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Abstract

The instability of a three-dimensional attachment line boundary layer is

considered in the nonlinear regime. Using weakly nonlinear theory, it is

found that, apart from a small interval near the (linear) critical Reynolds

number, finite amplitude solutions bifurcate subcritically from the upper

branch of the neutral curve. The time-dependent Navier-Stokes equations for

the attachment llne flow have been solved using a Fourier-Chebyshev spectral

method and the subcritical instability is found at wavenumbers that correspond

to the upper branch. Both the theory and the numerical calculations show the

existence of supercritical finite amplitude (equilibrium) states near the

lower branch which explains why the observed flow exhibits a preference for

the lower branch modes. The effect of blowing and suction on nonlinear

stability of the attachment line boundary layer is also investigated.
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Introduction

Our concern is with the weakly nonlinear and fully nonlinear stability of

a three-dimensional attachment line boundary layer obtained by introducing a

crossflow into the classical Hiemenz stagnation point boundary layer solution.

The resulting flow has a constant boundary layer thickness and is in fact an

exact solution of the Navier-Stokes equations. Thus, it is not necessary for

us to obtain a self-consistent asymptotic solution of the instability problem

based on a high Reynolds number approximation. In fact, the flow we consider

is the first order boundary layer solution corresponding to the flow near the

leading edge of a swept wing. If the flow over the wing is required to be

laminar, then it is, of course, essential that the attachment line flow be

stable so that the problem we consider is of direct relevance to laminar flow

control.

The present calculation is an extension into the nonlinear regime of the

work of Hall, Malik and Poll (1984). Hereafter, we refer to that paper as I,

and we shall shortly discuss the relevant details of that paper. The linear

theory given in I was motivated by the experimental investigations of

Pfenninger and Bacon (1969) and Poll (1979, 1980). These authors measured the

frequencies of naturally occurring disturbances along the attachment lines of

the flows over different swept cylinders. It was found that Small amplitude

time-periodic disturbances exist above a certain critical Reynolds number and

correspond to the lower branch of the neutral curve calculated in I. None of

the experimental points appeared to correspond to upper branch disturbances,

however, it is, of course, possible that if the flow were forced by, for

example, a vibrating ribbon, then such modes might be observed. The first aim

of the present study is to determine whether a weakly nonlinear stability
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calculation based on the Stuart-Watson expansion procedure can explain why the

flow exhibits a preference for lower branch modes. We show that, apart from a

small interval near the critical Reynolds number, finite amplitude solutions

bifurcate subcritically from the upper branch. This means that these

solutions are unstable and therefore would not correspond to an observable

equilibrium state. However, the existence of these solutions suggests that

the basic state might be nonlinearly unstable to sufficently large finite

amplitude disturbances. For this reason we decided to investigate numerically

the full nonlinear stability equations using a Fourier-Chebyshev expansion to

represent the spatial structure of the disturbance flowfield.

In fact, Pfenninger and Bacon found that turbulence wires introduced into

the attachment region could induce large amplitude disturbances in the

boundary layer at Reynolds numbers significantly below the linear critical

point. Thus we use a Fourier-Chebyshev spectral method to simulate finite

amplitude disturbances at Reynolds numbers not necessarily close to the

neutral curve. In recent years similar calculations for flows such as plane

Poisseuille flow have become commonplace, and the reader is referred to, for

example, the papers by Orszag and Kells (1980) and Moin and Kim (1982). This

type of calculation follows the time evolution of an initial perturbation

imposed on the basic flow so that unstable time-perlodic equilibrium states of

the type calculated by Herbert (1977) cannot be found by this approach.

However, the size of such periodic disturbances can be inferred if required by

gradually increasing the size of the initial perturbation.

In order to check the results of our calculations, we shall compare the

numerical results to those predicted by weakly nonlinear stability theory. In

particular, we calculate numerically the supercritically bifurcating solutions
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close to the lower branch and see how the size of the equilibrated disturbance

compares with that predicted by the Stuart-Watson method. Further checks were

made by comparing our numerical results for small amplitude disturbances with

the results of I. We shall show that below the linear critical Reynolds

number it is possible to induce nonlinearly unstable perturbations by

appropriate choices Of the wavenumber and the initial amplitude of the

disturbance. Qualitatively we will find that our results are consistent with

the available experimental results. It is possible that the quantitative

agreement between theory and experiment which we find in the weakly nonlinear

regime cannot be reproduced in the fully nonlinear regime because the

disturbances produced experimentally by Pfenninger and Bacon were necessarily

three-dlmenslonal. The procedure adopted in the rest of the paper is as

follows: In Section 2 we formulate the stability equations which govern the

stability of the three-dlmenslonal boundary layer obtained by introducing a

crossflow into the classical Hiemenz boundary layer solution. In Section 3 we

discuss the instability in the weakly nonlinear regime whilst in Section 4 we

discuss the numerical simulation of large amplitude disturbances. Finally, in

Section 4 we discuss our results and their practical implications.

2. Formulation of the Problem

Let us consider the flow of a viscous fluid of kinematic viscosity

over the flat plate defined by y = 0. The velocity of the fluid with respect

to the Cartesian coordinate system (x, y, z) is (u, v, w) and sufficiently

far away from the plate

x

u N Ue _ , w N We, (2.1)
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whilst at the wall we impose the conditions

u = w = 0, v = V . _=._;
e

We define A, R, and _ by

A = I_) 1/2 (2.3a)e

W A

R - e (2.3b)
V

= Ve{__} 1/2, (2.3c)
e

so that A is the thickness of the boundary layer at the wall whilst R and

are the Reynolds number and a nondimensional suction parameter

respectively.

It is convenient to diverge from the scalings of I and write

2
--u= We U(X,Y,Z,t),~ p = oWe P(X,Y,Z,t), (2.4)

where O is the fluid density whilst (X,Y,Z) = A-l(x,y,z) and the time

variabie t has been scaled on AW-I. The continuity and momentum equationse

then take the form

V • U = 0, (2.6a)

_ I V2 _, (2.6b)
_t + (_ " V)_ = -V _ +
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X
and when Y . _ we require that U . _ , W . i. We therefore choose to seek

a solution of (2.6) which has the particular structure

= (XU,V, W), P"= -R_ + P (2.7)

where U, V, W and P now depend only on Y, Z and t. The equations (2.6)

then simplify to

U+Vy+Wz=0

Ut + U2 + VUy + WUZ R2 + --R[Uyy + UZZ}

(2.8)

I
Vt + VVy + WVz = - Py + _ {Vyy + VZZ }

i
wt + VWy + wwZ = - PZ + R {Wyy + WZZ}

which are to be solved subject to

K

U= W= 0, V =_, Y= 0

(2.9)
1

U + _ , W + i, Y . _.

In the absence of any disturbance, the basic flowtakes the form

U = _I_(y), V = R1V(Y), W = _(Y)

where u, v, and w are determined by solving
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m

u+v" = 0

m ---.2v + v - v v'" - 1 = O,

(2.10)

w'"-vw" = O,

_"(0) : O, _'(0) : _:,_'(_') : -I, _(0) : O, _'(_,): I.

When the disturbance imposed on the flow is not small, we must solve (2.8)

subject to (2.9) numerically, and this will be discussed in Section 4. When

the disturbance is sufficiently small for us to use weakly nonlinear stability

theory based on the Stuart-Watson method, it is convenient for us to write

i

u=U+_,
R

m

v

v =_ + _, (2.11)

w=_+_,

in which case U, V, W and P satisfy
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_+_y +Wz = 0,

L_- {2_ U + _ u--'}= R{U 2 + VU_y + _Z},

(2.12)

,,V--- + +

LW + RVw" = RPZ + R + WWz}.

Here the operator L is defined by

L -- 22 22
+ R-_-_- R_ - v (2.13)

_y2 _Z2 "

The discussion of I was restricted to the linear regime where the nonlinear

terms in (2.12) can be neglected, in the following section we determine how

these disturbances develop in a neighborhood of the neutral curve whilst in

Section 4 larger disturbances will be calculated by integrating (2.8)

numerically.

3. Weakly Nonlinear Stability Theory

In I the solution of the linearized version of (2.12) was discussed, this

was done by taking U, _, W and P to be proportional to

E = exp ie[Z - ct]. Thus the disturbance has wavelength 2_/= and

propagates along the attachment line with speed c. We found in I that in the

case of zero suction instability Ls possible for R > 583.1 and that with

suction the flow is significantly stabilized. We follow the usual approach of

weakly nonlinear stability theory a,td determine how the disturbance develops



-8-

in a neighborhood of a point on the neutral curve in the =-R plane. Suppose

then that (e0,R 0) is a point on a neutral curve for some values of K and

that the corresponding value of c is cO . We expand

R = R0 + cR I + ''', (3.1)

where 0 < _ << 1 and define a slow time variable T by

T = _t. (3.2)

The X velocity component then expands as

= {_ I/2_0E + _2 E2 + E3/2U3E3 + _3/2U4E } + COMPLEX CONJUGATE + SUM + 0(_2)

and _, W and P are expanded in a similar manner. It is then a routine

procedure to substitute the above expansions into (2.12) and equate llke

powers of _ I/2. At order 8 I/2 we find that

N

(U0,V 0) = A(T)(U0,V 0)

where A(T) is an amplitude function to be determined at higher order whilst

(U0,V0) satisfies the slxth-order differential system
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{MI+ i=0 R0 c0}U0 - 2_U0 -u'V0 v--U6 - i% R0w U0 0

{MI + ia0 R0 Co}M 1V 0 - ia0 R0 _ M1V 0 + i=0 R0 _''V 0 - _M 1V 6 - _'M 1V 0

+ 2_'U0 + 2u--U_+ u'" V0 + u'V_ = 0

U0 = V0 = V6 = 0, Y = 0,_. (3.3)

_ d2 2 .2
where M. _ a0 3 Thus (3.3) is just the eigenvalue problem discussed

3 dy2

in I, and in Figures i and 2 we have shown the neutral values of =0' _0 Co

for several different values of _. The elgenrelatlon was obtained by using

a fourth-order accurate finite difference scheme to solve (3.3) after first

writing V = [V0,V_,V_',V_'',U0,u_]T_ so that _ satisfies an equation of the

form

dV

dY - AZ (3.4)

where A is a 6×6 matrix whose elements are given explicitly in I. Later we

shall need the solution of the system adjoint to (3.3) and if

= [ql,q2,q3,q4,q5,q6 ]T is the adjoint vector, the appropriate system is

d_ -AT
d--_= _' q3 = q4 = q6 = 0, Y = 0,_. (3.5)

Here the precise manner in which these functions decay to zero can be found by

looking at the asymptotic solution of the adjoint differential equation for

Y >> I. We note here only that if we insist that this decay is exponential,

then (3.5) has only a discrete spectrum of eigenvalues which, of course, is

identical to that associated with (3.3).



-I0-

At order € we find that

N N

(_2,_2) = A2(U2,V2 ), (UM,VM,WM,_M) = IAI2 (UM,VM,WM,PM),

where IU2,V2) satisfy

{M2 + 2ia0 R0 c0}U 2 - 2_U 2 - _'V 2 - _U_ - 2ia 0 R0 wU 2 = R0(VoU _ - U0 V0},

{M2 + 2i_0 R0 c0}M 2 V2 _ 2i_0 R0_M 2 V2 + ia0 R0 _'"V 2 - v--M2 V_

= _ R0[-4a2 U0 V0 + 212U0 U6 + V6 V6" + U6 V6 - V0 V6""

-V 0 U_" + 2U0 V6")], (3.6)

whilst the mean flow correction is determined by

UM + V_ = 0 (3.7a)

m

UM" - v--UM - 2u--UM - VM u" = R0{4]U0]2+ (V0 U0) + (V0 U0)'} (3.7b)

• V0)- U0 V0 + U0 V0} (3.7c)VM" -VVM- VM _" - R0 PM = R0{2(V0 +

_ R0 ,- ,-- , ,
W_" - v--WM - R0 VM w" = ia0 {V0 U0 + V0 V0 _ V0 U6 - V6" V0}, (3.7d)

where * denotes "complex conjugate." The system of equation (3.6) is to be

solved subject to
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U2 = V2 = V_ = 0, Y = 0,

with U2, V2 tending to zero exponentially when Y . _. Now turning to the

mean field correction equations, we note that UM can be eliminated from

(3.7b) using the equation of continuity to give a third-order equation for

VM. For large values of Y this equation has the three independent solutions

(i) VM ~ constant,

(ii) VM _ y3,

-y2/2
(iii) VM _ e

so that in order to satisfy the no-slip condition VM = UM = 0 at the wall,

we relax the condition on VM at "infinity" to

V_ + 0, Y + "- (3.8)

Having determined VM, we can then integrate (3.7d) to find WM and we note

that the structure of the equation for WM for Y >> 1 enables us to find

WM such that

WM(0) = 0, WM + 0 (exponentially), Y + _. (3.9)

Finally, UM and PM can then be determined from (3.7a,c) respectively.

At order €3/2 we obtain differential systems for (U3' %' W3' P3 )'

(U4' _4' W4' P4 )' in the usual way. We obtain an amplitude equation for A(T)

as a solvability condition on the system for 3' ' W3' . The equation
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takes the form

dA _ a0 RI A + alA IAI2 (3.10)dT

where the constants a0 and aI are defined by

j[oowo oovowVooowoooI
_o_ _o_ .Iv__Vo)__

(3.11a)

aI U0q 6 + IV6" - a V0)q4 dY

" [ql *" 3 _
2 V_ +:- J R0 4- _01V0 VM + VM la0 WM V0 + 3V2 V0 +_ v0 v2

0

* i * i=IVoW_. Uo+ 2V2 U0 +_ U2 V0) - -W M U6 WM -WMV6" )

+ _ (2V 0 U_ + V0 U_" + V0 V_'" + 2V0 V_" + 2VM U_ + 2VM U6"

+ 2VM V_" + 2VM V6"" - 2V2 U0 - V_ U0 - 2V2 V0 - V_ V0

," e *'" #% 1 I+ U2 U0 + U2 U0 + U2 V0 + U0 V_') + q6 ia0WMU0 + VMU0 + VoUM

* * 1 * * *'} ]--_ U0V _ + U0V 2 + 2U2V 0+ 2UoU M + UoU2 + VoU_ + _ dY.

(3.11b)
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The constants a0 and aI can be determined only after integrating

numerically the differential systems for the eigenfunction, adjoint

eigenfunction, first harmonic function and the mean field correction. This

was done using the fourth-order accurate finite difference scheme described in

I, in all the calculations the eigenfunctions were normalized such that the

maximum value of IW01 = 1. The integrals appearing in the definition of a0

and aI were then evaluated using the trapezium rule, the results of a

calculation for K = -.i, 0, .4, .8 are shown in Figure 3. We have only

given results for the real parts of a0 and aI since this information is

sufficient to calculate the amplitude of an equilibrium disturbance. Before

discussing these results further we note from (3.10) that

i d

_ " d-_IAl2 = RI a0r IAl2 + alr IAl4

so that equilibrium solutions are possible if

__ a-I
IAl2 - RI a0r ir

and this solution is stable if the bifurcation is supercritical (alr < 0)

and unstable if the bifurcation is subcritical (air > 0). In the latter case

a finite amplitude motion having IAl2 > R 1 a0r a_ causes IAl to increase

without limit.

Now let us turn to the results illustrated in Figure 3, the most

important results correspond to _ = 0, and we see that the bifurcation is

always supercritical on the lower branch. But alr has a zero near

R0 ~ 595, and for the remainder of the upper branch the bifurcation is
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subcritical. In Figure 4 we have shown the ueutral curve for _ = 0 together

with the experimental points due to Poll (1979, 1980) and Pfenninger and Bacon

(1969). We have marked by an arrow the position along the upper branch beyond

which the finite amplitude solution bifurcates subcritically and is

unstable. As expected it seems that the experiments have picked up the

disturbances corresponding to the parts of the neutral curve where the

bifurcation is supercritical. In Figure 5 we have shown the eigenfunction,

first harmonic and mean flow correction corresponding to the critical point on

the neutral curve for _ = 0. Later we shall describe a numerical

investigation of finite amplitude disturbances, aud I_i o_der to test our

calculations we shall try to reproduce quantitatively the finite amplitude

solution which bifurcates supercritically from the lower branch at R = 800.

We shall also investigate the possibility of finite amplitude motions at

Reynolds numbers significantly less than the critical value, these

disturbances are to be expected since the bifurcation is subcritical over most

of the upper branch.

It remains for us to discuss the resu1_s foc the cases when K # 0. We

see that increasing the blowing at the wall reduces the Reynolds number regime

over which subcritical disturbances are possible. In fact when K = .8 the

bifurcation is always supercritical so that the flow is not susceptible to

"threshold amplitude" effects.

We see in Figure 3 that _len _ = -.I the point on the neutral curve

where there is a crossover from subcritical to supercritical bifurcation moves

down from the upper branch to a point on the lower branch. Thus, the

bifurcation is now subcritical at the critical Reynolds number, this is

consistent with the results of Hocking (1974) who investigated the nonlinear
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stability of the asymptoticsuction boundary layer which correspondsto the

limit _ . -_. Furthermore,we note that at some valuesof _ in this range

(-.I,0) the zero of alr must occur at the criticalReynoldsnumber; thus,

if we wanted to extend our analysis to include slow spanwlsevariations the

appropriate evolution equation would not in this case be that found by

Stewartsonand Stuart (1971) and would have to include fifth-orderterms in

the disturbanceamplitude.

The evolutionof the supercriticallybifurcatingsolutionwith increasing

Reynolds number is beyond the scope of the present calculation. However, if

the disturbancesdevelop in a manner typical of convective or centrifugal

instabilities,it is possiblethat the flow remainslaminarover a significant

range of values of the Reynoldsnumber. If three-dimenslonalinstabilitiesof

the supercriticallybifurcatingSolutionexist then the subsequentdevelopment

of the flow would be more complex. However, if the origin of transitionon

the attachment llne of a swept wing is due to subcriticaldisturbances,then

it is not clear whether suctionshould be effectivein keeping the attachment

llne stable. This followsfrom the fact that suction,althoughincreasingthe

critical Reynolds number, makes the flow more susceptible to subcritlcal

disturbances. In contrast, blowing ultimately causes the disappearanceof

subcrltical disturbancesbut lowers the critical Reynolds numbers at which

infinitesimaldisturbancesare unstable.

4. Direct NumericalSimulation

The attachmentline boundary layer is strictlyparallel;i.e., the basic

flow is independentof the coordinatealong the attachmentline. Thereforewe
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can employ periodic boundary conditions in that direction for the solution of

(2.8). This is to be contrasted with the Blasius boundary layer where

periodic boundary conditions do not simulate the actual physical problem in a

rational way as the growth of the boundary layer cannot be accounted for.

For the present boundary layer, a Fourier-Chebyshev spectral method will

be used to simulate two-dimensional finite amplitude states. We use the

spectral-collocation method of Malik, Zang and Hussaini (1984) (hereafter

referred to as MZH) for the solution of (2.8) subject to the boundary

conditions (2.9). A stretching transformation can be applied in the

(unbounded) vertical direction. Let

I + n (4.1)Y=a_
b-n'

where Y is the physical vertical coordinate, n the computational coordinate

and a and b are constants. Let Ymax be the upper boundary in the

physical plane and set

b = I + 2_____a. (4.2)
Y
max

Then for any choice of the scaling parameter a, the computational

coordinate n falls within the standard Chebyshev interval [-I,I]. The

collocation points in the computational plane are

Z. = j Lz/K, j = 0,1,...,K-I (4.3)J

Imp) ...,N, (4.4)nm = cos , m=0,1,
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where LZ = 2_/_, and K and N are the number of intervals in the Z and

Y directions, respectively. The dependent variables have Fourier-Chebyshev

series of the form

K/2 N 2_ik/L Z
u(Z,_,t) : _ _ Ukn(t)e T (n), (4.5)

k= -K/2 n=0 n

where Tn is the Chebyshev polynomial of degree n. In the spectral

collocation method, spatial derivatives of u are obtained by differentiating

the series expansion with the expansion coefficients Ukn(t ) determined by

discrete Fourier and Chebyshev transforms of the grid point values of u. The

details of the procedure are given in Gottlieb and Orszag (1977). Derivatives

in the vertical direction are evaluated by multiplying the Chebyshev

collocation in q by the Jacobian of the transformation, i.e.,

dn
Uy = _y u . (4.6)

In the temporal discretization, the pressure gradient term and the

incompressibility constraint are best handled implicitly. So, too, are the

vertical diffusion terms because of the fine mesh-spacing near the wall. We

use Crank-Nicholson time discretization on the implicit terms and second-order

Adams-Bashforth on the remainder. After a discrete Fourier transform in Z,

the following set of ordinary differential equations result (we list them in

the order they are stacked for numerical computations):

[



-18-

^+ ^+
Un 1 n I _ l_Gn+l = 0

- - Vy

^n+l vn+l ^n+l At n-i ) _ + ^n
- 6Vyy + + Qy --Vn +-_ (3 - H1 BVyy

^n+ i Gn+ 1 ^^ At Zn- 1 ikQn ^n
- BWyy + + ikQn+l = Gn +-_ (3H2 - H2 ) - + BWyy

^Zn+l + un+l = in +___ 13 _ ) + B • (4.7)- DUyy

In the above, k = 2_k/L Z, B = At/2R, Q = At .2, i = J_l-, and ^ denotes

Fourier transformed variables in wavenumber space. The wavenumber is denoted
^ ^ ^ ^

by k and the dependence of W, V, Q and U (the order of the dependent

variables here represents that of the solution vector adopted for the
^

numerical solution of (4.7)) upon k has been suppressed. The superscript

n represents the time level. HI, H2 and H3, which contain the terms

treated explicitly, are given by

I

HI = -VVy - WV Z + _ VZZ

I (4.8)
H2 = -VWy - WW Z + _ WZZ

1 _ U2 1
H3 = - VUy - WUy + _ UZZ +_ •

Appropriate boundary conditions are yet to be prescribed for (4.7) which will

be discussed later.

^

For each wavenumber k, the system of equations (4.7) can be written as
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L S = F, (4.9)

where S = [_n+l vn+l n+l un+l- , , , ] and F is the known right-hand side.

The matrix L constructed by using Chebyshev polynomials is a full MxM matrix

where M = 4N. A direct soltuion of (4.9) by Guass eliminatlon methods would

require 0(M 2) storage and 0(M 3) arithmetic operations. In the present

study, we use a spectral iteration scheme, based on a minimum residual (MR)

method with finite difference preconditioning, that requires only 0(M)

storage and 0(M log M) operations per iteration. An effective

preconditioning is provided by using a staggered mesh in the normal direction

whereby the velocities are defined at the cell faces _m' and the pressure at

the cell centres

nm_i/2 = cosI_(m-I/2)IN), m = 1,2,...,N. (4.10)

The momentum equations are enforced at the cell faces, whereas the continuity

equations are enforced at the centres. More details of the iterative spectral

method employing staggered mesh are given in MZH.

We now return to the question of boundary conditions imposed for the

numerical solution of (4.7). Because of the staggered mesh in the vertical

direction, no artificial pressure boundary conditions are required. The

velocity boundary conditions for k # 0 are

^ A A

U = V = W = O, Y = O,

and

U = V = W = 0, Y = Y (4.11)max'
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or

..... w llwUy Vy { { =- Y = Y •= - Ymax U, = - k V, y , max

In some test runs, both the zeroth-order and first-order boundary conditions

at Y = Ymax gave almost identical results when Ymax > 15. With the

first-order boundary conditions, the iteration scheme (MR) converged faster;

and therefore, these conditions were imposed at Ymax = 15 in all the

calculations to be reported in this section. This fast convergence with

flrst-order boundary conditions was also noted in MZH.

Foc k = 0, t1_eboundary conditions are

A ^ A
K

V = _ , W = U = 0, Y = 0

(4.12)

^ ^ 1

W = I, U = _ , Y = Ymax"

The structure of (4.7) for k = 0, with the above boundary conditions, is

quite simple. In this case W and U satisfy two tridiagonal equations, and

after first solving this system the continuity equation is then solved as a
^ ^ A

bidiagonal equation for V. Once V is known, the pressure Q also

satisfies a bidiagonal equation. This is solved by setting Q(YI/2)
0 and

then solving for each successive value of the pressure. This particular
^

choice of Q(YI/2 ) is arbitrary and corresponds to specifying the mean

pressure.

Initial conditions required for the solution of (4.7) are provided by

imposing a disturbance of finite amplitude upon the basic state. The

disturbance eigenfunctlons are calculated using linear theory as discussed in
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I. The initial conditions thus are

U(Z,Y,O) = _(Y---_)+R € Re{U0(Y)ei=Z }

b

V(Z,Y,O) = v£I)R + € Re{V0(Y)eiaZ } (4.13)

W(Z,Y,0) = _(Y) + _ Re{W0(Y)eiaZ},

where the disturbance eigenfunctlons U0, V0, W0 have been normalized such

that the maximum value is I. The parameter _ has been introduced to control

the magnitude of initial disturbance.

Let us define the flow energy at any time t as

Z fmax

E(t) = dZJ (U(Z,Y,t) -_)2 + (V(Z,Y,t) -_)2 + (W(E,Y,t) -_)2 dY
0 0

(4.14)

and rate of change of the disturbance amplitude as

1 dE
o - 2E dt (4.15)

where o > 0 and _ < 0 signify growing and decaying disturbances

respectively.

In the numerical calculations which are reported below, we have used 33

Chebyshev polynomials in the normal direction whilst the number of Fourier

modes a!ong the attachment line varies from case to case. Excellent agreement

between the numerical results and linear theory was achieved in MZH for plane
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Poiseuille flow and Blasius boundary layer with only 33 Chebyshev polynomials.

We compared the solution of (4.7) with linear theory results just to check the

accuracy of the numerical scheme and found satisfactory agreement. As an

example, calculations were performed at e = .25648 for three different

Reynolds numbers using € = .0001 and K = 4. The results are presented in

LZ

Table I. These results were obtained using a time step At = CFL-_ with a

CFL number of 0.1. Calculations were terminated at t = 306 which

corresponds to about 4.5 linear wave periods. For all three Reynolds numbers,

the difference between the calculated c (averaged) and linear theory result

is approximately .000016 which is indicative of the degree of accuracy that

can be expected with the employed spatial and temporal discretizations. In

order to estimate numerical dispersion in the calculation scheme, we performed

a computation at R = 570 with = = .32 and _ = .00001. The calculated

wall pressure for this wave is plotted in Figure 6. The nondimensional

frequency calculated from the signal is .1235: the corresponding linear

theory result is .1249. Having established that reasonably accurate results

may be expected from the numerical computations when N = 32 and CFL = 0.I,

we now present some results that pertain to finite amplitude motions.

According to linear stability theory, all infinitesimal disturbances

decay for _ = 0 if R < 583.1. The critical wavenumber in this case is

= .288. The weakly nonlinear theory presented in Section 3 showed that

bifurcation is always supercritical near the lower branch of the neutral curve

and is subcritical on the upper branch so the flow will be unstable in a

finite-amplitude sense for wavenumbers corresponding to most of the upper

branch of the neutral curve. We first show that the numerical computations

support the result that subcritical bifurcations cannot take place at
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wavenumbers that correspond to the lower branch of the neutral curve. We do

this by performing a calculation at R = 570 with _ = .28, _ = .12 and

K = 8. The results are presented in Figure 7(a) - 7(d). In Figure 7(a) the

disturbance energy is plotted and is found to decay as a function of time.

Figure 7(b) contains a plot of the rate of change of disturbance amplitude

(c) which shows that after an initial period of positive growth, c settles

down at a negative value of about -.00059 (the linear value is -.00016).

Amplitudes of the fundamental mode and first harmonic are plotted in Figure

7(c) which also decay. Finally, a trace of the calculated wall pressure

signal is plotted in Figure 7(d). Similar calculations were performed at R =

570 with _ = .25648 and € = .05, .12, .2. The results are consistent with

the weakly nonlinear theory result that unstable (subcritical) finite-

amplitude disturbances cannot exist in a swept attachment llne boundary layer

at wavenumbers that correspond to the lower branch of the neutral curve. Our

full nonlinear computations do support the prediction of the weakly nonlinear

theory that subcritical instability can occur at wavenumbers that correspond

to the upper branch of the neutral curve. Our computations at R = 570 with

= .12 and = = .32, .33, .34 and .37 all show the existence of unstable

finite-amplitude motions. The band of unstable wavenumbers at R = 570 lies

in the range .28 < _ < .4 with a = .34 as the most unstable wavenumber.

The results for this wavenumber are presented in Figure 8(a) - 8(d). Figure

8(a) shows that flow energy increases with time. The disturbance growth rate

is plotted in Figure 8(b). The magnitude of the growth rate at the time when

computations were terminated was about .00036: the corresponding linear

theory result is -.00099. The amplitude of the fundamental mode and first

harmonic are plotted in Figure 8(c) while the wall pressure distribution is
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given in Figure 8(d). These results were obtained using K = 8; however, some

of the computations at other wavenumbers were done using K = 16, and very

little effect on the growth rate was found. These computations clearly show

the existence of subcritical instability in the attachment line boundary

layer. In Figure 9 the effect of varying Reynolds number is studied for

= .12, a = .34 and K = 8 where the disturbance energy E(t) is plotted

for R = 570, 550, 540, and 530. It appears that for a = .34 and € = .12,

subcritical instability is present only for Reynolds numbers R > 540. At

R = 530, E(t) decays when € = .12. Calculations at other wavenumbers also

showed a similar trend. Higher initial disturbance amplitude may, however,

trigger subcritical instability at lower Reynolds numbers. Some calculations

performed at R = 538 showed that the growth rate increases with increasing

A set of calculations was carried out at R = 500 with _ = .15 and .2;

the disturbances at all the wavenumbers decayed. In Figure 10a-d we present

the results of these calculations for a = .35, K = 16. The growth rate at

the end of the computation is about -.00051 whilst the corresponding linear

value is -.00197. A summary of all the computations at subcritlcal Reynolds

numbers is presented in Table II. Based on these computations it appears that

subcritical instability could exist in swept attachment line boundary layer

only at Reynolds numbers in excess of about 535 with reasonable amplitudes of

initial disturbances. The experimental points of Pfenninger and Bacon (1969)

below this Reynolds number may have been influenced by three-dlmenslonal

disturbances.

We now come to the question of the supercrltlcal bifurcation near t_e

lower branch of the neutral curve as predicted by the weakly nonlinear
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theory. For the bifurcation to be supercritical, a neutrally stable solution

should exist at supercritical Reynolds numbers. We investigated this result

by performing a computation at R = 900 and _ = .201178. For these

conditions the linear growth rate is .00065. We chose an initial amplitude

€ = .04 and a streamwise resolution with K = 8. As shown in Figure ll(a)

the energy solution settles down at a constant value. This is confirmed by

plotting the growth rate _ (Figure ll(b)) which attains a value of

approximately zero at large t for € = .04. The amplitude of the

fundamental mode is plotted in Figure ll(c). The final value is .0398 in

excellent agreement with the weakly nonlinear prediction of .04. In order to

see the effect of initial disturbance, two solutions were obtained with

= .02 and € = .06 which are also plotted in Figure 11. It is quite clear

that they too tend to the same finlte-amplltude solution.

Another calculation was performed at the same wavenumber but at a higher

Reynolds number of I000. According to the weakly nonlinear theory, the

equilibrium amplitude should be about .056 for this Reynolds number. First, a

computation was performed with _ = .05. The amplitude of the fundamental

mode is plotted in Figure 12. At the end of the computation, the amplitude

is slightly above .06 and still increasing. The calculation was repeated with

€ = .065 and the result is also plotted in Figure 12. We see that this

solution shows an equilibrium state at an amplitude of about .067. The

discrepancy between this and the weakly nonlinear prediction is not totally

unexpected since at this Reynolds number the contribution from the higher

order nonlinear terms will be significant.
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5. Conclusion

The results which we have given in this paper extend the linear theory of

I into both the weakly and fully nonlinear regions using asymptotic and

numerical means. There seems little doubt that the absence of any upper

branch modes in the experiments of Pfenninger, Bacon, and Poll is due to the

subcritlcal nature of the bifurcation along most of the upper branch.

Furthermore, this subcritical bifurcation is the cause of the nonlinearly

unstable disturbances which are investigated numerically in Section 4. These

disturbances exist below the linear critical Reynolds number and the region in

the wavenumber-Reynolds number plane where they are unstable increases with

the size of the initial amplitude. The existence of these modes is

consistent with the results of Pfenninger and Bacon (1969) but since the

latter authors gave no details of the size of the disturbances introduced into

the boundary layer a quantitative comparison between experiment and theory is

not possible.

Unfortunately, the expensive nature of the calculation prevented us form

investigating the eEfect of suction or blowing on the nonlinearly unstable

disturbances. It is, of course, possible to investigate particular cases if

and when experimental results become available. However, it is clear from

weakly nonlinear theory that the stabilizing influence of suction on

transition suggested by the results of our linear calculations of I is perhaps

destroyed by nonlinear effects. We refer to the fact that, although the

linear critical Reynolds number increases with suction, the part of the

neutral curve where subcritical disturbances exist increases. Hence, if

transition is in any way related to the subcritical disturbances, then the

suction leads to a larger band of nonlinearly unstable modes. In co,ltrast, if
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the blowing at the wall is sufficiently large then only supercritically

bifurcating modes can exist and no nonlinearly unstable modes will exist. Of

course, this discussion ignores completely the role of three-dimensional

disturbances in the instability-transition process so that perhaps the most

that we should assume is that the stabilizing or destabiTizing effect of

suction on the attachment line instability problem is not yet as fully

understood; obviously the present calculation suggests many experimental

aspects of the problem which have not yet been investigated.

Unfortunately, the particular X-dependence of the problem that we asnumed

in Section 2 does not generalize to oblique waves so that this type of

disturbance can only be investigated in a formally self-consistent manner

using asymptotic means based on a high Reynolds number assumption. In any

flow of practical importance the basic flow which we have considered is only

the first approximation to the flow near the attachment line. It is yet to be

shown how the Tollmien-Schlichting instability along the attachment line

merges into a "crossflow" instability further away from the attachment line.

There again it seems that the only self-consistent way to investigate this

problem would be to use asymptotic methods based on a high Reynolds number

ass,tmption.
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Table I. Comparison of Calculated Growth Rate with Linear Theory

(K = 4, t = 306, € = .0001)

R _ Clinear Ocalculated )Err°rl

570 .25648 -.0004523 -.0004365 .0000158

610 .25648 0. .0000160 .0000160

655 .25648 .0004423 .0004589 .0000166

Table II. Summary of Navier-Stokes Computations for Subcritical Instability

(g _ grows, d _ decays, n _ neutral)

R

570 560 550 540 535 530 500

.28 d

.3 d

.32 g

.325 g

.33 g g g d

.335 g g n d

.34 g g g d d

.3425 g n d

.345 d

.35 d d

.37 g d

.4 d d
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Figure Captions

Figure I. The neutral curves in the e0 - R0 plane for different values of

Figure 2. The neutral curves in the =0c0 - R0 plane for different values

of <.

Figure 3. The real parts of the constants a0 and aI for different values

of <.

Figure 4. Comparison of the calculated neutral curve with the experiment. The

finite amplitude solution bifurcates subcritically beyond the arrow

marked along the upper branch.

Figure 5. A plot of the (a) eigenfunction, (b) first harmonic and (c) mean

flow correction corresponding to the linear critical point for

= 0.

Figure 6. A plot of the calculated Wall pressure for R = 570, _ = .32,

= .00001. Here € is the initial perturbation amplitude.

Figure 7. Computed results for R = 570, a = .28, € = .12.

(a) disturbance energy

(b) disturbance growth rate

(c) amplitude of fundamental mode (I) and the first harmonic (2)

(d) wall pressure
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Figure 8. Computed results for R = 570, _ = .34, € = .12. The legend is the

same as in Figure 7.

Figure 9. A plot of disturbance energy as a function of time for = = .34

and _ = .12 for four different Reynolds numbers.

Figure I0. Computed results for R = 500, = = .35, € = .2.

Figure II. Computed results for R = 900, _ = .201178 and € = .02, .04, .06.

(a) disturbance energy

(b) disturbance growth rate

(c) amplitude of the fundamental mode

Figure 12. Computed amplitude of the fundamental mode for R = I000,

= .201178 and _ = .05, .065.
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