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SUMMARY

To get a basic understanding of the physics of flowfields modeled by vortex
filaments with finite vortical cores, systematic numerical studies of the
interactions of two-dimensional vortices and pairs of coaxial axisymmetric circular
vortex rings were made. Finite-difference solutions of the unsteady incompressible
Navier-Stokes equations were carried out using vorticity and stream function as
primary variables. Special emphasis was placed on the formulation of appropriate
boundary conditions necessary for the calculations in a finite computational
domain. Numerical results illustrate the interaction of vortex filaments,
demonstrate when and how they merge with each other, and establish the region of
validity for an asymptotic analysis.

INTRODUCTION

The vortex core structure, vortex merging, and the intersection of multiple
vortex filaments have been of interest for many years. The flows are characterized
by time-dependent and three-dimensional interactions.

Mathematical models of vortex filaments have been frequently employed for the
explanation of phenomena such as free jet flows [1] and aircraft wakes [2].
Asymptotic analysis is well known to be valid if 0/ R..«l, where 6 is the effective
viscous core size and R.. is the characteristic flowfield length. When merging is
about to occur" i. e., as the ratio 6/ R.. in the flow. becomes no longer small, the
asymptotic theory may not be applicable. To continue the study of flowfields
dominated by interactinR vortex filaments, numerical solutions of the Navier-Stokes
equations must be carried out.

One of the main difficulties in numerical simulation of a flowfield in an
unbounded domain is how to formulate appropriate boundary conditions necessary for
soiving the Navier-Stokes equations in a finite computational domain. In order to
avoid a larRe computational domain, a method of specifying boundary conditions on a
bounded domain with error control has been presented in [3]. Based on integral
properties of the solution, this method allows the size of the computational domain
to be reduced until the error introduced at the boundary approaches the same order of
maRnitude as that of the finite-difference approximation. Variations in the applica­
tion of this efficient boundary condition method have been reported in [2,4-8].

To study the motion and merging of vortex filaments, the unsteady incompressible
Navier-Stokes equations with aforementioned efficient boundary conditions are solved.
The time variation of contour lines of constant vorticity illustrates the motion and
merging of vortices. A much better picture of merging can be seen with graphs of
trajectories of the - locations of maximum vorticity and with graphs of the decay of
maximum vorticity with respect to time. The practical limit for 6/ R.. in the
asymptotic theory is also shown. Cases included are (1) two, three, and four two­
dimensional vortices; and (2) two coaxial axisymmetric circular vortex rings.



Subsequent sections of this paper contain a description of the governing
equations, a brief discussion of the appropriate boundary conditions, an outline of
the computational scheme, and numerical results demonstrating the characteristics of
the vortical interactions.

SYMBOLS

vector veloci~y potential

•

a effective radius (centered at the origin) of the vorticity distribution in
two-dimensional cases or cross-sectional radius of a vortex ring

error of approximate boundary data for
+
A

ef error of the finite-difference approximation

e w error due to
+w = 0 on the boundary

Do initial separation distance between two vortex rings

L size of ·the computational domain

t characteristic flowfield length

M number of two-dimensional interacting vortices

R,Z cylindrical coordinates

Re Reynolds number, r/v

Ro initial centerline radius of a vortex ring

t time scale

t* time-shift constant for an optimum single Lamb vortex

to initial time of numerical computation

V velocity vector

X,Y inertial Cartesian coordinates

x,y rotating Cartesian coordinates fixed on one of the lines through the
vorticity maxima •

+
x

x

r

2

general position vector

location of vortex maximum for asymptotic solutions

circulation

effective viscous core size
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o initial effective viscous core size
o

~ scalar vorticity for Navier-Stoke solutions

~ scalar vorticity for the sum of asymptotic solutions

~ scalar vorticity for an optimum single Lamb vortex

v kinematic viscosity

p initial distance between the origin and an individual two-dimensional Lamb
vortex

....n instantaneous angular speed of the x-axis

+
00 vorticity vector

+
00 initial vorticity distribution

o

GOVERNING EQUATIONS

Incompressible laminar flowfields induced by initial vorticity distributions are
governed by

+
v-V = 0

+ + + + + +
oo

t
+ (V -V) 00 - (oo-V)V = vfloo

+ +
00 = V x V

subject to the initial condition

+ + + +
W(x,O) = 00 (x)

o

and the boundary condition_

+
For a flowfield dominated by vortices, the initial data 00

support or decay exponentially in r, where r == Ix I_ As 0 a
decays exponentially in r for all t) 0, that is

+ + -brW<x, t) == O(e )

(1)

(2)

(3)

(4)

(5)

are either of bounded
result, the vorticity

(6)

•
for some positive constant
in an unbounded domain for

~. Equ~ions (1) to (5) define an initial-value problem
00 and V_

The divergence-free condition of the velocity field, equation (1), allows
+relate to its vector velocity potential A by

+ +
V = V x A

,- After imposing V-V = 0 , A then fulfills the vector Poisson equation

+V to

(7)
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+ +
M = -w

The governing equations are now (2), (7), and (8) wi~h

variables. At each instant, the vector velocity potential A,
e~uation (8) with boundary condition (5), can then be related
domain by the Poisson integral

(8)

+ +
wand A as prime
i.e~~ the solution of

to w in an unbounded

00 + +'

+( +) 1 fff 00(+ x '+:)A x, t = 4'11' _
_ 00 Ix ~ X I

+'
dx (9)

Since numerical calculations ca~ only
appropriate boundary conditions for wand

+
that w = 0 outside of the domain and that

~e performed in a bounded domain,
A must be introduced. It is assumed

+
w = 0 on the boundary. (10)

According to condition (6), the
e -bL with L as the size of
finite-difference approximation
ef with e , L can be chosen
equation (10f, is acceptable.

error of this approximation e is on the order ofw
the finite computational domain. The error of the
ef depends on the numerical scheme. By matchi~g

so that the approximate boundary conditon for w,

This is the approach employed for the two-dimensional problems in [9,10]. It is
~oted that for the two-dimensional or axisymmetric case the vector velocity potential
A has only one component, i.e., the scalar stream function, and the vector vorticity
+w also has only one component, i.e., the scalar vorticity ~. The evaluation of a
Poisson integral is extremely time consuming evefi for two-dimensional problems. It
will become worse for three-dimensional problems," because the number of operations
is O(N6) for a grid with N points in each direction. Even if the Poisson

+
integral is used to evaluate the boundary data for A and the Poisson solver [11] is
applied to the interior domain, it is still very inefficient. The reason is that the
number of operations for calculating the domain interior is only O(N3log N) while
the number for evaluating the boundary data is O(N5 ). The efficient boundary condi­
tion specification technique used here was developed by Tin~ [3] so that the number
of operations for establishing the boundary data is O(N) and the error e A
introduced at the boundary for A is O(L-m) with m)4.

APPROXIMATE BOUNDARY CONDITIONS FOR VECTOR VELOCITY POTENTIAL

+
To generate more accurate boundary data for A, the farfie1d behavior of the

Poisson in~egral (9) is developed. When the vorticity decays exponentially in the
farfield, A can be represented as a power series in r- l by expanding the
denominator of the Poisson integral. The coefficients of the terms in the power
series are moments of the vorticity distribution. The first moments and several
linear combinations of higher moments are time-invariant. These results [31 are used
to: determine the boundary data for numerical solutions. Time-invariant moments of
vorticity distributions can also be used to monitor the global accuracy of the
finite-difference solutions.

The error of approximate boundary data for A is e = O(L-m) and m depends
on the number of terms used in the power series. By mat~ing ef with eA, which is
usually much larger than e , the optimal size of the computational domain is deter-
mined. w

4



•

•

+
The appropriate boundary conditions for A in the general three-dimensional case

are presented in [3]. They can be reduced to the two-dimensional case [2, 3] or the
axisymmetric case [3, 4] with proper modifications.

COMPUTATIONAL SCHEME

In two-dimensional cases, the effective radius a (centered at the origin) of the
vorticity distribution is required to be sufficiently smaller than the size of the
domain L, i.e., a « L, all the time. In axisymmetric cases, the vorticity distri­
bution is considered to be concentrated almost entirely inside a torus whose cross­
sectional radius a is much smaller than its centerline radius R, i.e., a «R. To
study the merging of two vortex rings with very small core radii, the special case
where a« L« R is considered.

Since the vorticity is assumed to decay exponentially in distance, the initial
+

data ware generated by summing several individual Lamb line vortices (asymptotic
osolutions) and Lamb-type vortex rings for the two-dimensional and axisymmetric

problems, respectively. The minimum distance between vortices is sufficiently larger
than each individual core size so that asymptotic solutions are valid.

The finite~difference scheme consists of the following steps.

(i) Vorticity integrals are evaluated using Simpson integration over the finite
computational domain.

(ii)
+

The boundary data of A are calculated by applying the ~arfield approxima-
tionsmetioned in the previous section.

(iii) A fast Poisson solver is employed to determine A in the interior of the
computational domain.

(iv) The velocity field
+V is obtained by taking the curl of +A.

(v)
+

The vorticity field w
transport equation (2) in
scheme or the ADI scheme.

is advanced in t-ime by integrating the vorticity
a conservative form using either the Dufort-Frankel

Steps (i) through (v) are repeatedly applied to advance the finite-difference
solution· in time. In order to attain a time-accurate transient solution to the
unsteady flow problem, relatively small time steps must be taken. The time step
should also be consistent with the truncation error due to spatial discretization ~nd

with the error due to taking only finite terms of farfield approximations for A.
This algorithm is accurate to the second order in space and time.

RESULTS AND DISCUSSION

The unsteady incompressible Navier-Stokes equations with efficient boundary
conditions are solved for two-dimensional and axisymmetric interacting vortices.
Examples are chpsen to demonstrate the merging of vortices and the practical limit of
the asymptotic analysis [12-14].

For two-dimensional problems, the merging of M
symmetrically on a circle of radius p is studied for

identical vortices located
M - 2, 3, and 4. Under
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inviscid theory, the vortices will move along the circle at a constant speed. Due to
the decay of the vortical core and the enlargement of the effective individual core
size, the M points of maximum vorticity will spiral inward faster and faster as the
vortical cores overlap each other more and more. Eventually the M points of
maximum vorticity coincide at the origin and the constant vorticity lines begin
circularizing around the origin.

To carry out the Navier-Stokes solutions, the initial effective core size is set
to be 0.5 p for all cases. Initially the vorticity at the origin is of the order
of e-4 ' and can be ignored. The initial core structure for each vortex is that of
an isolated Lamb vortex cr~ated at t=O. The initial core size 0

0
is chosen as the

unit length scale and 0 /4v as the unit time scale; therefore, numerical compu-o
tation begins at t=t o=l.

From the Navier-Stokes solutions, the evolution of contour lines of constant
vorticity for M vortices is presented' in figure 1 for Re=r/v = 100 and M=3.
Figures la-lh show the different stage'? of merging. At each instant, four contour
lines at 0.995, e-1I2 , e-1 , and e-J / 2 times its maximum value, l; (t), are

max
shown. X and Yare the inertial Cartesian coordinates, while x and yare the
coordinates rotating with one of the lines through the vorticity maxima. Figure1a
pisplaysthe initial contour lines of the thre'e nonoverlapping Lamb vortices.

Figure 1b shows that the outermost contour lines of l; = e-
3

/
2

l; (t) for the three
vortices are merging at t=1.60. Figures Ie-Ie show the succ~::ive merging of the
inner contour lines one by one at t=1.90, 3.11, and 4.02, respectively. For t;;'.62,
the three maximum vorticity points merge at the origin and the character of three
distinct vortices disappears. Figures If-1h then show the gradual circularization of
the contours beginning from the inner ones as time increases. In figure 1h, t=8.24;
all four contour lines are nearly circles. The vorticity should then decay like a
single Lamb vortex of strength Mr with an appropriate age defined by an optimum
asymptotic solution [10, 14].

When the initial vorticity distribution is defined by the sum of asymptotic
solutions for nonoverlapping 'Lamb vortices, the solution

•

~ r M
l;(x" t)= -- ~

411'vt j=l

2 2 -1-1
-[ P +x -2px Cos('"1t)211']/4vt

e (11)

is certainly quite accurate at the early stage. However, it is useful to' find out
how far the asym2totic theory can be extended into the overlapping stage by comparing
the solution l; with the Navier-Stokes solution l;. 'From equation (11), the
instantaneous angular speed Q of the x-axis (the first line through the maximum ~)
is obtained as

2 J..::lr M -p [l-cos( M 2'1l'»)/2vt
Q(t)= -- ~ {l-e }

4'1l'p2 j=2
(12) •

From equation (11), the location i(t)
equation (12) the trajectory and decay of

for ~ (t) is found.
max

l; (t) are determined.
max

Together with

Figure 2 illustrates that the difference between the decay of ~ (t) obtained
~rom the sum of asymptotic solutions and that of ~ (t) fr~xNavier-Stokes

max
solutions becomes noticeable only when merging is taking place. It is surprising
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that the
merging.

curve follows very well with the r; curve for M=4 even aftermax

..

Figure 3 indicates the tl'ajectories of the locations of maximum vorticity for
" Navier-Stokes solutions (solid lines) and for the sum of M asymptotic solutions

(dotted lines). The agreements of the trajectories between them become better' as
M irtcreases; however, the trajectories of inviscid solutions (dash lines) remairt as
the circle of radius p and can never show the merging characteristics at all •

It is found that even when the core size of an individual Lamb vortex is on the
order of the distance between vortices, the sum of asymptotic solutions is in good
agreement with the Navier-Stokes solution. Also, the agreement remains, good for a
longer time with larger M. This can only be attributed to the fact that the non­
linear convection terms become smaller and smaller as the number of vortices
increases. Without the nonlinear terms, the sum of the asymptotic solutions is the
exact solution.

After merging, the Navier-Stokes solutions may be represented by an optimum
single Lamb vortex defined by

* Mr _(X2+y2)/4v(t+t*)
r; (X, Y, t)= -----:-*- e

4 'lTv( t+t )
(13)

where t* is a constant time-shift parameter obtained by letting the single vortex
have the same polar moment as that of the initial data [10, 14]. This isolated
vortex is created at t=-t*, i.e., when it is a point vortex. For the present initial
vorticity distribution, it can be shown that

* 2
t = L + t4v 0 for all M. (14)

•

It is equal to 5 when '\1=0.25. As shown in figure 2, the agreement between the
decay of ~ and that of r; becomes better and better as time increases.max max

For axisymmetric problems, the cylindrical coordinates (R, Z) are used, where R
is in the radial direction and Z is on the axis of symmetry. The coordinate frame
translates in the Z-direction at an instantaneous inertial speed which is an average
of the flowfie1d velocity weighted by the local magnitude of the vorticity.

Numerical examples for two initially iderttica1 coaxial vortex rings of radius
Ro=15 and of similarity vorticity distribution are carried out to show how and when
they will merge into a single vortex ring. The initial core size 15 is used as theounit length scale. The unit time scale is chosen such that the initial time
t

o
=1/4V. The two rings are initially separated by a distance Do. The Reynolds

number based on the initial core size is defined as r/ \I where r denotes the
strength of a vortex ring.

,Figure 4 illustrates a typical evolution of the vorticity for two right-moving
interacting vortex rings with Re=7 54, \I = 0.25, and Do=6. Note that the displayed
vorticity contours represent the vorticity distribution on a meridian plane cutting
through the torus with only the contours centered at (Ro ' Z) being shown. The center
of the torus is under the contours. The first ring, moving ahead initially, is
stretching its radius and slowing down. In contrast, the second ring, moving behind
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initially, is contracting its radius and speeding up. The plane of the second ring
passes over that of the first ring at t=I.83. At this instant, the two rings switch
the roles of leading and lagging. It is observed that the two vortex rings cross
over each other two more times at t=3.11 and 3.81. Finally, the two rings merge into

~a single ring for t > 3.81.

Figure 5 shows the decay of maximum vorticity for various initial separation
distances Do=3, 4 and 6 at a fixed Reynolds number of 251. As Do decreases, the
vortical interactions become stronger so that the maximum vorticity decays faster and
complete merging occurs sooner. Figure 6 displays the trajectories of the locations
of maximum vorticity. The two rings pass over each other once, separate once, and
then merge into a single ring in all three cases.

Figure 7 depicts the decay of maximum vortidty for various Reynolds number
Re=47 , 189, and 754 at a fixed Do of 6. As Re decreases, the viscous effects become
larger so that the maximum vorticity decays faster and complete merging occurs
earlier. It should be noted that the time is scaled by the Reynolds number.
Figure 8 presents the effect of Reynolds number on the trajectories of the locations
of maximum vorticity. The two vortex rings pass over each other three times before
merging for Re=754, pass over each other only once before merging for Re=189, and
merge into a single ring without passing over each other for Re=47.

The difference of the maximum vorticities between the two rings decreases as Re
or Do decreases. The reason is that the effect due to stretching of the ring
diminishes as Re or Do decreases. Consequently, both curves of the decay of the
maximum vorticity for the two rings become closer to that of the corresponding two­
dimensional results.

CONCLUSIONS

The unsteady incompressible Navier-Stokes equations have been solved for two­
dimensional and axisymmetric interacting vortices. Numerical examples have been

Mchosen to demonstrate the merging characteristics and establish the practical limit
6f the asymptotic analysis.

For two-dimensional problems, it is found that even when the core size of an
individual Lamb vortex ,is on the order of the distance between vortices, the decay of
the maximum vorticity obtained from the sum of asymptotic solutions is in good agree­
ment with that from the Navier-Stokes solutions and the agreement remains longer in
time for larger numbers of vortices. When merging is about to take place, numerical
solutions of the Navier-Stokes equations are required. After complete merging, the
optimum single Lamb vortex solution can represent the Navier-Stokes solution bette~

and better as time increases. The comparison of the trajectory of the locations of
maximum vorticity for Navier-Stokes solutions with that for the sum of asymptotic
solutions becomes better for larger number of vortices. On the other hand, inviscid
theory can neither show the decay of the maximum vorticity nor the correct trajectory
of the locations of maximum vorticity.

For axisymmetric problems, numerical results show that as the Reynolds number or
the initial separation distance decreases, the effect due to stretching of the vortex
ring diminishes so that the maximum vorticity decays faster and complete merging
occurs earlier. As the Reynolds number increases, the elapsed times for switching
the roles of leading and lagging of the two vortex rings will increase.
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