUST, PITCH, AND ROTATE VELOCITY COMPONENTS OF ROBOT HAND

Components of the commanded translational velocity _6 of the robot hand

(fig. I) are related to its components in the axis system (X2,Y2,Z2) as (ref. 5)

1 vx0I vX2 I 0
Vy2 = R 2 R I Vy0 _ (BI)LvJ Vz0j

where

!-sin 82 cos 82 0

I
R2 = -cos 82 -sin 82 0 (B2)

0 0 1

-cos 81 -sin 81 0

0

R1 = 0 0 I (B3)

-sin 81 cos 81 0

VX2 = sin 02(cos 01 VX0 + sin 81 Vy0) + cos 82 VZ0 (B4)

Vy2 = cos 82(cos 81 VX0 + sin 81 Vy0) - sin 82 VZ0 (B5)

VZ2 = -sin @I Vx0 + cos @1 Vy0 (B6)

Equations (B4) and (B5) represent corrections to reference 5.
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APPENDIX B

The axis system (X2,Y2,Z2) does not move with the forearm link (IWE). The

velocity components VT, Vp, and VR indicated in figure 4 are given by

VT cos o -sin o 0 VX2

Vp = sin o cos q 0 IVy2 (B7)

v 0 0 i [Vz2"
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TABLE I.- HOMOGENEOUS TRANSFORMATION MATRIX PARAMETERS

[From ref. 4]

!

Joint, _i, ai' ri' @ , 8i limits,
i deg in. in. d_g deg

I 90 0 *INo 81 + 180 +160

% 822 0 §IES ISN + 90 +165
3 90 0 0 83 + 90 +135

4 90 0 @IWE 84 + 180 +135

5 90 0 0 @5 + 180 +105

6 0 0 # IHW 86 +270

* = Length from neck to base = 26 in. (66.05 cm)
INO

§IEs = Length from elbow to shoulder = 17 in. (43.18 cm)

% = Length from shoulder to neck = 6 in. (15.24 cm)ISN

%IwE = Length from wrist to elbow = 17 in. (43.18 cm)

#1HW Length from hand to wrist = 6 in. (15.24 cm)

(In kinematic equations, distance from hand axis system to wrist
is assumed to be 0.)
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Figure I.- Initial position of robot arm, joint axis
systems, and commanded robot hand velocities.
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(a) Fully extendedrobot arm.
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(b) Velocity components.

Figure 2.- Straightened robot arm (singular elbow position) and velocity components
used to move arm near or at this position.
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Figure 3.- Retracting and extending robot arm.
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Figure 4.- Geometry used to derive joint speeds for shoulder and waist.
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Operator)

VX6, Vy6, VZ6

Hand-to-base I
transformation

VXO, Vyo, VZO

Yes and O_Yes

No _ No
* _)3 = 0

(_3 =
03 = 03 Eq. (7) for e3,p e3
H3 = 0 H3 = 0

H3 = I

Resolved-rateequations

Eqs. (A6) to (A8) ,Eq. (20) for _)2

!_ Eq. (23) for el

I

ei = I ei dt

(i = 1,2,3)

3 I_ Yes _----I 03 = @3,p

Nc _ I'
'!

_r Move
obot arm)

Figure 5.- Block diagram indicating implementation of logic flow
for translational equations to move robot arm.
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Figure 6.- Drawingused to describemotion of robot arm in
singularelbow region.

25



VX6

(

IIIII, 111/

(a) Zero elbow joint angle.

/ VX6

c

IIIII, /111

(b) Small nonzero elbow joint angle when further extension of
robot arm is stopped.

Figure 7.- Drawing to indicatepitchingmotion of robot arm.
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Figure 8.- Diagram to illustrate positions of robot arm
fat wrist-waist singularity in resolved-rate equations.
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(a) Joint angle 82 movement.

Figure 9.- Joint angle movement for extension maneuver,
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(b) Joint angle 83 movement.

Figure 9.- Concluded.
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(a) Joint angle rate 52.

Figure 10.- Joint angle rate for extension maneuver.

3O



5o_-

_ 0 Regular resolved-rate equations
40-- [] Equations of present paper

30--

2O

10
0
_)
03

o_ 0
(D
7:9

"0_10

.-20

--.50 --

-40 --

-5o
0 2 4 6 8 10 12 14 16 18 20

Time, sec

(b) Joint angle rate @3"

Figure I0.- Concluded.
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0 Euler integration
[] Adams-Bashforth second-order

predictor integration
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0 2 4 6 8 10 12 14 16 18 20

Time, sec

(a) Joint angle e2 movement.

Figure 11.- Comparison of integration schemes for extension maneuver, h = 1/32 sec.
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(b) Joint angle 83 movement.

Figure 11.- Continued.
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(d) Joint angle rate 53.

Figure II.- Concluded.
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(a) Joint angle @2 movement.

Figure 12.- Step size comparison with Euler integration scheme for extension maneuver.
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(b) Joint angle 03 movement.

Figure 12.- Continued.
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(C) Joint angle rate 82.

Figure 12.- Continued.
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