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Abstract

The maximum likelihood estimator has been used
to extract stability and control derivatives from
flight data for many years. Most of the literature
on aircraft estimation concentrates on new develop-
ments and applications, assuming familiarity with
basic estimation concepts. This paper presents
Jome of these basic concepts. The paper briefly
discusses the maximum likelihood estimator and the
aircrafr equations of motion that the estimator
uses. The basic concepts of minimization and esti-
mation are examined for a simple computed aircraft
example, The cost functions that are to be mini-
mized during estimation are defined and discussed.
Graphic representations of the cost functions are
given to help illustrate the minimization process.
Finally, the basic concepts are generalized, and
estimation from flight data 1s discussed. Some of
the major cor:lusions for the computed example are
also developed for the analysis of flight data.

Introduction

The maxaimum likelihood estimator has been used
to obtain stability and control estimates from
flight data for nearly 20 vears. The results of
many applications have been reported worldwide.
Reference 1 contains a representative list of some
of these reports. Several good texts (including
Refs. 2 and 3) contain thorough treatments of the
theory of maximum likelihood estimation. Experi-

ence reportsl""5 pointing out practical consid-
erations for applying the maximum likelihooa esti-
mator have also been published. Stability and
control derivatives estimated from flight data are
currently required for correlation studies with
predictive techniques, handling qualities documen-
tation, design compliance, aircraft simulator
enhancement and refinement, and control system
design, Correlation, simulation, and control sys-
tem design applications are discussed in Ref. 6,
Current studies have concentrated on estimation

model structure detetmlnatlon,7'e equation error
with state reconstruction,g'm'11 and maximum like-
lihood estimation in the frequency domain,}¢,13

Most of the reports in the estimation area con-
centrate on new developments and applications,
assuming familiarity with the basic concepts of
maximum likelihood estimation. In this paper some
of these basic concepts are reviewed, concentrating
on simple, idealized models. These simple models
provide insights applicable to a wide variety of
real problems.

This paper presents some fundamentals of maxi-
mum likelihood estimation as applied to the air-
craft problem. It briefly discusses the maximum
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likelihood estimator and the aircraft equations of
motion that the estimator uses., The basic aspects
of minimization and estimation are then examined in
detail for a simple computed aircraft example.
Finally. the discussion is expanded to the general
aircraft estimation problem.

Symbols

A,B,C,D,F,G system matrices

ay lateral acceleration, g

b reference span, ft

Cy coefficient of rolling moment

Cn coefficient of yawing moment

Cy coefficient of side-force

£(*), g(*) general functions

GG* measurement nolse covariance
matrix

g acceleration due to gravity, ft/sec2

H approximation to the information
matrix

IneIyrIz0Ixz moment of 1nertia about subscrip-

ted axis, slug—ft2

1 general index

J cost function

Kg sidewash factor

L rolling moment divided by I,, Geg/

sec?, or number of 1terations

L rolling moment, ft-lb

Lygy rolling moment due to yaw jet,
ft-1b

m mass, slug

N number of time points or cases

n state noise vector or rumber of
unknowns

P roll rate, deg/sec

q pitch rate, deg/sec

q dynamic pressure, lb/ft?

R innovation covariance matrix

r yaw rate, deg/sec

rw )
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s reference area, ft?

t time, sec

u control input vector

v forward velocity, ft/sec

x state vector

x.y,y,y,z‘y distance between lateral accelerom-

eter and the center of gravity
along the appropriate axis, ft

z observation vector

z predicted Kalman-filtered estimate

a angle of attack, deg

[ angle of sideslip, deg

A time sample interval, sec

8 control deflection, deg

S5 aileron deflection, deg

Sa elevon deflection, deg

8 rudder ieflection, deg

n measurement noise vector

[} pltch angle, deg

] mean

3 vector of unknowns

[« standard deviation

T time, sec

] transition matrix or bank angle,
deg

] integral of transition matrix

Subscripts:

p.,q9,r,0,9,8,8, partial derivative with respect

§,8,5,8,,8¢ to subscripted quantity
0 bras or at time 2zero
m measuced gquantity

Other nomenclature:

~ predicted estimate
- estimate
* transpose

Maximum Likelihood Estimation

The concept of maximum likelihood is discussed
in this section. First the general heuristic prob-
lem is discussed, and then the specific ~quations

for obtaining maximum likelihood estimates for the
aircraft problem are given. In the following sec-
tions, both the concepts and the computations
involved in a simple but realistic example are dis-
cussed in detail.

The aircraft parameter estimation problem can
be defined quite simply in general terms. The sys-
tem investigated is assumed to be modeled by a s-<t
of dynamic equations containing unknown parameters.
To determine the values of the unknown parameters,
the system 1s excited by a suitable input, and the
input and actual system response are measured. The
values of the unknown parameters are then inferred
based on the requirement that the model response to
the given input match the actual system response.
when formulated in this manner, the problem of
1dentifying the unknown parameters can be easily
solved by many methods; however, complicating fac-
tors arise when application to & real system is
considered.

The first complication results from the impos-
sibility of obtaining perfect measurements of the
response of any real system. The 1nevitable sensor
errors are usually included as additive measurement
noise in the dynamic model. Once this noise is
1ntroduced, the theoretical nature of the problem
changes drastically. It is no longer possible to
exactly identify the values of the unknown param-
eters; instead, the values must be estimated by
some statistical criterion. The theory of esti-
mation 1n the presence of measurement noise is
relatively straightforward for a system with
discrete time observations, requiring only basic
probability.

The second complication of real systems 1s the
presence of state noise. State nolse 1s random
excitation of the system from unmeasured sources,
the standard example for the aircraft stability and
control problem being atmospheric turbulence. If
state noise 1s present and measurement noise is
neglected, the analysis results in the regression
algorithm.

When both state and measurement noise are con-
sidered, the problem is more complex than 1in the
cases that have only state noise or only measure-
ment noise. Reference 14 develops the Maine-Iliff
fermulation of the maximum likelihood estimator in
continuous/discrete time, which accounts for both
state and measurement noise, This formulation has
a continuous system model with discrete sampled
observations.

The final problem for real systems is modeling.
It has been assumed throughout the above discussion
that for some value (called the "correct”" value) of
the unknown parameter vector, the system is cor-
rectly described by the dynamic model. Physical
systems are seldom described exactly by simple
dynamic models, so the question of modeling error
arises, No comprehensive theorv of modeling error
is available. The most common approach is to
ignore it: Any modeling error is simply treated as
state noise or measurement noise, or both, in spite
of the fact that the modeling error may be deter-
ministic rather than random., The assumed noise
statistics can then be adjusted to include the con-
tribution of the modeling error. This procedure
is not rigorously justifiable, but combined with a
carefully chosen model, it is probably the best
approach available,
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With the above discussion in mind, it is pos-
sible to make a more precise, mathematically proba-
bilistic atatement of the parameter estimation
problea. The first step is to define the general
system model (aircraft equations of motion). This
model can be written in the continuous/discrete
form as

X(to) - xo (1)
x(t) = fix(t),u(t),E] + F(EIn(t) (2)
2(ty) = glx(ty),ult;), &) + G(E)ny 3)

where x is the state vector, z is the observa-
tion vector, f and g are system state and obser-
vation functions, u is the known control input
vector, £ is the unknown parameter vector, n ie
the state noise vector, and n is the measurement
noise vector. The state noise vector is assumed
to be zero-mean white Gaussian and stationary, and
the measurement noise vector is assumed to be a
sequence of independent Gaussian random variables
with zero mean and identity covariance. For each
possible estinste of the unknown parameters, a
probability th:t the aircraft response time his-
tories attain values near the observed values can
then be defined. The maximum likelihood estimates
are defined as those that maximize this probabil-
ity. Maximum likelihood estimation has many desir-
able statistical characteristics; for example, it
yields asymptotically unbiased, consistent, and
efficient estimates,l®

If there is no state noise and the matrix G is
known, then the maximum likelihood estimator mini-
mizes the cost function

N "~
36) =3 Y lzleg) - Zgle; 1066 Tz (ty)
i=m1

- Zgle)) + 2w n | (aeh) | (4)

where GG* is the measurement noise covariance
matrix, and ;E(ti) is the computed response esti-
mate of z at t; for a given value of the unknown
parameter vector §£. The cost function is a func-
tion of the difference between the measured and
computed time histories,

If Bgs. (2) and (3) are linearized (as is the
case for the stability and control derivatives in
the aircraft problem),

x(ty) = xg (s)
x(t) = Ax(t) + Bu(t) + Fn(t) (6)
z(ti) = Cx(ti) + Du(ti) + Gﬂi (7

For the no-state-noise case, the ;E(ti’ term of
Eq. (4) can be approximated by

xg(tg) = xg(£) (8)
Xg(ting) = OXp(tg) + ylulty) + ulty,)/2  (9)

zg(ty) = Cxgl(ty) + Dulty) (10)

where
¢ = exp [A(ty,q - %t4))

i
w -
ty

When state noise is important, the nonlinear
form of BEqs. (1) to (3) is intractable., For the
linear model defined by Eqs. (S) to (7), the cost
function that accounts for state noise is

exp (Ar) 41 B

N
g -3 iZ1lz(t1) - Zgteg ) IR z(ey)

- Zgltg)) +-;—Nln Ir| (1)

where R is the innovation covariance matrix. The
‘E(‘i) term in BEq. (11) is the Xalman-filtered esti-
mate of z, which, if the state noise covariance is
zero, reduces to the form of Bq, (4), If there is
no state noise, the second term of Eq, (11) is of

no consequence, (unless one wishes to include
elements of the G matrix) and R can be replaced by
GG* which makes Eg. (11) the same as Eg. (4).

To minimize the cost function J(£), we can
apply the Newton-Raphson algorithm which chooses
successive estimates of the vector of unknown

coefficients, £, Let L be the iteration number.
The L + 1 estimate of £ is then obtained from the
L estimate as follows:

Epar = & - VRIGELI (vpaEp)) (12)

If R is assumed fixed the first and second gra-
dients are defined as

N
VeIE) = - Flz(ty) - Zglty))e
i=1
(G6*) =1 [Vezg (t;)) (13)

N
v3ace) - .21[VE;ZE(ti)]'(GG')—1[VE;£(ti)]
i=

- g[z(ti) - Zgle))e
i=

2
(66*)=1 (Vg zglty)) (14a)
The Gauss-Newton approximation to the second gra-
dient is

N
VEIE) = T (VeZe(t) 166N TV ()] (14b)
i=1

The Gauss-Newton approximation, which is sometimes
referred to as modified Newton-Raphson, is com-
putationally much easier than the Newton-Raphson
approximation because the second gradient of the
innovation never needs to be calculated, In addi-
tion, it can have the advantage of speeding the
convergence of the algorithm, as is discussed in
the Simple Aircraft Example section.
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Figure 1 illustrates the maximum likelihood
eatimation concept. The measured response of the
aircraft is compared with the estimated response,
and the difference between these reeponses is
called the response error. The cost functions of
BEqs. (4) and (11) include this reaponse error. The
Gauss-Newton computational algorithm is used to
find the coefficient values that max.mize the cost
function, Each iteration of this algorithm pro-
vides a new estimate of the unknown coefficients
on the basis of the response error. These new
estimates of the coefficients are then used to
update the mathematical model of the aircraft, pro-
viding a new estimated response and, therefore, a
new respongse error. The updating of the mathemat-
ical wmodel continues iteratively until a conver-
gence criterion is satisfied, The estimates result-
ing from this procedure are the maximum likelihood
estimates.

The maximum likelihood estimator also provides
a measure of the reliability of each estimate based
on the information obtained from each dynamic
maneuver, This measure of the reliability, analo-
gous to the standard deviation, is called the

Cramer-Rac bound!® or the uncertainty level. The
Cramer-Rao bound as computed by current programs
should generally be used as a measure of relative
accuracy rather than absolute accuracy. The bound
is obtained from the approximation of the infor-
mation matrix, H. This matrix equals the approxi-
mation to the second gradient given by Eq. (14b).
The bound for each unknown is proportional to the
the square root of the corresponding diagonal
element of H. That is for the 1th unknown, the

Cramer-Rao bound is vH(i,1i).

The formulation and minimization algorithm
discussed above is implemented with the Iliff-Maine
code (MMLE3 maximum likelihood estimation program).
The program and computational algorithms are
described fully in Ref. 17, All the computations
shown and described in the remainder of this paper
use tre algorithms exactly as described in Ref, 17,

Aircraft Equations of Motion

For the discussion that follows in later sec-
tions of this paper, some knowledge of the aircraft
equations of motion is assumed. To clarify some of
that discussion, the aircraft equations are dis-
cussed briefly in this section.

Generalized nonlinear equations of motion are
given in detail in Ref, 17, which fully describes
the Iliff-Maine code (MMLE3 program), All compu-
tations and aircraft examples in this paper use
the linearized form for the lateral-directional
equations, These equations are given below and
referred to in the remainder of the paper.

s _gs : .
8 = av (Cx ¢+ Bo) + % cos O sin ¢

+ psina-rcos a (15)
PI, - Tl = 3bCy + ar(l, - I,) + pql,, (16)
r1; - Ply, = sbC, + Pa(I, - I,) = qri,, (17)

-
L]

P +rcos ¢ tan O

+ q sin ¢ tan & + &0 (18)

where
- P, I
Cy = CygB + cyp 2v * vy 2y * Cygd + Oy, (19)
P n
Cy = CgBB + Clp vt c‘r v c366

+ C"O + Cté ’2’% (20)
b rb
Cn = Cngh + cnp% + Cnp S + Cng
b
*+ Cng *+ Cng g; (21)

where the § term is summed over all controls.

The observation equations are

- W8, X8
By Kg(h el (22)
Pp =P (23)
T =T (24)
om = ¢ (25)
z x
B AP S
aYm mg CY P p+ 3 b 4
Ya
- _Ex (p? + r2) (26)
Pp = P + Pp (27)
Tp = T + Ig (28)

The state, control, and observation vectors for
the lateral -directional mode can then be defined as

x = (Bpr ¢)* (29)
u = (85 6% (30)
z = (Bn Pn Tm ¥n 3y, Pp Tp)*  (31)

Simple Aircraft Example

The basic concepts involved in a parameter
estimation problem can be illustrated by using a
simple example representative of a realistic air-
craft problem. The example chosen here is repre-
sentative of an aircraft that exhibits pure roll-
ing motion from an aileron input. This example,
although simplified, typifies the motion exhibited
by many aircraft in particular flight regimes, such
as the F-14 aircraft flying at high dynamic pres-
sure, the F-111 aircraft at moderate speeds with
the wing in the forward position, and the T-37
aircraft at low speed.

 Derivation of an equation describing this
motion is straightforward, Figure 2 shows a sketch

of an aircraft with the x-axis perpendicular to the
plane of the fiqgure (positive forward on the air-
craft). The rolling moment (L"), roll rate (p),
and aileron deflection (§,) are positive as shown,

P
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For this example, the only state is p and the only
control is §,. The result of summing moments is

1,0 = L (p,6y) (32)
The fivat-order Taylor expansion then hecomes

P = Lpp *+ Lg 8, (33)
where

L'= I,L
Since the aileron is the only control, it is nota-

tionally simpler to use § instead of §, for the
discussion of this example. Equatien (33) can then

be written as

P = Lpp * Lgb (34)

An alternate approach that results in the same
equation is to combine Eq. (16) with Eq. (20), sub-
stituting for Cy, and then eliminate the terms that

This yields

b
B+ C155) (35)

are zero for our example.

pI, = gsb|C

where p is the roll rate and § is the aileron
deflection. Rearranging terms, the equation can
be put into the dimensional derivative form of
Eq. (34).

Equation (34) is a simple aircraft equation
where the forcing function is provided by the aile-
ron and the damping by the damping-in-roll term, Lp-

In subsequent sections we examine in detail the
parameter estimation problem where Eq. (34) des-
cribes the system. For this single-degree-of-
freedom problem, the maximum likelihood estimator
is used to estimate either L, or Lg or both for a

given computed time history.

We will assume that the system has measurement
noise, but no state noise as in 2Zgqs. (1), (2), and
(3). Eguation (4) then gives the cost function
for maximum likelihood estimation. The weighting
GG* is unimportant for this problem, so let it
equal 1. For our example, Egs. (2) and (3) become
x; = p; and z; = x;. Therefore, Eq. (4) becomes

n

1
J(LP'LG) = 5 121 [pi

- Bj(Lg, Lg)12 (36)

where p; is the value of the measured response p at
time t; and Pi( ,L5) is the computed time history
of p at time tj for Ly = Lp and Lg = L5 Through-

out the rest of the paper, where computed data (not
flight) are used, the measured time history refers
to pj, and the computed time history refers to

;i(Lp'LG)' The computed time history is a function
of the current estimates of Lp and Lg, but the
measured time history is not.

The most straightforward method of obtaining
py is with Eqs. (8) and (2). In terms of the nota-
tion stated above,

Piey = 8B + V(61 + 8;49)/2 37

where
¢ = exp (LPA)

Lglt - exp (L,4)]

A
- (L.T) AT L; =
“l"‘"‘? s Iy

and 4 is the length of the sample interval (ty,,

- tj). Simplifying the notation
Sg4172 = (83 + 8549)/2 (38)
then
;1*1 = 051 + voi4q9,2 (39)

The maximum likelihood estimate is obtained by
minimizing Eq. (36). The Gauss-Newton method
described earlier is used for this minimization.
Equation (12) is used to determine successive
values of the estimates of the unknowns during the
minimization.

For this simp: s problem, E = [Lp L5]' and suc-

cessive estimates of Lp and LG are determined by

updating Eq. (12). The first and second gradients
of Eq. (12) are defined by Eqs. (13) and (14b).
The complete set of equations are given in Ref. 17,

The entire procedure can now be written for
obtaining the maximum likelihood estimates for this
simple example. To start the algorithm, an initial
estimate of Lp and Lg is needed. This is the value

of Eo0
defined by using the first and second gradients of
J(LP,LG) from Eq. (36). The gradients for this

particular example from Eqs. (13) and (14b) are

with Eq. (12), é, and subsequently EL are

VeI ey = —§ (p; - B3V By (40)
i

Ratgy) = 2 (Vgpy)* (Vgpy) (a1)
i=1

With the specific equations defined in this
section for this simple example, we ca.a now proceed
in the next section to the computational details of
a gpeljific example.

Computational Details of Minimizaticn

In the previous section we specified the equa-
tions for a simple example and described the proce-
dure for obtaining estimates of the unknowns from a
dynamic maneuver. In this section we give the com-
putational details for obtaining the estimates.
Some of the basic concepts of parameter estimation
are best shown with computed data where the correct
answers are known. Therefore, in this section we
study two examples involving computed time his-
tories. The first example is based on data that
have no measurement noise, which results in esti-
mates that are the same as the correct value. The
second example contains significant measurement
noise; consequently, the estimates are not the same
as the correct values. Throughout the rest of the
paper, where computed data is used, the term

‘A,'

s .
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"no-noige casgse” is used for the case with no noise
added and "noisy case" for the case where noise has
been added.

Since we are studying a simple computed
example, it 1s desirable to keep it simple enough
to complete some or all of the calculations on a
home computer or, with some labor, on a calculator.
with this in mind, the number of data points needs
to be kept small. For this computed example, 10
points (time samples) are used. The simulated
data, which we refer to as the measured data, are
based on Eq- (34). We use the same correct values
of Lp and Lg (-0.2500 and 10.0, respectively) for

both examples. In addition, the same input (§) is
used for both examples, the sample interval (4) is
0.2 sec, and the initial conditions are zero.
Tables of all the significant intermediate values
are given for each example. These values are given
to four significant digits, although to obtain
exactly the same values with a computer or calcula-
tor requires the use of 13 significant digits, as
in the computation of these tables. If the four-
digit numbers are used in the computation, the
answers will be a few tenths of a percent off, but
will still serve to illustrate the minimization
accuracy. In both examples, the 1init:ial values of

L, and Lg (or £,) are -0.5 and 15.0, respectively.

P

Example With No Measurement Noase

The measurement time history for no measurement
noise (no-noise case) is shown in Fiqg. 3. The aile-
ron input starts at zero, goes to a fixed value,
and then returns to zero. The resulting roll-rate
time history is also shown. The values of the
measured roll rate Lo 13 significant digits are
given in Table t along with the aileron input.

Table 2 shows the values for Ly, Lg, and J for
each iteration, along with the values of ¢ and ¥

needed for calculations of p;j. In three iterations
the algorithm converges to the correct values to

four significant digits for both Lp and Lg. Lj
overshoots slightly on the first iteration and then

comes quickly to the correct answer. Lp overshoots
slightly on the second jiteration.

Figure 4 shows the match between the measured
data and the computed data for each of the first
three iterations. The match is very good after two
iterations. Tae match is nearly exact after three
iterations.

Althougn the algorithm has converged to four-
digit accuracy in Ly and Lg, the value of the cost

function, J, continues to decrease rapidly between
iterations 3 and 4. This is a consequence of using
the maximum likelihood estimator on data with no
measurement noise. Theoretically, using infinite
accuracy the value of J at the minimum should be
zero. However, with finite accuracy the value of J
becomes small but never quite zero. This value is
a function of the number of significant digits that
are being used. For the 13-digit accuracy used
here, the cost eventually decreases to approxie-

mately 0.3 x 10728,

Example With Measurement Noise

The data used in this example (noisy case) are
the same as those used in the previous section,
except that pseudo-Gaussian noise has been added
to the roll rate. The time history is shown in
Fig. 5. Tne signal-to-noise ratio is quite low in
this example, as is readily apparent by comparing
Figs. 3 and 5. The exact values of the time his-
tory to 13-digit accuracy are shown in Table 3.

The values of Lp, Lg, ¢, ¥, and J are shown for

each iteration in Table 4. The algorithm con-
verges in four iterations. The behavior of the
coefficients as they approach convergence is much
like the no-noise case. The most notable result of

this case is the converged values of Lp and Lg,

which are somewhat different from the correct
values. The match between the measured and com-
puted time history is shown in Fig. 6 for each
1teration. No change in the match is apparent for
the last two iterations. The match is very good
considering the amount of measurement noise.

In Fig. 7, the computed time history for the
no noise estimates of Lp and Lg 1s compared to

that for the noisy-case estimates of L, and Lg.

P
Because the algorithm converged to values somewhat
different than the correct values, the two ccm-

puted time histories are samilar but not identical.

The accuracy of the converged elements can be
assessed by looking at the Cramer-Rao inequal-

ity15’17 discussed earlier. The Crameér-Rao bound
can be obtained from the information matrix cor-
rected for observed noise amplitude as follows.

2 -
H = E(Jminimum)(sz) 17¢n=1)

The Crameér-Rao bounds for LP and Lg are the square

roots of the diagonal elements of the H matrix, or
YH(1,1) and YH(2,2), respectively.

The Cramer-Rao

bounds are 0.1593 and 1.116 for Lp and Lg, respec-

tively. The errors in Lp and Lg are less than the
bounds.

Cost Functions

In the previous section we obtained the maximum
likelihood estimates for computed time histories by
minimizing the values of the cost function. To
fully understand what occurs in this minimization,
we must study in more detail the form of the cost
functions and some of their more important charac-
teristics. 1In this section, the cost function for
the no-noise case is discussed briefly. The cost
function of the noisy case is then discussed in
more detail. The same two time histories studied
in the previous section are examined here. The
noisy case is more interesting because it has a

meaningful Cramér-Rao bound and is more represen-—
tative of aircraft flight data.

First we will look at the one-dimensional case
where L§ is fixed at the correct value, because it
is easier to grasp some of the characteristics of
the cost function in one dimension. Then we will

Y
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look at the two-dimensional case, where both Lp and
Ls are varying. It is important to remember that

evarything shown in this paper on cost functions is
based on computed time hiatories that are defined
by Bq. (36). For every time history we might
choose {computed or flight data), a complete cost
function is defined. PFor the ca-. of n variables,
the cost function defines a hypersurface of n + 1
dimensions. It might occur to us that we could
just construct this surface and look for the mini-
mum, avoiding the need to bother with the minimiza-
tion algorithm. This is not a reasonable approach
because, in general, the number of variables is
greater than two. Therefore, the cost function
can be described mathematically but not pictured
graphically.

One-Dimensional Case

To illustrate the many interesting aspects of
coet functions, it is easiest to first look at cost
functions having one variable, 1In an earlier sec-
tion, the cost function of Lp and Lg was minimized.,

That cost runction is most interesting in the Lp

direction, Therefore, the one-variable cost func-
tion studied here is J(Lp). aAll discussions in

this section are for J(Lp) with Lg equal to the

correct value of 10. Figure 8 shows the cost func~
tion plotted as a function of Lp for the case where

there is no measurement noise (no-noise case)., As
expected for this case, the minimum cost is zero
and occurs at the correct value of Lp = -0.2500.

It is apparent that the cost increases much more

slowly for a more negative Lp than fcr a positive

Lp' In fact, the slope of the curve tends to
become less negative where LP is more negative than

-1.0. Physically this makes sense since the more
negative values of Lp represent cases of high

damping, and the positive Lp represents an unstable

system. Therefore, the p; for positive Lp becomes

increasingly different from the measured time
history for small positive increments in Lp. For

very large damping (very negative Lp), the system
would show essentially no response, Therefore,
large increases in damping result in relatively
small changes in the value of J(Lp).

In Fig, 9, the cost function based on the time
history with measurement noise (noisy case) is
plotted as a function of Lp' The correct value
of Ly (-0.2500) and the value of Lp (-0.3218) at

the minimum of the cost {3.335) are both indicated
on the figure. The general shape of the cost
function in Fig, 9 is similar to that shown in
Fig. 8., Figure 10 shows the comparison between
the cost functions based on the noisy and no-noise
cases. The comments relating to the cost function
of the no-noise case also apply to the cost func-
tion based on the noisy case, Figure 10 shows
clearly that the two cost functions are ghifted

by the difference in the value of Lp at the mini-

mum and increased by the difference in the minimum
cost. One would expect only a small difference

in the value of the cost when far from the mini-
mum. This is because the "estimated" time history
is so far from the measured time history that it
hecomes irrelevent as to whether the measured

time history has noise added, Therefore, for large

values of cost, the difference in the two cost func-

tions should be small in comparison to the total
cost.

Figure 11 shows the gradient of J(Lp) plotted
as a function of Lp for the noisy case. This is

the function for which we were tvying to f£ind the
zero (or equivalently, the minimum of the cost
function) using the Gauss-Newton method that is
discussed in a previous section. The gradient is
zero at Ly = -0,3218, which corresponds to the

value of the minimum of J(Lp).

The difference between the Newton-Raphson
method (Eq. (14a))} and the Gauss-Newton method
(Eq. 14b)) of minimization has been mentiovned pre-
viously, For this simple one-dimensional case, we
can easily compute the second gradient both with
the second term of Eq. (14a) (Newton-Raphson), and
without the second term (Gauss-Newton, Eq. (14b,).
Figure 12 shows a comparison between the Newton-
Raphson and the Gauss-Newton approximation second
gradients. The Gauss-Newton second gradient
(dashed line) always remains positive because it
is the sum of quadratic terms (squared for the one-
dimensional example). The Newton-Raphson second
gradient can be positive or negative, depending
upon the value of the second partial derivative
with respect to Lp. Other than the difference in
sign for the more negative Lpe the two curves have
similar shapes.

As stated earlier, the (2uss-Newton method can
be shown to be superior to Newton-Raphsor in cer-
tain cases, We can demonstrate obvious cases of
this with our example, An easy way to select a
spot where problems with the Newton-Raphson method
will occur is to look for places where the second
gradient (slope of the gradient) is near zero or
negative, Flgure 11 has such a region near
Ly = -1.0. If we choose a point where the gradient

slope is exactly zero, we are forced to divide by
zero in Eg. {(12) with the Newton-Raphson methad.
This point is at Lp = ~1.13 in Fig. 12, If the

value of the slope of the gradient is negative,
then the Newton-Raphson method will go to very
negative values of Lp. For very negative values

of Lp' the cost becomes asymptotically constant and

the gradient becomes nearly zero. In that region,
the Newton-Raphson algorithm would diverge to nega-
tive infinity. If .he slope of the gradient is
positive but small, we still have a problem with
the Newton-Raphson method, Figure 13 shows the
first iteration starting from L, = -0.95 for both

P
Gauss-~Newton and Ne.:on-Raphson., The Newton-
Raphson method selects a point where the tangent of

the gradient at Lp = -0.95 intersects the zero
line. This results in the gelection of an I of

P
approximately 2.6 in the first iteration, From
that value it requires many iterations to return to
the actual minimum. On the other hand, the Gauss-
Newton method selects a value for Lp of approxi-
mately -0,09 and converges to the minimum to four-
digit accuracy in two more iterations. With more
complex examples a comparison of the convergence
properties of the two algorithms becomes more
difficult to visualize, but the problems are gener-
alizations of the situation we have observed with
the one-dimensional example,

.A*'J"
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The usefulness of the Cramer-Rao bound was dis-
cussed in the Examples With Measurement Noise sec-
tion. At this point it is useful to digress
briefly to discuss some of the ramifications of the

Cramer-Rao bound for the one-dimensional case. The

Cramer-Rao bound only has meaning for the noisy
case. In the noisy example, the estimate of Lp is

-0.3218 and the Cramer-Rac bound is 0.0579. The
calculation of the Cramer-Rac bound was defined in
the previous section for both the one-dimensional
and two-dimensional examples. The Cramer-Rac bound
is an estimate of the standard deviation of the
estimate. One would expect the scatter in the

estimates of L, ¢o pe of about the same magnitude
as the estimate of the standard deviation. For the
one~dimensional case discussed here, the range

(L, (-0.3218) plus or minus the Cramer-Rao bound
(0.0579)) nearly includes the correct value of Lp

(=0.2500). If noisy cases are generated for many
time histories (adding different measurement noise
to each time history), then the sample mean and
sample standard deviation of the estimates for
these cases can be calculated. Table 5 gives the
sample mean, sample standard deviation, and the
standard deviation of the sample mean (standard
deviation divided by the square root of the number
of cases) for 5, 10, and 20 cases. The sample
mean, as expected, gets closer to the correct value
of -0.2500 as the number of cases increases. This
is also reflected by the decreasing values in
column 3 of Table 5, which are estimates of the
error in the sample mean. Column 2 of Table 5
shows the sample standard deviations, which indi-
cate the approximate accuracy of the individual
estimates. This standard deviation, which atays
more or less conttant, is approximately equal to

the Cramer-Rao bound for the noisy case being

studied here. 1In fact, the Cramér-Rao bounds for
each of the 20 noisy cases used here (not. shown in
the table) do not change much from the values found
for the noisy case being studied. Both of these
results are in good acreement with the theoretical

characteristics!® of the Cramer-Rac bounds and
maximum likelihood estimators in general.

The examples shown here indicate the value of
obtaining more sample time histories (maneuvers).
More samples improve confidence in the estimate of
the unknowns. The same result holds true in ana-
lyzing actual flight time histories (maneuvers);
thus it is always advisable to obtain several
maneuvers at a given flight condition to improve
the best estimate of each derivative.

The size of the Cramer-Rao bounds and of the
error between the corrvct value and the estimated
value of Lp is determined to a large extent by the

length of the time history and the amount of noise

added to the correct time higtory. For the example
being studied here, it is apparent from Fig. 5 that
the amount of noise being added to the time history
is large. The effect of the power of the measure-~

ment noise (GG*, Eqgs. (3) and (4)) on the estimate

of Lp for the time history is given in Table 6.

The estimate of Lp is much improved by decreasing
the measurement noise power. A reduction in the
value of G to one-tenth of the value in the noisy
example being studied yields an acceptable estimate
of Lp' For flight data, the measurement noise is

reduced by improving the accuracy of the output of
the measurement sensors.

Two-Dimensional Case

In t. is section the cost function (dependent on
both L, and Lg) is studied. The no-noise case is

examined first, followed by the noisy case.

No=Noise Case. Even though the cost function
is a function of only two unknowns, it becomes much
more difficult to visualize than the one-unknown
cass. The cost function over a reasonable rangs of
Lp and Lg is shown in Fig. 14. The cost increases

very rapidly in the region of positive Lp and large
values of L+ The reason is just an extension of
the argument for positive Lp given in the previous

section. The shape of the surface can be depicted
in greater detail if we examine only the values of
the cost function less than 200 for Lp less than

1.0. Figure 15 shows a view of this restricted
surface from the upper end of the surface. The
minimum must lie in the curving valley that gets
broader as we go to the far side of the surface.
Now that we have a picture of the surface, we can
look at the isoclines of constant cost on the
Lp-verluu-LG plane. These isoclines are shown in

Fig. 16. The minimum of the cost function is
inside the closed isocline. The steepness of the
cost function in the politive-Lp direction is once

again apparent. 1Inside the closed isocline the
shape is more nearly elliptical, indicating that
the cost is nearly quadratic here, so fairly rapid
convergence in this region would be expected. The
Lp axis becomes an asymptote in cost as Lg

approache. zero. The cost is constant for Lg = 0

because no response would regult from any aileron
input. The estimated response is zero for all
values of Lp' resulting in constant cost.

Figure 16 shows the minimm value of the cost
function, which, as seen in the earlier example
(Table 2), occurs at the correct values for Lp and

Lg of -0.2500 and 10, respectively. This is also

evident by looking at the cost function surface
shown in Fig. 17. The surface has its minimum at
the correct value. As expected, the value of the
cost function at the minimum is zero.

Noisy Case. As shown before in the one-
dimensional case, the primary difference between
the cost functions for the no-noise and noisy
cases was a shift in the cost function. 1In that
instance, the noisy case was shifted so that the
minimum was at a higher cost and z more negative
value of LP' In the two-dimensional case, the no-

noise and noisy cost functions exhibit a similar
shift. For two dimensions the shift is in both the
LP and Lg directions. The shift is small enouvgh

that the difference between the twoc cost functions
is not visible at the scale shown in Fig. 14 or
from the perspective of Fig. 15. Figure 18 shows
the isoclines of constant cost for the noisy case.
The Iigqure looks much like the isoclines for the
no-noise case shown in Pig. 16. The difference
between Figs. 16 and 18 is a shift in Lp of about

N".1. This is the difference in the value of Lp at

the minimum for the no-noise and noisy cases.
Heuristically, on¢ can see that the same would be
true for cases with more than two unknowns. The
primary difference between the two cost functions
is near the minimum.

Y
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The next logical part of the cost function to
examine is near the minimum. Figure 19 shows the
same view of the cost function for the noisy case
as was shown in Fig. 17 fcr the no-ncise case. The
shape is roughly the same as that shown in PFig. 17,
but the surface is shifted such that its minimum
lies over Lp = ~0.3540 and Lg = 10.24, and is

shifted upward to a cost function value of approxi-
mately 3.3.

To get a more precise idea of the cost of the
noisy case near the minimum, we once again need to
examine the iscolines. The isoclines (Fig. 20) in
this regic. are much more like ellipses than they
ure in Figs. 16 and 18. We can follow the path of
the minimization example used before by including
the results from Table 4 on Fig. 20. The firat
iteration (L = 1) brought the values of Ly and Lg

very close to the values at the minimum. The next
iteration essentially gelected the values at the
minimum when viewed at this scale. One of the
reasons the convergence is so rapid in this region
1s that the isoclines are nearly elliptical, demon-
strating that the cost is very nearly quadratic in
this region. If we had started the Gauss-Newton
algorithm at a pcint where the isoclines are much
less elliptical (as in some of the border regions
in Fig. 18), the convergence would have been much
slower initially, but much the same as it entered
the nearl; quadratic region of the cost function.

Before concluding our examination of the two-

dimensional case, we need to examine the Cramer-Rao
bound. Figure 21 shows the uncertainty ellipsoid,

which is based on the Cramer-Rao bounds defined in
an earlier section. The relationships between the

Cramer-Rao bound and the uncertainty ellipsoid are
discussed in Ref. 16. The uncertainty ellipsoid
almost includes the correct value of Lp and Lg.

The Cramer-Rao bound for Lp and Lg can be deter-

mined from the projection of the uncertainty ellip-
s0id onto the Lp and L axes, and compared with the

values given earlier, which were 0.1593 and 1.116
for Lp and Lg, respectively.

Estimation Using Flight Data

In the previous several sections we examined
the basic mechanics of obtaining maximum likelihood
estimates from computed examples with one or two
unknown parameters. Now that we have a grasp of
these basics, we can explore the estimation of gta-
bility and control derivatives from actual flight
data. For the computationally much more difficult
situation usually encountered using actual flight
data, we will obtain the maximum likelihood esti-
mates with the Illiff-Maine code (MMLE3 program)
described in Pef. 17. The equations ¢ motion that
are of interest are given in the Aircraft Equations
of Motion section of this paper; the remainder of
the equations are given in Ref. 17,

In general, flight data estimation is fairly
complex, and programs such as the Iliff-Maine code
must usvally be used to assist in the analysis.
However, one must still be cautious about accepting
the results; that is, the estimates must fit the
phenomenology, and the match between the measured
and computed time histories must be acceptable.
This is true in all flight regimes, but one must be
particularly careful in potential problem sit~-
uations such as (1) in separated flow at high Mach

numbers or high angle of attack, (2) with unusual
aircraft configurations g,.h a8 the oblique wing,le
or {3) with modern high-performance aircraft with
high-gain feedback loops. In any of the above
cases, one should be particularly careful where
there are even small anomalies in the match. These
anomalies may indicate ignored terms in the equa-
tions of moticn, separated flow, nonlinearities,
sensor problems, or any of a long list of other
problems.

The following brief examples are intended to
show how the above caveats and the computed e) .
ples of previons sections can be used to ass’ r :n
the analysis. In the computed example, the ire
ability of low-noise sensors, an adequate mode.,
and several maneuvers at a given flight condition
is shown.

Hand Calculation Example

Sometimes evaluation of a fairly complex flight
maneuver can be augmented with a simple hand calcu-
lation. One example of this can be found for the
space shuttle. The space shuttle is a large
double-delta-winged vehicle designed to enter the
atmosphere from space and land horizontally. The
entry control system consists of 12 vertical
reaction-control-system (RCS! jets (six up-firing
and six down-firing), B8 horizontal RCS jets (four
left-firing and four right-firing), 4 elevon sur-
faces, a body flap, and a split rudder surface.

The locations of these devices are shown in Fig. 22.
The vertical jets and the elevons are used for both
pitch and roll control. The jets and elevons are
ugsed symmetrically for pitch control and asymmetri-
cally for roll control. The space shuttle control
system is described briefly in Ref. 6.

The ghuttle example used here is from a maneu-
ver obtained at a Mach number of approximately 21
and an angle of attack of approximately 40°. The
controls being used for this lateral-directional
maneuver are the differential elevons and the side-
firing jets (yaw jets). The maneuver is shown in
Fig. 23. Equations (15) to (31) describe the equa-
tions of motion. A simplified approach can be used
to determine some of the derivatives by hand. The
approach is one that has been used since the begin-
ning of dynamic analysis of flight maneuvers. In
particular, for this maneuver ‘e slope of the
rates can be used to determine the yaw jet control
derivatives. This is possible for this example,
even with a high-gain feedback system, because the
yaw jets are essentially step functions and the
slope of rates p and r can be determined before the
vehicle and the differential elevon (aileron)
responses become significant. The rolling moment
due to yaw jet (Lyj) is particularly important for

the shuttle a54 is, in general, more difficult to
obtain than the more dominant yawing moment due to
yaw jet. Therefore, as an illustrative example,
Lyy 18 getermined by hani. Figure 24 shows yaw jet
and smoothed roll rate plotted at expanded scales.
The equation for Lyjy is given by

Lyy = éIx/(Number of yaw jets) (42)
. =-.07
p = dp/at '(57.3)* (0.1) (43)

Therefore, given that I, 2 900,000 slug-ftZ and
the number of yaw jets is 4, Lyy ¥ -2750 ft=-lb.

J.r‘q LI P .



The same maneuver was analysed with MMLE3, and
the resulting match is shown in Pig. 25. The match
is very good except for a small mismatch in p at
about 6 sec. This small mismatch was studied sep-
arately with MMLE3 and found to be caused by a
nonlinearity in the aileron derivative. The value
from MMLE) for Ly; is -2690 ft-1b, which for the

accuracy used here is essentially che same value ay
obtained by the simplified method. The aileron
derivatives would be difficult to determine as
accurately as the yaw jet derivatives. Although
good estimates can seldom be obtained with the
slope mathod discussed here, rough estimates can
usually be obtained to gain some insight into
values obtained with MMLE3 (or any other maximum
likelihood program). These rough estimates can
then be used to help e:plain unexpected values of
estimates from an estimation program.

Sometimes a flight example becomes too complex
to get anything other than qualitative estimates by
hand. The determination of the rudder derivative
for the F-8 aircraft with the yaw augmentation sys-
tem on demonstrates this difficulty. Figure 26
shows an example of this difficulty for the F-8
data. This example, taker from Ref. 19, includes
an aileron pulse and a rudder pulse. Although an
independent pilot .udder pulse is input during the
maneuver, the rudder is largely responding to the
lateral acceleration feedback. When the rudder is
moving, several other variables are also moving,
thus making it difficult to use the simplified

approach just discussed. However, cn6 can be
r

roughly determined when the rudder moves, approxi-
mately 1.7 gec from the start of the maneuver.

Most of the slope of yaw rate is caused by the
rudder, but a poor estimate would be obtained using
the hand calculation.

Cost Punction fo:r Full Alircraft Problem

The analysis of a lateral-directional maneu-
ver obtained in flight typically has from 15 to 25
unknown parameters (as shown in Eqs. (15) and
(31)), in contrast to the one or two in the simple
aircraft example. This makes detailed examples
unwieldy and any graphic presentation of the cost
functicn impossible. Therefore, in this section we
are primarily examining the estimation procedure
and the process of the minimization.

For our flight example, we have chosen a
lateral-directional maneuver, with both aileron and
rudder inputs, that has 17 unknown parameters. The

data are from the oblique wing aircraft!® with the
wing unskewed during the maneuver. This example
was chosen because it is a typical maneuver. The
time history of the data and the subsequent output
of MMLE] have been published in Ref. 20. The tabu-
lar results of the analysis are shown in Table 7.
The match betvween the measured time history (solid
lines) and the estimated (calculated) time history
(dashed lines) is shown as a function of iteration
in Pig. 27, Figures 27(a) to (e) are for itera-
tions 0 to 4, respectively. Table 7 shows that the
cost remains unchanged after four iterations. A
similar result was obtained for the two-dimensional
simple aircraft example in Fig. 6 and Table 4.

Of the many things the analyst must consider
in obtaining estimates, the two most important
ones are how good is the match and how good is the
convergence. A satisfactory match and monotonic

10

convergence are desirable, but not sufficient,
conditions for a successful analysis. Figure 27(e),
although not perfect, is a very good match. The
convergence can best bs evaluated by looking at the
normalized cost in the last row of Table 7. The
cost has rapidly and monotonically converged in
four iterations, and it remains at the converged
cost. These fac:ors are convincing evidence that
the convergence in complete. Therefore, the cri-
teria of match and convergence are satisfied in our
example. In some cases we might encounter cost
that does not converge rapidly (in four to six
iterations) or monotonically, or stay "exactly” at
the minimum value. These situations usually indi-
cate at least a small probleca in the analysis.

These problems, if found, ace usually traced to

a4 data problem, an inadequate mathematical model,

or a maneuver that contains a marginal amount of R
information.

Table 7 also shows that the startup values of
all the coefficients are rero for the co-trol and
bias variables. Wind tunnel estimates could have
been used for starting values, but the convergence
of the algorithm is not very dependent on the
startup values. As part of the startup algorithm,
the MMLE3 program normally holds the derivatives of
the state variables constart until after the first
iteratioa, as is evident in Table 7.

Figqure 27(a) shows the match between the
measured and computed data for the atartup values.
The match is very poor because the atartup values
for the control derivatives are all zero, so the
only motion is in response to the initial condi-
tions. The control derivatives and biases are
determined on the first iteration, resulting in
the much improved match showa in Fig. 27(b). The
match after two iterations, shown in Fig. 27(c),
is improved as the program further modifies the
control derivatives and, for the first time,
adjusts the derivatives affecting the natural
frequency (C“B and clﬂ)' By the third iteration

(Fig. 27(d)), trh  asprovement in the match ie
almost complete, because minor adjustments to the
frequency are made and the damping derivatives are
changed. Fig. 27(e) shows the match when all but
the most minor derivatives have ceased to change.

e o.

Several general observations can be made based
on this well behaved example. The strong or most
important coefficients have essentially converged
in three iterations. The same effect was seen in
the simple example - that is, Lg converged faster

than Lp (Table 4). Some of the less important or

second-order coefficients have only converged to
two places after three iterations and are st 1l
changing by one digit in the fourth place at the
end of six iterations. Another observation is that
for some coefficients (Cy , C,, , and Cg, ) even

r 8a 8¢

though the sign is wrong after the first iteration,
the algorithm quickly selects their correct values
once the important derivatives have stabilized.

In general, if the analysis of a maneuver has
gone well, we do not need to spend much time inspec-
ting a table analogous to Table 7. However, if
there have been problems in convergence or in the
quality of the fit, a detailed inspection of such a
table may be necessary. The data may show an impor-
tant coefficient going unstable at an early itera-
tion, which could cause problz s later. 1If the
starting values are grossly in error, the algorithm
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is driven a long way from reasonable values and
then for many reasons does not behave well. Occa-
sionally the algorithm alternately selacts from two
diverse sets of values of two or more coefficients
on successive iterations, behaving as if the shape
of the cost function were a narrow multidimensional
valley analogous to but more extremc than the two-
dimensional valley shown in Figs. 18 and 20.

Cram;r-nno Bounds

The earlier sections regarding the computed

exanple have shown that the Cramer-Rao bound is
a good indicator of the accuracy of an estimated

parameter. The Cramer-Rac bounds can be used in
a similar, but somewhat more qualitative, fashion

on flight data. The Cramer-Rao bounds that are
included in MMLE3 (as well as many other maximum
likelihood estimation programs) have been useful
in determining whether estimates are good or bad.
The aircraft example discussed here has been
reported previously (for example, in Refs. 1 and
16). However, this example of the use of the
Crameér-Rac bound in the assessment of flight-

derived astimates is pertinent to the thrust of
this paper. Figure 28 shows estimates of cnp as

a function of angle of attack for the PA-30 twin-

engine general aviation aircraft?! at three flap
settings. There is a significant amount of scat-
ter, which makes the reliability of the informatiorn
on Cnp questionable. The data shown are the esti-

mates frow the MMLE3 program, which also provides
Past

expetiencel has shown that if the Cramer-Rao bound
is multiplied by a scale factor (the result some-

times called the uncertainty levell 16) ang plot-
ted as a vertical bar with the associated esti-
mate, it helps in the interpretation of flight-
determined results. Figure 29 ghows the same data
as Fig. 28, with the uncertainty levels now inclu-
ded as vertical bars. The estimates with small

uncertainty levels (Cramer-Rao bounds) are the best
estimates, as was discussed earlier in the section

the Cramer-Rao bounds for each estimate.

on Cramer-Rac bounds for the one-dimensicnal case.
The fairing shown in Fig. 29 goes through the esti-
mates with small Cramer-Rao bounds ar. ignores the
estimates wit ‘arge bounds. One can have great
confidence in the fairing of the estima=es, because
the fairing is well Jefined and consistent when the

Cramer-Rao bound information is included. In this
particul~r instance, the estimates with small
bounds were from maneuvers where the aileron forced
the motion, and the large bounds were from maneu-~
vers where the rudder forced the motion. There-
fore, in addition to aiding in the fairing of the

estimates, the Cramer-Raoc bovids help show that the
aileron-forced maneuvers ure superior for esti-
mating Cnp for the PA-30 aircraft.

This example illustrates that the Crameér-Rac
bounds are a useful tool in assessing flight-
determined eatimates, just as they were found use-~
ful for the simple aircraft example with computed
data.

Concluding Ramarks

The computed simple aircraft example showed
the basics of minimization and the general concepts
of cost functions themselvez. In addition, the

example showed the advantage of low measurement
noise, multiple entimates at a given condition, and
the Cramer-Rao bounds, and the quality of the match
between the measured and computed data. The flight
data gshowed that many of these concepts still hold
true even though the dimensionality of the cost
function makes .t impossible to plot or visualize.
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Table 2 Pertinent vrlues as a function of iteration

i &, deg p, deg/sec

1 0 0 L ip(w) fs(r) ¢(L) v(L) J,

2 1 0.9754115099857

3 1 2.878663149266 0 =-0.5000 15.00 0.9048 2.855 21.21

4 1 4.689092110779 1 -0.3005 9,888 0.9417 1.919 045191

5 1 6.411225409939 2 =-0.2473 9,936 0.9517 1.951 5.083 x 10-4
6 1 8.049369277012 3 -0.2500 10.00 0.,9512 1.951 1.540 x 109
7 1 9607619924337 4 -0.2500  10.00 0.9512 1.951 1.060 x 10-14
8 0 10.11446228200

9 (] 9.621174135646

10 0 9.151943936071

Table 3 Values of computed time his-
tory with added measurement noise

Table 4 Pertinent values as a function of iteration

i §, deg p. deg/sec . -
L Lp(L) Lg (L) $(L) y(L) Jv,
1 0 0
2 1 0.4875521781881 0 -0.5000 15.00 0.9048 2.855 30.22
3 1 3.238763570696 1 -0.3842 10.16 0.9260 1.956 3.497
4 1 3.429117357944 2 ~-0.3518 10,23 0.9321 1,976 3.316
5 1 6.286297353361 3 -0.3543 10.25 0.9316 1.978 3.316
6 1 6.953798550097 4 -0.3542 10.24 0.9316 1.978 3.316
7 1 10.80572930119 5 ~0.3542 1C.24 0.9316 1.978 3,316
8 4] 9.739367269447
9 [ 9.7888445254%0
10 0 7.382568353168
Table 5 Mean and standard deviations for estimates of Lp
Sample standard
Number of Sample mean, Sample standard deviation of the
cases, N u(Lp) deviation, a(Lp) mean, o(Lp)//N_
s -0,2668 0.0739 0.0336
10 -0.251; 0.0620 0.0196
20 -0.2452 0.0578 0.0129
12
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Table 6 Estimate of Lp and Cramér-Rao bound as
a function of the square root of noise power
Sq\iure root of Estimate Cr;:i:auo
noise power, G of 1 u
0.0 -0.2500 ———————
0.01 0. 2507 0.00054
0.05 -0.253S 0.00271
0,10 -0.2570 0.00%43
0.2 ~0.2641 0.0109
0.4 -0.2783 0.0220
0.8 -0.3071 0.0457
. 1.0 -0.3218 0.0579
2.0 -0.3975 0.1248
5.0 -0.6519 0.3980
0.0 -1.195 1.279
Table 7 Stability and control derivatives as a function of 1teration for flight maneuver
Iteration
Iteration L 3 2 3 3 5 3
CYB -0.008500 -0.008500 -0.007959 -0.008347 -0.008375 -0.008364 -0.0081364
Cle -0.0002500 -0.0002500 -0.,0003141 -0.0003580 -0.0003572 -0.0003571 -0.0003571
CnB 0.001000 0.001000 0.001159 0.001243 0.001230 0.001230 0.001230
Clp -0.2500 -0.2500 -0.3393 -0.3584 -0.3581 ~0.3581 -0.3581
Cnp -0.02500 -0.02500 -0.041356 -0.04537 -0.04512 ~0.04599 -0.04600
Clr -0.05000 -0.05000 0.06790 0.07044 0.06972 0.06973 0.06974 -
3
-
Cnt -0.00800 -0.08000 -0.1327 -0.1033 -0.106% ~0.1062 -0.1062 b
]
Cl¢ [ 0.0008009 0.001000 0.001067 0.001069 0.001069 0.001069
a
C“G 0 -0.00004604 6.786 x 10'7 0.00001129 0.00001096 0.00001068 0.00001069
a
CYB ] 0.005935 0.0C2064 0.00145%¢ 0.001546 0.001548 0.001548
Cl5 0 -0.00005068 0.00005764 0.0001043 0.0001059 0.0001055 0.0001055
r
Cn° o] -0.0007329 -0.0009333 -0.0008875 -0.0008972 -0.0008961 -0.0008961
r
Cyo 0 -0.05109 -0.02691 -0.02362 -0.02420 -0.02419 -0.02420
CYO + éO V] -0.03370 -0.01370 -0.01117 -0.0115 -0.01156 -0.01156
« clO 0] -0.0007096 -0.001629 =-0.002021 -0.002031 -0.002028 -0.002028
C“O 4] 0.005864 0.007300 0.007140 0.00717% 0.007169 0.007169
¢ ;0 0 0,212t 0.1626 0.1482 0.1506 0.1506 0.1506
J/(N - 1) 731.5 65.00 11,23 4.8265 4.701 4.701 4.70%
13
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