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CHAPTER 1

INTRODUCTION

The gas bearing is an ideal mechanism for supporting high-

speed, high performance turbine driven rotors. The main advantages

of gas bearings over conventional rooling element and hydrodynamic

bearings are the longer bearing llfe and the elimination of liquid

lubricant systems. Problems with lubricant vaporization, coking

and complex external lubricating systems are eliminated by the gas

bearing system.

Two types of gas bearings are used: hydrostatic and self-

acting. The hydrostatic gas bearing is dependent upon an external

pressure source to lift it away from the rotor prior to operation.

The additional complexity and expense of the pressure source favors

self-acting bearing systems for turbomachinery applications. Self-

acting bearings induce pressure within the bearing cavity by rela-

tive motion between the rotor and bearing. A converging wedge is

formed to provide conventional hydrodynamic lubrication, elimlnat-

ing the need for external pressurization.

Traditionally, self-actlng bearings are fixed in a rigid or

tilting pad configuration. Since gases do not have the damping

capabilities of liquld lubricants, self-acting bearings can be

subject to destructive whirl instabilities, the unsteady journal

motion when the shaft orbits with angular eccentricity to the

bearing axis. These instabilities are the unwanted result of
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random excitations when force or displacement variations occur,

Gross et al. [I]. Another limitation of rigid gas bearings is that

bearing seizure at high temperatures can occur when thermally

induced distortions reduce the minute radial clearances.

Compliant foil gas bearings represent a technological advance-

ment which overcomes these deficiencies. In a foil bearing, a

thin flexible surface replaces the rigid boundary. As load and

rotational speeds vary, this surface deflects correspondlngly. A

means of minimizing whirl instabilities is produced by maintaining

a constant gas film thickness to damp out load fluctuations. Def-

lection of the surface is also useful in retaining radial clear-

ances at elevated temperatures, reducing the possibility of bearing

failure. Because of the ability for this type of bearing to de-

form, other inherent advantages are reallzed: accommodation of

misalignment, geometric shaft imperfections, and thermal distor-

tions, and a higher tolerance for dirty environments, by allowing

particles to pass through the clearance, Beercheck [2].

Compliant foll bearings can be classlfied as tenslon-domi-

nated, bending-dominated, or cantilevered. Tension-dominated bear-

ings consist of flexible metal strips under tension wrapped around

a journal and connected to the bearing housing. The strips are

stretched as the bearing speed increases expanding the clearance.

Cantilevered foil bearings consist of overlapplng foils which def-

lect as individual beams under load providing damping to the

bearing system. Bending-dominated gas bearings utilize a corru-

2



gated foil base under a thin foil surface. Under varying load

conditions, this corrugated fell will deflect circumferentially

within the bearing housing increasing bearing clearance. Figure I

illustrates these types of compliant foil gas bearings. The bend-

ing-dominated gas bearing shows great promise due to ease of fabri-

cation as compared to the others. For this reason, the testing

program utilizes this type of fell bearing.

Although compliant foil gas bearings require no liquid lubri-

cation, it is necessary to provide lubrication since sliding con-

tact occurs between the bearing and journal during liftoff and

coastdown phases of operation. Solid lubricant coatings are used

to protect the surfaces from wear and decrease the Coulomb sliding

friction. Current state of the art for the lubrication of foil

bearings has the maximum temperature capability of about 260oC

(500°F) using polytetrafluoro ethylene (PTFE) coatings. Work has

been done to develop coatings with capabilities to 650oC (1200OF),

Suriano et al. and Bhushan [3-4]. The coatings for high tempera-

ture applications are plasma-sprayed, sputtered, or ion-plated

materials. While such coatings can give acceptable performance at

high temperatures, they are not usually as effective at room

temperature to 315oC (600OF) as are the layer lattice class of

solid lubricants. Materials of interest at this time are coatings

which effectively lubricate to 315oC in intermediate temperature

applications, specifically, turbomachinery driven by compressor

bleed air from turbojet engines.
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Polyimide-bonded graphite fluoride (PBGF) is selected as the

primary coating material for evaluation in this study. PBGF has

been shown to achieve along wear life and low friction coefficients

in pin on disk experiments in the temperature range of interest

here, Fusaro and Sliney [5]. Silicate-bonded graphite/cadmium

oxide (SBGC) is used to lubricate foil bearings to 420°C (800°F)

Bhushan and Gray [6]. This composition is selected as a primary

baseline material for judging the comparative effectiveness of PBGF

as an intermediate temperature foil bearing lubricant.

The scope of this study is to determine the frictional charac-

teristics and durability of PBGF and SBGC coatings on Inconel

X-750 foil bearings from 25°C to 315°C. In addition, some prelimi-

nary experiments with MoS2 and other graphite coatings are performed.
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2

MATERIALS

2.1 Polyimide Bonded Graphite Fluoride (PBGF)

The polyimlde used in this coating serves as a binder for

graphite fluoride and itself has good tribological properties at

elevated temperatures. Fusaro [7] has shown, using a pin on disk

apparatus, that polyimide coatings have low wear rates and good

friction properties at temperatures above 100°C (2120F). At lower

temperatures, polyimides exhibit poor lubricating qualities.

Polyimides belong to a class of thermally stable organic

polymers which are capable, by tailoring the monomeric starting

materials, of achieving acceptable mechanical properties, Fusaro

[7]. The basic structure shown in Figure 2 represents the typical

aromatic polyimide where R represents a thermally stable group.

Acceptable mechanical properties are important due to the adhesion

difficulties that can occur on a flexible foil bearing during

operation. The coating must be ductile enough to remain on the

substrate during bending. Simple flexure of the foil must not

cause the polyimide to crack or spall.

At elevated temperatures, the effectiveness of the polyimide,

both mechanically and thermally, is evident. They have good lubri-

cating properties in this environment. However, there exists a

transition temperature, between 25oC and 100oC, below which fric-

tion and wear rates increase considerably. Above this tempe-



rature the properties of the polyimlde change, allowing the sur-

face layer of the film to flow plastically. Below the transition

temperature, the polyimide tends to become brittle, producing high

wear and friction. The effects of this transition temperature are

illustrated in Figure 3. As compared to polyimide-bonded molybde-

num disulfide, polyimide withno solid lubricant additive, and

unlubricated surfaces, the polyimide-bonded graphite fluoride

exhibits a much higher wear life and lower friction below 100°C

(212°F). The effect of the transition temperature becomes evident

above 100oC with the polyimide-bonded graphite fluoride performing

only marginally better than the polyimide with no additive. The

effect of wear on the sliding surface is also improved with the

polyimide-bonded graphite fluoride as compared to the others, as

shown in Figure 4, Fusaro and Sliney [5]. Other factors, such as

relative humidity and polyimide type are involved in determining

this transition temperature. However, this determination is beyond

the scope of these experiments.

To counteract the tribological instabilities of polyimide

below the transition temperature, graphite fluoride is added.

Graphite fluoride is used as an additive in greases, mechanical

carbons, and polytetrafluoroethylene (PTFE) fibrous carbon compo-

sites. It is found to provide increased load-carrying capacity

and good friction properties, Fusaro and Sliney [5]. Graphite

fluoride has the ability to readily undergo plastic flow during

sliding contact. The crystal structure is shown compared to
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graphite in Figure 5, Sliney [8]. Xt exhibits as much as 6 times

longer wear life thanmolybdenum disulfide and graphite. It is

thermally stable to 420°C (800oF). Graphite fluoride is a hydro-

phobic material. Polyimide is a good solid lubricant above 1000C,

but being hygroscopic, will attract water molecules to its hydro-

gen bonds at lower temperatures. This tendency decreases the

ability of the polylmide molecules to plastlcally flow. Graphite

fluoride inhibits association with water molecules providing good

lubrication at lower temperatures.

Preparation and application of the polyimide-bonded graphite

fluoride is presented according to Fusaro [7].

Preparation and Application

A thick precursor solution of pyralin polyimide (PI-4701) is

formed into a sprayable mixture by adding a thinner consisting of

N-methylpyrolidone and xylene. Graphite fluoride, (CFx)I. 1, with

a fluorine-to-carbon ratio of 1.1, is mixed in equal parts by

weight of polyimide solids. The precursor solution contains 43%

weight solids. The coating is applied to the Inconel X-750 foil

by means of an artist's airbrush. Only a thin layer at one time

is applied to prevent 'running'. Each layer is then cured com-

pletely by heating at 100oC for 1 hour, then 300oC for 2 hours.

2.2 Silicate-Bonded Graphite/Cadmium Oxide (SBGC)

Graphite has served as a solid lubricant for many years. It

has effective lubricating properties at low (25-I00oC) and high



(_450oc) temperatures but loses this ability at temperatures

within that range. This phenomenon results because the slippe-

riness of graphite is not inherent in the crystal structure alone

but must depend on absorbed gases or intercalated impurities to

provide a surface of low cohesion, Savage [9]. Graphite is a

layered lattlce type material having hexagonal layered crystal

structures. It has anisotropic shear properties within preferred

planes allowing it to shear easily parallel to the basal planes of

the crystallites, Sliney [8]. To assist in this shear effect,

absorption films must be present between the basal planes. The

most common film is water. At 25-100°C (75-2120F), graphite

will slide effortlessly due to adsorbed water. When the tempera-

ture exceeds 100°C (212°F), the water is desorbed and the lubrica-

ting properties deteriorate. The effectiveness returns at extre-

mely high temperatures when oxides, formed on the metal substrate,

combine with the graphite and aid in adherence to the substrate.

Figure 6 illustrates the temperature dependence of the coefficient

of friction from Peterson and Yohnson [10].

By combining metallic oxides with the graphite, adherence is

improved. Interstitial or intercalation compounds are formed by

the reaction of these materials with graphite. Peterson and

Johnson have shown that adding cadmium oxide (CdO) to graphite in

a 2:1 weight ratio mixture lubricates most effectively to 5400C

(1000OF) [10]. Figure 7 shows this improved lubricating ability

versus the degradation at high temperatures for graphite alone.



This experiment was conducted using a loose powder at the rubbing

interface. It is believed that a coating bonded to the sliding

surface of a compliant foil bearing will achieve similar low

friction results throughout a wide temperature spectrum.

To bond the graphite/Cd0 material to the bearing surface,

sodium silicate (water glass) is selected as a binder material.

This hard oxide is oxidation resistant and has good wear resist-

ance. It has poor friction characteristics but in combination

with the graphite/Cd0 powder produces a low friction, highly wear

resistant durable coating.

The following preparation and application of the SBGC coating

is performed according to Bhushan, Ruscltto and Gray [17].

Preparation and Application

The mixture consists of 3 parts graphite to i part Cd0 with

sodium silicate as a binder and wetting agents for dispersion of

the solution. The graphite is 99.9% pure electric-furnace synthe-

tic graphite. Synthetic rather than natural graphite is used

because it exhibits a higher temperature tolerance. A very fine

powder with 95% of the particle sizes finer than 325 mesh is used.

Cadmium oxide is 99.9% commercially pure. It has particle sizes

of which 95_ are finer than 200 mesh. Sodium silicate is 99%

pure, having a composition of 8.9% Na20, 28.7% SiO 2, and the

balance water. Excluding the water, 30% weight sodium silicate is

used to give adequate bonding. Higher contents have been found to



be too abrasive. A wetting agent with a cloud point of

65°C is used.

The mixture of graphite and CdO is dissolved in dlstilled

water and ball milled for 4 hrs. Sodium silicate and one drop of

the wetting agent are added and the solution is stirred vigorous-

ly. The solution is heated to 65°C (150OF) prior to application

to the foil. It is sprayed by an airbrush about 25tm (I mil)

thick and left at room temperature for 30 minutes. The coating is

baked in an oven at 65°C (150OF) for 2 hrs. and then baked at

15O°C (3O0°F) for 8 hrs. After curing, the coating thickness is

12-18 tun, and is subsequently burnished to a thickness of I0 pm.

2.3 Foil and Yournal Substrate Materials

An extensive research program previously selected the mate

rials to be used for the £oil bearing and journal construction,

Bhushan et al. [11]. The current experimental program utilizes

the same materials of construction.

Foil Bearing Material

Inconel X-750 is chosen for the foil bearing. This nickel-

chromium alloy exhibits excellent physlcal properties to 650°C

(1200°F). The ease of heat treatment, formability, availability

in proper thicknesses and cost make it an excellent candidate for

mass production. It retains good spring properties at high

temperatures, important since foil bearing operation is dependent

on conformability. A disadvantage of this material is its tenden-

10



cy to gall during sliding contact. For this reason, the

bearing coating must be successful in resisting penetration. The

thermal properties of Inconel X-750 closely match those of the

candidate coatings, thereby reducing the possibility of coating

separation during temperature transitions.

Yournal Material

The material used for the test journal specimens is A-286

stainless steel. It is commonly used in high temperature gas

turbine applications. It has the desired thermal and mechanical

properties at intermediate (315°C) and high temperatures (650°C):

high strength and a low coefficient of thermal expansion, impor-

tant since in many applications the journal is coated and much of

a dissimilarity in thermal expansion coefficients results in sepa-

ration of the coating from the base metal. Other factors favoring

the selection of A-286 stainless steel is its ease of machlnabili-

ty, abundant availability and low cost.

Listed below are some properties of the foil and journal

substrate materials by Bhushan et al. [II]:

Inconel A-286 Stainless
X-750 Steel

Temperature oC 650 650

1000 Hour Rupture
Strength MPa (ksi) 469 (68) 317 (46)

Modulus of Elasticity
GPa (106 psi) 176 (15.5) 153 (22.2)

11



Coeff. of Thermal
Expansion
21°C to Temp. x 10-6/oC

(70°F to Temp. x 10-6/oF) 15.14 (8.41) 17.78 (9.88)

Thermal Conductivity
W/(m.oK),
(BTO/ft'/hr/°F/in) 20.6 (143) 24.8 (172)

12



CHAPTER3

EXPERIMENTALTEST RIG

3.1 Compliant Foil Bearing Test Facility

Start/Stop Test Apparatus

An existing test rig at NASA Lewis Research Center is used

for these experiments. Figures 8 to 9 show the entire test

facility. The journal support shaft is supported on two pre-

loaded angular contact ball bearings. These ball bearings are

standard class 7 bearings. The outboard bearing is a 107H (35 mm

bore) and the inboard bearing at the drive motor is a 105H (25 mm

bore). Both bearings are enclosed in an insulated housing. The

test journal is a light interference fit onto the shaft and held

in place with a tie bolt which is threaded to the shaft.

Lubricating oil for the support ball bearing is supplied by

an external oil pump system. Figure 10 is a schematic of the

lubricating system. This system consists of an oil supply pump

for oil feed to the bearings, and a scavenge pump to prevent oil

accumulation within the bearing cavities. A water-cooled heat

exchanger in the oil supply loop removes heat from the oil. A

water jacket In the support housing assists in cooling the sup-

port ball bearlngs. The flow of oil in the supply line is mea-

sured by an in-line flowmeter.

The test spindle is driven by a I hp. induction electric

motor at 3450 RPM. The motor is attached to the main vertical

13



support plate and connected to the spindle with a flat drive

belt. A pulley ratio 4:1 is used to generate a 13,800 RPM spin-

dle speed. The spindle is activated for 13 seconds and switched

off for 7 seconds (total cycle time is 20 seconds). This time

allows the bearing to fully lift off during the start cycle and

the splndle to completely stop during the stop cycle. A fiber

optics impulse counter is used to record each cycle.

The test apparatus is designed to operate unattended. Two

timer switches run each start/stop cycle at the 20 second inter-

vals. One timer activates the running cycle for 13 seconds after

which the second timer controls the stop cycle for 7 seconds.

Program time switches oversee the amount of time that the test is

conducted by deactivating the electric motor at a preprogrammed

time.

A heater box is used to heat the test journal and bearln 8 to

the desired operating temperature. This box is split into two

halves, for ease of mounting around the test journal/bearing.

These halves are bolted together after assembly. Each half

contains four $00 Watt quartz lamps connected to a manual-con-

trolled rheostat. The rheostats vary the voltage to the quartz

lamps which increase the temperature. A temperature controller

is used to maintain a constant temperature within the heater box.

This is a simple on-off device which activates the heaters when

the temperature falls below a preset condition. It deactivates

the heaters as the desired temperature is reached. A chart

14



recorder continuously monitors the test chamber temperature.

The test bearing is mounted in a floating housing as shown

in Figure 11. The housing is retained from rotation by a torque

arm that bears against a calibrated flexure plate. The bearing

is inserted into a keyway, locked into position with two tapered

pins, and mounted around the test journal. The torque arm is

placed against the flexure plate and a small wire spring is

pressed against the arm to maintain position.

Measurement an_._ddInstrumentation

Rotational speed is measured by a tachometer probe which

responds to the once per revolution passing of an unpainted band

on the black shaft of the spindle. This is mounted on the end

opposite the test journal/bearlng assembly directly above the

electric drive motor. The output of this sensor is displayed on

one channel of each of the two strip chart recorders. The test

bearing and chamber temperature are monitored by thermocouples.

These are mounted to the bearing housing, extending through to

the edge of the foil itself, and suspended directly in the

chamber. The outputs are registered on a multi-point chart

recorder and continuous strip chart recorder.

Figure 12 shows the arrangment for measuring the frictional

dra s of the test bearing durin s operation. The torque arm res-

trains the floating bearing housing from rotation by bearing

against a calibrated flexure plate. Frictional drag causes def-

lection of this flexure which is measured by a capacitance proxi-

15



mity probe. The range of the probe used is 0-.254 mm (0-.01 in.).

The output of the probe is amplified and recorded by the two

strip chart recorders.

A conversion chart is formulated to correspond with the

coefficient of friction at lift off, running, and touchdown.

This is calculated during capacitance probe callbration in Appen-

dix B.

Yournal velocity and bearing torque are plotted slmultane-

ously by the recording oscillograph and strip chart recorder.

Two recorders are used. The strip chart recorder operates continu-

ously, measuring at every start/stop cycle. The oscillograph is

used on a sampling basis, giving a much finer start/stop cycle

profile for calculating liftoff and touchdown velocities. Typi-

cal velocity and torque profiles for one 20 second start/stop

cycle are given in Figure 13.

The test bearing loading is accomplished by the addition of

calibrated dead weights suspended from the bearing housing. An

application of 1022 gms. (2.25 lbs.), including the weight of the

housing itself, corresponds to the 14 kPa (2 psi) radial unit

load.

Other instruments are used in the operation of the test rig.

These are mainly safety shutoff devices to monitor and deactivate

the system should a critical parameter exceed its limit. The

shutdown devices are furnace temperature gauge and high shutdown,

high torque shutdown, oil temperature gauge and high shutdown,

16



and annuciator system. They prevent damage to the equipment

should an uncontrolled situation occur.

3.2 Test Bearing and Test Yournal

The test bearing is a partial arc 38.1 nun (1.5 in.) diameter

by 19.05 nnn (.75 in.) wide journal bearing. The test bearing and

test journal are shown in Fig. 14. The bearing diameter and

mechanical design are the basis of work accomplished by Bhushan

[12]. The bearing consists of a bump foil overlaid with a

smooth foil. The solid lubricant coating is applied to the

smooth foil surface. A spacer shim separates the two foils

which are attached to a key by spot welding. The key is fitted

into a keyway slot on the floating bearing housing and secured in

place by two tapered dowel pins. This method of attaching the

foils to the housing is not typical for foil bearing applications

but greatly facilitates the changing of test specimens while

having the fewest number of test components.

A partial arc bearing is used instead of a complete bearing

to simplify bearing fabrication. This bearing has one bump more

than one half the total number of bumps in a complete circular

bearing which results in a 1860 pad arc. Through earlier testing

it was found that a pad of less than 180 ° results in unstable

bearing operation, Bhushan [12]. Rotation of the journal is into

the free end of the bearing. This partial arc design is specifi-

cally for coating evaluation experiments. It is capable of lift-

off at about 3000 rpm (6 m/sec.) at a radial unit load of 14 kPa

17



(2 psi). However, it is not intended for use as a functional

journal bearing. A functional bearing is a full circular single

or multi-segment bearing with a larger length over diameter

ratio, typically 1.0. Assembly details of the partial arc bear-

ing are shown in Figure 15.

The test journals are uncoated A286 stainless steel, measur-

ing 38.1 mm (1.5 in.) diameter by 44.5 mm (1.75 in.) long. Two

foils can be tested against one clean journal by moving the

location of the bearing along the axis of the journal. The

surface of the journal is machine-finished to a surface

finish of 0.2 pm R_S. Figure 16 depicts test journal details.
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CHAPTER4

TEST PROCEDURE

The tests are run at a maximum surface velocity of 28 m/sec

at 13,800 rpm with 14 kPa (2 psi) radial unit load. This load is

typical of the radial loads encountered at start-up for foll

bearings in turbomachinery, Bhushan et al. [11]. The tests

terminate when solid lubricant failure is indicated by a sharp

rise in bearing starting torque or the completion of 9000 start/

stop cycles. The choice of 9000 start/stop cycles as a satisfac-

tory coating life is the number of start/stop cycles that would

be experienced on the average of five times per day over a five

year period. In practice, some starts can be expected to be

cold, others at intermediate bearing temperatures, and others at

the maximum bearing temperature depending on the length of time

the machine is shut down before restart. The test procedure

accounts for this by mixing start/stop cycles at ambient, two

intermediate, and a maximum temperature of 315°C. The procedure

is conducted in the following sequence:

I. 500 start/stop cycles at ambient

II(a) 250 start/stop cycles at 120°C (250°F)

II(b) 250 start/stop cycles at 230eC (450°F)

III. 500 start/stop cycles at 315eC (600°F)

The above sequence is repeated six times for a total of 9000

start/stop cycles.

Operating procedures for a test sequence are presented in

AppendixA.
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CHAPTER5

EXPERIMENTALRESULTSANDDISCUSSION

5.1 Friction

Relatively short duration experiments were performed early

in the test to generate baseline data with:

I) Commercially available, dry film lubricants

2) Polyimide bonded graphite fluoride (PBGF)

3) Silicate bonded graphite/cadmium oxide (SBGC)

These experiments were conducted to obtain quantitative

torque profiles and apparent friction coefficients. The friction

coefficients are calculated directly from bearing torque measure-

ments. The starting friction coefficients (pl) will be termed

'apparent' because they are higher than the generally accepted

values of coulomb friction for the particular coating. In addi-

tion to sliding friction, other factors contribute to the fric-

tion at start. These may include dynamic elastic deformation

forces acting on the _ighly-conformable foils. Liftoff occurs

at about 3000 rpm (6 m/sec surface velocity). Assuming proper

bearing clearance during normal 'airborne' operation at 13,800

rpm (28m/sec), the computed friction coefficient (_2) is due to

viscous shear of the lubricating gas film. A summary of friction

coefficients at various operating temperatures is given in

Figure 17.
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There is little variation in the room temperature starting

torque for the various coatings. The computed values for !11 from

starting torques are about 0.3 for molybdenum-disulfide (MoS 2)

and graphite coatings. For the as-sprayed PBGF, this friction

coefficient Pl is higher, about 0.4. This is reduced to 0.3 by

the application of a burnished (rubbed-on) overlay of graphite

fluoride to the PBGF surface. Significant differences do occur

at elevated temperatures.

The value of _1 for the SBGC coating remains at about 0.3 at

temperatures from 25oC to 315°C. But this coefficient is obser-

ved to decrease for the as-sprayed PBGF coated bearing, from 0.4

to 25°C to 0.2 at 315°C. A similar behavior occurs for the

burnished PBGF coating, decreasing from 0.3 to 25°C to 0.1 at

315oc.

Friction coefficients while airborne (_2) are uniformly

low (less than 0.1) in all of the tests. They tend to be lower

with the thinner coatings, which indicates that the increase in

clearance provided by thin, smooth coatings is beneficial in

achieving a satisfactory gas film thickness at the relatively low

speed (for gas bearings) of 13,800 rpm (28 m/sec).

Figures 18 and 19 give representative steady-state friction

coefficients as a function of bearing temperature for SBGC and

PBGF coatings. The friction coefficients plotted are the appa-

rent starting friction (_1), friction while airborne (p2), and

maximum apparent friction during coastdown (_3). Values of the



starting and running friction are of concern, since they contri-

bute to the power requirements for starting the machine and the

effect on its operating efficiency.

Early in the endurance tests, considerably higher values of

_I are observed as compared to the steady-state values for the

PBGF coatings. This may be attributed to a *running-in' mecha-

nism at the coating/journal contact. Figure 20 illustrates the

starting friction coefficients for a PBGF coating as a function

of test duration for the first two programmed temperature sequen-

ces (3000 start/stop cycles). Friction decreases steadily from

0.$3 to 0.40 during the first $00 start/stop cycles at room

temperature. Erratic behavior is demonstrated during the next

$00 cycles at the intermediate temperatures, then becomessteady

at 0.23 during 315 C operation. Steady-state behavior prevails

during the next programmed 1500 start/stop cycles with _i of

about 0.3 at room temperature, 0.25 at intermediate temperatures,

and 0.23 at 315 C.

There are several factors that contribute to the reduction

in bearing starting torque as the number of start/stop cycles

accumulate: (I) a preferred orientation of solid lubricant crys-

tallites occurs, aligning low shear strength crystal planes

parallel to the sliding direction, (2) as-sprayed PBGF surfaces

are relatively rough and sliding smoothes the surface asperities

which is more favorable to efficient bearing operation, (3) this

smoothing action also increases the effective radial bearing

clearance, a factor which is conducive to lower bearing torque.
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5.2 Coating Endurance

Coating endurance is here defined as the number of start/

stop cycles accumulated by a test bearing before the coating

wears through to the foil metal substrate. Failure is determined

by a substantial increase in starting torque and verified by

visual inspection of the foil and journal surfaces. Results of

tee endurance tests are summarized in Figure 21.

The heat-cured MoS 2 coating survive 175 to 400 start/stop

cycles at room temperature before failure. Heat-cured proprieta-

ry graphite coatings survive approximately 1000 start/stop (500

at room temperature and 500 at 230 C). The relatively short

lives of these coatings are probably due to the fact that the

Intone1 X-750 foils are not pretreated to enhance coating adher-

ence except by lightly sanding the surface with #200 sandpaper.

(Roughening the surface by the customary procedure of sand

blasting tends to distort the thin foils severely.) However,

even with this mild surface preparation, SBGC and PGGF coat-

ings are very durable and adherent. Their performance in long

duration endurance testing is described below:

Polyimlde-bonded graphite fluoride (PBGF) - Endurance tests of

four PBGF-coated bearings were conducted at temperatures from

ambient to 315 C. All four coatings survive 9000 start/stop

cycles of the standardized endurance test procedure. In fact,

one PBGF-coated bearing was subjected to an extended period of

start/stop cycles. After 32,000 start/stops at ambient condi-
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tions. the bearing coating still performed with acceptable fric

tion characteristics. This durability is achieved despite the

fact that the smooth foils are not pretreated (other than light

sanding) pr ior to coating app 1 ica t ion. 81 iding contact dur ing

starts and stops polishes the coatings to a reflective finish.

and a very thin transfer film of coating is deposited on the

journal. The coatings are especially glossy in the areas of

highest pressure contact. that is. over the bumps of the support

ing smooth foil and at the edges of the foil which are areas of

minimum film thickness. Photomicrographs and surface profiles of

the foil bearing and journal after 9000 start/stop cycles are

shown in Figures 22(a) and (b).

In one endurance test. it was noted that extraordinarily

high torque was present at the beginning of the experiment. The

bearing fit was suspected to be tight and total liftoff never oc

curred. The coating was given a light sanding to reduce its

thickness. thus increasing the radial clearance between the

be a r ing and j 0 urn a 1. A t hi n f i 1m 0 f g r a ph i t e flu 0 ride (CF) 1.1

was burnished over the finished surface. resulting in normal

torque characteristics.

Silicate-bonded graphite/cadmium oxide (SBGC) - These coatings

also demonstrate good durability but they do not survive the

programmed 9000 start/stop cycles. The two coatings tested

failed at 7500 and 4500 start/stop cycles. Failure was indicated

for both bearings by excessive bearing torque. coating year to
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the substrata metal, and by scuffing of the A286 steel journal.

The surfaces of the foll and journal are periodically in-

spected and are in very good condition at all times prior to

coating failure. After 500 start/stop cycles at ambient, the

foil bearing is in very good condition with polished areas over

the bumps and at the foil edges. A light film of coating trans-

fers to the journal. After one complete heating sequence from

25 C to 315 C, and an accumulated 1500 start/stop cycles, the

journal surface is oxidized and also coated with a transfer film.

The foil is highly polished except for a few areas between the

bumps.

Inspection of the surfaces after coating failure revealed

severe coating wear to the substrata metal over much of the foil

surface. The oxide film on the journal is worn away and the

steel surface is circumferentially scored. There is a great deal

of coating transferred to its surface. Figures 23(a) and (b) are

photomicrographs and surface profiles of the journal and foil

bearing surfaces.

Discussion of Comparative Endurance

These results demonstrate that both polyimide-bonded grap-

hite (PBGF) and silicate-bonded graphlte/cadmium oxide (SBGC)

coatings are effective solid lubricant coatings for loll bearings

to 315 C. The PBGF coatings have superior durability, none of

these coatings fail in 9000 start/stop cycles. The SBGC coatings

are less durable but nevertheless have respectable endurance
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liveso since they survive thousands of startlstop cycles before

failing.

Graphite-coated bearings have a more consistent friction

coefficient than do PBGF coatings. A characteristic of the SBGC

coatings is an apparent starting friction coefficient (_1) of

about .03 throughout all of the operating temperatures. The same

coefficient for PBGF coatings varies considerably with tempera-

ture, ranging from 0.4 at 25°C to 0.2 at 315°C for a well run-in

bearing. Coefficients as high as 0.$ are observed at 25°C during

the period of run-in at the start of the experiment. Friction

can be appreciably reduced by burnishing graphite fluoride powder

(CUI.12) onto the bearing and journal surfaces prior to testing.

The effects of this burnished film persist over thousands of

start/stop cycles.
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CHAPTER6

CONCLUSIONS

Polyimide-bonded graphite fluoride (PBGF) coatings are eva-

luated to determine their suitability as dry film lubricants for

compliant foil gas bearings at temperatures from 25 C to 315 C.

A sillcate-bonded graphite fluoride (SBGC) coating which is a

known foil bearing solid lubricant, is evaluated as a baseline

for comparison. The following conclusions are obtained from the

experimental program:

(1) Both coatings are effective solid lubricants from 25 C

to 315 C. At ambient, bearing torques at startup are about

the same for both coatings. However, while starting torque

remains relatively constant for SBGC at all temperatures, it

decreased with increasing temperature for PBGF.

(2) Both coatings are durable. They are capable of surviving

thousands of starts and stops over a 25 C to 315 C operating

temperature range. PBGF coatings can survive in excess

of 9000 start/stops. SBGC is less durable, surviving 4500

to 7500 start/stop cycles before failure. Failure oc-

curs when the coating wears to the substrate metal in the

minimum gas thickness areas over the bumps and at the edges

of the support foil.
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(3) Friction coefficients computed from bearing torque profiles

at low sliding velocities (before liftoff) are higher than

the values typically observed for the dry film lubrlcants

employed. Other factors, such as elastic deformations of

the foil, may be adding to the Coulomb friction of the

sliding surfaces.

(4) Starting torques tend to decrease with accumulated start/

stop cycles and then level to a steady-state value. This

can be attributed to a normal Prun-in t effect, but in gas

bearings, the smoothing of the coating surface during Wrun-

in P has the additional effect of increasing the effective

radial clearance which contributes to this behavior.
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APPENDIXA

OPERATINGPRCEDURES

The foil bearing test rig is designed to run unattended.

These are procedures that are followed in preparing the foil

bearing and journal prior to testing.

Preparing the Test Specimen

The journal is inspected for wear marks and discoloration.

Any such defects can be removed by polishing the journal surface

with #406 and #600 aluminium oxide sandpaper. The bearing,

housing, and journal are thoroughly scrubbed with ethyl alcohol

to remove dust and dirt particles. The foil bearing is attached

to the bearing housing by a slotted key. It is secured in place

with two tapered dowel pins. Bearing orientation in the housing

is such that the journal rotates into the free end. The journal

is installed on the support spindle. An alignment is made for a

maximum runout of .005 mm (.0002 in) at a distance of 6.35 mm

(.25 in) from the free end of the journal. The locking nut is

tightened with a torque wrench to 80-100 in. lb. The bearing

housing assembly is placed onto the journal shaft. The top of

the torque arm must be in contact with the flexure plate. T_is

arm penetrates the guide slot nearest the support bearing hous-

ing. A small spring rod is placed on the opposite side of the

torque arm and tightened.
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When the assembly is complete, the electric drive motor is

manually rotated several turns to verify that the bearing is

correctly installed. The motor is started to determine that the

bearing floats freely. If it does not, there most likely is no

radial clearance between the bearing and journal. The bearing

coating may be too thick and requires treatment, such as sanding

to insure a looser fit. Calibrated weights are added to the

bottom of the bearing housing to attain the required bearing unit

load.

During heating operations, the quartz heater box is placed

around the bearing/journal assembly. It is necessary to insure

that the heater box thermocouple is not in contact with the

bearing housing. The two halves of the heater box are bolted

together and positioned with guides at the bottom. The tempera-

ture controller is set to the desired temperature. Both rheo-

stats are simultaneously activated to the desired voltage level

to insure a uniform temperature distribution around the bearing.

The temperature recorder is operated to monitor the temperature

within the heater box. When the experiment is operating in the

heating mode, it is desirable to run the bearing continuously

until the temperature is reached so as to minimize any thermal

effects that may exist between the journal and foil bearing.

Start-up Procedure

For safety considerations, the rotation area is inspected.

The strip chart recorders are verified to contain an adequate
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paper supply and proper inking function. The program and heater

duration timers are set for the length of the experiment. The

impulse counter is set to zero. A push button activates the

total system power. The scavenge pump then oil supply pump are

activated with verification of oil supply operation from the

digital flowmeter readout. Annuciating system is acknowledged

and furnace overtemperature, high torque shutdown, and oil out

temperature gauges are reset. The motor control switch is set to

hand (continuous) operation and the motor power pushbutton is

pressed. The start/stop cycle timers are verified to be set for

the proper sequence - 13 seconds for the starting and running

cycle and 7 seconds for the shutdown cycle. The strip chart

recorder is activated. Finally, the motor control switch is set

to automatic to induce start/stop operation.
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APPENDIX B

CALIBRATIONOF FRICTIONMEASUREMENTDEVICE

The apparatus used to measure the friction force of the foil

bearing requires calibration for proper interpretation of the

coefficient of friction values. The friction force is measured

as a function of the deflection of an elastic beam which is

caused by the torque of the test bearing. The flexure and sche-

matic of the physical arrangement of the torque measuring device

are shown in Fig. 24. Deflection of the beam is measured with a

proximity capacitance probe. The capacitance of the probe varies

with the distance between the end of the probe and the deflecting

beam. The probe is one leg of a balanced capacitance bridge.

Any change in probe capacitance unbalances the bridge and pro-

duces an output voltage which is measured by a recording potentio-

meter (millivoltmeter). Capacitance change occurs due to beam

deflection, decreasing the distance across the dielectric air gap

between the probe and flexure. The measurement range of the

capacitance probe is 0-.254 mm (0-.01 in.). The bearing/housing

combination, when placed on the test journal, is restrained from

rotation by a torque arm resting against the beam which is a

thin, metal strip. The force produced to deform this metal strip

is converted into a friction coefficient value. The task is to

arrive at a friction coefficient value from the measurement of

the amount of pen deflection on the potentiometer chart.
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A schematic of the flexure and simple beam theory equations

are shown in Fig. 25. From these equations, the amount of force

required to deflect the metal strip a given amount is known. In

practice, this is also easily arrived at experimentally. This is

done by using a pulley arrangement. Calibrated weights are hung

to apply a controlled or calibration force, (Fcal.) to the fle-

xure as shown in Fig. 24. After the force is applied, a measure-

ment of pen displacement is taken. Since the bearing within the

pulley is not frictionless, two measurements are taken, one by

lowering the weight very gently and another by slightly pushing

the weight downward, realeaslng and measuring its equilibrium

position. An average of the two measurements is used. A refine-

ment of this device would be to replace these pulley hearings

with hydrostatic air bearings. This would virtually eliminate

the need for correctin due to pulley friction.

When a sampling is taken at various weights, a calibration

chart is devised to determine friction coefficient as a function

of pen deflection. This is calculated by using simple force-

moment equations and the dimensions of the bearing and housing

configuration. The torque arm to the level of the calibratlon

pulley has a moment arm of 10.16 cm (4 in.) and the foil bearing

radius constitutes a moment arm that is 1.91 cm (.75 in.)

from the axis of rotation. The torques are the products of these

moments and the corresponding calibration and friction forces and

are equal to maintain a balance of forces.
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The balance of forces is shown schematically in Fig. 26. By

applying the calibrated weight, Fca I, to the pulley, a deflection

is produced in the metal flexure. The capacitance probe trans-

mits the signal to the measurement device and the amount of beam

deflection is shown on the meter. A corresponding value on the

potentiometer is produced by the amount of pen deflection on the

chart. These values are shown in Fig. 26. The values of beam

deflection using simple beam theory are shown in Fig. 27. The

tabulated values of pen deflectlon are plotted vs. the amount of

calibrated applied, Fca 1, as seen in Fig. 28. The theoretical

results are also plotted. From the slope of the curve, a conver-

sion factor can be computed as in Fig. 29. The friction coeffi-

cient, p, is a constant for a given normal load multiplied by

chart pen deflection, _ = (C)(_M), which then can be plotted in

terms of p vs. pen deflection, MM. Fig. 30 allows the friction

coefficient to be read directly from the measured pen deflection.
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Figure8. - Foilbearingcoatingevaluationtestapparatus.
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Temperature. Frictioncoefficients
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230 .25 0 toO.08

Silicate-bonded 25 .30 0 toO.05

graphitelCdO 150 .33 0 toO.05
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315 .30 0 toO.05
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graphitefluoride

- As-sprayed 25 .40 O.06toO.08
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230 .23 .06to O.08

315 .20 .06 to O.08
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FigureII.- Typicalfrictioncoefficientsfor foil bearingswith variouscoatings.

43



Testno. 1 As sprayedPBGF
Testno. 2 PBGFwith burnishedCF(I"I) overlay

.60 -- 17 Frictionat start .60 -- [] Frictionat start
A Frictionwhileairborne A Frictionwhileairborne

•50 -- O Frictionat stop .50 O Frictionat stop

.40- z,,,.40

.30 ....... _ .30u

°= 13""" =o ...........
._ ,.a
__ .2o-- _ .2o

.10 ..... .10 _ I I _ _ , ' '
-- --_.. ....... _ - _ --__

-,- I
50 100 150 200 250 300 350 50 100 150 200 250 300 350

Temperature,°C Temperature,°C

Figure18.-Frictioncoefficientversusoperatingtern- Figure19.-Frictioncoefficientversusoperatingtem-
peratureforsilicatebondedgraphitelCdOcoatedfoil peratureforpolyimidegraphitefluoridecoatedfoil
bearingandA286journal, bearingandA286journal.

Coating Rangeof Endurancelife
_-230OC 150o C7 F230OC type bearing numberof startlstop

R.T. 150°C_ 315°C R.T. t _ 315°C temperatures, cyclesto failure

.60 -- iI _ i I °C MinimumMaximum
i I I

.50 i_
BondedMoS2a 25 175 400--i

-.: (heatcured)
.4o - 0-.9 ,,

" _ Bondedgraphitea 25to 230 800 1000
.30 --,., _ (heatcured)

i_ .20 -- Silicate-bonded 25to 315 4500 ?500

graphitelCdO 2.5to430 b2070
I I

.I0 -- t t
t t Polyimide-bonded 25to 315 >9000 >9000I I

t t graphitefluoridei I

0 500 750 1000 1500 2000 2250 2500 3000 aproprietarycoatingsbondingagentsunknown
Startlstops

Figure20. - Effectofrun-in on startingfrictionfor PBGF bOnlyonetestto430° C
coatedfoilbearing. Figure21. - Coatingdurability.

44



UNWORN

SURFACEI. WEARTRACKREGION

STYLUSDIRECTION_ 400IJm

--,-DIRECTIONOFSLIDING

(a)Journal.

lOpm

STYLUSDIRECTION_I "400pm

GRAPHITE
FLUORIDE

.,,.-HIGHLYPOLISHED
AREA

---,-DIRECTIONOFSLIDING

(b)FoilBearing.

Figure22. - Photomicrographsandsurfaceprofilesof specirnenscoatedwith
polyimidebondedgraphitefluorideafter9000start stopcycles.( Surface
profilesare 90° to slidingdirection.)

4-5



UNWORN
SURFACE WEARTRACKREGION

ii if,

--_ 10pm

STYLUSDIRECTION _ "lO00pm

BUILD-UP
OFTRANSFER
MATERI

"--"DIRECTIONOFSLIDING

(a)Journal.
BAREMETAL
SUBSTRATE
(COATING

WORNAWAY) AREAWITHSBGCCOATINGREMAINING ,

_ _ .... _:....... _ ] 20pm
STYLUSDIRECTION_ "400pm

!i:

SBGC

COATING ......METAL
REMAININGoo
ONFOILJ' SUBSTRATE

Imm_
--"-DIRECTIONOFSLIDING

(b)FoilBearing.

Figure23.-Photomicrographsandsurfaceprofilesofspedmenscoated
withsilicatebondedgraphitecadmium oxideafter7.500startstop
cycles.(Surfaceprofilesare900toslidingdirection.)

46



Center°fI I
capacitanceS---1

probe..... I ,. I I

f l"-O"5-"_"\_- Torquearm
Flexure contactpoint

r/-Flexure

Capacitance/'/ J
probe

1.515

1

,--Torque
arm

FBearing
/ housing

Calibrated
weight

Figure24.- Arrangementof calibrationdevice. Dimensionsare in inches.
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1_2 _,,-318 in. bolts

-U--O.014
'X-Torque

Bearing/journal arm 4
Frontview Sideview contactpoint-x

" Ffriction ,,
O.15

x---4
[---7"_Capacitance probe Calibrated Measured Chart Beam

weight, beam deflection, deflection

a - 31/64in. - O.484375in. P- W(I.57.5in. ) (W-lbof weight) FcaI, deflection, mm perchart

b- 9/64in. - O.140025in. E- 30x108psi (stainlesssteel) g in. High LowAverage in.lmmxlO-Sdeflecti°n'
c • 15164in. - O.234315in.

I0 O.O0(X)5 ZO 1.5 1.75 2.9
Momentof inertio, h I - th3112- 0.5(0.014)3112- 1.14xlO"7 in.4 20 .00015 3.5 3.0 3.25 4.6

30 .00025 5.0 4.5 ¢75 5.3
Deflectionequation: EIy-(PxZl6)13a-x) 50 .00045 8.0 8.0 8.0 5.6

60 .00060 I0.0I0.0 I0.0 6.0
(30x10°)(1.14x10-l)y"W(I"575)(0"234315)2- (3(0.484375)-0.234315) 70 .00065 13.0IZO IZ5 5.2

6 I00 .00100 l&0 17.0 17.5 5.7
y - O.0051385W 150 .00155 27.0 20.0 27.5 5.6

W- 454FcaI (g) 200 .00200 36.0 3.5.0 35.5 .5.6
Figure20. - Forcebalanceduringcalibrationandobserved

Y - O.0000113Fcal. valuesof chartpendeflectionduring applicationof cali-
bratedweights. Dimensionsare in inches.

Figure25.- Deflectionof flexurefromsimplebeamtheory. Dimensionsare in
inches.

200 -- //_.,,.,.Calibrated CaIculated ':'Corresponding
weight, beam pen //J

FcaI, deflection, deflection, 150 -- /
g in. mm //f

10 O.00011 1.97 _' _/'*"20 .00023 4.12 _ I00-- /30 00034 6.09 _" /

50 00051 lO.21 ,0 __,,,C_/60 00068 1Z18 50 -- - Measureddeflection

70 00079 14.16 _ - Calculateddeflection100 00113 20.25

15o 0o170 3o.46 I I I I I I I200 00220 40.50 I -
0 5 I0 15 20 25 30 35 40 45

':'Usingbeamdeflectionperchartdeflection:5.6xlO-5 in./mm Chartdeflection,mm

Figure27. - Theoreticaldeflectionsusingsimplebeamtheory. Figure28. - Conversionfactorchart, FcaI, g versuschartpendeflection,m'n.
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S- AFcal
' _mm

Chartdeflection,m_

Forcebalance:0.75Ffriction- 4 FoaI (Fromfig. 26)

Ffriction- 5.33FoaI - 5.33S (Atom)chart deflection

Fridionequation:F- pN

F - Tangentialforce- Ffriction
N - Normalload(1022g) (bearing,housing,additionalweights)

p - Coefficientoffriction

p. Ffriction.5.33S(Atom). (0.00522S)(Am'n)chart deflectionN 1022g

Conversionfactor:C -0.00522S

Coefficientoffriction:IJ"C(Am:n)chartdeflection

Figure29. - Computationalprocedurefor conversionfactorto plotfriction
coefficient,I_,versuschartpendeflection.

1.20-- _)
/

Calculatedfrictioncoefficient /
1.O0 -- Experimentalfrictioncoefficient /

= .8o- /If/--
g

_ .60

'" .4o d'_"

: .20 S

,,_ I I I I I I
0 6 12 18 24 30 36

Chartdeflection,mm

Figure30.-Coefficientoffrictionconversionchart.
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