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Summary where a is the speed of sound, p is the density, _ is
the potential, and the subscripts denote partial deriva-

The nonuniqueness problem occurring at transonic tives. In the absence of shock waves, both forms of the
speeds with the conservative potential equation is in- equation are equivalent. When shock waves are present,
vestigated numerically. Evidence is given supporting use of the conservative form in conjunction with an "en-

tile thesis that the nonuniqueness problem is inherent tropy" condition guarantees (see ref. 1) that the proper _
in the potential differential equation rather than a con- shock jump condition is satisfied. On the other hand,
sequence of the finite-difference approximation. Results use of the nonconservative form leads to an ambigu-
are presented from an extensive comparative study be-

ous jump across the shock waves. With few exceptions,
tween potential and Euler calculations for flow past present-day state-of-the-art working transonic potential
two-dimensional airfoil profiles. This study indicates equation codes use the conservative form.
that the nonuniqueness problem is not an inviscid phe-

For subcritical flows, Bers (ref. 2) has shown that
nomenon, but results from the approximate treatment

the solution for flow past an airfoil section satisfying
of shock waves inherent in the conservative potential the Kutta condition is unique. In the transonic regime,model. A more restrictive bound on the limit of valid-

little has been proven rigorously in terms of uniqueness.

ity of the conservative potential model is suggested. However, in a recent paper (ref. 3), Steinhoff and Jame-

Introduction son showed that numerical solutions of the full potential
equation in conservative form for flow past an airfoil are

When the tangential stresses acting on a volume of not unique. In the same paper, a meticulous study was
fluid are small compared with the normal pressures ex- conducted which indicated that the anomaly is inherent
erted by the fluid, the fluid may be assumed to be invis- in the partial differential equation and not a result of
cid. The mathematical expressions describing the con- its discrete representation. Having reached this conclu-
servation of mass, momentum, and energy of an inviscid sion, the authors went on to conjecture the possibility
flow are known as the Euler equations. In the absence of the anomaly being (1) an inviscid phenomenon, per-
of rotational effects, the inviscid flow can be described haps inherent to the mote exact Euler equations; and

by a single conservation law, the conservation of mass, (2) perhaps a contributing factor in the occurrence of
which can be expressed in terms of a function _, the buffeting.
velocity potential. The irrotational assumption is not Given the preeminent position today of the poten-
always valid. Rotational effects can occur in an inviscid tial approximation in the transonic range for the design
flow as a result of variations in free-stream stagnation and analysis of airfoil profiles, as documented in refer-
conditions, because of the presence of shock waves, or ence 4, it is unnecessary to dwell on the importance of
because of satisfying boundary conditions, as for ex- investigating the conjectures made in reference 3. Such
ample in the case of a lifting delta wing with a sharp an investigation is the purpose of this paper. The paper
leading edge. For flow past two-dimensional airfoils im- is divided into three main parts. First, a brief review of
mersed in a uniform upstream far field, rotational el- Steinhoff and Jameson's study and some new findings
fects are introduced at shock waves. Strictly speaking, made in the course of this work are presented. Second,
within the inviscid assumption, these flows are governed the Euler code described in reference 5 is introduced,
by the Euler equations. However, if shock waves are suf- and both improvements and the validation procedure
ficiently weak, the irrotational assumption should pro- used to determine its accuracy are described. Finally,
vide a reasonable approximation of the flow field. Shock results from a comparative study of the nonuniqueness
waves, under this approximation, are replaced by sharp problem for the potential and Euler models are pre-
isentropic recompressions which approximate the true sented and discussed.
Rankine-Hugoniot shock up to second order in terms of This paper provides results which are more compre-
the shock wave strength, hensive than the preliminary results reported in refer-

Under the irrotational assumption, the conservation ence 6 and corrects some errors in an earlier version by
of mass equation can be written in quasi-linear or the same title, reference 7.
nonconservative form as

(a2 (I,_),I,_ 2_%_y + (a 2 2 ] Symbols- - - _y)_y_ = 0

a = a(¢_ + _5y2) _ (1) a local speed of sound

Cp pressure coefficient
or in conservation form as

(P_x)x -[- (P_y)y = 0 "_ 1 By proper, we mean consistent with the mathematical model

fl = fl((i)2 + dpy2) j (2) mass.beingsolved. In this case, the model requires the conservation of



c airfoil chord p density

cd section drag coefficient 7 ratio of airfoil thickness to airfoil chord

cl section lift coefficient _ velocity potential

Cm section pitching-moment coefficient ¢ reduced velocity potential,

€ = • - (aooMoo)(xcoso_ -I-ysin _)
D damping operator defined by equa-

tion (6) X transonic similarity,

Dx damping operator defined by equa- (1 - M2)/[T('7 + 1)M2oo]2/3

tion (7) Subscripts:

Dy damping operator defined by equa-
tion (8) d value downstream from shock wave

d term defined by equation (9) F far-field value

h cell area i cell index in X-direction

Jm_x number of cells in Y-direction j cell index in Y-direction

L wind-tunnel half-height o value at which nonuniqueness occurs

M Mach number s value upstream from shock wave

r radial distance measured from center of c_ free-stream value
airfoil

Review of the Potential Anomaly
S similarity entropy

While introducing lifting capability to the full-
t time potential, conservative, nonlifting, multigrid code de-

u component of velocity in x-direction scribed by Jameson in reference 8, Steinhoff and Jame-
son (ref. 3) discovered that three converged solutions

v component of velocity in y-direction could be obtained for a symmetric airfoil at zero angle
w vector of conservative unknowns of attack and a fixed free-stream Mach number. These

solutions consisted of a zero-lift symmetric solution and
X computational coordinate along ring of two mirror-image asymmetric solutions with large ab-

"O" mesh solute levels of lift. (See figs. 1 and 2 of ref. 3.) The
x Cartesian coordinate latter two solutions could be obtained by perturbing

the zero-lift solution, which was unstable. The multi-

Y computational coordinate normal to ring grid capability of the code made it feasible to converge
of "O" mesh all three solutions to machine accuracY.2 This unques-

y Cartesian coordinate tionably demonstrated the multiplicity of solutions for
the discrete system of equations. To determine if the

a angle of attack anomaly was characteristic of the partial differential

compressibility factor, (1 - M 2) 1/2 equation being modeled, the following tests were made
in reference 3 with FLO 36:

F circulation 1. The solutions were checked to determine if they

_/ ratio of specific heats had the expected far-field decay corresponding to a
vortex and a doublet in a uniform stream (ref. 9). They

A increment did. In addition, the effect of the location of the outer

€(2) second-order artificial damping boundary was investigated. It affected the lift level
coefficient slightly, but the nonuniqueness problem persisted.

2. Originally, the anomaly was observed for
_(4) fourth-order artificial damping an airfoil with nonzero trailing-edge included angle.

coefficient To determine the effect of imposing the Kutta con-

0 polar angle measured counterclockwise dition, a Joukowski profile was investigated. The

from trailing edge 2 Residuals were of the order of 10 -12 in a CDC (_ CYBER

term defined by equation (13) 203 computer for the eases reported here.



Joukowski profile, with its cusped trailing edge, requires exists at the differential equation level of the conserva-

a smooth matching of the pressures on the upper and tive potential formulation. Therefore, with no evidence
lower surfaces. The numerical solutions showed the to the contrary, we will proceed under that assumption.
proper trailing-edge behavior, but again the anomaly An interesting feature of the results presented in ref-
persisted, erence 3 was the occurrence of a "gap" in the lift curve.

3. The convergence of these solutions with mesh (See fig. 1.) This gap was explained in reference 3 in
refinement was investigated by using grids with 96 x 24, terms of a hysteresis effect. In the present investigation,
128 x 32, 192 x 48, 256 x 64, and 384 x 192 cells in the it was determined that the gap comes about because the
X- and Y-directions, respectively. All solutions were lift becomes a multivalued function of the angle of at-
found to change little with mesh refinement, tack in this range. However, since the angle of attack

4. The effect of artificial viscosity was tested by remains a single-valued function of the lift, the prob-
using both first- and second-order accurate expressions lem can be made well posed by prescribing the lift and
for this term, with no effect on the anomaly, letting the numerical solution determine the angle of

5. Since all calculations were originally made with attack which satisfies the Kutta condition. (A similar
an "O" mesh defined by a conformal circle mapping, technique was successfully applied by the principal au-
calculations were tried with a "C" mesh. The multiple thor to another nonunique problem, ref. 15.) In this
solutions were also observed with the "C" mesh. manner, the complete lift curve for an NACA 0012 air-

6. Similar results were obtained with the conserva- foil has been evaluated at Moo -- 0.83 with FLO 36, a
tive finite-difference, potential code described in refer- modified version of the code described in reference 3.
ence 10. The results are shown in figure 2.

In addition, during the course of the present inves- For the NACA 0012 airfoil, the results presented
tigation, we found the following results: in figure 2 show the anomaly occurring in the neigh-

1. The multiple solutions also occurred with the borhood of the zero angle of attack. It should not be
conservative potential code described in reference 11 inferred from this that the anomaly occurs only at this
(TAIR). Mach number and narrow range of angles of attack.

2. A standard feature of these potential codes is At any given Mach number in the transonic regime,
the requirement that the reduced far-field potential a range of angles of attack can be found where the
Cr satisfy the leading term of the compressible vortex nonuniqueness occurs. For example, for the NACA 0012
solution; namely, airfoil at Moo = 0.79, it appears at around a -- 1°; at

Moo = 0.60, it appears at around a = 9°.

F tan_l[f_tan( _ _ a)] (3) It has been speculated that the anomaly is a result
of an interaction between an upper-surface shock and

/_ -- (1 - M2) 1/2 (4) a lower-surface shock. However, the anomaly has been

where _ is the polar angle, and F is the value of the observed in a number of cases in which only a single
circulation that satisfied the Kutta condition. Because shock (either on the lower or upper surface) is present.

A case in point is the flow past an RAE 2822 profileF evolved as part of the solution, it is reasonable to
at Moo = 0.75 and a = 1°. The lift curve for thesebe suspicious of this boundary condition as a possible

cause of the anomaly. To check this possibility, calcula- conditions is shown in figure 3. The single shock wave
tions were made with the "wind-tunnel" code described occurs on the upper surface, as shown in figure 4.

in reference 12. In this code, the far-field boundary con- Nonuniqueness is not new to potential theory. An
dition corresponds to no flow through the tunnel walls; incompressible flow past a lifting airfoil with a sharp
that is, trailing edge has a one-parameter family of solutions. In

y=+L this case, the relevant physical solution is singled out by
0¢r = 0 (5) the Kutta condition. At supercritical speeds, solutions
Oy with "expansion" shocks are mathematically valid solu-

Essentially "free-air" solutions are generated with L -- tions of the governing differential equation. Expansion
50c. The multiple solutions were also found with this shocks are ruled out in favor of the physically relevant
code. compression shock by invoking the Second Law of Ther-

3. The same anomalous behavior was found with modynamics. In fact, these constraints are now consid-

the conservative, Cartesian coordinate code described ered integral parts of a numerical algorithm. Why not
in reference 13. resolve the present dilemma by imposing some new con-

4. No multiple solutions were found with the non- straint? If we consider figure 2 again, at zero angle of
conservative code described in reference 14 (FLO 12). attack, the symmetric solution corresponding to zero

Although the above tests are not conclusive, they lift seems to be the solution that we would want to sin-
make a strong case for the argument that the problem gle out as relevant with the new constraint. However,



consider what happens if the angle of attack is increased coordinate in the normal direction. The damping term
by a small amount. Which of these solutions is physi- is given by
cally relevant? The two with the largest absolute levels
of lift can be ruled out on the grounds that they require Dw = Dxw+ Dyw (6)

a discontinuous behavior as a goes to 0°. However, the Dxw = di+l/2j - di-1/2,j (7)

remaining solution does not seem physically relevant ei- Dyw = di,j+l/2 - di,j-1/2 (8)
ther, since it predicts a negative lift-curve slope. The

nonuniqueness problem we are facing is unique in that where w is the vector of conservative unknowns, and a
none of the solutions available seem to be physically rel- typical d term is defined by
evant[ Indeed, if a new constraint is found, its role will

hi,j+1/2 re(2) .,,
not be to single out one of the three solutions presently di,j+l/2 - [ /j+1/2 _wi,j+l/2available, but to find a new solution. At

The question now is, Is this anomaly a problem of -6_4)+1/2(Awi,j+3/2 -2 Awl,j+1/2
the conservative potential approximation in the tran- 1

sonic range or a problem of the inviscid flow? To in- + n?zi,j-1/2)J (9)
vestigate this question, we propose to do a systematic

The symbol h represents the cell area, 6(2) and 6(4) aresearch with an Euler flow code. However, before pro-
ceeding to this step, it is necessary to establish the va- coefficients, defined in reference 5, which depend on the
lidity of the numerical results of the Euler code. This second derivative of pressure, and

is the next step in our investigation. Awl,j+1/2 = ZOi,jq-1 -- ZVi,j (10)

Improvements and Validation of FLO 52-S The evaluation of the d terms presents some problems
near the airfoil surface_ j < 2, and near the last ring

The finite-volume, four-step Runge-Kutta code de- of the "O" mesh, j > Jma× - 1, because of the lack

scribed in reference 5 (FLO 52) was chosen for this of information near these cells. In the original code,
study because of its fast convergence rate. The code Aw terms inside the airfoil and outside the last ring
solves the time-dependent continuity, x-momentum, y- of the "O" mesh were constructed with a third-order

momentum, and energy equations in conservative form. extrapolation from inside the flow field.
To prevent typical central-difference, odd-even oscilla- The "boundary-layerlike" behavior was eliminated
tions andto capture shock waves, a blended fourth-and by the following procedure. At a ghost point j =
second-order explicit artificial damping term is added 0 inside the airfoil, the pressure, density, and total
to the equations. To accelerate the rate of convergence, enthalpy were obtained by linear extrapolation from the
each mesh cell is advanced at its own local time step, flow field. The velocity components at the cell center
At, and the governing equations are modified by an en- immediately next to the airfoil surface were decomposed
thalpy damping term. The calculations were done with into components normal and tangent to the surface.
a nearly orthogonal "O" mesh with an inverse radial These were then reflected to obtain components at the
transformation to cluster mesh points near the airfoil, ghost cell. With this information, it was possible to
A detailed account of the discretization, damping, and evaluate

acceleration technique is given in reference 5. Awe,l/2 = w_,l - w_,o
In its original version, the code consistently under-

The missing term Aw_,-1/2 was evaluated by equatingpredicted the lift coefficient from potential calculations
it to AWl,l/2. Although this procedure eliminated theby as much as 10 percent for lifting subcritical flows.

In addition, isomach plots revealed a disturbing behav- "boundary-layerlike" behavior, it had little effect on
the low-lift level being predicted: Surprisingly, theior near the airfoil surface. As the isomach lines ap-

proached the surface, they turned abruptly. This turn- problem with the lift was corrected by modifying the
ing indicated an incorrect "boundary-layerlike" behav- evaluation of the far-field damping terms. The finite-

volume integration is performed only up to Jmax - 1;ior. This was also evident in flow-field plots of entropy
values of w at Jmax are obtained by satisfying theand total pressure losses.
far-field boundary conditions, which use no damping.

The cause of the problem was found to be associ- Therefore, to evaluate the damping terms at Jmax - 1,ated with the evaluation of the damping terms near the
airfoil surface and in the far field. As described in ref- only additional information for the term Awi,gmax.l/2

is required. When this term was approximated byerence 5, the damping term is made up of contributions
from the two coordinate directions X and Y with as-

sociated indexes i and j, respectively. Let X be the Awi,j.,,x+l/2 = Awi,j,,,,x-1/2

coordinate along a ring of the "O" mesh and Y be the the error in the lift level was reduced to about 1 percent.
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The far-field boundary condition evaluation in the sisted of a second-order accurate integration of the nor-
original code used the method of Rudy and Strikwerda mal pressure gradient at the surface of the airfoil to eval-

(ref. 16), which introduces an additional free param- uate the surface pressure. As discussed in reference 5,
eter into the calculation. This method was replaced because of the finite-volume formulation and the fact
by the following procedure, which proved more robust that the fluxes convected across the airfoil surface are
and made a slight improvement in the convergence rate. zero, only the pressure needs to be evaluated at the sur-
At a subsonic point, a frame of reference perpendicu- face. In this connection, it should be stressed that the
lar and tangential to the last ring of the "O" mesh is evaluation of ghost points, discussed in relation to the
constructed. In the plane made by the perpendicular damping terms, is not related to the evaluation of the
to the ring of the "O" mesh and the time axis, the surface boundary conditions.
Riemann "invariant" that propagates along the char- For reference purposes, we will designate the mod-

acteristic coming into the computational region is pre- ified Euler code as FLO 52-S. A large number of lift-
scribed from known free-stream values. The Riemann ing subcritical cases were calculated with this code by

"invariant" propagated by the outgoing characteristic using a 120 × 34 mesh and with the potential code
is extrapolated from computed values. From these two FLO 36 by using a 192 x 32 mesh. Results are pre-

quantities, the speed of sound and the velocity com- sented for one of the "most difficult" subcritical lifting
ponent normal to the ring of the "O" mesh are deter- cases computed--an NACA 0012 airfoil at Moo -- 0.30
mined. If the point corresponds to an inflow point, the and a = i0 °. A partial view of the mesh corresponding

entropy and velocity components tangent to the ring of to 120 × 34 points is shown in figure 5. Figure 6 shows
the "O" mesh are prescribed from free-stream values. If that second-order accuracy in the lift and drag coef-
the point corresponds to an outflow point, the entropy ficients is attainable with mesh refinement. Figure 7
and velocity components tangent to the ring of the "O" shows a typical convergence behavior. The residuals
mesh are extrapolated from computed values. From plotted in figure 7(a) are the root-mean-square devia-
these four quantities, the conservative unknown vector tions of Ap/At, Apu/At, and Apv/At evaluated over
w is evaluated. For supersonic inflow, all quantities are the entire field. Figure 7(b) shows the convergence of
prescribed, but for supersonic outflow, all quantities are lift, drag, and moment coefficients, each evaluated from
extrapolated from computed values, the integration of the surface pressure. A comparison

The code was also modified to include, as an option, between FLO 36 and FLO 52-S for the surface pressure
the effect of a far-field vortex. To this end, the circula- distribution, isomach contours, and streamline trajecto-
tion is approximated from the lift calculated by the in- ries is shown in figures 8 to 10. Practically no difference
tegration of the surface pressure. Then, the free-stream can be observed if the results of the two calculations are
Cartesian velocity components modified to account for overlaid; we emphasize the results presented correspond
the vortex are defined as to a case that showed the most disagreement with a po-

tential calculation.

too = uoo- _sinO (11) At supercritical speeds, the potential CalcUlations

_oo = Vco +_cos0 (12) are only approximate solutions to the inviscid flow.
Typically, these calculations have a stronger shock

where wave, which appears further aft than in Euler calcu-

flF lations. Two typical results at Moo = 0.82 and 0.86

= 27rr[1 - M 2 sin2(0 -a)] (13) (both at zero angle of attack) are shown in figures 11
1 and 12. A check on how well the shock wave is captured

F = -_caooMooct (14) is shown in figure 13, where the calculated shock jump
is compared with the exact jump. Taking into consid-

and r, 0 are polar coordinates in the physical plane with eration the difficulty in reading the results because of
the origin at the center of the airfoil. The free-stream the shock-wave smearing and the Zierep singularity, the
thermodynamic variables are recomputed by using the agreement is quite good. For comparison, the results of
magnitude of the modified free-stream velocity given the nonconservative potential code, FLO 12, are also

by equations (11) and (12), the steady-state Bernoulli included.
equation, and the known value of entropy at the point
in question. In general, the far-field vortex had very Nouliulqllelless Study
little effect on the calculated results. This is probably The lift curve shown in figure 2 is repeated in fig-
the result of the location of the last ring of the "O" ure 14, along with the results from the Euler calcu-

mesh, which in these calculations corresponded to about lation (FLO 52-S) and the nonconservative potential
100 chords from the airfoil, code FLO 12. As can be seen from this figure, the Eu-

The last major modification to the Euler code con- ler results do not show any anomaly at this particular
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Mach number. Can it be that the Euler solution will Moo = 0.820, a = 0°, and flow past an NACA 0006
be anomalous at some other Mach number? airfoil at Moo -- 0.879, a = 0° both correspond to

In order to study this, consider the angle made by the same value of the transonic similarity parameter
the lift curve with the abscissa at zero lift. If this angle X. This value corresponds to conditions on the verge of
exceeds 90 °, then we are into the anomalous region, nonuniqueness. It is reasonable to expect that if for one
since a positive angle of attack produces negative lift. of these flow fields the potential assumption ceases to be
Figure 15 shows the behavior of this angle as a function valid, then it should cease to be valid for the other flow
of free-stream Mach number for conservative potential, field as well. The computed surface Mach numbers for
nonconservative potential, and Euler calculations. The these two cases are illustrated in figures 17 and 18. It is

figure shows that the conservative potential solution evident from figure 18 that the thinner airfoil does not
becomes progressively worse as the free-stream Mach violate the classical criterion. This should be expected,
number increases and eventually crosses over into the since relation (15) is not scaled according to similarity
multiple solution region at about Moo = 0.82. Both rules. The problem can be overcome if we do not allow
Euler and nonconservative potential solutions remain the similarity-scaled entropy

well-behaved throughout the Mach number range. The

anomaly, therefore, is indicative of a breakdown of S _ (M2 - 1)3 (16)
the conservative potential formulation, not of inviscid T2

theory, per se. to be greater than the value it reaches when the
In figure 16, the plot of figure 15 is repeated in terms nonuniqueness occurs. For example, for an NACA 0012

of transonic similarity parameters (ref. 17). In addition airfoil near a -- 0°, nonuniqueness is observed at a value

to the results obtained for an NACA 0012 airfoil, re- of Ms of approximately 1.3; with this information, we
sults for an NACA 0006 airfoil are also shown in this can compute from relation (16) a value of S which we
figure. It is interesting to see that the conservative po- will designate So. For any other affine profile of thick-
tential results appear to collapse into a single curve in ness r, we must require that the Mach number at the
the similarity plane. This is another indication that shock obey the constraint
the numerical code is predicting the behavior expected

of the partial differential equation. It furthermore in- Ms <: (1 + S1/3T2/3) 1/2 (17)
dicates that the nonuniqueness problem will occur even
for very weak shock waves if the airfoil thickness T is For thinner airfoils, this constraint severely limits the
made sufficiently small. The fact that the Euler results transonic region for which the potential theory repre-

do not collapse into a single curve in the similarity plane sents a valid approximation to an inviscid rotational
is not unexpected, since the similarity law is only valid flow. How to extend the constraint given by rela-
for the small-disturbance potential equation. The rapid tion (17) or develop some other rule that will prevent

drop in Ocl/Oa shown in figure 16 for X < 0.8 implies the application of the conservative potential formula-
a drop in lift, which has been explained as an inviscid tion in the anomalous range for airfoils of different fam-
phenomenon associated with the inefficient production ilies is the subject of an ongoing effort.
of lift that occurs when the upper surface shock wave The conservative potential model develops some
moves to the trailing edge (ref. 17 and ref. 18, p. 656). problems when applied to quasi-one-dimensional noz-

Classically, potential theory is accepted as a good zle flows. It is believed that a heuristic explanation of
approximation to the rotational inviscid flow in the the anomaly can be reached by examining this prob-
transonic range if the shock is weak. The shock strength lem. With the nozzle choked, two isentropic solutions
is measured by M 2 - 1, where Ms is the Mach number are possible--one corresponding to subsonic flow, the
upstream of the shock. The rationale is based on other corresponding to supersonic flow. Of these two,
the fact that the entropy produced at the shock is the one that appears is determined by matching the
proportional to the cube of the shock strength. Thus, downstream imposed pressure. If a downstream value
the potential approximation is accepted if of pressure is prescribed between these two extremes,

a shock wave forms in the divergent part of the noz-

(M 2 -1)3<< 1 (15) zle or outside the nozzle. The position of the shock
is established by matching the prescribed downstream

In practical applications, Ms is required to be less pressure. The above description is properly modeled by
than 1.3. However, the results of figure 16 are not the Euler equations. What happens if the problem is
consistent with this requirement. Two potential flows described by the conservative potential equation? If the
are topologically equivalent for affine airfoil profiles downstream value of pressure corresponds to the sub-
if they have the same transonic similarity parameter sonic isentropic solution, a solution with supersonic flow
X. For example, flow past an NACA 0012 airfoil at downstream of the throat followed by an isentropic corn-

6



pression shock is still possible, since this solution will formulation must be abandoned. A more restrictive cri-

satisfy the downstream boundary condition. Moreover, terion for the validity of potential theory in the tran-
the shock can be placed anywhere downstream of the sonic range has been proposed. This criterion shows
throat and still satisfy the differential equation and the that shock-wave strength should be measured relative
boundary condition. In other words, there is an uncer- to airfoil thickness. The numerical results obtained with

tainty with regard to the shock position. The problem the Euler code indicate that this nonuniqueness prob-
comes about because the exact isentropic jump is being lem is not inherent in the inviscid solution but results
satisfied and this jump connects the subsonic and super- from the approximate treatment of shock waves inher-

sonic isentropic branches. This is not the case with the ent in the conservative potential model. However, it is
Euler equations because of the entropy produced at the felt that more research is necessary to settle this issue
shock, or with the nonconservative potential formula- conclusively.
tion because the exact isentropic jump is not satisfied.
It is believed that this inherent weakness of the con-

servative formulation to fix the shock position in the Langley Research Center
quasi-one-dimensional problem is also responsible for National Aeronautics and Space Administration
the anomaly observed in two dimensions. Hampton, VA 23665

It can be argued, however, that the downstream October 18, 1984
far-field boundary condition imposed on the two-
dimensional airfoil problem is specified in terms of ¢,
not €_ (specifying the back pressure is equivalent to

specifying Cx), and that by specifying ¢ the problem References
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Figure 9. Math number contours for NACA 0012 airfoil at M_ = 0.30 and a = 10°.
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Figure 10. Streamline pattern for NACA 0012 airfoil at Moo = 0.30 and _ ----10°.
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