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FOREWORD
This report covers the work completed on the research project "Analysis
and Computation of Internal Flow Field in a Scranjet Ekngine." The work was
supported by the NASA Langley Research Center (Computational Mzthods Branch
of the High-Speed Aerodynamics Division} through research grant NAG-1-423,

and monitored by Or. Ajay Kumar of the High-Speed Aerodynamics Division.
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A SECOND-ORDER ACCURATE PARABOLIZED
NAVIER-STOKES ALGORITHM FOR INTERNAL FLOWS
By

Tawit Chitsomboon! and S. N. Tiwari?

SUMMARY
A parabolized Navier-Stokes algorithm is presented which is implicit
and of second-order accuracy in both the cross flow and marching directions,
The algorithm is used to analyze three model supersonic flow problems (the
flow over a flat plate with an impinging shock, and inviscid and viscous
flows over a 10-degree wedge). The results are found to be in good agree-

ment with the results of other techniques available in the literature.

1. INTRODUCTION

Parabolized Navier-Stokes (PNS) equations have recently become popular
in solving steady supersonic flows. The increase in the use of the PNS
equations is due to the fact that the algorithm is very efficient with
regard to both execution times and storage requirements.

Unlike boundary-layer type =quations, the PNS equations alleow cross-

stream interaction because the normal momentum equation is retained., Rever-

sal of the flow field in the streamwise direction, however, is not permitted
because the parabolic nature of the equations dictates no upstream influ-
ence,

In order for the code described in this report to be applicable, the

flow field must be supersonic. A small fraction of a subsonic Tayer close

lGraduate Research Assistant, Department of Mechanical Engineering and
Mechanics, 01d Dominion University, Norfolk, Virginia 23508.

2Eminent Professor, Department of Mechanical Engineering and Mechanics, 0id
Dominion University, Norfolk, Virginia 23508.
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to solid walls is permitted, but the layer must not be too big as to domi-
nate the entire flow field. These conditions usually are satisfied for high
Reynolds number supersonic flows over bodies of small geometrical variations
in the streamwise direction.

The algorithm presented in this study is implicit and of second-order
accuracy in both cross flow and marching directions. The generalized trans-
formation of coordinates is used for convenience of boundary-conditions
implementation. The algorithm is used to analyze a model two-dimensional,
supersonic inlet problem at high Mach number and a supersonic flow over a
flat plate with an incident shock wave. The results of these model problems

are compared with the results of other techniques.

2. THE PNS EQUATIONS FOR TWO-DIMENSIONAL FLOW
The governing equations for the present study are presented here brief-
ly. For a descriptive representation of both &two- and three-dimensional
equations, reference should be made to Refs. 1 and 2.
The Navier-Stokes equations for a steady two-dimensional flow without
body forces and internal heat generation can be written in a non-dimensional

conservation-Taw form (for a Cartesian coordinates system) as

d

S (E-E)+ L (F-F) =0 (2.1)
X 3y
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To close the system of equations, the following perfect gas equation of

state is used.
p=1(y -1) pe (2.2)

The coefficient of viscosity is determined from Sutherland's model.
Next, equation (2.1) is transformed into the body-conforming coordi-

nates and put into a strong conservation-law form as follows:

BE+2(F =0 (2.3)
13 an

where

™
n

1
—_— +
; [, E gy F]
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1

-~ In €2 8) +ny (F - F))

and J represents the Jacobian of transformation, and‘ Ex’ Ey, Ngs My

are the metrics of transformation. In order to put equation {(2.3) in the

PNS form all the viscous cross-derivative terms in F have been neglected.
Unless properly treated, the streamwise pressure gradient in the sub-

sonic layer will cause the marching procedure to be divergent. In this

ki3




study, Vigneron's technique, in which only a fraction of the streamwise
pressure gradient is retained (Ref. 2), is used as opposed to the sublayer
approximation enployed in Refs. 1 and 5.

The modified equation suitable for a stable marching is then expressed

das:

- - -
BE_ 4 3P4 AF . (2.4)
]2 3 3N
=k - -
=f P

- 1 )
[0, (L) 6Py (1P, 0]’

where w 1is a parameter obtained from an eigenvalue analysis (Ref. 2).

3. FINITE~DIFFERENCE ALGORITHM
A fully dimplicit, non-iterative, finite-difference algorithm, as de-
scribed by Schniff and Steger (Ref. 1), is employed in this study. The

resulting algorithm is in delta form and requires a block-tridiagonal in-
version at each marching step. The details of the algorithm are available

in Ref. 1 and the final form is expressed here as:

[A' + (1 -a)b s s, B a'q =
i il . ki kil
_ (A1 gl l) q1 v o (E i E*1 l)

- (1 - a) ags, Fi_at-1p (3.1)




In equation (3.1} if « = 0 the algorithm is first-order accurate and

if o =1/3 1t is second-order accurate. The quantities A and B are
.the Jacobian matrices resulting from the linearization of E and F with

respect to q, respectively; they are 4x4 matrices for the two-dimen-
sional case. The tildes above A, B ang F indicate that the metric
coefficients are to be evaluated at the station (i+l), whereas the Jacobian
of transformation is evaluated at the 1th station.

For the viscous case, the boundary conditions are two no-slip condi-
tions, zero normal pressure gradient, and a specified temperature at the
solid wall. The method of simple extrapolations has been used successfully
to implement the boundary conditions for the inviscid cases. For this
method to work well, it is necessary to cluster the grid points near the
solid wall.

With an appropriate initial data plane, the PNS algorithm of equation
(3.1) can be marched in the £ direction in one sweep to abtain a solution.
Because this is an implieit. scheme, the so}ution procedure requires an in-

version of a block-tridiagonal system.

4. NWMERICAL SMOOTHING

For viscous as well as inviscid marching, both implicit and explicit
smoothing terms of second and fourth order, respectively, are employed to
dampen the escillation. The implicit smoothing function also serves to make
the diagonal terms of the block-tridiagonal system non-zero.

By numerical experiments, it is found that smoothing functions on ¢
vector are more effective than smoothing functions on the flux vector E
which is used in Refs. 1 and 5.

The second-order implicit smoothing term of the form

e e e e o A e ¢ T T T MR Mo < Ak bR AN e SRS W



1 (7a) ai*1 i+l
54

is added to the left-hand side of equation (3.1), whereas the fourth-order

explicit smoothing term is implemented as

e .
- -f—(ws)z 3t g
J

and is added to the right-hand side of equation (3.1).

From linear stability analysis, the upper-bound value of €g is 1/8.
For the present model problems, the exgiicit smoothing funcﬁion alone cannot
stabilize the marching procedure, The marching will be stable if the value
of e; 1s bigger than a value which is proportional to the step size. This
value of €1 has to be determined numerically. It is found also that if
the value of e, 1is two to three times that of s the upper-bound value

I
of Eg is not restricted.

5. RESULTS AND DISCUSSION
Three test cases hava been run to test the PNS algorithm. A brief dis-

cussion of the results is presented here.

5.1 Inviscid Flow with an Incident Shock Wave on a Flate Plate
The schematic diagram for this case is illustrated in Figure 5.1. The
initial data plane was obtained from the exact solution of a Mach-2.9 flow
over an ll-degree wedge.
A pressure-contour plot of the solution is shown in Figure 5.2. Figure

5.3 compares the normalized surface pressure on the flate plate with the

~/
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i -



"81e[d 1R[4 B JSAO MO[4 JLUOS4adNS PLOSLAUL 40y weubelp opiewaysg

[< sayour 9°g —>

f—sur ¢'1

CIlTTF77 7777777 ST A7

"1°G aunbyg

Ao 69E
‘e gprtg
AN

Apte2
‘wpe 1
6°¢

]

]

h g | o

g



"T 24nbL4 j0 SuoL2Lpuod [BLILUL 3YY UOL SANOQUOD BUNSSAUAd “Z°G aanbry

0° 0oot AB 037Y3S S738y1 f0-3o00001 * SI WAUIINI UNOINDD
000Z€" 4] [0-30000@" HOUd YAGINDD




"@1e{d Ijely ® UBAD MO|J ILUCSUAANS 404 UOLINGLAISLP Bunssaud 9Ieyuns “£°G ounbig

SIHINI “NOILlvI01 AGOE

<1

I

w2

ot

d/d

e

Ty

L2}

BuLysael prostauy —— ve
UoL3R|0§ 30eX] -----




exact solution obtained from a shock table. The pressure ut 1/4 inch from
the plate is compared with the MacCormack's predictor-corrector method and
Osher's flux-splitting method in Figure 5.4. The results are seen to be in

very good agreement with the results of other techniques.

6.2 Inviscid Internal Flow Uver a 10-Degree Wedge, M =5

The geometry and free stream conditions of this case are shown in Fiy~
ure 5.5. The initial data plane for this case is specified as a uniform
flow of free-stream conditions at 1 cm. from the wedge.

Figure 5.6 shows a pressure-contour plot of the solution. The results
for surface-pressure distribution shown in Figure 5.7 indicate a very good
agreement with the results of MacCormack's method of Ref. 3. The pressure
distribution at 2 c¢m. from the solid wall is compared with that of Ref. 3,
using the MacCcrmack's method, in Figure 5.8. It is seen that the peak
pressure of the inviscid-marching solution is delayed downstream by almost
1 cm. More investigations are needed to improve the agreement. The oscil-
lation after the peak pressure for the MacCormack solution is non-physical

and is due to the grid-size aspect ratio.

5.3 Viscous Internal Flow Over a 10-Degree Wedge, M_=5

The geometry and free-stream conditions of this case are the same as
for the inviscid case. The initial data plane is specified at 1 cm. from
the wedge and is obtained from thé solution of Ref. 3.

The pressure-contour plot in Figure 5.9 shows a splitting of the shock
wave; this is due to the oscillation across the shock wave. Figure 5.10
indicates a fairly good agreement in the surface pressure with the ful}
Navier-Stokes solution of Ref. 3. The pressure at 2 cm. from the wall is
compared with that of Ref. 3 in Figure 5.11. As in the inviscid case, the

peak pressure is seen to be delayed in the downstream region.
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b. CONCLUSIONS

The second-order PNS algorithm due to Schiff and Steger (Ref, 1) has
been coded and run successfully for three model problems. Good results are
obtained for the flow over a flat plate with an impinging shock wave. Solu-
tions of the flows over a l0O-degree wedge indicate the difference in the
peak pressure locations. This difference is believed to be due to the
splitting of the shock waves which, in turn, is caused by oscillations of
the solutions. Investigations are being made to improve the peak pressure
focations.

Also, the formulation of a fairly general second-order marching algo-
rithm is under current investigation. This algorithm will not be restricted
to only a three-point-backward differencing scheme of Ref. 1. The results
obtained from this general algorithm will be compared with other PNS codes

as well as with the full Navier-Stokes solutions.
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