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1. INTRODUCTION

The numericalsolutionof supersonicflow problems using the full

potentialequation has become an attractiveand promisingalternativeto

solvingeither Euler equationsor the linearizedpotentialflow equations.

The full potentialequation retainsmost of the nonlinearfeaturesof the flow

field, such as shocks,that the linearizedpotential,e.g., the more popular

linear panel methods, inherentlyneglect,while having the simplicityof a

single variable irrotationalsolution. Primitivevariables,entropy

singularities,and CFL Stabilityconditionstend to complicateEuler equation

solversI.

The current approachto supersonicflows was first establishedby

Grossman2 for the conical flow problemusing a nonconservativeform of the

potentialequation. The conicalflow problemreduces the full potential

equationto an equationwhich in the crossflowplane (i.e.,transverseplane

normal to conical rays) containsall of the salientfeaturesof the two-

dimensionaltransonicfull potentialequation. In Ref. 2, it was found that

becauseof the type dependent,or mixed elliptic/hyperbolicnature of the

crossflow,transonictechniquessuch as those developedby Jameson3 could be

used to determinenumericalsolutions. The conicalflow problemwas extended

to includethree-dimensionalflow by Grossmanand Siclari4 using a fully

implicitmarching techniquewhere each marching step requiresan implicit

crossflowsolution. These schemeshave all used Successive-Line-Over-

Relaxation(SLOR) as their basis for numericalsolutionof the nonconservative

full potentialequation. For the nonconicalproblem, it was found by Siclari5

that accuracycould be enhancedby isentropicallyfitting the bow shock and

numericalefficiencyoptimizedby a judiciousselectionof the sweep

direction.
r

As the procedurefor solvingthe full potentialequation for supersonic

problemsmatured, other investigatorshave establishedsimilarmethods.

Shankar et al6,7, using a semi-implicitmarching techniquewith a density

line6rizationof the conservativefull potentialequation,has also shown

success. Comparisonsof Shankar'sconservativeapproachwith the present

nonconservativeformulationin Ref. 6 show remarkablyexcellentagreement

consideringthe conservativeversus nonconservativetreatments. The semi-
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implicit formulation of Ref. 6 or 7 requires some CFL constraints, unlike the

present fully implicit formulation which has no CFL constraints. Sritharan 8

and Bradley et. al 9 have also developed conservative formulations for solving

the conical problem. Comparisons with the present approach that are shown in

Reference 8 exhibit excellent agreement except for the typical

conservative/nonconservative disparities that occur in the vicinity of the

captured crossflow shock.

In the present work, two basic topics are studied with the aim of

broadening the applicability and usefulness of the present method encompassed

within the computer code NCOREL(NONConical RELaxation, see Ref. 18) for the

treatment of supersonic flow problems. The first topic is that of computing

efficiency. Accelerated schemesexist and are in current use for transonic

flow problems. One such scheme is the approximate factorization (AF)

method. This study will develop and apply an AF scheme to the supersonic flow

problem. The second topic that will be addressed will be the computation of

wake flows. The proper modeling of wake flows is important for multi-

component configurations such as wing-body and multiple lifting surfaces where

the wake of one lifting surface will have a pronounced effect on a downstream

body or other lifting surface. This is an interim report of a larger study.

A final report will cover these topics and other topics presently under

investigation.



2. APPROXIMATEFACTORIZATIONSCHEMES

Numericaltechniquesare investigatedthat show promise for accelerating

convergencein comparisonwith the standardSLOR methods. The primary

candidatefor this is the alternating-direction-implicit(ADI)10 or, as it is

more commonly referredto in its applicationto nonlineartransonicflows,

approximatefactorization(AF) schemes. These AF schemeshave been applied

successfullyto a varietyof transonicflow problems. Initially,AF schemes

were applied to the Transonic Small Disturbance(TSD) equationby Ballhaus,et

al11. Holst12 successfullyappliedan AF2 type schemeto the conservative

full potentialequationfor transonicflows. The nonconservativefull

potentialequationwas treated successfullyby Baker13,14 for 2D transonic

flows and should be applicableto the nonconservativefull potential

supersonic/transoniccrossflowproblemof the presentstudy. Two basic AF

algorithmsare considered,ADI or AF1 and the AF2 schemewhich splits one of

the second derivativesinto two first-orderderivativeoperators. The latter

scheme has reportedlybeen the most stable in supersonicflow regionsfor the

transonicflow problem.

2.1 BASIC FORMULATION

The nonconservativeform of the 3D full potentialequation is written in

a sphericalcoordinatesystem (m, €, r). The governingequation is then

transformedvia a conformalstereographicprojectionto (p, q, t) coordinates

and furtherby a crossflowconformalJowkowskimappingto (p, B, R)

coordinates. In terms of a reducedpotentialF, where Q = v@ + q. and @ =

RF(p,B,R),the full potentialequationcan be writtenas

(a2-U2)F - _2UVF + (a2-V2)F + ...
2 Be p pO pp

p

h2+_F +
= RH [(W2-a2)RHhl + 2WV][hlFpp p po FpR

h2
+ Pl [(W2_a2)RHh2 + 2WU][hlFpO+--Fp eO + FOR ]

h2
+ RH(W2-a2)[hlFpR+--pFBR + FRR]+ ... (1)

3



where U, V, and W are the velocitiesin the B, p, and R directions,

respectively,and H is the combinedmetric of the two mappings. In general,

the conformalmapping in the crossflowplane leads to nonorthogonalcoordinate

derivativesif the mappingsingularityis a functionof r. This mapping

dependenceon r leads to mesh derivativesdefinedas hI = Pr and h2 = per.

The radialmarching directionr, remainsunchangeddue to the transformations,

or r --t = R. The detailsof the mappingsand coefficientscan be found in

Ref. 2 and 4.

Unlike transonicflow, the supersonicflow problemis containedwithin a

finite crossflowmesh bounded by a bow shock. The bow shock may be captured

within a prescribedouter boundary2,4 or the bow shock can be fitted as the

outer boundary5 using the isentropicshock jump conditions.

A shearingtransformationis apPliedto Eq (1), betweenthe body p = B(B,

R) and outer boundaryor bow shock p = C (6, R), where

X:0

y=p-Bc - B" (2)
Z:R

which yields a final rectangularcomputationalmesh.

Equation (1) can be representedas the sum of a conicalplus a nonconical
operator,in the form

L(¢i,j) = LC(@i,j)+ R • LNC(@i,j). (3)

The nonconicalcoefficientson the RHS of Eq (1) all have an R dependenceand

vanish identicallyat R = 0 for the quasi-two-dimensionalconical flow

probIem.

2.2 CONICALFLOWS

For conicalflows, after applyingthe shearingtransformation,Eq (1) can
be written as

LC(¢i,j) = AIFxx + A2Fxy + A3Fyy + ... (4)

4



where

A1 = la2-U 2), 2
P

i

A2 _ -2UV y + 2 (a2"_2,).Yo (5)
P

= (a2-U2)v2
A3 (a2_V2)y_ 2UV YpYB+p 2 -e "

P

Equation (4) closely resemblesthe nonconservativeform of.the 2-D

transonicflow equation. The differenceis that the type dependencyof the

conicalpart of Eq (1) or Eq (4) is linkedto the nature of the crossflow

2 = U2 + V2. An upwind bias in the differenceequations
velocitydefined by Qc 2 2
must occur when the crossflowvelocityis supersonicor Qc > a . The

crossflowvelocitycomponentV is always negativeand toward the body

surface. The U componentof velocitycan be positiveor negativedepending

upon the geometryand angleof attack. Equation (4) has heretoforebeen

solved successfullyusing transonicSLOR techniques2,4 and the rotated

differencescheme of Jameson3.'

The Principalpart of Eq (4) can be rewrittenin a rotateddifference
2 2

formatas, for Qc > a

AIFxx + A2Fxy + A3Fyy = (a2-Q2c)Fss+a2Fnn (6)

where

V_ 2UIV1 U_
Fss =_-_Fyy + _-_ FXy +-_-Fxx

Qc Qc
P

F =_-_Fyy 2 FXy +_Fxx
nn Qc Qc Qc

5



and

UYB
U1 = U/p , V1 = VY +P P

VYB
V2 = V/p , U2 = UY -_ .p p

r

An upwind bias is appliedto the finite differencerepresentationof the Fss

terms, and centraldifferencesare used for the Fnn terms in supersonic
crossflow regions.

The followingsectionswill presentan adaptationof the two basic AF

algorithms,ADI or AF1 and AF2, to the presentsu'personicflow problem.

2.2.1 AF1 Factorization

An ADI or AF1 type factorizationcan be appliedto the principalterms of

Eq (4), for subsoniccrossflowQc2 < a2, in the form

Ia" -__X_X la _Y_IAXe/ An+l n
AI - A3 i,j = °_Lc(Ci,j) (7)

where Ai,j is the correctionto the reducedpotentialFi,j or Ai j = Fi,jn+l.n

Fi,j • m is a relaxationparameterand Lc(¢i,j) is the residualof Eq (4) at

the nth iteration, a is an accelerationparameterwhich is varied in a cyclic

fashionduring the iterationprocess. The two first-orderdifference

operatorsresult in a second-ordercentraldifference. The first-order

operatorsare definedas

_X = ( )i+l,j- ( )i,j

: _X = ( )i-l,j- ( )i,j (8)

_Y : ( )i,j+l- ( )i,j

_Y : ( )i,j - ( )i,j-1



The basic premisebehind an approximatefactorizationschemecan be

revealedif the LHS of Eq (7) is expandedand terms not resemblingthose of Eq

(4) are neglected,or

IA _X_X _Y_Y_ n+l n
i A-_X + A3 A--S')Ai,j= - ml-c(@i,j)" (g)

If m = i, Eq (9) would be equivalentto solvingEq (4) with the cross

derivativeevaluatedusing old values of the potential. Equation (9) is

typicallYsolved in a two-step formatby definingan intermediatevariable,

Gi,j, where

a _X_X_ Gn+I = o_Lc( n )#

(lO)

a _Y_Y_ An+l Gn+l- ) •
Equation (10) representstwo tridiagonalsystemsof equationsinvolving

differencesonly in the computationalX or Y direction. Equation (10) must be

modified in regionsof supersoniccrossflowto include the proper upwind

bias. The followingform of the supersoniccrossflowfactorizationis

essentiallyidenticalto the AF1 schemeof Baker13,14 equation. Hence, for

2 a2
Qc >

(a _X_X _X_X _XA__AX__X) GR+I a_L( n ) (iI)
- A1c_ - KIAIu _ - K2Alu i,j = ¢i,j

a _Y_Y _Y_Y_ An+l = Gn+l" - A3c Ay2 A3u Ay2/ i,j i,j "

The central (subscriptc) and upwind coefficients(subscriptu) are given

by the rotateddifferencescheme Eq (6) as



Alc = _ , A3c =-_
Qc

(12)

- - 2
(a2 Qc2) (a2 Qc)

Alu- 2 U_ , A3H- ? V_ .
Qc , Qc

The first factor allows for the U componentof velocity to be positiveor

negative,where if

U > O, K1 = 1, K2 = 0

(12a)

U < O, K1 = O, K2 = 1.

As mentionedearlier, the V velocity is always negativefor supersonic

crossflowand,hence, only forwardupwind differencesoccur in the second

factor.

In general,.the first factor involvesa pentadiagonalmatrix and the

second factora quadradiagonalmatrix. As suggestedby Baker13, these

differencescan be replacedby

n+l )n+l n )n
_X_Y = ( )i,j - ( i,j - ( )i-l,j+ ( i-2,j

)n+l )n+l• n n
_X_X= ( i,j - ( i+l,j- ( )i+1,j+ ( )i+2,j (13)

• = )n.l )n+1 n n
_Y_Y ( i,j - ( i,j+l - ( )i,j+1+ ( )i,j+2 "

This reducesthe set of Eq (11) to the followingtridiagonalform, for

2 a2Qc > ',

( ,x,x 1 n" Is Alu (KI_X + K2_X) Gn+l = amLc( ) (14)
a-_ Alc AX2 AX2 i,j @i,j

( _Y_Y _Y)A n+l Gn+la- A3c ay-2+ A3u ay2 i,j = i,j

where, for U > O, Is = 1 and U < O, Is = -1.

8



2.2.2 AF2 Factorization

The AF2 algorithm has been found by several investigators 11'12 to

generally be the more stable AF factorization for transonic flows. In the AF2

factorization, one of the second derivatives is split between the two

factors. Following a similar AF2 factorization used by Baker 13, for subsonic

2 a2crossflow, Qc < , the AF2 algorithm becomes

(Tm _Y _X _Y) An+l n-_ A-T- A1 AX2 _ + A3Hm _Y- _,j"" = az°Lc(Qi,j)" (15)

This form of factorizationis thoughtto be more stable since the Y

operatorin the first factoryields a @Yt term, unlike the @t term of the AF1

scheme14. The term Hm in the two factorsaccounts for the transformation

derivativesof the mapped and shearedmesh. As illustratedby Catherall15,

the proper splittingof these transformationderivativescan yield optimum

convergence,and neglectingthese derivativescan considerablydegrade

convergence. The coefficientA3 in Eq (4) containsthe shearingtransforma-

tion derivativesYp and YB/p. The mapped olane (p,0) velocities,V and U

respectively,containthe metric H(p,0) of the two mappings. Hence, a

suitableform for the factor_Hm might be

: AY Y YB
p AY 1 (yp _ T) (16)Hm A--XH-- or AX H

The first-orderforwarddifferenceoperator on Y is placed in the first factor

since this term does not switch for supersoniccrossflowconditions. For

supersoniccrossflow,the AF2 factorizationis modified to includean upwind

bias and a tridiagonalform as

I-_ _Y _X_X IsAIu ) Gn+l o_L ( nHm AY Alc AX2 _ (Klax + K2dax) i,j = c @i,j ) (17)

I _y _y) an+l Gn+l
a + A3cHm A--T+A3uHm A-T i,j = i,j "

9



Since the forwardY operator is includedin the first factor,the sweep is

constrainedto be toward the body surfaceor decreasingJ.

An alternatefactorizationto the AF2 scheme describedabove would be to

split the X-derivative. Unlike transonicflow, the difficultyin splitting

the X-derivativein the supersonicproblemis that the U velocity in the

supersoniccrossflowregioncan be either positiveor negative. This occurs

primarilyat the capturedbow shock. In transonicflow, the X or U velocity

directionis much like the Y directionof the presentproblemin that a

negative supersonicU velocityis unlikelyto occur. Hence, there is no first

order X operator that, in general,does not switch. One could proposea

scheme where the factorizationis set up for U < O, and if U > O, the upwind

coefficientis either neglectedor a shift operatoris imposed' This scheme

was found to be unstableor would not work for this problem.

Other AF2 factorizationswere considered,includingthe AF3 factorization• i

of Baker13 where both coefficientsare brought into the first factor. This

would seem to be a candidatefor a faster scheme since the differential

operatorswould not act on the coefficientsand lead to spuriousterms.

Baker13, in fact, has reportedhis AF3 scheme to be considerablyfaster than

either the AF1 or AF2 schemes. Unfortunately,this schemecould not be

appliedsuccessfullyto Eq (17).

2.2.3 BoundaryConditions

Figure 1 illustratesthe conformallymapped and shearedcomputational

crossflowplane domains. Symmetryconditionsare imposedat o = _ _/2 or

I = 2 and IC for the symmetrichalf plane problem. Hence, periodicend

conditionsapply on Y = constantlines. On X = constantlines, j = 2

correspondsto the body surfaceand j = JMAX correspondseither to the outer

boundary (BSC) or the bow shock (BSF). In both the bow shockCapture or fit

metho'ds,the outer boundaryhas the same conditionthat the correctionto the
potentialvanish,or

Ai,jmax= 0 . (18)

A dummy row or Y = constantline at J = 1 is used to implementthe body

boundaryconditionof flow tangency. This conditionrelatesthe values of the

correctionat J =1 to those at J = 3, or for conicalflow yields:

10



Ai,1 : Ai,3 " (19)

In this way, centralderivativescan be used for Fy and the body surface

coordinate line can be treated like any other coordinate line.

The order of the factors in both AF schemes were chosen so that the first

sweep is carried out on Y = constant lines. This was chosen over the reverse

factorization so that periodic end conditions could be imposed on the

intermediate variable G, or

GI,j = G3'j (20)

GIC+I,j= GIC_I,j

which most certainlyis a reasonableassumption. If the factors in the AF

schemes are reversed,then somewhatarbitraryboundaryconditionsmust be

imposedon the intermediatevariableG. The end conditions(18) and (19) then

apply to the second sweep on the X = constant lines.

2.2.4 Temporal Dampin9

It has been indicatedthat the basic AF1 schememay be unstable in

supersonicregions. To allow for this possibility,the AF1 scheme has been

generalizedto includean explicittemporal dampingFst (e.g., @st) term.

Jameson'sgeneralizedAF scheme16 includessimilarterms in both factors. In

Reference 12, it was indicatedthat this term may also he requiredin the AF2

scheme. It was found that adding this term explicitlyto the first factorwas

sufficientto maintain stabilityfor flows with capturedshocks. This

stabilityor temporaldampingterm has the form5:

V1 U1

-_ ast : - € _cc _Y + _cc (Ki_x + K2_x)

where

P

K

TI_ < € < Cmax K (21)

= I0
max

11



In general,the additionof the temporaldampingslows convergence. Hence,

the form of the factor _ was chosen to maximize the dampingin the vicinityof

sonic lines or across shocks so as not to cause an overalldegradationin the

convergencerate. The constant K is chosen to be as small as possible for the

optimumconvergence.

In general,there are no restrictionson the sweep due to the velocity

directionsin an AF1 scheme. The first sweep can be from the outer boundary

to the body surfaceor the reverse. In order to properly includetemporal

dampingin the AF1 scheme,the first sweep must be in the directionof the

supersoniccrossflow. This requiresthat the Y = constant sweep must be

towards the body or decreasingJ since V < O.

In the supersonicproblem(unlikethe transoniccase), it was observed

that the AF1 scheme requiredlittle or no temporaldampingexcept for the most

difficultcases whereas the AF2 scheme requiredconsiderablyhigher values of

€ for the strong Y-shocksolutions.

2.2.5 AccelerationParameter

For the AF1 scheme,the maximumand minimum values of the acceleration

parameter_ were taken as

1 1

°Lmax= Amax AX-_ ' AY-'_-
(22)

1 I
amin = Amin A-X' _ "

The coefficientsAmin and Amax were taken anywherefrom 0.5 to 4.0 for

all the cases computed. The convergencerate could be affectedby as much as

a factor of two by a judiciouschoice of these parameters.

In the AF2 scheme,these parameterswere chosen as

1 1
amax = Amax a-_'

(23)
1 1

amin = Amin A--X' A-T

12



where Amin varied between0.5 and 6 and Areax between 3 and 6. Typically,

unity for Amin and three for Amax was sufficientfor most cases. The

theoreticalvalue of omin = 1 or 2 could never be achieved,possiblydue to
the effect of the variouscoordinatetransformations.

For both AF schemes, the cyclic variationof _ took the form

I-i
IMAX-I_min

for I = i, IMAX (24)
_I = _max _max

where IMAX = 3 for the AF1 scheme and IMAX= 6 for the AF2 scheme. The

minimum number of cycles seemed to be the best choice for the AFI scheme. The

convergence rate of the AF2 scheme was affected insignificantly for IMAX

between 3 and 6. Further increase in IMAX reduced the convergence rate. In

all of the cases computed, mAF]_= 1.50 or 1.70 and mAF2= 1.33. Departures

from Eq (24) did not seem to affect significantly the convergence rates.

2.2.6 Conical Results

Two techniques are available for the computation of supersonic conical

flows: the bow shock capture 2,4 (BSC) and bow shock fit 5 (BSF) methods. In

the BSCmethod, an outer mesh boundary p = C(0) is prescribed, and the bow

shock_is captured within this boundary. The BSCmethod is a more stringent

test of the AF schemes in that two shocks may be present in the flow, the bow

shock (Y-shock) and an embeddedcrossflow shock (X-shock) as illustrated in

Fig. I. The bow shock is the most critical in that its position and strength

largely determine the internal flow. The bow shock also extends around the

entire field encompassing more points than the embedded crossflow shock. The

BSF method fits the bow shock as the outer boundary and, hence, eliminates the

bow shock from the internal flow calculation;if an embedded supersonic

crossflowregionis not present,the internalflow problembecomes elliptic.

+ The conicalconvergencerate of the BSF method is largely determinedby the

implicitshock fittingprocedurewhere the shape of the boundaryis updated

and usually underrelaxeduntil the isentropicshock jump conditionis

fulfilledat each shock mesh point. The conicalBSF method also requiresmore

13
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computationaltime per iterationbecausethe crossflowmesh and metricsmust

be recomputedfor each iterationafter the bow shock shape has been updated.

For conical flow, the BSC method is used primarilyto evaluatethe AF

_- schemes. Figure 2 shows the effect of reversingthe order of the factors in

the AF1 scheme for a thin ellipticcone at M_ = 2.0, _ = 0°. The AFlXY scheme

representsthe order of the factorsindicatedin Eq (7) and (14) where

periodicend conditionsare used for the intermediatevariableG. The factors

were then reversed (AFIYX)with the first sweep occurringon X = constant

lines. Two differentboundaryconditionswere used: settingGi,1 = 0 as the

end conditionin the tridiagonalon the dummy row below the body; and using

Gi,1 = Gi,3 as the periodicend condition,as is the case for the conditionon

the correctionAi,1.

All three cases were run with the same _ variation. As shown in Fig. 2,

the resultsare quite sensitiveto the boundaryconditionon the intermediate

variable,and making the intermediatevariablemimic the correctionseems to

be the best choice. Even with this boundarycondition,the YX factorization

does not give identicalresultsto the XY factorizationand seemed to be

somewhatmore sensitiveto the _ variation. Hence, the AFIXY scheme was used

for all the computations.

Figure 3 shows a comparisonof the convergencerate of the maximum residual

for the AF1 and SLOR schemesfor a thin subsonicleadingedge elliptic cone (6c

= 20°, ac = 2°) on a (48 x 38) crossflowmesh at M_ = 2 and angles of attack _ =

0° and 10°. The SLOR scheme found to be optimumfor this problemin Ref. 5 is

one that sweeps around the bodyon X = constant lines. The "column"SLOR scheme

was found to be two to five times faster than the alternateSLOR scheme which

sweeps toward the body on Y = constant lines. It is interestingto note that

after one or two orders of magnitudereductionin the maximum residual,the SLOR

scheme for the supersonicfreestreamproblemdoes not exhibitthe typical

- slowdownin convergencerate that occurs in transonicflow problems. A break in

the SLOR curve occurs after one order of magnitudebut remainslinear for

- furtherreductions. It is also interestingto note that the SLOR convergence

rates of the m = 0° and m = 10° flows are not dramaticallydifferent,both

taking about 350 to 400 iterations,consideringthat the 10° case is a

multishockedflow. At m = 10°, a strongcrossflowshock develops but is

evidentlyovershadowedby the convergenceof the capturedbow shock. The AF1
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scheme at _ : 0° convergesvery quickly. Essentially,these flows are

convergedwhen the maximum residualreaches10-2. For a = 0°, this occurs at

about 10 iterationsor when the log (RESMAX)= -2. The AF1 scheme is an order

of magnitudefaster than the SLOR scheme for _ = 0°. As the angle of attack

increases,the AF1 scheme slows down by a factor of 3 while the SLOR remains

about the same. Overall,the AF1 scheme is at least three times faster

iterationwise than the SLOR scheme. The relaxationfactor was 1.5 for these

cases in both schemes,and three cycles were used in the AF1 scheme. A larger

number of cycles did not seem to enhanceconvergence. Figure 4 shows the

surfacepressuredistributionsfor the ellipticcone computed in Fig. 3 at m =

0°, 5°, and 10° and M_ = 2.0 on a finer mesh. Both _ = 5° and _ = 10° have

crossflowshocks on the leeward surface. Figure 5 shows the computed

crossflow streamlinepatternat _ = 10°. As mentionedearlier, the V

componentof velocity is negative. The crossflowstreamlinesemanate from the

bow shock and travel toward the body surfacecoalescingat the leeward and

windwardvortical singualrities. One streamlinestagnateson the body and

wets the body surface. Also shown is the extentof the embeddedsupersonic

crossflowregion,which terminatesat the crossflowshock.

Before the AF2 scheme was implemented,the effect of splittingthe

transformationderivativesbetweenthe two factorswas studied. Figure 6

indicatesthe effect of using differentforms for the term Hm in Eq (16). If

the transformationderivativesare neglectedin the factorization,the case

could only be run when the _ variationwas increasedsignificantly.

Increasingthe minimumvalue of a generallydegradesthe convergencerate.

The best convergencewas achievedwhen both the metric and the shearing

transformationderivativeswere includedin the term Hm. The two curves in

Fig. 6 with Hm other than unity were obtainedwith an alpha variationthat

divergedwhen Hm = 1. Hence, the AF2 scheme seems to be sensitiveto the

coordinatetransformations,and the convergencerate can be affected

significantly. The form of Hm is not consideredto be optimum, and further

analyticaland numericalstudiesshould be conductedto study its effect on

the convergencerate. A nonoptimumHm may also affect the minimum values of
that can be used.

Figure 7 shows a comparisonof the convergencerates of the AF1 and AF2

schemes for the ellipticcone of Fig. 3 at _ = 10°. A comparableconvergence

17



M = 2.0
oo

-0.4' 0 =20 °, 6 =2 °
Y X c c

(82 X 58)

-0.3"

Cp _ _,,,_,

-0.2 _ = 10 °

Z

-0.1

0 I I I I

0.2 0.4 0.6 0.8 1.0

X/XLE

0.1.

0.2 "_

0.3

0.2

Y
XLE

0 I I I m_"_ 1.0

-0.2

1264-004(T)

Fig. 4 Surface PressureDistributions forSubs0nic
Leading EdgeElliptic Cone (BSC)

18



Mo== 2.0

= 10°

CROSSFLOW
SONIC LINE

1264-005(T)

i

Fig. 5 Crossflow Streamline Pattern for

Subsonic Elliptic Cone (BSF)

19



0.0 25.0 5 .0 7 .0 100.0 125.0 150.0 175.0 200.0

ITERATIONS
1264-006(T)

Fig. 6 The Effect of TransformationDerivativesonthe AF2 Scheme(BSC)

3.00 -

M==2.0,_ = 10°

2.00 0c = 20°' 6c = 2°

i_ 148x 381

,oo i

_'€ o.oo \_"_

-i.00.
L_
0

-2.00 ]

.3.oo.-4.00 J

' o ' ' 6 ' o0.0 2 .0 40.0 60.0 8 .0 100.0 12 .0 14 .0

ITERATIONS
1264-007(T)

Fig. 7 Comparison of AF1 and AF2 for a Multi-shock Flow (BSC)

2O



rate was eventuallyachievedwith the AF2 scheme. Further investigationof

the AF2 schemeled to more problems (see Ref. 17) and more sensitivity(i.e.,

not user friendly)to the choice of accelerationparameters. Hence, the AF2

scheme does not seem to have any advantagesover the AF1 scheme and was not

furtherconsideredfor implementationin NCOREL.

2.2.7 Mesh Refinement

In Ref. 14, it was observed that for transonicflow, mesh refinement

enhancedconvergencefor SLOR but did not significantlyaccelerateconvergence

with the AF schemes. This is apparentlynot the situationwith supersonic

flows where the bow shock formationis a critical factor. This is

demonstratedin Fig. 8 for the subsonicellipticcone at _ = 5°. The mesh

refinementin the AF1 schemeyields a factor of three enhancementin

convergencerate over the same computationon a single fine mesh. Mesh

refinementalso enhances the convergencerate of the SLOR scheme. The mesh

refinedAF1 indicatesa factorof six to seven over the mesh refinedSLOR

result,which is similar to the reductiongained for a single mesh solution.

2.2.8 Bow Shock Fit

The AF1 schemewas also adaptedto th_ conical bow shock fit method. In

the BSF method, the captureof the bow shock is eliminatedfrom the internal

flow field. For any given outer boundarywithin or coincidentwith the true

bow shock, the internalflow field will quicklyconverge. Hence, the

convergencerate is largelygovernedby the iterationscheme for determining

the bow shock positionthat satisfiesthe isentropicshock jump conditions.

Typically, the updatedbow shock boundarymust be underrelaxedat each

iterationso as not to disturb the convergenceof the internalflow field

computation. The bow shock boundaryalso has to be underrelaxedso as not to

overshootthe correctbow shock position,which would cause the internalflow

attempt to capture a portionor all of the bow shock, thus leading to

divergence. The major advantagein applyingthe AF schemesto the BSF method

is that the correct bow shock informationwill propagatefaster to and around

the boundary and allow greatervalues of the shock relaxationparameter(ms),

leading to an enhancedoverallconvergencerate. Figures 9 and 10 illustrate

the AF1 convergencerate of the subsonicellipticcone in comparisonto SLOR

at _ = 5° and 10°, respectively. In Fig. 9 and 10, the maximum residual

convergenceis shown. In the SLOR curves, the shock relaxationparameterwas
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0.75 and 0.50, respectively,for _ = 5° and _ = 10°. Higher values cause

divergenceof the flow field. It was observedthat with the AF1 scheme the

shock relaxationparameterdid not requireunder-relaxationfor these cases

and could be taken to be equal to unity. Hence, in the AF1 scheme both the

bow shock and internalflow field converge faster than the SLOR. As a result,

a similarenhancementin convergencerate is obtained for the BSF method as

compared to the earlierresults indicatedfor the BSC method.

2.3 NONCONICALOR THREE-DIMENSIONALFLOWS

The AF1 and AF2 schemesboth worked well for quasi-two-dimensional

conical flow yielding convergencerates two to ten times faster than SLOR.

The AF2 scheme was somewhatmore sensitivebecauseof the split Y derivative

and the need to include the coordinatetransformationderivativesin the

factorization. Hence, for the presentstudy, the AF1 scheme will be

consideredfor the nonconicalor three-dimensionalflow problem. When the

shearing transformationis appliedto Eq (1), the principalterms of the 3-D

full potentialequationcan be rewrittenas

L(@i,j) = (A1 + B1)Fxx + (A2 + B2)Fxy

+ (A3 + B3) Fyy + B8Fzz + B9Fxz (25)

+ BIoFyz+ B11Fz + ...

where the Bi coefficientsrepresentthe additionalnonconicalR or 3-D

terms. The Bi coefficientsare rather complicatedand are definedin Ref. 4.

The geometry is assumedto be conicalat the apex or R = 0 of the

configuration. Marching solutionsare then obtainedon sphericalR or Z =

constant surfaces. The terms FZ and FZZ always have upwind differences,

whereasthe FXZ and Fyz terms are smoothlyswitchedwhen mixed subsonic/

supersoniccrossflowoccurs. A first-orderaccurateFZZ differencerequires

informationat two previousplanes. Initially,the AF1 schemewas appliedto

the crossflowplane XY terms of Eq (25) with the Z derivativestreatedas

forcingterms evaluatedwith old values of the potential. This scheme turned

out to be slower and resulted in divergencein many cases when compared to the

optimum SLOR, which includesall the principalZ terms in the tridiagonal
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matrix. Hence, a factorizationwas sought that would maintain the XY

crossflowconvergencerate of the AF scheme and still retain the SLOR

efficiencyfor the Z _terms. The followingAFIZ factorizationwas proposed for

.- subsoniccrossflow,Q_ <
a2:

la _X_X -B8 -B9axc -BII_ Gn+l n- (AI+ B1) ___ A--AZ--Ji,j = c_(_i,j) (26)

_ + _Y_Y_ _Yc _ = Gn+l
i,j i,j

a (A3 B3) A-_ BIO 2AyAzj An+l

where 6Xc and _Yc represent second-order, central, first-derivative operators,
or

aXc= ( )i+l,j- ( )i-l,j

(27)

aYc= ( )i,j+l- ( )i,j-i"

The Z terms (e.g., FZZ) do not factor becauseof the hyperbolicnature of the

problemand hence are added explicityto the two factors.

The FZZ differencecontains the unknownvalue of the potentialat the

current stationand the two known valuesof the potentialat the two previous

stations. Except for the nonconicalcoefficientsof the FXX and Fyy terms,
the Z terms are added explicitlyto each factor. Includingthe Z terms in the

factorizationwas also necessaryto maintain diagonaldominanceand conver-

gence. In many cases, neglectingthe Z terms in the AF scheme not only slowed

convergencebut actually resultedin divergence. For supersoniccrossflow,

2 a2
the factorizationwas modified to includethe upwindZ terms or, for Qc > '

- Alc Ax-T- Is (KI_x_K2_x)_ , n+l = nAX2 _ _ - Gi,j awL(@i,j)
(28)

( _Y_Y _V _Y ) An+l = Gn+l
a - ABc _+ (ABu+B3)__ BI0 _ i,j i,j "
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It was found that the off diagonal terms of the FXZ derivativecould be

includedin the subsoniccrossflowregion but not in the supersonicregion

leading to the followingfor the 6XZ operator for U > O, or

= )n+l n
_XZ ( i,j,k- ( )i-l,j,k- ( )i,j,k-1+ ( )i-l,j,k-1

(29)

n+l n
^_Z = ( )i+l,j,k- ( )i,j,k- ( )i+l,j,k-1+ ( )i,j,k

where the subscriptK refers to the presentR stationand K-1 refers to the

known values of the potentialat the previousstation. Hence, care must be

taken to preservethe proper balanceof new and old values of the potential.

Because of the split nature of the governingequation and R dependence,

the AFIZ scheme was found to convergemost reliablyand optimallyif the

accelerationparameter_ was scaledwith R, or

1 1
_min ~ amin A-_' _ (1 + R)

(30)
1 1

O_ax ~ areax Axe, Ay_(l + R) .

Hence, the accelerationparametervariationreducesto the conical value at R

= 0 and increaseslinearly with R as the marching solutionsare obtained.

Since the nonconicalcoefficientsare scaledwith R, the acceleration

parametersmust also be scaled. This scalingwill cause the retentionof

approximatelythe same convergencerate for a body of length unity versus an

arbitrarydimensionallength.

2.3.1 Three-dimensionalApplicationsof the AFIZ Scheme
m

Although it is impossibleto test the AFIZ scheme for all possible

situations,test case computationswere carriedout on a varietyof arbitrary

wings and bodies. The followingtest cases were computedwith the bow shock

fit option.

Figure 11 illustratesthe convergencehistoryof the first case of a

highly swept delta wing at M. = 1.80, _ = 0°. The wing geometryconsistsof a
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paraboliccenterlinethicknessdistributionwith ellipticspanwise cross

sections. As is the case for most three-dimensionalwings, the geometry

commencesnear the apex with a thick (e.g.,3:1 major to minor axis ratio)

cross sectionwhich becomesthin and eventuallyapproachesa flat plate cross

section at the trailingedge. Figure 11 shows the number of iterations

requiredper marching step to reducethe maximum residualto 10-3 (i.e.,a

minimumof four orders of magnitude)for the SLOR and AFIZ schemes. Step 0

refersto the conical or R = 0 solution requiredto start the computation.

Fittingthe bow shock as the outer boundary reducesthe internalflow field

computationto an elliptic problem if an embeddedsupersoniccrossflowregion

does not form. For this case, the entire flow field was elliptic. Mesh

refinementis used only at the conicalstation,and the marching proceedson

the fine mesh using the previousstationsolutionas an initialguess. The

iterationsat step 0 reflectonly the fine grid convergence. The AFIZ scheme

shows large gains for the initialsteps. At the initialsteps, the geometry

changesmost rapidly. The AFIZ gains taper off as the cross section becomes

quite thin. The SLOR scheme has some difficultycomputingthe latter stations

in comparisonwith the AFIZ scheme. Step 30 correspondsto the centerline

trailing edge. The calculationis taken beyondthe trailing edge in order to

computethe entire wing. The wake is assumedto be a flat plate, which in

this case is an exact assumption. The total iterationsfor the run are also

shown in Fig. 11. The SLOR computationtook 2010 fine grid iterations,and

the AFIZ scheme requiredonly 672 iterations,producingan overallfactor of

three reductionin iterations. The actual computationtime, which includes

geometryand mesh generation,was reducedby a factorof two.

The next case, shown in Fig. 12, is for a 67° sweep angle arrow wing at

M_ = 1.75, _ = 5°. The geometryconsistsof a symmetrical,NACA 4% thick,

four-digitairfoilimposedchordwiseon the wing. The wake is approximatedas

a flat plate. In this calculation,the flow field very quickly becomes

supercriticalat R = 3 or STEP 4. The same trends apply for this case except

that the SLOR scheme does not have any rise in iterationsnear the trailing

edge of the wing. The interestingaspect of the AFIZ scheme is that the °

number of nonconicaliterationsrequiredper step is relativelyconstant and

independentof the geometryvariation. Almost a factorof three reductionin

iterationsis again achievedby the AFIZ scheme correspondingto a factor of

two in runningtime. Hence, the appearanceof supercriticalcrossflow and a
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crossflowshock does not seem to deterioratethe AFIZ scheme significantly.

In addition,aft of the trailingedge, the crossflowshock merges with the

trailing edge shock.

Another case, shown in Fig. 13, is for a realistic,supersonicmaneuver,

demonstrationwing designedwith the aid of NCOREL18 and tested by NASA

Langley. Details of this wing can be found in Ref. 19. This wing has a

variablesweep leadingand trailingedge. The leadingedge planform angle

varies from 25° to 33°. The wing also has significanttwist and camber.

Figure 13 shows the convergencehistoriesfor the two schemesat Moo= 1.62 and

= 14°. The wake is approximatedby a flat plate extensionof the wing

spanwisecamberline. For this wing, supercriticalflow also appears at R 3

or STEP 4. Similartrends apply for this wing except that the AFIZ scheme

gains are reducedaft of the trailingedge of the wing. The overall reduction

in iterationsis similar,being almost a factor of threeand correspondingto

a factor of two reductionin runningtime.

All of the previous cases were run on a relativelyfine grid (58 x 58).

Figure 14 shows the iterationratio of the SLOR to AFIZ scheme for several

grids, correspondingto the DEMO wing computationof Fig. 13. The AFIZ scheme

performsalmost as well on the cruder meshes as on the finest mesh, retaining

between a factor of two to three reductionin number of iterations. Figure 14

does indicatethat the performancegain will increaseon the finer grids.

The AFIZ scheme performswell for wing computations. The next set of

cases will test the scheme for body computations. Figure 15 shows the

conVergencehistoryfor an axisymmetriccirculararc cylinder body at M_ =

1.60,•_= 10° on a 58 x 58 mesh. For this case, the crossflowis subsonic

along the entire length of the body and, hence, shockless. The AFIZ scheme

performsnicely by reducingthe number of iterationsby a factor of four.

Figures 16 to 18 show anotherset of computationsfor a more difficult

body shape: an ellipticcross section(3:1 axis ratio)with a Haacke-Adams

area distribution. Figure 16 shows the computationsat M_ = 1.60, _ = 5° on a

58 x 58 mesh. Better than a factor of four reductionin number of iterations

is achievedfor this condition. Figure 17 shows a higher Mach number case (M_

= 2, _ = 5°) for the same body. For this condition,just under a factor of

three reductionwas achieved. Both schemesseem to have difficultyin the

supercriticalcrossflowregionthat commencesat around 20 in the marching
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steps. Figure 18 shows an even more extremeand difficultconditionto

compute,M. = 2, _ = 10°. For this condition,the crossflowis supersonicat

the conical start, with the crossflowshock becomingincreasinglystronger

toward the aft end of the body. The AFIZ scheme performswell initially,but

both schemesbegin to have difficultytowardsthe aft end of the body. Not

quite a factor of two reductionin iterationsis achieved.

In summary,the AFIZ scheme seems to be reasonablyreliableand can be

made to run faster than the SLOR scheme over a wide range of configurations.

Even for difficultbow shock fit computations,the AFIZ will run faster

althoughthe gains achievedare not as great as at the lower Mach number

conditions. It must be mentionedthat the effect of the AF parameterswas not

intensivelyexplored for the previouscomputationsand, hence, a more thorough

study of these parametersmight yield greaterreductions.

2.4 PARAMETERSELECTION

Although it is impossibleto test the AFIZ scheme for all possible

situations,test case computationswere carriedout on a varietyof arbitrary

wings and bodies. The _ variationthat was found to work best in a varietyof

cases was

_ 2
- _ (1 + R)amax

(31)
1

_min = A--_(I + R)

where the cycles between Omax and amin are two or three for crude to medium

meshes (16 x 16 . 48 x 48) and four for finer meshes (58 x 58 and above). The

exception to this rule is for more difficult bow shock fit cases at high Mach

number or incidence. For these cases, the alpha range of Eq (31) should be

raised. For example, in Eq (31), Amin = i, Amax = 2; these values might be

raised to Amin : 2, Amax : 4 for the crude mesh to get the bow shock fit

computation started. In addition, the number of cycles ITMAXmight be raised

to 6 on the crude mesh. After the crude mesh is successfully computed, the

default values can probably be used on the finer and nonconical meshes.

The AFIZ scheme can be run with a relaxation factor (m) for the residual

up to 1.7. Since the AFIZ scheme converges faster than the SLORscheme, the
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bow •shockrelaxation(ms) factorscan also be increasedboth at the conical

start and at the no'nconical•stations.Typically,ms = 3.0 was used at the

nonconicalstations. The temporalartificialviscosityor dampingterms

controlledby the parameterEST are also includedin the AFIZ scheme. For

most cases, with the exceptionof difficultcaseswith strong embeddedshocks,

the AFIZ sheme can be run with the EST parameterset to zero. For cases•that

requiredamping, the value of EST shouldbe set at very small values (e.g.,

-0.001 ) EST > -0.10). For most cases -0.01 or -0.001 is sufficient. Nonzero

values of EST in the AFIZ schemedegradethe convergenceconsiderablyand

should be avoided.
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3. WAKE FLOWS

In general,wake flows are characterizedby a discontinuityor slip in

velocitywith a continuityin pressure_ In potentialflows, a jump in

potentialis prescribedacross the wake which accountsfor the circulationor

lift about the wing or airfoil. In two-dimensionalpotentialflows the

velocity is continuous,but the potentialhas a constantjump across the wake

streamline. Matching pressuresat the trailingedge in the wake cut also

impose a Kutta conditionand cause the wake streamlineto leave the trailing

edge in adirection along the trailingedge bisector. For the Euler equations

the situationcan be differentbecauseof entropylosses across shock waves.

If shock waves of differentstrengthsexist on the upper and lower surfacesof

an airfoila slip line with a jump in velocitywill arise in the wake due to

the differencesin total pressure and entropyalong the upper and lower

surfacestreamlines.

On the other hand, in three-dimensional_flows, contactdiscontinuities

arise in the wake for both Euler and potentialflow formulations. In

addition,in three dimensions,dependingun the trailingedge geometryand

flow conditions(e.g., cusped or'finiteangle), the trailing edge streamline

will leave tangentiallytO one of the surfacesor at the mean angle of the

trailingedge20. In potentialflows, the slip in velocityis due to a

discontinuityin the directionof the total velocityvector at the wake

surface. The magn!tudeof the velocityvector must match on the wake to

impose the Kutta conditionand continuityof pressurealong the wake

surface. The discontinuousdirectionof the wake surfacetotal velocity

vector causes at least two of the three componentsof velocity to be

discontinuousor to have a slip. For the most part, in three-dimensional

transonicflows, the wake is treated in a similarfashionto its two-

dimensionalcounterpart. The jump in potentialfor a particularairfoil

sectionis assumedconstant to downstreaminfinity. This approximation

matches the longitudinalor axial velocity. A continuousvelocity is also

• imposed throughthe wake surface. The spanwisevelocityon the wake surface

is not matched and is just proportionalto thevariation in circulationor

lift and, hence, to the variationin the spanwisepotentialjump for each

airfoilsection. Hence, the magnitudeof the total velocityvector and
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resultantpressureis only approximatelymatched on the wake surface. This is

a good approximationfor wings that are not highly swept or tapered. A

similarwake treatmentis used by Shanker,et al21 for three'dimensional

supersonicflows.

Up to the present time, no attempthad been made to model the wake in

NCOREL,and a flat plate treatmenthad been utilized. The successful

applicationof NCOREL to three-dimensionalwings and bodies suggestedthat a

wake treatmentmight furtherextend its applicabilityto wing-bodyand more

complex configurations.

In the present formulation,the wake is also modeledapproximatelyas a

planar cut in three dimensions. Here, the Kutta conditionat the trailing

edge and the continuityof pressureon the wake surfaceare imposed exactly.

Therefore, as distinct from other treatments,the behaviorfor the jump in

potentialis not prescribeda priori,but rathercomputed at every point on

the wake surface. Initially,a conicalwake problemwill be discussedalong

with some specialaspectsconcerningthis problem. These basic techniquesare

then readilyextendableto the fully three-dimensionalflow about wings and

wing-body configurations.

3.1 CONICALWAKE PROBLEM

A conicalwake problemwas devisedto test the basic numerics requiredto

solve the fully three-dimensionalsupersonicwake flow. In this problem,

sketchedin Fig. 19a, the wing cross sectionand wake surface share a common

apex. This problemhas alreadybeen consideredby J.H.B. Smith(22), where

some generalbehaviorwas postulatedtheoreticallyand will be discussedin a

later section.

The wake is modeled as a planar surfacecut of infinitesimalthickness.

The wing cross sectionand wake cut (see Fig. 19b) are then mapped to a near

circle (p, o, R) using conformalmappings and furthershearedto a

computationaldomain (X, Y, Z).

Flow tangencyis obtainedby using a dummy row of grid points around the

body whose values are obtainedby imposingthe vanishingof the normal

velocitythroughthe Fy derivative. For positiveangle of attack, the flow on

the lower surfaceof the wake cut is computedwith the boundaryconditionthat

the velocitycomponentthroughthe wake cut is continuous.
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The velocitycomponentsfor conicalflow are definedin the mappe(l

coordinatesystem (p, B, R) as:

1 +u 1
U = p-;ITFO - = p-;Fr(FxXB+FyYo)+ u

v =!_Fp + v =_TFyYp + v (32)

W=F+w

where @ = RF(p,O)and U is circumferentialand W is the radial velocity

component. The airfoiland wake cut are definedas Y = 0 in the computational

domain. If a variablejump in potentialexists along the wake segment, in

general,the U velocitywill reflectthis discontinuityor slip, and the V

velocity (which does not have Fx in its definition)will be constrainedto be
continuous.

For V to be continuous,the conditionthat

+

Vw = -Vw (33)

must be imposedon the wake cut where the change in sign reflectsthe opposite

sense of the mapped cylindricalcoordinatesystem. This condition (33)

furtherreducesto

FyYp - FyYp +
(_) : - (_) (34)

since the correspondingupperand lower wake surfacepoints map to the same

point in physical space yielding the same freestreamvelocity. The wake

condition (34) is imposedby computingthe valueof Fy in a one-sidedfashion

on the upper wake cut and is then used as the boundaryconditionon the lower

wake cut. The computationalmethod proceedsby computingon lines X =

constantcommencingat the lower symmetryplane and sweepingaround to the

upper symmetryplane. On the lower wake cut, the governingfull potential

equation is satisfiedsubjectto condition(33). On the wing surface, flow

tangency is satisfied. Both conditionsuse a Neumannboundaryconditiongiven

by the dummy row of potentials. On the upper wake cut, the full potential
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equation is not satisfied. Instead,a jump in potentialis assumedto exist

at every point on the upper wake cut as

+ = Fw + AF(Bw) .Fw

The upper wake cut X = constantlines are then solved as a Dirichletproblem

once a_jump in potentialhas been imposed.

In summary,the X = constantlines emanatingfrom the lower wake cut are

solved by using a Neumann type boundaryconditionobtainedfor condition(33)

where_Vw+ is derivedfrom a one-sideddifferencein the upper wake plane.

Hence, communicationacross the wake exists withoutexplicitlydifferencing

across the wake cut, thus eliminatingthe necessityfor interpolation. An

equation for the jump in potentialis now needed that matches the pressures

all along the wake cut. For potentialflows, it is a sufficientcondition to

match the total speed along the wake cut for the pressuresto match. Equality

of total speed can be expressedby the equation

O(Uw+-Uw_)+ fl(Vw+-Vw_)+ _(Ww+-Ww_)= 0 (35)

where

O : Uw+ + Uw_

fl= Vw+ + Vw_

= Ww+ + Ww, •

Some interestingaspectsof the conicalwake problemcan be uncoveredby

. inspectionof Eq (35). At the symmetryplanes Uw_ = 0 and Vw+ = ,Vw_; Eq
(35) then reducesto

=

= Ww_ I (36)Ww+
_X= _ _12

which implies,given the definition(32), that

AFw(X=,2)=F+ -Fw_=0 . (37)
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Hence, in the conical wake problem, for the pressuresto be matched across the

wake cut at the symmetryplane, the jump in potentialmust vanish. Thus, at

the trailingedge, the wake initiallyreflectsthe jump in potentialcoming

off the trailingedge of the airfoil,and eventuallythe jump must vanish at

the symmetryplane in order for the pressuresto match.

In practice,Eq (35) can be implementedrecursivelyby solving for _ in

terms of the U, V and average velocitieson the wake cut. The new value of

the jump in potentialis computedbased on old values of the velocity and is

underrelaxeduntil the full potentialequation,flow tangency,and conditions

(33) and (35) are all satisfied.

Figure 20a shows the conicalpressure solutionon an (82 x 58) mesh about

the airfoil and wake cut at M. = 2.0, _ = 5° and OLE = 20°, 0TE = 10°. A

crossflowshock occurs on the upper surfaceof the airfoil. The pressures

match smoothlyat the subsonictrailingedge. A grid point is not situated

exactly at the trailingedge. A slight expansionoccurs near the symmetry

plane along the wake cut. Figure 20b shows the correspondingpotential

distributionabout the airfoil along with the jump in potentialcomputed for

the wake cut. The jump in potentialalong the wake cut is relativelylinear

except near the symmetry plane. Figure 20c shows the overallcomputed isobar

pattern. Figure 20d shows the streamlinepatternin the vicinityof the

airfoil. The trailingedge streamlineleaves the airfoil smoothly,and it

appearsto leave tangentiallyto the lower surface. The streamlinescrossing

the wake cut are discontinuousdue to the slip in velocityon the wake

surface. An interestingfeatureof this computationis that the wake

circumferentialV velocitiesare negativealong a portionof the upper wake

cut near the symmetryplane. The wake streamlineterminatesat the symmetry

plane as a nodal or vorticalsingularity.

Figure 21 shows anothercomputationfor a thinnerairfoilsection at M_ =

1.7, _ = 5° with 0LE = 30° and OTE = 20°. This computationbehaves in a

similar fashionexhibitinga subsonictrailingedge behavior. For the

trailing edge to be supersonicin the conical wake problem, the crossflowMach

number at the trailing edge would have to be supersonic. The author has not

been able to find a conical situationin which a supersoniccrossflowexists

at the trailingedge.
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It was mentionedpreviouslythat the conicalwake problemhas been

discussedby J.H.B. Smith22. Based on conicalflow theory,Smith postulateda

crossflow streamlinepattern and nodal behaviorsuch as is sketched in Fig.

22. Smith postulatedthat the wake streamlinewould roll up into a nodal

point. Hence, the vorticityshed by the airfoilwould be carried to

downstreaminfinityvia the radial velocityat the crossflownodal or

stagnationpoint. This behaviorcan not be obtainedwithin the present

formulation,but attemptsat fittingtheconical wake problem indicate that

this behaviormay occur. The wake could be fit at low angles of attack (e.g.,

1° or 2°) but could not be fitted at higher angles of attack,possibly due to

the beginningof a rollup behavior.

3.2 GENERALTHREE-DIMENSIONALWAKES

Unlike the conical wake problem,the jump in potentialat each point on

the wake surfaceemanatingfrom a three-dimensionalwing has as its origin an

upstream trailingedge point. Hence, for a liftingwing, in the crossflow

plane, a variablejump in potentialexists along the wake surfaceproportional

to the circulationabout an upstreamstreamlinesection. The conical

conditionthat the jump in potentialmust vanish at the symmetryplane no

longer appliesto the three-dimensionalwing. This conditionis alleviatedin

fully three-dimensionalflows because the radial velocitycomponentnow

contains R derivativesof the potentialthat relate the jump in potentialat

the symmetryplane to its upstreamorigin. The boundaryconditionsand

relationshipsmatching the pressureare the same in the three-dimensional

problem as in the conical problemwith the exceptionthat the velocitieshave

three dimensionalor R derivativesincludedin their definition.

In some respects,the three-dimensionalproblemis somewhatsimplerto

compute since a good initialguess for the jump in potentialin the crossflow

plane can be generatedfrom the jump in potentialacross the wake and airfoil

" sectionof the previous plane. The variationof the jump in potentialalong

the wake surface is not nearly as large as that which occurs in the conical

wake problem. Some underrelaxationmust be used in updating the potential

jump but the overallrate of convergenceis not affected significantlyexcept

when a strong shock interactionoccurs at the trailingedge.

In general,both subsonicand supersonictrailingedges can occur in the

3-D supersonicwake flow problem. Subsonictrailingedges have local Mach
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numbersin a_planenormal to the trailingedge that are less than unity. For

this situation,the wake streamlineleaves the trailingedge smoothly. When

the local normal trailingedge Mach number is supersonic,the airfoil surface

" streamlinewill either expand or pass througha shock in satisfyingthe

pressurecondition. Dependingupon the value of the local normal Mach number

at the upper and lower surfacetrailingedge points,severalflow situations

can exist. For supersonictrailingedges, these are

o Shock- shock

o Shock - expansion.

A shock or expansioncan also occur on one surfacein combinationwith smooth

subsonicbehavioron the other surface. Figure 23 sketchessome of the basic

flow situationsand their characterin the sphericalcrossflowplane. The

trailing edge shock is really a three-dimensionalsurfacewhich takes a shape

similarto that shown in Fig. 23a in the crossflowplane at zero incidence. A

crossflowshock can also coexiston the surfaceof the cross sectionthat will

interactwith the trailingedge shock(s)and/or expansion. One such

complicatedinteractionis sketchedin Fig. 23d from observationsof computed

crossflowplane isobar patterns. The cro_sflowshock and trailingedge shock

intersect,formingtwo resultantshocks. The crossflowshock after

intersectionwith the trailingedge shock exists in the flow on the wake Cut

(i.e.,passes through the trailingedge shock) and is attenuatedbelow the_

wake cut bythe lower surfaceexpansion.

3.2.1 SymmetricCross SectionalGeometries

Symmetricgeometrieswere treatedinitially. The meshes generatedfor

these geometriesby NCORELyield correspondinggrid points in the upper and

lower surfacesof the wake cut. Hence, no interpolationis required at

correspondingupper and lower wake points for the potentialor the speed.

- Figure 24 shows a selectedsample of the crossflowplane surfacepressure

solutionsfor a symmetricarrow wing with 70° leading edge and 45° trailing

- edge sweep angles at M_ = 1.75, _ = 5° commencingwith the sphericalsurface

that cuts throughthe centerlinetrailingedge. Some of the computed wake

pressure distributionsarecompared with the pressuredistribu-tionsobtained

by assuminga flat impermeableplate for the wake. A crossflowshock exists

on the upper surfaceof the airfoil. The upper surfacepressuresindicatea
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trailingedge shock. The lower surfacepressuresindicatea smooth flow

behavioror a Very slight expansion. The flat plate solutionindicatesshocks

on both surfacesof theairfoil. Further down the wing, the trailing edge

shock becomes somewhatstronger,and the crossflowshock approachesthe

trailingedge of the wing. Finally, both shocksmerge just as the crossflow

shock intersectsthe trailingedge and form a single strong shock at the

trailingedge.• At the last station,the crossflowshock has passed through

the trailingedge shock and exists on the wake cut. The trailingedge

solutionindicatesa shock-expansionbehaviorat this point. The trailing

edge shock, crossflowshock, and expansioninteractionare similar to that

sketchedin Fig. 23d.

Figure 25 indicatesa similarbehaviorat M= = 1.75, _ = 10° for the same

arrow wing. The two shocks merge causinga very strong shock at the trailing

edge, and eventuallythe crossflowshock passes throughthe trailingedge

shock and sits on the wake cut with a shock expansionat the trailing edge.

Naturally,this interactionhas the built-inapproximationof modeling the

wake cut as a planar surface. What the effect of fitting the wake exactly

would have on these complicatedinteractionsis not known at this point.

The importantaspect of modeling the wake properly is to be able to

predictthe effect of the wake of a lifting surfaceon a fuselageor other

lifting surfaces. To test the wake model, a seriesof computationswere

carried out on a set of arrow wings built and tested by NASA Langley(see Ref.

23). Figure 26 shows a sample of the isobar patternscomputed,along with the

planform shape and centerbodyfor two of the four models tested at Mach

numbersof 2.36, 2.96, and 4.63. Model 1 has a leading edge sweep of 63.4°,

and Model 2 was highly swept with a leading edge sweep of 76°. The models

were instrumentedfor pressure,and detailedpressuremeasurementsare

availableon both the wing "andcenterbodyat flow spanwisesections. One of

the spanwise stationswas downstreamof the centerlinetrailing-edgeand

serves as a test for the accuracyof the presentwake model. One of _hese

wings was computed previouslyusing NCOREL withouta wake model, with the __:

result that the body pressurescould not be predicted(see Ref. 24)._The

planform isobar patternsclearly show the crossflowshock on the leeward

surface. The crossflow shock intersectsthe trailingedge wherein the

complicatedinteractionof Fig. 23d takes place. Figure 27 shows a comparison
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of measured and computed pressuresfor Model I at two differentconditions,M.

= 2.36, a = 6° and M, = 2.96, a = 10°. Excellentagreementis achieved at the

lower Mach number on both the wing and centerbody. At the higher Mach number

and "incidence,slightlylower pressuresare computed in the vicinityof the

upper surfacetrailingedge. Excellentagreementis achieve'dfor the lower

- wing surface.• The body pressures are in good agreement except near the upper

surface symmetry plane. Unfortunately, the resolution of the body is quite

poor_on the mesh that is currently used because the relative size of the body

with respect to the wing is quite•small for Model i. Comparisons for the

highly swept Model 2 at a : 3° and 6° are shown in Fig. 28 and 29 for M. :

2.36 and 2.96, respectively. Better resolution of the body is obtained for

this model because of its relatively large size•in comparison to the wing.

Good to excellent agreement is achieved for body pressures. Good agreement is

achieved for the lower surface of the wing. Poor correlation is achieved on

the upper surface of the wing at the higher incidence. The higher pressure

supercritical plateau shown by the measured data at a " 6° is usually

indicative of leading edge flow separation and vortex formation and, hence,

correlation with computed pressures would not be expected.

3.2.2 Arbitrary Cross Sectional Geometries

In general, the wing cross-sectional geometry is not symmetric and can

have, camber or twist associated with it. If the leading edge is dropped, the

placement of the singularity of the conformal wing mapping will generate a

grid that will cause a translation of the grid points in the wake cut. Hence,

a lower wake cut grid point will not have a corresponding upper wake point.

This internal grid generation complicates the implementation of t'he wake

computation. Interpolation of the potential and speed from the lower wake

mesh locations into the upper wake must be carried out in order to match_the

pressures and transverse velocity in the wake cut.

Figure 30 shows a selected sample of the crossflow plane solutions for a

camberedarrow wing at M_ = 1.75, a = 5°. This is the same arrow wing as Fig.

24 but with leadingedge chordwisedroop implementedwith a parabolicchord-

wise camber. Figure 30a shows an early stationin the wake. The translation

of the upper and lower wake cut points is evident. This becomesincreasingly

apparentfartherdownstreamin the wake, where twice as many points appear on

the wake cut. The interpolationscheme seemsto work well for general

geometriesand has also been implementedfor wing-bodygeometries.
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4. CONCLUSIONS

An approximationfactorizationtechniquehas been successfullyappliedto

the three-dimensionalsupersonicflow problem. An averageoverallfactor of

two reductionin computer time can be expectedfrom the AFIZ scheme.

Supersonicwake flows have also been computed,in both conical and three-

dimensionalfull potentialflows by modeling the wake as a planar cut with a

potentialdiscontinuity. Continuityof pressurewas satisfiedexactlyon the

wake cut by computingthe necessarypotentialjump at each wake cut grid

point. The conicalwake problem is unique in that the jump in potential

vanishesin the crossflowsymetry plane. Generally,good correlationwas

achievedfor fully three dimensionalwake flows With the planar wake

approximation.
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APPENDIXA: NCOREL
PHASE II VERSION
USER'SMANUAL UPDATE
(NASA CR-3694)

NOTE: The followingvariableshave been added to the NAMELISTinput. Section
VIII summarizesall of the additionalnamelist inputs.

I. ApproximateFactorizationScheme (AFIZ)

An AF1 scheme has been added to NCOREL for both bow shock captureand fit
options. This scheme can reducethe computertime by a factor of two to
three.

NamelistVariable Description

IAF Optionalswitch for relaxationscheme
IAF = 0 (SLOR)
IAF = 1 (AFlZ)

ConicalControl Parameters Description

NCYC(K),K=I, KREF NCYC is the number of cycles from the
AFMIN(K), " maximum to minimumacceleration
AFMAX(K), " parameter.
NCYC = 3 or 4
AFMIN = .5 High Mach (i.e.,> M. = 2.5) starts
AFMAX = 2.0 for bow shock fittingon crude grids

may require6-8 cycles and AFMIN = 3,
AFMAX = 6. Sensitivitymostly to
AFMIN.

Nonconical Control Parameters

NCYCR These parameterstreatedsimilarto
AFMINR conicalparameters.
AFMAXR

Important: The AFIZ is sensitiveto the temporaldamping parameter(EST).
Small values of EST (i.e., -.01 or -.001) should be used or
convergencewill deterioratedramatically.

II. CrossflowY-Stretching

" NPOW Two types of crossflowradialmeshes
are available.

NPOW = 0 EVEN NPOW = O, evenly spaced radial mesh;
NPOW = 1 Clustered NPOW = 1, hyperbolicstretchingwhich

toward body clusters grid points near the body
surface.
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III. Bow Shock Fitting Parameters

IENTRY The code will fit the bow shock
isentropicallyor with the Rankine-
Hugoniotshock conditions. With the
Rankine-Hugoniotshock, the flow
field pressuresare correctedby the
computed bow shock entropy.

IENTRY= 0 Isentropicbow shock
IENTRY = 1 Rankine-Hugoniotbow shock

ITSHKC The number of initial iterationsfor
ITSHKR which the bow shock conditionsare

held fixed before updating.
ITSHKC,conical
ITSHKR,nonconical

ITSHKC= 0 to 15
ITSHKR= 0 to 5

IBOW An additionaloption has been
includedto implicitlyfit the bow
shock in 3D. This optionyields a
fully second order bow shock
computation.

IBOW = 1 First order bow shock. Marching
meshes held fixed.

IBOW = 2 Second order implicitbow shock. 3D
mesh positionupdatedin a •similar
fashionto conical.

Important: IBOW= 2 will significantlyincreasethe computingtime by a
factor of two to three. In addition,it should only be used at
high Mach (i.e.,M, > 2.5). Can eliminatefirst order marching
instabilityat high Mach number using large step sizes. The 3D

" bow shock relaxationparameter (RELNC)must be reducedto near
conical values for IBOW= 2.

ISMO0 Bow Shock Angle Smoothing. This,•
option should only be used as last
resort if bow shock instability•
arises at high Mach number.

; Can be used with IBOW=I or IBOW=2.

ISMO0 = 0 No smoothing.
ISMO0 = 1 Smoothing.
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IV. Geometry Interpolation

ILIN Optionalmapped space body Shape
interpolation.

; ILIN = 0 Linear Interpolation. Should be used
when cross sectionshave abrupt
changes. For example, unfairedwing-
body cross sections or nearly
rectangularbody shapes. The cubic
spline fittingcan produce
unpredictable results. The maximum
number of geometrypoints (e.g.,99)
should be used with ILIN = O.

ILIN = 1 Cubic spline fitting.

V. SupersonicCrossflowRegion

ISUP

ISUP = 1 First order accuratetreatment of
supersoniccrossflowpoints.

-.--._.:_:_!_I_:_P=,2 Second order accuratetreatmentof
supersoniccrossflowpoints.

VI. Wake Computation

IWAKE

IWAKE = 0 Wake cut treatedas impermeableflat
plate

IWAKE = 1 Turns on wake computation. Wake
should be modeledas smooth extension
of trailingedge.

IBODY Only used if IWAKE _ 0
IBODY = 0 "Wingalone
IBODY = 1 Wing-bodyconfiguration

Note: If IBODY = 1, a subroutineBODYW must be includedthat yields the
maximumwidth of the body at a given axial location,

RELWK Relaxationfactor for wake pressure
match

.25 ( RELWK ( 1.0
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VII. Other NamelistParameters

DMINR Maximumresidualtolerancefor
1.E-4 • DMINR • 1.E-2 convergenceat nonconicalstations.

OMEGR Relaxationparameterfor potential
at nonconicalstations.

1.5 • OMEGR• 1.7

Vlll. Summary of AdditionalNamelistParameters

1. ApproximateFactorization IAF
NCYC(K),AFMIN(K),AFMAX(K),K=1,3
NCYCR, AFMINR,AFMAXR

2. Grid Control NPOW

3. Bow Shock Fitting IBOW
IENTRY
ITSHKC
ITSHKR
ISMO0

4. Geometry Interpoiation ILIN

5. Supersonic Crossflow ISUP

6. Wake Computation IWAKE
IBODY
RELWK

7. Other DMINR
OMEGR
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