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ABSTRACT

In this program, the influence of gravitationally driven convection on

the directional solidification of peritectic alloys was evaluated. The Pb-Bi

peritectic was studied as a model solidification system and results from this

study will contribute to subsequent investigations of Co-Sm peritectic

solidification.

Analyses of directionally solidified Pb-Bi peritectic samples indicate

f	 that appreciable macrosegregation occurs due to thermosolutal convection
ll
	 and/or Soret diffusion. The macrosegregation results in sequential change of

phase and morphology as solidification 	
d

r	 p	 p	 gy	 progresses down the length of the

sample, in accordance with equilibrium phase relationships and interface

stability criteria.

Banding, reported earlier, was eliminated when furnace conditions were

selected which resulted in a planar solidification interface. These

conditions, presumably, led to a concomitant reduction in the convection

driven by radial temperature gradients.

The directional solidification that occurs in the vicinity of the Pb-Bi

peritectic isotherm has been found to be isccompositional and to consist 	

4

(	 solely of the equilibrium terminal solid solution and peritectic phases on an 	 p

extremely fine scale. Evidence was found supporting the peritectic

supercooling mechanism, however no evidence has been found to support the

proposed peritectic superheat mechanism. In addition, this system cannot be 	 ^l

described by the stagnant film model for two-phase equilibrium peritectic

plane front solidification. Consequently, a new model is needed.
i'
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r	 1, INTRODUCTION

{

Many important materials solidify via a peritectic reaction. These

include most cobalt-based superalloys, metal (M) - rare earth (RE) magnetic

compounds (notably M 5RE and M 17RE 2 ), and A 38 superconductors. Single crystals

or aligned two-phase composites are desirable morphologies for these

materials. Current processing techniques have not produced aligned fibrous or

lamellar two-phase composites, and single crystals have been grown only with

great difficulty.

Plane-front directional	 solidification has been shown to produce aligned

composite morphologies for eutectic, off-eutectic and monotectic

solidification reactions. 	 As a consequence, the directional 	 solidification

( approach is an attractive candidate for processing peritectics. 	 However, the

t anticipated peritectic two-phase composite microstructures have not been

` realized experimentally.

l Chalmers	 (Ref.	 1) was the first to anticipate the results that might be

obtained from steady state, plane-front, directional 	 solidification of

peritectics.	 He assumed negligible diffusion 	 in the solid and mixing	 in the

liquid solely by diffusion. 	 With respect to the peritectic reaction shown in

Fig.	 1 and for hypoperitectic alloys, i.e., C jp<C o<C ?, Chalmers predicted a

steady state consisting of simultaneous growth of a and	 S phases,	 producing a

( eutectic-like microstructure. 	 Further,	 he predicted that hyperperitectic

` alloys	 (C a<Co<C LP) would initially solidify	 a phase and the a phase would

form when the liquid composition at the solidification	 interface reached CLP.

1
Uhlmann and Chadwick	 (Ref. 2) were the first to directionally solidify

f - hypoperitectic alloys to examine Chalmer's predictions.	 They observed that

^- the steady state structures of all	 hypoperitectic alloys consisted of

dendrites of the properitectic a phase in a matrix of peritectic 	 d phase.

However,	 the range of growth conditions was limited and Chalmers 	 (Ref. 3)

subsequently postulated that growth at higher ratios of thermal 	 gradient to

_t solidification velocity (G/V) might lead to cooperative growth, 	 similar to

that found in off-eutectic systems. 	 This view was analytically supported by

(	 ) Livingston	 (Ref.	 4)	 and Flemings	 (Ref.	 5).

^j Boettinger (Ref. 6) tested these hypotheses experimentally and analyti-

cally on the Sn-Cd system, with the following results:

©	 1
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o	 Adaptation of the constitutional	 supercooling criteria to the

( peritectic case successfully predicted an approximate upper bound to

the ratio of thermal 	 gradient to solidification velocity	 (G/V)	 at

t which nonplanar (dendritic or cellular) 	 growth occurs for

l hypoperitectic alloys

o	 No coupled,	 eutectic-like,	 growth was observed

o	 Those samples solidified at a G/V ratio in excess of that required by
l•

the constitutional	 supercooling criteria solidified with a planar

( interface but with a structure characterized by alternating hands of

I a and	 p arrayed perpendicular to the growth direction

f o	 Analysis similar to the Jackson and Hunt	 (Ref.	 7)	 theory for lamellar

eutectic growth was performed for a two-phase lamellar peritectic,

and the undercooling versus velocity and lamellar spacing was	 found

t
to be greatly different for the peritectic case.

It was concluded that the differences in the undercooling vs. velocity and

(

l

lamellar spacing possibly precluded coupled growth	 in peritectic systems.

Titchener and Spittle (Ref.	 8)	 reached similar conclusions from

experiments they conducted on the Zn-Cu system.	 In addition, they noted

macrosegregation in a thermally stabilized geometry for a 	 (7.n-Cu)	 system

( presumed to exhibit density-driven thermosolutal 	 convection, whereas they

( found no evidence of macrosegregation in a Sn-Sb nonconvecting system.

Further, they suggested that the alternating planar band structure ceased when

the bulk	 liquid composition, C L ,	 reached the liquidus composition,	 C A P,	 of the

(
peritectic isotherm, Tp.

l An additional	 consideration, that of nonequilibrium peritectic

solidification, was 	 introduced by Kerr, Cisse, 	 and Bolling	 (Ref.	 9)	 and

Scherbakov, David, and Brody (Ref. 	 10).	 The former suggested that,	 in

addition to the equilibrium peritectic reaction, there is also the possibility

( of suppression of the peritectic transformation by solute supersaturation of

l the properitectic phase and concomitant undercooling.	 The latter suggest a

{ non-equilibrium peritectic phase above the peritectic isotherm, i.e.,	 0 phase

[ formation with superheating. 	 These possibilities are superimposed on the

equilibrium phase diagram in Fig. 2 for the Pb-Bi 	 peritectic reaction under

C^ investigation.	 Both are shown to be energetically favorable in Fig.	 3; that

is,	 solidification occurs with a net 	 reduction in free energy.	 Kerr, Cisse,

3
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and Bolling (Ref. 9) offer support for the supercooling mechanism for high-

rate dendritic solidification of Al-Ti alloys. Scherbakov, David and hrody

(Ref. 10) support the superheat mechanism for plane-front solidification of

hypoperitectic Pb-Bi alloys, although they made no measurement of local
a

compositions.

Sundquist and Mondolfo (Ref. 11) indirectly support the supercooling

mechanism in Pb-Bi alloys, reporting that the a phase will not nucleate the 9

phase above 1670C, in vacuum. However, Goddard and Childs (Ref. 12) report

massive nucleation of 9 between 184 and 1700C in hyperperitectic alloys

processed in air.

The present program was initiated to investigate solidification 	 i

mechanisms encountered during plane-front directional solidification of

peritectic alloys and to determine whether these mechanisms or the resulting

morphologies are significantly influenced by gravitationally driven

thermosolutal convection. The Bridgman-St"kbarger solidification technique

was used.

The results of the first year's work on this project (Ref. 13) led to the 	 1^

conclusions that the Pb-BI phase diagram of Predel and Schwermann (Ref. 14) is

accurate over the compositional regime under investigation, 15-55 w/o Bi, and

that constitutional supercooling criteria offer reasonable upper limits for
t

dendritic solidification. Banding was noted, as was a region of refined a+9

morphology which appeared to solidify isocompositionally. In addition,	 f

appreciable macrosegregation was noted during the directional solidification 	 a t

of all Pb-Bi alloys investigated and was attributed to thermosolutal 	 j

convection. The macrosegregation pointed to the need for a peritectic

solidification model that could account for partial mixing in the liquid ahead

of the solidification interface. A candidate stagnant film peritectic

solidification model was developed but was not tested experimentally. In the

second-year's effort, we investigated:

o Origins of the thermosolutal convection noted in the Pb-Bi system;

o Mechanism of solidification within the compositional regime extending

from the limit of terminal solid solubility and the peritectic

composition;

o Convective influences on these solidification processes. 	 j

6
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2. EXPERIMENTAL TECHNIQUES

2,1 ALLOY PREPARATION AND DIRECTIONAL SOLIDIFICATION

Starting Pb and Bi materials were 99,999% pure. Appropriate admixtures

-	 of Pb and Bi were weighed and encapsulated in 0.6 cm (outer diameter)

synthetic quartz tubing, under a mechanical pump vacuum. These capsules were

inductively heated and electromagnetically stirred for a 3 to 4 hr period at

6000C, and the molten alloy was then allowed to cool radially in the evacuated

quartz ampoule. Alloys of principally 27 w/o lii were prepared. These samples

were readily removed from the ampoules, indicating minimal liquid/crucible

interaction.

u	 The samples were then machined to produce fiat surfaces on the ends and

an axial hole was drilled 2,38 cm deep, to accommodate an ultrafine

w	 thermocouple. The sample, in its entirety, was then incorporated into an

instrumented growth ampoule. Final sample dimensions were typically 0.4 cm

V	 diameter and 6.5 cm length.

The ampoule design for directional solidification is shown in Fig. 4,

The ampoAlo, were instrumented with one Omega Engineering SCASS-OIOG-16 ultra-

fins ^,,romel-alumdl thermocouple probe. These probes consist of 0.0005 in.

thermocouple wires packed with MgO insulation in a 0.010 in. stainless steel

sheath.

4e

it

t'
l'

f

ii
I

is

-I

Ampoules were processed in a Bridgman-Stockbarger directional solidifi-

cation furnace. The furnace is shown schematicall y in Fig. 5. It is a

resistance-heated Bridgman-Stockbarger furnace with active cooling in the

chill block. Furnace translation velocity may be varied from 0.10 to 150

cm/h. The sample is held stationary on the centerline of the furnace.

Temperature profiles over a range of power conditions are also shown in Fig.

5. Thermal gradients were typically varied frum 50 to 150 oC/cm and

solidification velocities were varied from 0.05 to 1 cm/h in this study. Seed

crystals were not used and melt-back interfaces were used only occasionally.

The temperature/time behavior during solidification was monitored using a

Minc-II Data Acquisition System. The temperature vs time output was analyzed

to determine the cooling rate in the solid and liquid and the solidification

temperature. It was assumed that the solidification velocity was identical to

7
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60.

the furnace translation velocity, which was also monitored by the Minc-II.

The thermal gradients in the solid and liquid were then calculated by dividing

the cooling rate by the solidification velocity.

2.2. INTERFACE DEMARCATION

Since interface curvature is indicative of radial temperature gradients

interface demarcation was a signi ficant consideration in this work. Provision

was made to allow the release of the growth ampoule from its stationary

supports thus dropping the ampoule, for a vertical growth orientation, into an

ice-water bath and quenching the solidification interface. This technique

provided excellent results.

Interface demarcation was also attempted by periodically stopping the

furnace translation for 30 min. It was hoped that the small difference in the

location of the solidification isotherm between the cases with and without

translation and the concurrent solute readjustment resulting from the rate

changes in this region would provide demarcation of the solidification

interface morphology. This was not as definitive as the interface quench

technique and rate changes were abandoned. Figure 6a shows a typical quenched

interface and 6b shows a rate-change interface.

Lastly, morphological transitions were encountered due to the

aforementioned macrosegregation. These microstructural transitions were

assumed to occur at specific compositions and temperatures, and would seem to

offer direct insight into the configuration of the solidification isotherm.

This could be complicated by radial compositional gradients, resulting from

transverse flow at the solidification interface, and a non-isothermal

temperature of solidification radially. This could result in significant

curvature of the isocompositional morphological transition interface even

though the isotherms in this region of the sample were planar.

2.3 X-RAY DIFFRACTION

Longitudinal and transverse metallographic sections of each Pb-Bi sample

were analyzed using a Picker diffractometer. Copper Ka radiation at 36 kV and

30 mA was used throughout, with a nickel filter. ".,_ rjulsc height analyzer

was used to maximize the peak to background ratio, a, 	 a angular regime from

5 to 1350 was investigated.
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Experimental values of 20 were corrected to true zero and converted to d
d	

spacings. The lattice parameters were then calculated using the Nelson-Riley

method (Ref. 15), All peaks in each pattern were accounted for by equilibrium

' phases. The lattice parameter data of Cooper (Ref. 16) were used as reference

values for the a-Pb (BI) terminal solid solution and $- PbBi peritectic phase,

at room temperature.

E

+	 2.4 DIFFERENTIAL SCANNING CALORIMETRY (DSC)

DSC analyses were conducted in a Dupont 990 Thermal Analyzer in the

heating and cycle modes. The temperature differential between the sample and

an aluminum standard was monitored from 25 to 395 0C. The analyzer was

calibrated using pure Pb, In, and Bi.

Samples for DSC analysis were segments of directionally solidified Pb-Bi 	 j

samples that had been chemically analyzed using a Norelco electron

microprobe. These samples were first run in the heating mode, with a heating

rate of 10°C/min. The sample was heated to above the liquidus temperature, 	
1

where it was held for 5 min, and then was cooled at the programmed rate. The

sample was then cycled a second time to compare the directionally solidified 	 _!
liquidus and solidus temperatures with results from a randomly nucleated

sample. These results were interpreted with respect to the Pb-Bi phase

diagram of Predel and Schwermann (Ref. 14), the microstructure of the region,

the x-ray results, and the chemistry.

l	
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3 - RESULTS AND DISCUSSION

3.1 INTERFACE QUENCH STUDIES

Experimental results from the first year, of effort on this contract (Ref.

13) showed that growth conditions sufficient to stabilize plane front

directional solidification of the properitectic a and peritectic a phases of

the Pb-Bi peritectic system resulted in substantial macrosegregation, even for

thermally stabilizing growth orientations. For example, the chemical

composition of a 28 w/o Bi alloy, directionally solidified at a G/V ratio of

5.3 x 106 oC s/cm2 , varied from 18 to 56 w/o Bi over the length of the

sample This substantial level of macrosegregation was a vivid demonstration

of the importance of mixing in the melt that resulted from convection,

presumably gravitationally driven buoyancy convection.

w
Fitting the properitectic portion of the above example of

macrosegregation with a stagnant film model resulted in a calculated fitting

coefficient, p6, of approximately 0.1. This is indicative of a 90% overlap of

f	 the convective field over the diffusional field at the interface and results

from a high degree of mixing in the melt. The origin of the vigorous mixing

was not obvious since the samples were grown vertically upwards, a growth

orientation that minimizes thermal convection in the melt. In addition, the

Pb-Bi system is thought to have only a small driving force for solutal

convection, and this should have been stabilized as well. It was hypothesized

that radial temperature gradients were contributing to the convective flow.

I !	 This hypothesis led to the interface demarcation studies.
ll 

Thermal modelling of the Bridgman-Stockbarger directional solidification

process by Fu and Wilcox (Ref. 17) has shown that the curvature of a specific

temperature (solidification) isotherm (for a given set of furnace tempera-

(	 tures, materials, and experiment conditions) is dependent on the final

l	 location of this isotherm within the adiabatic zone of the furnace. This is

shown in Fig. 7. Briefly, increasing isotherm curvature will be experiencedC as the solidification isotherm moves toward either end of the insulation layer

(adiabatic zone) of the furnace. Increased isotherm curvature obviously

CJ	
introduces increased radial thermal gradients which can drive convection even

in the thermally stabilized orientation.
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Carlson, et al (Ref. 18) have shown analytically, for the Bridgman-

`	 Stockbarger directional solidification geometry, that the flow configuration

l	 changes and the flow velocity increases when the solidification isotherm

changes from planar to concave towards the liquid. Figure 7 shows that this

occurs, for the heat transfer conditions cited, when the dimensionless

temperature isotherm approaches 0.4. The dimensionless temperatu re, O,

referred to above and in Fig. 7 is defined as:

m - T i - Tci	 (1)

Th - Tc

where: Ti = isotherm temperature, Th - heater temperature, and Tc = 0010

block temperature.

The isotherms of most interest in the Pb-Bi system are the solidification

temperatures in the vicinity of the peritectic isotherm. For a 28 w/o Bi

alloy, the equilibrium properitectic solidification is expected to range from

225 to 1850C. Equilibrium peritectic solidification would occur at 185 0C and

hyperperitectic solidification would occur between 185 and 125 0C. Isotherms

fof particular significance to this effort, therefore, are 225, 185, and

1250C. Fig. 8 shows the variation of 4 for the 225, 185, and 1250C

( !	 temperatures as a function of furnace temperature, T h . The chill block

l	 temperature, Tc , was assumed constant at 25 0C for these calculations.

(	 In our initial effort (Ref. 13), the furnace temperature, T h , was 5100C,

t	 in order to maximize the longitudinal thermal gradient. The dimensionless

( j	 temperatures for the 225, 185, and 125 0C isotherms are 0.4, 0.34, and 0.21,
tt
	 respectively, for the 51OPC furnace temperature. These are dimensionless

r	 temperature values that would lie near the cold end of the adiabatic zone and

l	 would be expected to be progressively more concave towards the liquid. The

increasing concavity, and concomitant increasing radial thermal gradients, are

an effective source of gravitationally driven convection.

As a result of these considerations, it was decided to conduct interface

quench studies over a spcectrum of furnace temperatures in order to select

growth conditions for the Pb-Bi alloys that would minimize interface

C curvature.

Fig. 9 shows the properitectic interface shapes, for furnace temperatures

of 360 and 410oC, determined by drop quenching the growth ampot
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water,	 after growing a predetermined amount of sample.	 The interfaces
d

j

quenched were from both the properitectic or peritectic regions of growth,

that	 is,	 the	 region	 of most	 significance to this	 study.	 It	 is	 clear that	 the

interface quenched from a test with a furnace temperature of 360 oC	 is convex

towards the liquid whereas the interface quenched from a test with a furnace

temperature of 4100C	 is	 almost planar (very slightly convex). 	 A furnace

temperature of 5100C	 resulted in an interface concave toward the liquid.

Furnace temperatures of 4100C were used throughout this study.	 During the

latter stages of growth	 (hyperperitectic solidification)	 some highly complex

interface shapes due to solutal 	 flows were encountered, 	 as shown in Fig.	 10.

Lowering the furnace temperature also lowered the longitudinal 	 thermal

gradient	 imposed on the solidification	 interface.	 As a consequence,	 if the j

same G/V ratio was	 to be maintained for the purpose of interface stability,

then the velocity had to be proportionally reduced.	 If all	 other factors

remained constant, the p6 coefficient would be expected to be proportionally j

reduced since it	 is	 directly proportional	 to velocity.	 Since the velocity was

typically reduced by a factor of 2, the p6 value anticipated by these process

changes would be ^9.05, 	 indicative of a	 very high degree of mixing.	 In	 fact,

for the	 samples that will 	 be discussed	 quantitatively	 in	 Section	 3.4,	 the

hexperimental	 value of p6 was approximately	 0.30	 + 0.05 which is	 indictive of C

a greatly reduced level	 of convection.	 Thus	 it was concluded that much of the

convection experienced by the samples processed at 510 0C resulted from the
f,^

radial	 thermal	 gradients	 driving	 gravitationally driven	 convection.

3.2	 MORPHOLOGICAL TRANSITIONS
I

IThe macrosegregation that occurs	 during the plane front directional

solidification of the	 Pb-BI	 alloys,	 imposes	 significant	 compositional

variation over the length of the sample as a function of the fraction

solidified.	 As a consequence, as the composition changes from one region of

'1the phase diagram to the next,	 there are discrete phase boundaries	 identifying

the transition from one set of phase relations to the next. 	 The growth

morphology within each	 of these regions differs according to morphological ;_J

stability criteria,	 thermal	 geometry,	 solute redistribution, and the

crystallographic growth	 habits of the phases. ^1

The morphological transitions, based on the equilibrium phase diagram,

are such that solid compositions in excess of 24 w/o Bi would he expected to

18
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ii

be two phase arrays of a+ p, up to compositions of 30 w/o Bi- Single phase p

would be expected to form between 30 and 42 w/o Bi. In both cases, solid

state precipitation of a second phase may be exected on cooling due to a

receding solvus line. PhBi, R, is expected to precipitate from terminal solid

solution a and c is expected to precipitate from saturated p.

The morphological transition from properitectic a to a + p solidification

can occur as a planar/planar or planar/nonplanar transition depending on t(st

conditions and morphological stability. At low values of G/V the a + p region

will be dendritic (nonplanar, non-isothermal) whereas at high values of G/V

the a + p region appears monolithic (planar). A planar to nonplanar

transition, from a to a + p is shown in Fig. 11a. The planar to planar a to

a+p transition, however, is .^ ,t morphologically distinct, appearing to be

continuous with the properiteccic a solidification and so will not be

illustrated. The planar a + p region had a slightly different luster (buff

instead of silver) after mechanical polishing and rinsing and was frequently

heavily twinned. The origin of the twins is uncertain and could be due either

to the mechanical polishing technique or to a massive transformation.

The properitectic a region of the plane front solidified samples is

characterized by large grains of terminal solid solution a with an extremely

fine dispersion of p which has precipitated from the supersaturated solid

solution on cooling below the t y/ a+p solvus temperature, as shown in Figure	 1

llb. These particles were extremely difficult to photograph because of their

very small size and the absence of contrast in both the optical and scanning 	 }

electron microscopes. The p precipitates appear to be small spheroids in a 	 i

homogenous array.	 j

The region of the sample which is compositionally in the a+p two-phase 	 )

region of the equilibrium phase diagram consists of a very fine mixture of a

and p, similar in appearance to the properitectic a region. This region had a

different luster than the properitectic, a region and was usually heavily 	 H

twinned as previously noted. The twinned microstructure is shown in Fig.

12a. The twinned region changes on aging at room temperature over a period of

months and develops into a coarse cellular structure, as shown in Fig. 12h.

Initially it was assumed that the cellular structure was due to a

lamellar eutectoid decomposition which occurs at cryogenic temperatures

(-640C, Ref.14), since the samples had been stored in ligjid nitrogen after

20
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I	
growth and prior to analysis. This was disproved however when subsequent

samples, stored only at room temperature, showed a similar microstructural

development. This structure will be discussed in detail in subsequent

quantitative x-ray results and conclusions sections.

The a + p to a transition can occur as a nonplanar transition as well as

a planar to planar transition. Figure 13a shows the nonplanar/planar

{	 transition from a + ..0 to 9 and Fig. 13b shows the planar/planar transition

(	 that our work (Ref. 13) described last year. The planar/planar transition

shown in Fig. 13b is characterized by alternating hands of a+s and S arrayed

perpendicularly to the solidification direction. This morpholog.', termed

'banding', is reported to be the expected microstructure for the plane front

Jsolidification of the two-phase a+s compositional field rather than the

desired coupled eutectic-like gi ,owth (Ref. 6,9). Banding has been reported in

both convectively stabilized (Ref 6,9) and destabilized (Ref. 9) alloy

l	 systems. As a consequence, banding was thought to be characteristic of plane

(	 front peritectic solidification.

`	 Surprisingly, flattening the solidification interface, with concomitant

{	 reduction in the level of convection experienced by the interface, eliminated

l	 the banded morphology, as shown in Fig. 13c. We have concluded that the

oscillatory morphology, banding, is the result of thermal and/or compositional

(	 instabilities resulting from convection and is not a morphology inherent to

peritectic plane front solidification. Therefore, the possibility of coupled

peritectic solidification was pursued further.

The region of these convectively 'stabilized' samples which preceded the

planar morphological transition to p was compositionally in the two-phase a+s

region of the equilibrium phase diagram, typically 27 to 23 w /o Bi. The as-

solidified structure of this region consisted of a very fine dispersion of 6

in a matrix of a. The crystallographic orientation of phases was consistent

with the properitectic portion of the sample.
L^

The plane front growth of 6 resulted in single or bicrystals of d growing

El	
with the <0001> direction parallel to the solidification direction. As the

composition of 9 phase became progressively more enriched in bismuth, however,

'l	 solid state precipitation of c was encountered. The precipitation that

occurred at the lowest tempera'6ures appeared as a network of e, reminiscent of

^-,	 a subgrain boundary precipitate, as shown in Fig. 14a. As the temperature of

23
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precipitation increased the thermal gradient coincident with the precipitation

also increased and the precipitate morphology changed to one of parallel

t	
arrays of laths of a arrayed at an angle to the solidification direction.

1	 This is also shown in Fig. 14a and in 14b. The lath diameter and inter-lath

{	 spacing diminished with increasing precipitation temperature and local

gradient at constant velocity, as shown in Fig. 14c and 14d, until the off-

eutectic Liquid to s + c solidification reaction was encountered. This

reaction could not be morphologically stabilized and in all cases the

solidification morphology consisted of proeutectic grains or dendrites of 6

surrounded by the irregular 9+c eutectic, as shown in Fig. 15a. The terminal

region of some samples extended all the way to the q+c eutectic composition

and the microstructure in this region is shown in Fig. 15b.

(	 3.3 DIFFERENTIAL SCANNING CALORIMETRY (DSC)

Morphologically interesting sections of directionally solidified samples

(	 were characterized using DSC to determine whether there was any evidence for

t	 metastable phase formation. It was anticipated that such evidence would be

I

-	 manifested as deviations from the equilibrium phase relationships of Predel

and Schwerman (Ref. 14).

r	 Morphologically distinct regions of three directionally solidified

l	 samples were investigated. These samples and their morphologies are

l	

illustrated in Fig. 16. Basically, four characteristic regions were

investigated with two permutations added. These regions included: the

properitectic a region, the isocompositional two-phase a+g region in the

l	
twinned and lamellar states, hyperperitectic 9 and the off-eutectic 6+c both

as directionally solidified and as quenched liquid.

(	 The results for the properitectic a region are shown in Fig. 17. For the

unsaturated properitecitc a, which precluded solid state 6 precipitation,

1
	 c 15 w/o Bi, there is no evidence of peritectic melting and the DSC trace is a

single major peak. This was typical of the a region in sample Q-14. For

r ;	 regions slightly richer in bismuth, the peak associated with the peritectic

l	 isotherm appeared. This is shown in Fig. 18.

As the solidification progresses into the afs equilibrium compositional

regime, the DSC traces remain the same qualitatively, but differ quantita-

tively in that the magnitude of the peritectic peak increases. The magnitude

L!
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of the peritectic peak increases significantly as the room temperature aging

takes place. This may infer that the as-grown, twinned, structure consists of

a supersaturated properitectic a and that this supersaturated a ages at room

temperature, forming the cellular structure and approaching equilibrium phase

distribution, which is higher in S content. ,

Fig. 19 also shows the DSC traces for the hyperperitectic 9 and off-

eutectic quenched liquid and directional solidification cases. These cases

are unambiguous and simply illustrate that the samples conform to the

equilibrium phase relations in this compositional regime. 	 y

In summary, no evidence was found for metastable phase formation, the DSC

results being entirely explicable on the basis of equilibrium phase

relations. The DSC traces proved to be reasonably consistent with the

equilibrium behavior anticipated from the predetermined chemistries, and any

deviations form equilibrium phase relations could be explained on the basis of

convective influence on redistribution coefficients and mac^osegregation.

3.4 CRYSTALLOGRAPHY

The crystallography of the terminal solid solution Pb phase, a, i.s face

centered cubic (FCC) with the lattice parameter, a o , increasing with	 "(

increasing Bi conc;ntration, as shown in Fig. 20. The data shown as diamonds 	 J

are from Ref. 20 whereas those shown as circles are from the work of Cooper et

al (Ref. 16). The latter will be used as reference values throughout the	 i

balance of this work for both the a and the S phases. The usual 	 j

solidification growth system for Pb is the [100] direction on (110) planes. 	

,,..

The crystal structure of the Pb-Bi intermetallic phase, 9,is hexagonal

close packed (HCP) with the lattice parameters a and c increasing with

increasing Bi content, as shown in Figs. 21a and 21b, after Cooper

(Ref. 16). The usual relationship between the FCC and HCP phases is shown in

Fig. 22 (Ref. 19) and, relative to the FCC phase, the HCP phase is expanded in

the c direction and contracted in the a directions. The (0002) HCP plane is	 ^'r

parallel to the (111) FCC plane, the [1010] HCP direction is parallel to the	 j

[110] FCC direction, and the [0001] HCP direction is parallel to the 	 F

[111] FCC direction. Directional solidification for HCP crystals is usually _l
in the [0001] direction, frequently but not always, on the (1010) prismatic

planes.

32
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The terminal solid solution Bi phase, e, is rhombohedral (R). A possible

crystallographic relationship between the HCP 9 phase, and the R phase is
i

shown in Fig. 23 (Ref. 19). For this example the [0001] HCP direction is 	 [

coincident with the [111] R direction and the (0003) HCP basal plane is

parallel to the (11.) R plane. The solidification system for rhombohedral

systems is usually in the 'C' direction, [111] R, on the prism planes (110) R.

If x-ray analyses are conducted on longitudinal sample sections polished

parallel to the solidification direction, then the reflecting planes detected

offer strong evidence as to the solidification sequence. For instance, if a

primary a single crystal were to grow, with a [100] growth direction, then all

of the theoretically allowable FCC diffraction peaks might be detected for a

longitudinal plane of polish and the a phase, which would precipitate during

the cooling to room temperature, would diffract from all reflecting planes, 	 -

including (000n)6. If, on the other hand, a were the primary phase	 j

solidifying, the growth direction would be parallel to the [.0001]6 direction

and a similar plane of polish would not detect the (000n)6planes. Similarly,

if metastable 6 were solidified and decomposed during the cooling to room

temperature, then a would precipitate from the 6. If the anticipated a growth
e^

system and aF6 crystallographic relationship held, then neither the (000n) HCP

planes nor the (111) FCC planes should be seen for a longitudinal plane of

polish.

The important point to note here, however, is that the coexistence of

phases, or the absence thereof, in conjunction with crystallographic

orientation relationships, and the presence of diffraction planes or the

absence thereof, can contribute significantly to the understanding of the

solidification sequence.

Directionally solidified samples, then, were longitudinally polished and

the discrete morphological regions were investigated using standard x-ray

goniometer techniques. The objectives of this effort were to address the

crystallography of the solidification sequence, the interphase

crystallographic relationships of the a and 6 phases, and by correlation with

reference literature, the composition of phases within these morphological

regions.	 4 1
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a

The macrochemical	 distribution and the discrete morphological 	 regions of

d	 interest	 for a typical	 directionally solidified 30 w/o Bi	 sample are shown in
1

Fig.	 24.	 This distribution was typical 	 of samples	 solidified	 under plane

front conditions at velocities of 2 mm/hr. 	 The macrosegregation is evident,

as previously noted, 	 however it	 is less	 severe than the distributions noted

i	 last year.	 It was concluded that the reduced radial 	 gradients substantially

reduced the driving force for buoyancy driven convection which in turn reduced

the severity of the macrosegregation.	 Each longitudinal	 region was analyzed,

by x-ray diffraction and, 	 if additional	 information was needed, 	 also

transversely.

The properitectic	 a region consists	 of two phases, terminal	 solid

solution	 a and dispersed	 a which has precipitated from the supersaturated

solid solution on cooling.	 The lattice parameters 	 of these phases were

determined using the Nelson-Riley method and the results	 for all	 of the

samples monitored are summarized in Table 1.	 Table 2 summarizes the same a

data, but	 as the compositional	 equivalent	 of the phases using the data of
!{

Figs.	 20 and 21.	 It is clear from Tables	 1 and 2 that there is a consistency

in these data sets and that the average 	 a composition is 18 t 1 w/o Bi whereas

the average	 a composition is 29 f 2 w/o Bi	 in good agreement with the phase

diagram.	 The wider spread	 in the	 a phase composition data is in part due to

{the fact that	 a compositions formed at all 	 temperatures are stable to room )

temperature, whereas	 a compositions will 	 continuously adjust to the

composition at the lowest temperature at which 	 sufficient	 solid state "-1

diffusion occurs.	 The precipitated	 a thus exists	 in a range of compositions

whereas the	 a compositivet tends tc be singular.	 Another uncertainty in the 	 R
M

values	 relates to the c/a ratio selected during the fitting operation. 	 Table

3 presents	 the crystallographic 	 reflecting	 planes	 from a typical	 properitectic

region and	 illustrates that the number of reflecting planes analyzed was

large,	 resulting in	 a good	 fit.	 Crystal I ographical ly,	 the	 (000n)	 a and 1

(101n)a	 families	 of planes	 are dominant	 for the	 a phase.	 This orientation )

relationship with the parent	 a phase was	 inconsistent with the plane of polish
a

and the solidification growth habit	 for	 a, but entirely consistent with a

solid state parent/product 	 precipitation of	 a within	 a.	 As a consequence it

was concluded that plane front proeutectic 	 a solidified in this	 region and	 a

subsequently precipitated in the solid state during cooling or even while

stored at room temperature.
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Table 1.	 Summary of Lattice Parameter Data For the a and	 a Phases Within y `'
The Properitectic Morphological Region of Directionally Solidified
Pb-28 w/o Bi	 Alloys

SAMPLE ALPHA	 o BETA
ao (FCC), A a(HCP) c(HCP)

Q7 4.9731 3.5033 5.7910
1-0.0007 1-0.0011 ±0.0019 +

Q8 4.9719 3.5064 5.7943
1-0.0011 1-0.0019 1-0.0031

Q9 4.9716 - -

±0.0008

Q10 4.9712 -

Q11 4.9731 3.5072 5.7939
±0.0003 ±0.0009 ±0.0015

Q12 4.9734 3.5063 5.7942
±0.0009 ±0.0031 ±0.0050
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Table 2. Summary of Compositional Equivalents of Lattice Parameter

Data Shown In Table 1

1

SAMPLE ALPHA BETA
w/o Bi w/o Bi

Q7 201.0.7 28.41.0.4

Q8 18.71.1.1 30.81.0.6[

Q9 18.61.0.8

Q10 17.0

Q11 201.0.3 30.21.0.3

(

f

C

Q12 20.31.0.9 30.61.1.0

C

l

C'

C
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Table 3. Diffracting Planes, Intensities, V Spacings, and Intensities

Typical of the Properitectic and Hypoperitectic Regions of
Directionally Solidified 28 w/o Pb-Bi Alloys.

20	 I	 d Spacing
	

plane/phase reflecting

27.893 132 2.88818 K (0002)9

28.123 30 2.86503 K O (101)a

29.493 57 3.02858 Ka (1010) 0
30.092 30 2.68139 K O (1011)0

31.053 1500 2.87990 K (0002)0

33.393 400 2.68102 K91 (1011)9
33.452 255 2.68300 Ka2 1011)6
36.173 350 2.48109 Kal 200) a
36.223 225 2.48394 Ka2 ( 200) a
43.213 135 2.09179 Kal (1012)6

43.313 78 2.09238 Ka2 (1012)9
52.022 135 1.75637 Kal (220)a

52.192 84 1.75540 Ka2,	 1.75104 Kal (220)a,(1120)0
52.353 45 1.75041 Ka2 (1120)0
56.493 267 1.62753 Kal (1013)0

56.632 147 1.62788 Ka2 1013)0
61.893 207 1.49786 Kal ^311)a
62.052 108 1.49810 Ka2 (311)a

63.382 42 1.46619 Kal (2130) 0
63.543 18 1.46652 Ka2 (2021)0

64.322 450 1.44701 Kal (0004))0

64.503 300 1.44700 Ko2 (0004)0

64.943 90 1.43469 Kal (222)a
65.122 48 1.43472 Ka2 (222)a

69.982 18 1.34318 Kal (2022)0
72.262 48 1.30631 Kal (1014) 0
72.492 21 1.30597 Ko2 (1014)0
80.482 30 1.19232 Kai (2023)0

80.723 21 1.19234 Ko2 (2023)0

84.952 33 1.14063 Kal (331)a

85.212 21 1.14064 Ka2 (331)a

86.473 21 1.12444 Kal (2131)0

87.313 33 1.11577 Kal ((1124)0

87.712 36 1.11171 Kal ((420)a

87.982 24 1.11175 Ka2 (420)a

90.753 72 1.08221 Kal (1015)0
91.042 36 1.08221 Ka2 (1015)0
98.753 27 1.01482 Kai (422)a

99.023 21 1.01529 Ko2 (422)a

102.813 21 0.98549 Kal (2133)0

103.163 12 0.98555 Ka2 2133)0
105.822 75 0.96559 Kal 0006)0

106.283 36 0.96507 Ka2 (0006)0
107.232 33 0.95676 Kal (3363)0

107.613 27 0.95680 Ka2 (3363)0
132.783 21 0.84061 Kal (5321)0
136.638 21 0.82889 Kal (600) 0

•	 i

i
i

i
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The peritectic a phase forms as a morphologically distinct region that

showed no high angle grain boundaries metal lographical ly, 3s was the case with

the properitectic a phase. This indicated that under the imposed thermal

conditions essentially single crystal growth of PbBi, a, had occurred. X-ray

t	 diffraction of longitudinal sections of the a region showed entirely single

(	 phase behavior in the first regions of 0 solidification with a

(	 crystallographic orientation such that the (OOQi) planes were not detected for

a longitudinal plane of polish, as shown in Table 4. This is consistent with

the usual solidification habit of HCP phases and supports, in concert with the

metallographic data, the single crystal growth of HCP, a. It should be

{	 emphasized that the absence of the (OOOn) planes is dramatic since these were

dominant peaks in the properitectic regions of the sample.

As the B1 content of the peritectic a phase increases, rhombohedral e

begins to precipitate in the solid state during cooling. This was discussed

in Section 3.2 Morphological Transitions. Whereas the crystallographic

interrelationships between the a and c phases might have been further explored

from the body of x-ray data available, they were not because this was not the

1.	 focus of this study. Similarly, as the off-eutectic and eutectic regions were

analyzed, only phase identification aspects were pursued. In these regions, 	 i

and also in the regions of a+e quenched liquid, no metastable phase formation

was noted.

I.	 The most important region, and the focal point of this study, was the 	
P
t

morphological region that we have previously described as twinned or cellular.

[	 This region appears in Fig. 24 to be compositionally in the a + a two phase

equilibrium phase field and seems to be nearly isocompositional. Some samples

C	 indicated a weakly increasing composition with fraction solidified in this

region and in all cases the 'ster' in the composition which is shown in Fig.

24 was within the error bars of the determination, possibly indicating a

solidification process continuous with the properitectic a.

X-ray analysis of longitudinal sections encompassing these regions,

C	 whether twinned or cellular, showed a diffraction spectra consistent with the

C1

CJ	 r
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Table 4. Diffracting Planes,	 Intensities,	 V Spacings,	 and	 Intensities

Typical of the Hyperperitectic Regions of Directionally Solidified

28 w/o Pb-Bi	 Alloys

i

20 I d Spacing plane/phase reflecting_

26.530 123 3.03364 (1010)0

29.440 3,250 3.03386 (1010)6

33.360 102 2.68355 (1011)6

43.250 15 2.09006 (1012)8

52.200 24 1.75081 (1120)0

52.340 12 1.75080 (1120)0

56.095 81 1.63812 (1013)0

56.235 48 1.63844 (1013)0

61.010 60 1.51739 (2020)0

61.200 42 1.51690 (?020)0

89.660 12 1.09254 (1015)0
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properitectic process extended to higher Bi compositions. No regions were

identified where primary 0 solidification was indicated by the

crystallographic orientation relationships. Since this region was succeeded

by a very discrete morphological and crystallographic transition which

t	 involved a substantial crystallographic rotation realigning the 6 phase, it

was concluded that the morphological transition from the a+g to 6

solidification was discrete (discontinuous) and that properitectic 0 formation

was precluded for the o+p region.

Alternative mechanisms for the formation of the a+s region were

evaluated. The two mechanisms examined were metastable extrapolation

(supercooling) of the terminal solid solution a solidus to supersaturated (>24

w/o Bi) compositions, or isothermal two-phase hypoperitectic a+O

f	 solidification. Crystallographically, these may be indistinguishable in that

i	 the crystallographic habit of the 9 phase growing in concert with the a phase

l	 may not be the same as that for 0 growing independently, and this might

account for the presence of (OOOn)S reflecting planes in sampling orientations

(	
that would normally be precluded for primary 6 solidification.

i	 Since the x-ray results were indeterminate, the compositional data for

the quenched interfaces measured by means of an election microprobe were
f

evaluated as a means of differentiating between these possibilities. These 	 u

data are shown in Fig. 25. Unfortunately, there are large error bars

(	 associated with these data; however, the data trend is clear. If the quenched

i	 liquid data are plotted (superimposed) on the equilibrium liquidus lines, then

(	 the experimental solidus lines indicate that there is a significant solute

(	 depletion in each phase, a and B, that the a solidus line extends to the

vicinity of 1650C at which temperature there is a discontinuous transition to

6 phase formation. This result is surprisingly consistent with that of Ref.

11 in which they report that in vacuum S could not nucleate above 1670C. Our

ampoules were evacuated.

Quantitatively, these data support a metastable extension of the

properitectic a solidus and liquidus lines of about 20 PC. However the

absolute values of these data, and the error bars, leave a lot to be desired

and further quantitative work will have to be conducted. The solute depletion

of the properitectic a and hyperperitectic 0 compositions is readily accounted
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for with standard solidification theory whereby an effective redistribution

coefficient, 
kefft is utilized instead of kequ,

One additional point should be noted. This relates to the diffraction

data within the twinned and cellular regimes. As the morphology ages at room

temperature from the as-grown twinned structure to the fully developed

lamellar structure there is an intensification (depletion) of the S phase (a

phase) diffraction peaks which is noticeable. This was interpreted to indicate

that as the morphology adjusted, the relative proportion of the phases

adjusted also in accordance with a constant bulk composition but a changing

lever law relationship at room temperature which would serve to increase the

relative proportion of d.
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4. SUMMARY

}	 1, Banding is not the characteristic morphology for plane front

solidification of two-phase peritectic alloys.

2. No evidence was found which supported the formation of a metastable Pb-

rich PbBi	 phase,	 6, which formed above the peritectic isotherm.

3. A morphologically distinct region was 	 identified that coincided with

1 plane front solidification within the two-phase peritectic phase
field.	 This	 region was crystallographically continuous with the
properitectic a solidification, was 	 isocompositionai within our
experimental	 error and seemed to be formed by a supersatura-
tion/undercooling mechanism.	 it consisted of a fine dispersion of the
S phase within a, but which developed on aging at room temperature into

1 a cellular two-phase 	 a+$ mixture.	 The latter structure was	 clearly the
result of a solid state transformation and was not directly the result
of solidification processing.

1
(	 4. Pb-Bi directional	 solidification was,	 once again,	 shown to be subject to

significant macrosegregation under plane front growth conditions which
aas due, presumably, to gravitationally driven convection.

5. Fine sub-micron dispersions of aligned Bi	 rods were noted within a
parent PbBi matrix.	 This morphology is thought to be the result of

r solid state precipitation of Bi,	 e,	 from the supersaturated PbBi, 	 8,
while still	 in a steep thermal	 gradient.

!

!
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