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FOREWORD

This report covers the work completed on the research project "Analysis

and Computation of Internal Flow Field in a Scranjet Engine." The work was

supported by the NASA Langley Research Center (Computational Methods Branch

of the High-Speed Aerodynamics Division) through research grant NAG-1-423,

and monitored by Dr. Ajay Kumar of the High-Speed Aerodynamics Division.
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A SECOND-ORDER ACCURATE PARABOLIZED
NAVIER-STOKES ALGORITHM FOR INTERNAL FLOWS

By

Tawit Chitsomboon l and S. N. Tiwari2

SUMMARY

A parabolized Navier-Stokes algorithm is presented which is implicit

and of second-order accuracy in both the cross flow and marching directions.

The algorithm is used to analyze three model supersonic flow problems (the

flow over a flat plate with an impinging shock, and inviscid and viscous

flows over a 10-degree wedge). The results are found to be in good agree-

ment with the results of other techniques available in the literature.

1. INTRODUCTION

Parabolized Navier-Stokes (PNS) equations have recently become popular

in solving steady supersonic flows. 	 The increase in the use of the PNS

e quations is due to the fact that the algorithm is very efficient with

regard to both execution times and storage requirements.

Unlike boundary-layer type equations, the PNS equations allow cross-

stream interaction because the normal momentun equation is retained. Rever-

sal of the flow field in the streamwise direction, however, is not permitted

because the parabolic nature of the equations dictates no upstream influ-

ence.

In order for the code described in this report to be applicable, the

flow field must be supersonic. A small fraction of a subsonic layer close	 j

'Graduate Research Assistant, Department of Mechanical Engineering and
Mechanics, Old Dominion University, Norfolk, Virginia 23508.

2 Eminent Professor, Department of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23508.



to solid walls is permitted, but the layer must not be too big as to domi-

nate the entire flow field. These conditions usually are satisfied for high

Reynolds number supersonic flows over bodies of small geometrical variations

in the streamwise direction.

The algorithm presented in this study is implicit and of second-order

accuracy in both cross flow and marching directions. The generalized trans-

formation of coordinates is used for convenience of boundary-conditions

implementation. The algorithm is used to analyze a model two-dimensional,

supersonic inlet problem at high Mach number and a supersonic flow over a

flat plate with an incident shock wave. The results of these model problems

are compared with the results of other techniques.

2. THE PNS EQUATIONS FOR TWO-DIMENSIONAL FLOW

The governing equations for the present study are presented here brief-

ly.	 For a descriptive representation of both two- and three-dimensional

equations, reference should be made to Refs. 1 and 2.

The Navier-Stokes equations for a steady two-dimensional flow without

body forces and internal heat generation can be written in a non-dimensional

conservation-law form (for a Cartesian coordinates system) as

2	
(E-Ev)+ 2. (F-Fv)=0

ax	 ay
(2.1)

where

P 	 0

Puz +p 	
TxxE _	 Ev =

p uv	 T 
xy

(Pet+p) u	
UTxx+VTxy+qx

2

(N

	
a



i

t	 ^.

•	 4

0	 1

F =	 Txy
v

Tyy

UT xy+VTyy+qy

P 

P uv

F=
Pv2+p

(Pet+p)v

.r a Q0..	 V	 t.

To close the system of equations, the following perfect gas equation of

state is used.

p = (Y - 1) Pe	 (2.2)

The coefficient of viscosity is determined from Sutherland's model.

Next, equation (2.1) is transformed into the body-conforming coordi-

nates and put into a strong conservation-law form as follows:

a (E) + a (F) = 0
	

(2.3)
BF	 an

where

E= j[FxE+FyF]

F =	 [n x (E - Ev ) + n y (F - Fv)]

and J represents the Jacobian of transformation, and F x , F y , n x , ny

are the metrics of transformation. In order to put equation (2.3) in the

PNS form all the viscous cross-derivative terms in F have been neglected.

Unless properly treated, the streamwise pressure gradient in the sub-

sonic layer will cause the marching procedure to be divergent. 	 In this

3
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study, Vigneron's technique, in which only a fraction of the streamwise

pressure gradient is retained (Ref. 2), is used as opposed to the sublayer

approximation employed in Refs. 1 and 5.

The modified equation suitable for a stable marching is then expressed

as:

aE* + aP + aF = 0	 (2.4)
94	 ag	 an

'fir^

E = E - P

P = j [0, (1-w) -v ' (I-w)E P, 0]T

where w is a parameter obtained from an eigenvalue analysis (Ref. 2).

3. FINITE-DIFFERENCE ALGORITHM

A fully implicit, non-iterative, finite-difference algorithm, as de-

scribed by Schniff and Steger (Ref. 1), is employed in this study. 	 The

resulting algorithm is in delta form and requires a block-tridiagonal in-

version at each marching step. The details of the algorithm are available

in Ref. 1 and the final form is expressed here as:

PA +  ( I - a ) a S n B A q=

- (At - A i-1 ) qi + a (E*i - Oi-].)

(1 - a) oga n F^ - e' -10 	 (3.1)

4



In equation (3.1) if a a 0 the algorithm is first-order accurate and

if a = 1/3 it is second-order accurate. The quantities A and a are
n

the Jacobian matrices resulting from the linearization of E and F with

respect to q, respectively; they are 44 matrices for the two-dimcn-

sional case. The tildes above A, B anti F indicato that the metric

coefficients are to be evaluated at the station (i+1), whereas the Jacobian

of transformation is evaluated at the i th station.

For the viscous case, the boundary conditions are two no-slip condi-

tions, zero normal pressure gradient, and a specified temperature at the

solid wall. The method of simple extrapolations has been used successfully

to implement the boundary conditions for the inviscid cases. 	 For this

method to work well, it is necessary to cluster the grid points near the

;.	 solid wall.

With an appropriate initial data plane, the PNS algorithm of equation
i

(3.1) can be marched in the E direction in one sweep to obtain a solution.

Because this is an implicit• scheme, the solution procedure requires an in-

version of a block-tridiagonal system.

4. NLMERICAL SMOOTHING

For viscous as well as inviscid marching, both implicit and explicit

smoothing terms of second and fourth order, respectively, are employed to

dampen the oscillation. The implicit smoothing function also serves to make

{
the diagonal terms of the block-tridiagonal system non-zero.

By numerical experiments, it is found that smoothing functions on q

vector are more effective than smoothing functions on the flux vector E

which is used in Refs. 1 and 5.

The second-order implicit smoothing term of the form



Ji+1 (VA) 
J i+1 qi+1

is added to the left-hand side of equation (3.1), whereas the fourth-order

explicit smoothing term is implemented as

- 

ei 
(vo)2 Ji qi

J

and is added to the right-hand side of equation (3.1).

From linear stability analysis, the upper-bound value of e E is 1/8.

For the present model problems, the explicit smoothing function alone cannot

stabilize the marching procedure. The marching will be stable if the value

of e 1 is bigger than a value which is proportional to the step size. This

value of e I has to be determined numerically. It is found also that if

the value of e 	 is two to three times that of e E , the upper-bound value

Of EE is not restricted.

5. RESULTS AND DISCUSSION

Three test cases have been run to test the PNS algorithm. A brief dis-

cussion of the results is presented here.
i

5.1 Inviscid Flow with an Incident Shock Wave on a Flate Plate

The schematic diagram for this case is illustrated in Figure 5.1. The

initial data plane was obtained from the exact solution of a Mach-2.9 flow
i

over an 11-degree wedge.

A pressure-contour plot of the solution is shown in Figure 5.2. Figure

5.3 compares the normalized surface pressure on the flate plate with the

6 QD
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exact solution obtained from a shock table. The pressure at 1/4 inch from

the plate is compared with the MacCormack's predictor-corrector method and

Usher's flux-splitting method in Figure 5.4.	 The results are seen to be in

very good agreement with the results of other techniques.

5.2 Inviscid Internal Flow Over a 10-Degree Wedge, M = 5

The geometry and free stream conditions of this case are shown in Fig-

ure 5.5.	 The initial data plane for this case is specified as a uniform

flow of free-stream conditions at 1 cm. from the wedge.

Figure 5.6 shows a pressure-contour plot of the solution. The results

for surface-pressure distribution shown in Figure 5.7 indicate a very good

agreement with the results of MacCormack's method of Ref. 3. The pressure

distribution at 2 cm. from the solid wall is compared with that of Ref. 3,

using the MacCormack's method, in Figure 5.8. 	 It is seen that the peak

pressure of the inviscid-marching solution is delayed downstream by almost

1 cm. More investigations are needed to improve the agreement. The oscil-

lation after the peak pressure for the MacCormack solution is non-physical

and is due to the grid-size aspect ratio.

5.3 Viscous Internal Flow Over a 10-Degree Wedge, M = 5

The geometry and free-stream conditions of this case are the same as

for the inviscid case. 	 The initial data plane is specified at 1 cm. from

the wedge and is obtained from the solution of Ref. 3.

The pressure-contour plot in Figure 5.9 shows a splitting of the shock

wave; this is due to the oscillation across the shock wave. 	 Figure 5.10

indicates a fairly good agreement in the surface pressure with the full

Navier-Stokes solution of Ref. 3. 	 The pressure at 2 cm. from the wall is

compared with that of Ref. 3 in Figure 5.11. As in the inviscid case, the
I

peak pressure is seen to be delayed in the downstream region.
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b. CONCLUSIONS

The second-order PNS algorithm due to Schiff and Steger (Ref. 1) has

been coded and run successfully for three model problems. Good results are

h
obtained for the flow over a flat plate with an impinging shock wave. Solu-

tions of the flows over a 10-degree wedge indicate the difference in the

peak pressure locations. 	 This difference is believed to be due to the

splitting of the shock waves which, in turn, is caused by oscillations of

the solutions.	 Investigations are being made to improve the peak pressure

locations.

Also, the formulation of a fairly general second-order marching algo-

rithm is under current investigation. This algorithm will not be restricted

to only a three-point-backward differencing scheme of Ref. 1. The results

obtained from this general algorithm will be compared with other PNS codes

as well as with the full Navier-Stokes solutions.

I
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