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1.0 	-SUMMARY
 

The work described in this report addresses the first phase of a planned
 

multiphase program to develop a phosphoric acid fuel cell (PAFC) for electric
 
utility prototype power plant application. The first phase effort in this PAFC
 
Technology Development Program (TDP), funded by the U. S. Department of Energy,
 
Office of Fossil Energy, Morgantown Energy Technology Center, and managed by
 
the NASA Lewis Research Center, was performed by a team comprised primarily of
 

personnel from the Westinghouse Advanced Energy Systems Division and-the Energy
 
Research Corporation (a subsidiary of St. Joe Minerals Corporation). The PAFC
 
TDP was performed in parallel with the Utility Power Plant (UPP) Program being
 

sponsored by Westinghouse, the two host utilities, the Electric Power Research
 

Institute, the Empire State Electric Energy Research Corporation, and other
 

participating organizations.
 

The 	major technical objectives of the first phase of the PAFC TDP effort were
 

to:
 

* 	Establish the preliminary design requirements and system

conceptual design for the nominally rated 375 kW PAFC module and
 
its interfacing power plant systems (Fuel Processing, Power
 
Conditioning, and Rotating Equipment Systems).
 

* 	 Improve the existing PAFC materials data base and establish
 
baseline materials-specifications and process procedures for the
 
electrodes, carbon matrix and silicon carbon layer, and bipolar

and cooling plates.
 

* 	 Establish PAFC component and stack performance, endurance, and
 
design parameter data needed for design verification for power

pl-ant application. The primary PAFC stack performance goals
 
are:
 

An average start of life cell voltage of 680 mV at operating
 
conditions of 70 psia, 190'C, 325 mA/cm2 , 80 percent
 
hydrogen utilization using reformed natural gas and three
 
stoichs of air.
 

Endurance consistent with a voltage loss of 2 mV per 1,000
 
hours and a corrosion rate of five mils per 6,000 hours at
 
the above operating conditions.
 

* 	 Development of an Acid Management System, economical method of
 
heat treating bipolar and cooling plates, and improved electrode
 
catalyst utilization.
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Considerable progress was achieved relative to each of these objectives which
 

is summarized below:
 

a A number of trade-off studies were performed-to determine the
 
-proper glant power level, the pressure aid temperature level at
 
the rated plant power level, the power level control mode, and
 
the fuel-cell system design configuration. As a.result of these
 
studies, design parameters were selected for the prototype power
 
plant conceptual design effort that satisfy the various plant
 
economic and performance goals established, such as an installed
 
capital cost of $2725/kWe ac net in 1981 dollars, and a heat
 
rate of less than 9000 Btu/kWh of net ac power output using
 
natural gas. The selected design parameters ard: (l)-a 7.5
 
MWe dc plant power output which has about a 7.2 MWe ac net
 
output, (2)fjel cell system operating points of 70 psia, 190°C,
 
and 325.mA/cmC, (3) a variable pressure and temperature control
 
mode capability that approximates a constant phosphoric acid­
concentration, and (4)electrically connect the modules in two
 
parallel banks of ten modules each to produce the 7.5 MWe dc at
 
about 2240 volts.
 

In accordance with the above selected plant design parameters,
 
system level requirements were developed for the fuel cell, power
 
conditioning, rotating equipment, and fuel processing systems.
 
Documented conceptual designs were-developed for each of these;
 
systems which satisfy the system level requirements as Well as
 
plant interfacing requirements. The selected reference baseline
 
conceptual design and other supporting material for each of these
 
systems such as system description, performance characteristics,
 
system arrangement, and instrumentation and control are discussed
 
in detail in Section 2.0.
 

* 	 Anintegral part of the manufacture of uniform fuel cell
 
components is a thorough characterization of the raw materials
 
usedin component'manufacture. Progress was made in-this area to
 
establish and improve upon the material data base for the
 
electrodes, matrix, and bipolar and cooling plates. Specifica­
tions were developed for the eleven critical materials currently
 
being used in the manufacture of these components. In addition,
 
all process specifications and subassemblyand assembly
 
procedures required-for the manufacture and'assembly of these
 
components were developed and numerous full size components
 
produced and evaluations made that demonstrated repeatability
 
within the acceptance criteria.
 

*e Documented designs of various size stacks were developed in
 
addition to a subscale cell design. Final designs were completed
 
for a 9 cell and 44 cell stack that are nominally rated at 2.5 kW
 
and 10 k, respectively at operating'conditions of 70 psia,­
190 0C, and 325 mA/cm2 .
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The preliminary design of a nominally rated 100 kW stack that
 
consists of 419 cells, and the conceptual design of the nominally
 
rated 375 kW plant module that consists of 1676 cells were
 
completed. Each of these increasing in complexity designs

incorporates various design advances conceived such as plastic
 
process gas manifolds, plastic inter-cell edge seals, deflection
 
limited stack design, machining of the bipolar and cooling plate
 
edge surfaces after heat treatment, and various other stack
 
mechanics type improvements.
 

* 	 To date, testing under this ongoing program has consisted of 122
 
subscale atmospheric tests for about 110,000 cumulative test
 
hours; 12 subscale cell pressurized tests for about 15,000
 
cumulative test hours; and 12 pressurized stack tests that
 
contained either 5, 9, or 12 cells each for about 10,000
 
cumulative test hours. Performance and other improvements

realized from this extensive test program are discussed in detail
 
in Section 3.0.
 

The 	design and installation of all needed manufacturing and test
 
facilities to support the planned near term fuel cell development

efforts are essentially complete. A fuel cell manufacturing
 
capability is available at Westinghouse to produce the planned

subscale cell test assemblies and various size stacks for basic
 
development and design verification purposes. This capability is
 
in addition to that available at ERC.
 

Numerous test facilities are available at Westinghouse and ERC.
 
These facilities consist of 45 subscale cell atmospheric test
 
stands (25 at Westinghouse and 20 at ERC), three subscale cell
 
pressurized,test loops at ERC and one at Westinghouse, one 6 and
 
12 cell pressurized test loop at ERC, and two nominally rated
 
2.5 kW and one 30 kW pressurized test loops at Westinghouse. It
 
should be noted that all Westinghouse manufacturing and test
 
facilities were provided by Westinghouse under the UPP Program to
 
support the TDP.
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2.0 SYSTEMS ENGINEERING
 

The objectives of this task for this period of performance were to develop
 
preliminary requirements and conceptual designs for the fuel cell, fuel
 

processor, power conditioner, and rotating equipment systems (FCS, FPS, PCS,
 
and RES respectively). The following sections summarize the results of
 

analyses and design studies performed.
 

2.1 DEVELOPMENT SYSTEM REQUIREMENTS
 

This section summarizes system analyses, technology assessments, and the
 

resulting design requirements for the FCS, FPS, PCS and RES.
 

2.1.1 SYSTEM ANALYSES
 

The primary objectives of the system analysis effort were to perform system
 

trade-off studies, performance analyses, operational studies, and economic
 
studies to establish preliminary system level design requirements for the fuel
 

cell, fuel processor, power conditioner, and rotating equipment group systems.
 

These analyses identified the functional and conceptual interface requirements
 

in conjunction with the Task 1102-04-100 Plant Systems Analyses effort. System
 
level trade-off studies considering heat rate, power level, cost of
 

electricity, operating characteristics, and development risk were performed to
 
select system level design requirements for each of these systems for a
 
prototype power plant that produces 7.5 MWe dc with a heat rate goal of less
 
than 9500 kJ/kWh (9000 Btu/kWh). The effect upon plant performance and
 
operating characteristics for startup, steady-state, shutdown, and malfunction
 

conditions associated with these systems was determined by utilizing
 

appropriate steady-state, transient, and controllability analyses models.
 

The prototype power plant cost of electricity utilizing an economic analysis
 
code was determined and cost goals were established for each of the systems.
 

Preliminary failure mode and effects analyses of the systems were performed (in
 
conjunction with the Task 1102-06-300 analysis effort) to evaluate plant safety.
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2.1.1.1 PERFORMANCE AND OPERATIONAL STUDIES
 

A number of trade-off studies were performed to determine the proper plant
 

power level, the pressure and temperature level at the rated plant power level,
 

the power level control mode, and the fuel cell system design configuration.
 

As a result of these studies, design parameters were selected for the prototype
 

power plant conceptual design effort that satisfy the various plant economic
 

and performance goals established, such as an installed capital cost of
 

$2725/kWe ac net in 1981 dollars, and a heat rate of less than 9500 kJ/kWh
 

(9000 Btu/kWh) of net ac power output using natural gas. The selected design
 

parameters are: (1) a 7.5 MWe dc plant power output which has about a 7.1
 

MWe ac net output, (2)FCS operating points of 480 kPa, 190°C, and 325
 

mA/cm2, (3) a variable pressure and temperature control mode capability,
 

however, the selected control mode is constant temperature and variable
 

pressure, and (4)electrically connect the modules in two parallel banks of ten
 

modules each to produce the 7.5 MWe dc at about 2240 volts.
 

Four normal power plant operating points were established. These were (1)full
 

power beginning of use (BOU), (2)full power end of use (EOU), (3)part power
 

BOU4 and (4)part power (EOU). The full power BOU point is identified as the
 

baseline prototype power plant design. The EOU condition is defined as 40,000
 

hours of fuel cell operation at a cell voltage degradation rate of 2 mV/l00 hr.
 

Though the remaining fuel cell operating parameters (temperature, pressure,
 

current density, etc.) remain constant at BOU and EOU for full and part power
 

modes respectively, there is a difference in the operating parameters between
 

full and part power. The full power BOU operating conditions for the fuel cell
 

are 190'C (375°F), 480 kPa (70 psia), and 325 mA/cm2 producing a cell voltage
 
of 0.680 V (0.600 at EOU). The corresponding part power conditions are 1900C
 

(3750F), 300 kPa (43 psia), and 80 mA/cm3 which results in a BOU cell voltage
 
of 0.774 V (0.684 V at EOU). The part power operating pressure represents a
 

pressure level where the parasitic losses from the RES do not excessively
 
reduce the heat rate. Part power operation at constant temperature maintains
 

the pressure level of the steam generators. The performance summary for these
 

operating points is given in Table 2.1.1-1.
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Cell Voltage 


Pressure, kPa (psia) 


Temperature, °C (OF) 


Current Density, mA/cm2 


Gross dc, kW 


Gross ac, kW 


Net RES, kW 


Net FPS Turbocompressor, kW 


Parasitic Losses, kW 


Net ac, kW 


Thermal Input, GJ/h 


(106 Btu/h)
 

Plant Heat Rate, 


kJ/kWh (Btu/kWh)
 

TABLE 2.1.1-1
 

PERFORMANCE SUMMARY
 

FULL POWER 


BOU 


0.680 


480 (70) 


190 (376) 


325 


7500 


7238 


-46 


+164.0 


229 


7109 


EOU 


0.600 


480 (70) 


190 (376) 


325 


6620 


6388 


-58 


+146.0 


259 


6217 


63.5 (60.22) 63.5 (60.22) 


PART POWER
 

BOU EOU
 

0.774 0.694
 

300 (43) 300 (43)
 

190 (376) 190 (376)
 

80 80
 

2102 1885
 

1934 1734
 

-169 -145
 

-203.1 -203.1
 

56 61
 

1506 1325
 

15.6 (14.82) 15.6 (14.82)
 

8928 (8471) 10,210 (9687) 10,370 (9843) 11790 (11,186)
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The PAFC power plant studies defined the fol-owing plant operational modes
 

(COLD STOP, STANDBY, POWER) and transient modes (COLD STARTUP, WARM STARTUP,
 

WARM SHUTDOWN, COLD SHUTDOWN, EMERGENCY SHUTDOWN, EMERGENCY STOP). These modes
 

are described below:
 

COLD STOP
 

COLD STOP is a nonpower-producing mode in which the plant reaches essentially
 

ambient temperature and pressure. In this mode, the fuel cell modules will' be
 

maintained at 380C (1000F). All systems will be designed to maintain this mode
 

for indefinite periods. Plant control in this mode will be manual.
 

STANDBY
 

STANDBY is a nonp6wer-producing mode from which the plant can be brought
 

on-line (pro.duce minimum power) in less than one hour. The plant will be
 

capable of STANDBY operation for up to 60 hours. The capability for local or
 

remote automatic plant control in this mode will be provided.
 

POWER
 

The POWER mode is the normal plant power-producing mode. All plant systems
 

will be operational and plant electrical output will be in the range fromi25 to
 

100 percent of full power. Plant control during POWER operation will be
 

automatic with the option, for manual override. The plant will be capable to
 

.respond over the total POWER range at the following rates:
 

* Up transients up to 7.5 percent of full power per minute.
 

* Down transients up to 15 percent of full power per minute.
 

The normal operating power line is shown on Figure 2.1.1-1 with constant
 

average fuel cell temperature and variable pressure.
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COLD STARTUP
 

COLD STARTUP is defined as the plant transient from COLD STOP to STANDBY. The
 

plant will be designed to complete ,aCOLD STARTUP in less than eight hours.
 

Pl'ant control during COLD STARTUP will be manual.
 

WARM STARTUP
 

WARM STARTUP is defined as the plant transient from STANDBY to POWER.. The
 

pl:ant will be designed for WARM STARTUP to the minimum POWER condition in less
 

than one hour. Plant control during WARM STARTUP will be automatic or manual.
 

WARM SHUTDOWN
 

WARM SHUTDOWN is defined as theplant transient from POWER to STANDBY. The
 

'plant will be designed to complete a WARM SHUTDOWN from minimum power in less
 

than one hour. Plant control during WARM SHUTDOWN will be automatic or manual.
 

COLD SHUTDOWN
 

COLD SHUTDOWN is defined as theplant transient from STANDBY to COLD STOP. The
 

plantwill be designed to complete a COLD SHUTDOWN in less than eight hours.
 

Plant control during COLD SHUTDOWN'will be manual.
 

EMERGENCY SHUTDOWN
 

EMERGENCY SHUTDOWN is defined as the plant transient from a faulted condition
 

during POWER operation to STANDBY. The plant will be designed to complete an
 

EMERGENCY SHUTDOWN in less than 1.5 hours; however, plant electrical power
 

outputwill be disconnected from the utility transmission line in 0.05
 

seconds. Plant control during EMERGENCY SHUTDOWN will be automatic.
 

EMERGENCY STOP
 

EMERGENCY STOP is defined as the plant transient from a faulted condition
 

during any plant operation or transient to COLD STOP. The plant will be
 

designed to automatically complete an EMERGENCY STOP.
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2.1.1.2 PLANT SAFETY
 

A preliminary plant safety evaluation was conducted to identify areas,
 

components, functions, operations, etc., that should receive early design.
 

attention to improve plant safety and operability. The analysis included all
 

the PAFC plant equipment, equipment arrangements, buildings, and the site
 

layout to the extent described in the conceptual design drawings. All of the
 

plant operating modes and maintenance activities were considered in identifying
 

potential equipment malfunctions, failures, hazards, and accidents. T46
 

following types bf failures, events, and their consequences were considered in
 

this evaluation;
 

* 	Those that have the potential for equipment damage
 

a 	 Those that have the potential for injuring the on-site operating
 
and maintenance personnel
 

* 	 Those that have the potential for making the plant inoperable and
 
incapable of producing power.
 

The results of the preliminary assessment of the plant conceptual design
 

identified safety-related events that could potentially lead to equipment
 

damage or personnel injury. Corrective measures were suggested that would
 

reduce the probability or mitigate the consequences of the safety events. In
 

some cases, for example the PCS, intrinsic design features for failure event
 

protection were identified in the equipment conceptual design.
 

2.1.1.3 AVAILABILITY ASSESSMENT RESULTS
 

The results of the availability assessment are summarized in Table 2.1.1-2.
 

Except for the fuel cell stacks, the system failure rate and MTTR estimates
 

shown in Table 2.1.1-2 are based on equipment data. The total planned outage
 

is 296 hours per year. Planned outage hours cannot be directly allocated to
 

the individual systems given the present level of design definitions. A
 

minimum acceptable availability, however, for each system can be defined as
 

follows:
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MAXIMUM ALLOWABLE SYSTEM = 296 + SYSTEM UNPLANNED 
OUTAGE HOURS OUTAGE HOURS
 

MINIMUM ACCEPTABLE 1 MAXIMUM ALLOWABLE SYSTEM
 
SYSTEM AVAILABILITY OUTAGE HOURS
 

PERIOD HOURS
 

The overall plant availability goals can be stated from the Table 2.1.1-2
 

values as:
 

Unplanned (forced) outage hours per year 580
 

Inherent availability (reliability), percent 93.4
 

Forced outage rate, percent, 6.9
 

Planned outage hours per year 296
 

Planned outage rate, percent 3.4
 

Overall plant availability, percent 90.0
 

2.1.1.4 PLANT COST AND ECONOMIC RESULTS
 

Analyses were performed to define the plant economic characteristics and
 

breakeven capital costs by comparison with competing types of generating
 

units. Combustion turbines, by virtue of their availability in small unit
 

sizes, are considered as competing generating units. Capital cost, operation
 

and maintenance costs, and heat rate data were used to represent combustion
 

turbines. All costs were updated, to 1983 dollars. Energy price projections,
 

forecasted by Data Resources, Inc. (DRI) were used and are shown in Figure
 

2.1.1-2. It is assumed that the natural gas price projection is,representative
 

of the fuel used in the combustion-turbine and the PAFC power plant. The
 

resulting cost of electricity (COE) for the combustion turbine over a range of
 

fuel prices and capacity factors is shown in Figure 2.1.1-3. The installed
 

capital cost of the combustion turbine, including allowance for funds during
 

construction was $252/kWe. It was assumed that the combustion turbine always
 

operates at its most efficient full load heat rate of 12,100 kJ/kWh (11,500
 

Btu/kWh) regardless of annual capacity factor.
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TABLE 2.1.1-2
 

RELIABILITY AND AVAILABILITY ASSESSMENT SUMMARY
 

System Failure Rate Range of Component System Mean Unplanned System Minimum Acceptable
 
Per 106 Hours Mean Time To Repair Time to Repair Outage, Hours per Year Reliability System Availability
 

Or Replace, Hours or Replace, Hrs Percent 

FHS 80 4 - 42 17 12 0.9987 96.5 

FPS 837 4 - 78 14 99 O.Q887 95.5 

IS 80 2 - 4 3 2 0.9998 96.6 

RES 898 4 - 64 24 192 0.97RI 94.4 

CWRS 127 4 - 36 14 16 0.9982 96.4 

SCS 142 4 - 36 13 1R 0.9982 96.4 

SGS 182 4 - 37 12 19 0.9978 96.4 

WTS 241 4 -­63 10 21 0.9976 96.4 

FCS (w/o Fuel Cells) 235 8 - 60 35 72 0.9918 95.8 

ICS, SAS, WDS 179 (Average 4 - 36 13 120 (Total, 0.9977 96.4 
PCS, WRS, USE Per System) 6 Systems) 

Fuel Cell Stacks 91 14 14 11 0.9987 96.5 

Total Unplanned Outage Hours 580 

Planned Outage Hours for Fuel Cell Stack Replacement = 56 

Other Planned Outage Hours = 240 

Total Annual Planned and Unplanned Outage Hours : 876 
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PAFC ECONOMIC DESCRIPTION
 

The PAFC fuel cell stacks in the power plant will exhibit gradual voltage
 

degradation that increases the overall plant heat rate over a period of time.
 

For an operating plant, this means there will be a trade-off involving .
 

increasing fuel costs as degradation occurs, fuel cell remanufacturing costs,
 

and O&M costs to remove and replace degraded fuel cells*. This cost trade-off
 

can be optimized to minimize the COE produced. The optimum reloading interval
 

and the operating heat rate are dependent on the degradation rate and the fuel
 

price. At a 2 mV/lO00 hour degradation rate these parameters are shown in
 

Figure 2.1.1-4 for a range of fuel prices. When the fuel price is $8/mmBtu,
 

the optimum reloading interval is close to five years and the operating heat
 

rate is 9555 kJ/kWh (9081 Btu/kWh). Therefore, with a BOU heat rate of 8928
 
kJ/kWh (8471 Btu/kWh) at initial plant startup, the operating heat rate will
 

rise to 9555 kJ/kWh after two and a half years of operation and to the EOU heat
 

rate representing 80 MV of degradation at the end of the five year period. The
 

plant operator can then replace all of the fuel cell stacks simultaneously and
 

return the plant to the BOU heat rate. As an alternative, the plant operator
 

can, after the first year of plant operation, begin partial reloading of the
 

fuel cell stacks at the rate of four stacks per year in order to maintain the
 

operating heat rate of 9555 kJ/kWh. With escalating fuel prices, it is
 

believed that annual partial reloading of the fuel cell stacks is the more
 

likely scenario.
 

The economic assumptions, cost data, and performance data is summarized in
 

Table 2.1.1-3. The fuel cell stack remanufacturing cost of $147/kWe for a
 

total reload of-the plant is a fully commercialized cost including burden, fee,
 

and round trip shipping costs. The fuel cell stack salvage value of $12/kWe
 

represents the value of the recoverable platinum catalyst less the costs of
 

shipping and recovery. The fixed O&M cost of $7/kWe-yr assumes automatic plant
 

operation but includes an allocation of operator and supervisor costs based on
 

,the assumption that even automatic plants require periodic attention by utility
 

operating personnel. The fixed O&M cost estimate includes a maintenance crew
 

at the plant site for 30 days per year and qverhead costs.
 

*Refers to all of the fuel cells contained in a 375 kWe (dc) fuel cell module.
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TABLE 2.1.1-3
 

PAFC COST AND PERFORMANCE DATA
 

(ALL COSTS IN 1983 DOLLARS)
 

F-ixed'Charge "Rate, percent 15 

Capacity Factor, percent 70 

Plant Economic Life, Years 25 

Availability, percent 90 

Fuel Cell Degradation Rate, mV/l00 hrs 2 

Fuel Cell Stack Remanufacturing Cost, $/kWe 147* 

Fuel Cell Stack Salvage Value, $/kWe 12 

Fixed O&M Costs, $/kWe - YR 7 

Heat Rate at Initial Plant Startup, kJ/kWh (Btu/kWh) 8911 (8471) 

Net Power Output, kWe (ac) 7108 

At a Fuel Price of $8/mmBtu:
 

Optimum Reload Interval, years 5
 

Operating Heat Rate, kJ/kWh (Btu/kWh) 9555 (9081)
 

Operating Costs in Mills/kWh:
 

Fuel 72.65
 

Fixed O&M 1.14
 
Variable O&M 1.04
 

Fuel Cell Reloads .3.67
 

*Cost incurred at the end of each five year reloading interval. Equivalent
 
partial reloading of four stacks per year would represent an annual cost of
 
29.4 $/kWe given a net plant output of 7108 kWe (ac).
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Variable O&M costs, the cost of the fuel cell reloads, and the plant fuel costs
 

are all a function of the fuel price and the resulting optimum reload inter­

val. These costs in mills per kwh, assuming a fuel price of $8/mmBtu, are
 

shown in Table 2.1.1-3. The variable O&M cost includes plant consumeables and
 

the on-site costs of removing and replacing degraded fuel cell stacks. These
 

on-site costs include the costs of a foreman, mechanical and electrical trades,
 

crane rental, and overhead. The mills per kWh fuel cell reload cost includes
 

the cost of remanufacturing degraded stacks less the salvage value of the
 

stacks at the end of the 25 year plant life.
 

BREAKEVEN TOTAL INVESTMENT COST
 

The PAFC breakeven total investment cost at d given fuel price is determined by
 

equating the COE of the plant to the COE of the competing combustion turbine.
 

Since the PAFC fuel, O&M, and stack reloading costs are known, the breakeven
 

total investment cost assuming a 15 percent fixed charge rate can then be
 

calculated. The total investment cost is installed capital cost plus allowance
 

for funds during construction. The PAFC breakeven total investment cost as a
 

function of the competing combustion turbine capacity factor and a range of
 

fuel prices is shown in Figure 2.1.1-5. The PAFC capital cost goals are values
 

equal to or less than the values shown in Figure 2.1.1-5.
 

2.1.2 FUEL CELL, FUEL PROCESSOR, POWER CONDITIONER AND ROTATING EQUIPMENT
 

SYSTEMS DESIGN REQUIREMENTS
 

Preliminary system requirements specifications were prepared for the FCS, FPS,
 

PCS, and RES.- These specifications include functional, design, operational,
 

configuration, environmental, safety, inspection, maintenance, instrumentation
 

and control, and quality control requirements.
 

2.1.2.1 FUEL CELL SYSTEM (FCS)
 

The primary function of the FCS is to produce dc electric power at the
 

performance design conditions specified below using air-cooled fuel cells. The
 

FCS transforms the chemical energy from the fuel and oxidant reaction (hydrogen
 

rich feed gas supplied by the FPS and oxygen in the form of pressur-ized air
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supplied by the RES) into electrical energy. The top level system
 

requirements include:
 

a 	 The FCS shall provide a gross electrical output of 7.5 MW dc at
 
full power operating conditions at BOU.
 

* 	 The FCS electrical output shall be based on a constant current
 
output for constant air (oxidant) and fuel flow operation. The
 
design basis for the fuel cell module current is351 amps.
 

* 	 The design hydrogen utilization is 83 percent and the design.
 
oxygen utilization is 50 percent.
 

a 	 The FCS operating parameters shall meet an average fuel cell
 
performance degradation objective of 2 mV per 1000. hours of power
 
operation.
 

* 	 The FCS operation shall maintain the fuel cell phosphoric acid
 
concentration within the boundaries defined in Figure 2.1.2-1.
 

* 	 The FCS shall have stable operation at power operation conditions
 
and shall respond to the following transient operating conditions:
 

Cold Start to Standby, hours < 4
 

Standby to Minimum Power, hours < 1/2
 

Minimum Power to Maximum Power,
 
percent Full Power per minute 7.5
 

Operating Range, percent Full Power 25-100
 

* 	 As a design goal the FCS shall be designed to achieve an
 
availability of 95.8 percent and a reliability of 99.2 percent.
 

2.1.2.2 FUEL PROCESSING SYSTEM (FPS)
 

The primary function of the FPS isto convert steam and hydrocarbon fuel to a
 

hydrogen-rich gas for use in the fuel cells. Major FPS equipment include a
 

fuel cleanup system to remove impurities detrimental to FPS and fuel cell
 

performance, a steam reformer to convert the hydrocarbon fuels into CO, CO2
 

and H2, shift converters to convert water and CO into additional H 2 and
 

C02, and rotating machinery to deliver compressed air and recover waste
 

stream energy. The top level design requirements include the following:
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* PERFORMANCE 

H2 Production Rate, Normal m3/s (SCFD) 

* Gross 1.53 (4.93 x 106) 

* Net 1.27 (4.09 -x106) 

Natural Gas Feedrate*, kg/s (lb/hr) 0.348 (2760) 

0 OPERATIONAL 

Cold Start to Standby, hours < 4 

Standby to Minimum Power, hours < 1/2 

Minimum to Maximum Power, percent Full 7.5 
Power per min 

Operating Range, percent production rate 23-100 

Operation Automatic Dispatch from 
Standby to Full Power 

Start/Stop Cycle (Over Lifetime) 

- Warm Startup/Warm Shutdown 10,000 

- Cold Startup/Cold Shutdown 150 

* GENERAL 

Fuel Capability Natural Gas/Naphtha 

Availability, percent 95.5 

Reliability, percent 98.9 

Design Life,, Years 25 

Maximum Plot Plan Area, m2 (ft2) 230 (2500) 

Maximum Height of Equipment Above 
Grade, m (ft) 9.1 (30) 

Noise Level (db) 55 

Transportability Common Carrier Truck 

2.1.2.3 POWER CONDITIONING SYSTEM (PCS)
 

The primary functions of the PCS are to control the magnitude of the direct
 

current generated inthe FCS and to consolidate and convert the current to
 

alternating current at 13.8 kV.
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The PCS shall be designed to meet the following major performance requirements:
 

Power Conversion 

Rated Ful'l Power Input 7.5 MWe dc 

Rated Partial Power Input 25 percent of rated full power 

Efficiency at Full Power 96 percent 

Efficiency at Partial Power 92 percent 

Power-Factor 	 Unity or leading at greater than 25 percent
 
power.
 

Fault Protection
 

.dc Power Electronic circuit interruption
 

ac Power Circuit breaker
 

Response Times Not to limit fluid system transient response
 
times or result in spurious shutdowns.
 

Manual Control To bring system to STANDBY condition during
 
plant startup and for system checkout.
 

Automatic Control For all normal power operation-via plant
 

computer.
 

Availability 	 96.4 percent
 

Reliability 	 99.8 percent
 

2.1.2.4 ROTATING EQUIPMENT SYSTEM (RES)
 

The primary function of the RES is to provide a supply of cl.ean, pressurized
 

air to the FCS to replace air consumed on the cathode side of the fuel cells.
 

The RES receives steam from the SGS and oxygen depleted cathode exhaust air
 

from the FCS. The energy in this stream is converted into mechanical shaft
 

power to drive circulating and compressing equipment. One of the key
 

objectives of the RES design is to help minimize the overall power plant heat
 

rate.
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The RES operation is based on using an air circulator, a two-stage centrifugal
 

compressor, a steam turbine, a gas turbine expander, and a variable speed drive
 

electric motor to perform the required functions. This rotating equipment must
 

satisfy the operating parameters for full and part power plant operation
 

summarized in Table 2.1.2-1.
 

As a design goal, the RES will be designed to achieve an availability of
 

94.4 percent and a reliability of 97.8 percent.
 

2.1.3 FUEL CELL REQUIREMENTS
 

The 	technical requirements identified for the PAFC system design and operation
 

imposed 'bycurrent fuel cell technology and the anticipated improvements
 

resulting from a development effort are discussed in this section.
 

2.1.3.1 APPROACH AND ASSUMPTIONS
 

The 	overall objectives of the work in establishing technical requirements were
 

to:
 

a 	 Establish the existing PAFC technology to permit definition of
 
guidelines and understanding of the constraints imposed upon
 
the design parameters.
 

* 	 Identify the required performance and needed technology to
 
meet the system requirements.
 

* 	 Define the design and operating requirements and a suitable
 
development test program to ensure meeting these requirements.
 

The existing PAFC performance data and currently accepted design and baseline
 

processes were reviewed. A summary of the key design parameters, operating
 

conditions and technology constraints data were developed. Where no specific
 

parameter limits had been defined, the best estimated ranges were identified to
 

facilitate stack and system design efforts. A number of needed parameters
 

could not be established quantitatively. For these, recommendations were made
 

for development testing to establish'the needed data.
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Table 2.1.2-1
 

ROTATING EQUIPMENT SYSTEM (RES) OPERATING REQUIREMENTS
 

S 	 Air Circulator 

Flow, kg/hr (lb/hr) 

Inlet-Pressure, kPa (psia) 

Inlet Temperature, 0C (0F) 

Outlet Pressure, kPa (psia) 

Outlet Temperature, *C (0F) 

Fluid 

a 	 Centrifugal Compressor*
 

(Two Stages)
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, °C (0F) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 'C (0F) 


Fluid 


* 	 Steam Turbine
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, 0C (OF) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 0C (OF) 


Fluid 


* 	Gas Expander**
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, 0C (OF) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 0C (OF) 


Fluid 


Full Power 


662,840 (1,460,000,) 


482 (70) 


145 (293) 


489 (71) 


147 (296) 


Air 


28,239 (62,200), 


101.3 (14.7) 


26 (80) 


482 (70) 


143 (291) 


Air 


8,808 (19,400) 


365 (53) 


140 (284) 


21 (3) 


61 (141) 


Steam 


28,466 (62,700) 


475 (69) 


192 (378) 


110 (16) 


73 (163) 


Air 	(02 depleted) 


Part Power
 

115,089 (25a,500)
 

296 (43)
 

149 (300)
 

296 (43)
 

149 (300)
 

Air
 

18,160 (40,000)
 

101.3 (14.7)
 

26 (80)
 

296 (43)
 

114 (237)
 

Air
 

1,226 (2,700)
 

365 (53)
 

140 (284)
 

21 (3)
 

61 (141)
 

Steam
 

18,205 (40,100)
 

289 (42)
 

144 (292)
 

110 (16)
 

64 (148)
 

Air (02 depleted)
 

*Bypass flow of 11,214 kg/hr (24,700 lb/hr) to the gas expander is required
 

for part power operation to prevent surge.
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Key assumptions made to initiate this effort included the existing ERC and
 

Westinghouse baseline technology and fabrication processes for:
 

* 	 12 x 17 inch "Zee" and "tree" bipolar and cooling plates
 

* 	 Rolled electrodes of Teflon wet-proofed carbon paper with
 
platinum catalyst (0.5 mg Pt/cm2 nominal + 7 mil nominal SiC
 
coating on the cathode, Q.25 mg Pt/cm 2 nominal on the anode)
 

* 	 Cooling plates between each five 12 x 17 inch cells with air
 

cooling
 

* 	 ERC proprietary MAT-i matrix layer
 

* 	 H2 (simulated reformer) fuel oxidized with air
 

The specified/assumed performance constraints are presented in the Conceptual
 

Design Report, TR 83-1002. These serve as a reference in the definition of
 

functional/technological requirements.
 

2.1.3.2 TECHNOLOGY ASSESSMENT
 

To establish a reference PAFC design basis for assessing prototype power plant
 

application, currently available data in the open literature and that developed.
 

by ERC, Westinghouse, and others was utilized. This data included the
 

following:­

* 	 Materials data such as physical properties, design parameter
 
data, electrical performance data, and chemical performance
 
data
 

* 	 Fuel cell component production processes and assembly specifi­

cations
 

a 	 Fuel cell configuration and component design
 

* 	 Fuel cell operating conditions such as pressure, temperature,
 
current density, and fuel utilization
 

-o 	Principal effects of variation in key design parameter values
 
such as pressure, temperature,.current density, flow rates,
 
component compositions, and processes
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Most of the parameters needed as identified above were found to have some level
 

of definition, but the impacts of the PAFC selected operating conditions on the
 

life, system performance, economics, and risk were not definable. Therefore,
 

constraints were identified and parameter trade-off sensitivity assessments
 

made to establish the best design parameter data and operating conditions.
 

Some of the pertinent design and operating condition constraints that were
 

identified are presented in Table 2.1.3-1.
 

Analysis effort was not carried to the point where in all cases definitive
 

results or design values can be established for these constraints. However,
 

sufficient indication of the potential performance and some key parameter
 

sensitivity data were found and provided a basis for defining the potential
 

performance and required design parameter conditions and goals for the
 

development program. The development goals established for the PAFC are
 

presented in Table 2.1.3-2.
 

2.1.3.3 PRESSURE PERFORMANCE MODEL
 

The theoretical model used at ERC to predict the effect of system operating
 

pressure on the phosphoric acid fuel cell voltage was submitted to
 

Westinghouse. The following equation is currently used at ERC to calculate the
 

performance changes with pressure.
 

2
AV= 6 x 2.303 RT Log 'p

Where:
 

AV = Voltage gain between system operating pressures P1 and P2
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TABLE 2.1.3-1
 

KEY PAFC SYSTEM AND DESIGN CONSTRAINTS1
 

Constraint Identity 


Maximum'Voltage (Cell) 


Minimum Voltage (Cell) 


Current Density (Min) 


Current Density (Min) 


Current Density (Max) 


Temperature (Nom Max) 


Temperature (Max) 


' Temperature (Min) 

C" 

Pressure (Max) 


Pressure Diff. 

Containments (Max) 


Temperature Coolant 

(Max) 


Temperature Coolant 

(Max) 


Cell Coolant Diff. 

Press. (Max) 


Time 


Continuous 


(TBD) Hrs 


Continuous 


Continuous 


(TBD) Hrs 


Continuous 


Continuous 


Continuous 


Instant 


Continuous 


(TBD) Hrs 


Instant 


Level 


<800 mV 


None 


0-75 mA/cm2 


>75-100 mA/cm2 


<400 mA/cm2 


220'C (426°F) 


190-2000C 

(375-398-F) 

(TBD) 


150 psia 


150 psid 


I0-1500C 

(230-3020F) 


200°C (3980F) 


(TBD) 


Origin/Comments
 

Corrosion Constraint from life performance required
 

Functional Constraint - minimum design voltaqe required 

Corrosion Constraint - Voltage dependent - requires 
further development data to set time limit at temperature 

Corrosion Constraint - function of temperature and 
pressure and not yet characterized
 
Performance Constraint - low efficiency - requires
T.O. - efficiency versus with cost
 

Performance Constraint from life requirement and
 
impact of electrolyte loss 
Performance Constraint from temperature control ­

variance and maximum temperature incell 
Performance Constraint from temperature control ­

variance & CO poisoning
 

Performance Constraint from trade-off studies ­
cost versus pressure level needed
 

Functional Constraint - design condition imposed on
 
cell assembly and sealing
 

Performance Constraint - temperature control of cell
 
and coolant characterization
 

Performance Constraint - life requirement impact from
 
excess cell temperature conditions
 

Functional Constraint - design limit for separation
 
requirement and cell assembly and sealing
 



-- 

-- 

-- 

-- 

TABLE 2.1.3-1
 
KEY PAFC SYSTEM AND DESIGN 'CONSTRAINTS1 (Cohtih'a)
 

Constraint Identity 


Reactant Diff. 

Pressure (Max) 


Cell Stack Temp Diff. 

(Max to Min) 


Cell Stack Temp Diff. 

(Max to Min)
 
Transient Rates -

Power 


Stack Mechanics:
 

- Contact Resistances 


- Clamping Load 

(Initial)
 

- Clamping Load (Min) 

- Creep Rates/ 

Strengths
 

- Relaxation 'Rates 


- Maximum Stack 

Height (Module Unit)
 

- Maximum Wi'dth 

(Module Unit)
 

- Maximum Weight 

(Module Unit)
 

-'Maximum Output 

Voltage (Stack) 


- Maximum Output 

Voltage (Stack)
 

Time 


Continuous 


(TBD) Hrs 


Continuous 


Startup 

Shutdown 


Continuous 


Continuous 


Continuous 


Instant 


Continuous 


Level 


(T80) 


20-500C 

(36-900F)
 

(TBD) ^200C 


(TBD) 

(TBD)
 

<20mQ-cm 2 


20-60 psi
 

11 psi 


(TBD)
 

(TBD) 


3.3 m 


<400V dc 


<300V dc 


Origin/Comments
 

Functiohal Constraint - design limit for separation
 
requirement and cell assembly and sealing
 
Performance Constraint - li e requirement impact
 

Performance Constraint - life requirement impact
 

Performance Constraint life requirement impact
 

Performance Constraint for practical losses
 
(<2 percent output)
 

Performance Constraint - leakage and electrical
 
losses - high contact resistance
 

Performance Constraint - life 'requirement's tmpaft
 
Performance Constraint - truckability
 

Performance Constraint truckability
 

Performance 'Constraint - truckability 

Functional Constraint - design limit is fixed as: 
function of number cells in stack at O.C. voltage, 

Nominal design condition 
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TABLE 2.1.3-1
 

KEY PAFC SYSTEM AND DESIGN CONSTRAINTS 1 (Continued)
 

Constraint Identity Time Level Origin/Comments 

- Minimum Output Continuous >2000V dc Functional Constraint - nominal design condition 
Voltage (Unit) Performance Constraint - conversion efficiency 

(I)Condensed list of key constraints remaining after having assumed fixed process controls and fixed
 
performance parameters for baselined reference design. These parameters are needed for further
 
design and operating requirements definition as derived from functional and/or performance
 
requirements genesis. (The predominating requirement is noted as origin of constraint).
 

(2)Corrosion impact - not yet understood and varies with temperature.
 

(3)Amount of H3PO4 vapotized; currently perceived upper limit.
 

N) 



TABLE 2.1.3-2
 

PAFC DEVELOPMENT GOALS
 

Cell Performance:A1)-


Primary
 

* Efficiency:
 
Cell 	Potential (avg. my/~ell)
 

2 x 2 @ Design Condt' 705
 
12 x 17 @ Design Cond in Stack( 2) 680
 

* 	 Endurance:
 
Voltage Loss (mV/1000 hrs) 2
 
Corrosion Loss (mil/yr) 2
 

Secondary
 

* 	 Catalyst Utilization:
 
Anode Loading (mg/cm2 ) 0.25
 
Cathode Loading (mg/cm2 ) 0.50
 

* 	 Oxidizer Utilization with Air:
 
Oxygen Concentration(3) (stoichs) 2
 

* 	 Operating Temp. of Cell:
 
Cell Avg. Temp. (0C) 190
 

(1) Fixed Parameters:
 
* Natural gas feedstock with humidified hydrogen
 
* ERC-Westinghouse Air Cooled System
 
* Mark II "zee"-"tree" Plates 
* Mat-I matrix 
* 1981 Process Specs/Fab Controls 

(2) Design Conditions (Beginning of Use):
 
* 70 	psia Pressure Level 
* 190°C Average Cell Temperature 
• 325 mA/cm 2 Average Cell Current Density Loading
 
* Acid Control Equilibrium
 
* 80 	percent H2 Utilization
 
* >2 	Stoichs Air
 

(3) At 3.4 Atmospheres
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2.1.4 FUEL CELL PROCESSES AND FACILITY REQUIREMENTS
 

This section summarizes the establishment of requirements for materials and
 
fabrication processes and facilities needed for the fuel cell development
 

program.
 

2.1.4.1 APPROACH
 

The systems study and technology requirements efforts were reviewed and
 
evaluation of needed development testing was initiated. Based upon the system
 
requirements developed from the power plant systems studies, Task 1102-01 and
 
development testing requirements, Task 1102-02, the preliminary design
 
requirements for subscale cells and partial stacks were identified.
 

These requirements included the subscale cell testing, 9-cell, 10 kW, 25 kW,
 
and 100 kW stack testing and module testing facilities as well as the order of
 
test efforts; resulted in preliminary definition of subscale, stack and module
 
design requirements for testing as presented in Section 3.0. The logic for
 

this development testing is presented in Figure 2.1.4-1.
 

2.1.4.2 FACILITY REQUIREMENTS FOR PARAMETER DETERMINATION
 

Review of the fuel cell technology has shown significant uncertainty in not
 
only the understanding of key parameter effects, but sensitivities needed for
 
design. In order to design the fuel cells with some degree of predictability
 
and also to be able to later understand the performance under actual test con­

ditions, it is necessary to determine the key variable and parameter effects
 
and also the interactions among design variables and operating parameters. The
 

number of these variables and parameters could make a test program monumental.
 
However, effective PAFC design from the standpoint of both cost and required
 
performance dictates testing for definition and adequate understanding of these
 

key design parameters.
 

Experience with the Analysis of Variance as a statistical tool in designing
 
experiments has shown the efficacy of the experimental test design approach.
 
Early assessment of the technology indicated performance of the PAFC was
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Figure 2.1.4-1 Technology Development Logic - PAFC Module
 



adequate, however, additional variable and parameter data was required to
 
permit the design of full size stacks with some confidence. The magnitude of
 
the test program and facilities needed to permit definition of these parameter
 

characteristics and sensitivities was of the nature to eliminate this data base
 
development from the early development program. Some estimate of design data
 

could be obtained for early design impact. However, the major variable data
 
was needed. The effort to define the development test program and facilities
 

considers statistical experiment design.
 

A major effort was made to restrict the tests to the absolute minimum required
 
to obtain satisfactory data in the three areas of most concern. These three
 

areas are: 1) variables and parameters relating to the fabrication process,
 

2) design variables and related parameters needed for effective design, and
 
3) operational parameters related to the conditions of operating the test and
 

the fuel cell system.
 

More than five dozen key process and fabrication variables were also
 

identified, but not included in this test program. These were considered to be
 
controlled by process and procedure specifications to acceptable levels of
 

variance, and therefore not defined as "design or operational variables".
 

Consideration of the pertinent variables and parameters in these three areas
 

resulted in identification of more than two dozen key variables and parameters
 

which needed better definition.
 

Nine of these key variables and parameters were identified as being required
 
for and essential to satisfactory tradeoff studies. They included two process
 

variables, four design variables, and three operational parameters. These were
 

identified for consideration in the design of the experimental test. The key
 
selected operational parameters and the design variables and parameters that
 

were defined for the test program are shown inTable 2.1.4-1. Measurement
 

requirements for the facility and testing were derived as given in Table
 

2.1.4-2.
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Parameter Area 


Process Variations:-* 


Design Variations: 


TABLE 2.1.4-1
 

EXPERIMENTAL DESIGN VARIABLES
 

Controlled Variable 


1. Substrate.Configurat'ion 


2. Impurities 


3. Density/Porosity 


4. Platinum Application 


1. Cell-Size 


2. Stack Size " 


'Number ,PrioriJty
 

2 l
 

2 1
 

2 2
 

2 2
 

2 .1
 

3-4 11
 

3. Clamping load and -compression 3 2
 

4. Acid Composition and Amount 


5. Matrix Thickness 


6. Current Density 


Operating Varatibns: 1. Pressure Level 


2. Temperature 


3. Flow Rates (Process Gases) 


4. Loading (power) 


5. Cycles 


6. Time 


7. Voltage 


8. Gas Composition 


*Assumed-control of detailed 'process functions, i..-e,., 


2 ,2
 

2 2
 

'2 1
 

3 1
 

3 2
 

3 1
 

3 1
 

3 2
 

3 1
 

2 ,2
 

2 2
 

mtls. specs, -fabrcation
 

procedures, ,etc., and acceptable -consistency of reproducible per-formance
 
demonstrated and documented for eachcomponent used.
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TABLE 2.1.4-2
 

TEST VARIABLE MEASUREMENTS REQUIRED AND PRECISION DEFINITIONS
 

Parameter 	 Precision
 

1. Responses - (cell voltage and s output volts (mV) 1/2% 
cell power output) s output watts (W) 2% 

2. 	Controlled (conditions that * Cell avg. temp. (0C) 2%
 

Variables 	- are controlled to s Time (hr & min.) 

obtain designed e Current density (mA/cm2) 2% 
responses) . Reactant flows (kg/hr) 2% 

* Pressure levels (atm) 	 2%
 

* Pressure differences (inH20) 5%
 

3. 	Other (conditions set * Cell resistance (m) 5% 
Measured for test recorded * Acid concentration (%) 1% 

Variables as specified and a H20, CO2, CO level (%) 5% 

monitored)
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The initial assessment of the nine selected variables and parameters deter­

mined that over twenty-four pertinent interactions needed to be assessed along
 

with the parameter charateristics themselves.
 

A test plan for subscale 2x2 cell and partial stack (full cell size)
 

desulfurization testing was established with these nine parameters and
 

variables including probable interactions. This would require ninety unique
 

tests. An additional five to ten tests should replicate the key tests for
 

understanding of the reproducibility.
 

With the assumption that at least sixty tests will be necessary and considering
 

the number of tests needed to assess the time and pressure effects, the
 

distribution is roughly 50% of these tests at low time and low pressure, 40% at
 

mid-time and atmospheric pressure and 10% at high time and high pressure. This
 

is based upon the usual experience in successful evaluation of time dependency
 

using three times (roughly linearly spaced on a log scale at 100, 1000 and
 

10,000 hours).
 

With the assumption that the time needed for evaluation of the characteristic
 

performance of the fuel cell would be in the order of a year, considering the
 

design life of five years, the number of tests that must be run in parallel to
 

enable them to be accomplished within the design period would require an
 

additional 10 to 15 subscale test loops. Roughly half of these tests would be
 

run at low pressure and low time.
 

The experimental test design would be based upon a series of test "sets".
 

These "sets" would be defined in such a way that a maximum input could be
 

obtained for subsequent "sets" in reducing or amplifying the needed parameter
 

On this basis two "sets" would be run without the benefit of
information. 


feedback, but thereafter modification of the following tests could take place
 

to maximize the output. This also would provide some decision points in the
 

full test program. There are four areas of concern. These are indicated below
 

in the order of priority that appears to be most amenable to this learning
 

process.
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Major Areas Requiring Characterization Tests
 

* 	 Fuel Cell Components (Electrodes and Matrix)
 

* 	 Electrolyte Performance and Control
 

* 	 Stack Compression and Mechanics
 

* 	 Process Gas Constituent Control
 

An attempt was made to identify the size of the stacks and the size of the
 

cells for each of the tests to enable a better estimate of the magnitude of the
 

test effort. Such an estimate can only be approximate until the actual design
 

of the test is undertaken. However, for order of magnitude estimates, the
 

characterization tests were assumed to require mostly subscale size cells, 9
 

cell stacks and other short stacks. Full size cells in lessthan 50 cell
 

stacks will comprise most tests, and < 10% would be with 100 full size cells
 

or more. Also, the midterm test may be less than 3000 hrs (of the order of 

1,000 hrs) and the long term test (< 10% of the test set) at > 10,000 hrs. 

In summary, it appears that the best estimate at this time of the minimal
 

experimentally designed subscale test program would include the order of 200
 

individual subscale tests. Fifty percent of these would be short term, low
 

pressure or atmospheric, and the remaining 50% split about 40% midlife,
 

atmospheric pressure and 10% of long life and high pressure. The latter
 

individual tests, however, would not be necessarily at both high time and high
 

pressure since only the number of tests is considered for these conditions. On
 

the 	basis of the above, it is estimated that 25 to 30 test loops or (an addi­

tional 10-15 subscale cell test loops) will be required. Eight to twelve of'
 

these test loops would be needed for the long term testing. Capability to test
 

up to three unit (small) full size cell stack would also be required. These
 

facility requirements are summarized below.
 

* 	 Fabricate and test up to 200 single subscale cells to establish
 
the existing technology baseline for fuel cell and components for
 
various operating conditions simulating those for a full stack
 
(up to 2000C temp., 400 mA/cmC current density and 150 psia
 
press.).
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* 	 Fabricate and test up to 20 unit (small) stacks of full size
 
cells to identify key stack design parameters and establish
 
additional technology development needed to meet defined goals.
 
These tests to be up to 2000C temperature, 400 mA/cm2 current
 
density and 150 psia pressure Tevel for up to 10,000 hours for 2
 
to 3 units.
 

2.1.4.3 DEFINITION OF MODULE TEST FACILITY REQUIREMENTS
 

The 	requirement for a full size cell and stack demonstration and performance
 
verification dictates a module test facility (MTF). This facility would pro­

vide test capabilities to establish full size PAFC stack and module performance
 
and operating characteristics for start-up,, steady-state, shutdown, malfunction
 

conditions and servicing using suitable control and instrumentation.
 

Specifically, the following variables would be evaluated for full size module
 

operation over the design operating range:
 

- voltages
 

- current densities (and power)
 

- fuel type
 

- fuel utilization
 

- oxidant utilization
 

- temperature (mean stack and difference)
 

- pressure level
 

- coolant flow and pressure drop
 

- control of load (external resistance)
 

The 	following requirements were established for the MTF:
 

1. 	The test facility must have the capability to provide the performance
 
parameters of Table 2.1.4-3, with suitable margins to be determined in the
 

specifications for the facility.
 

2. 	Test conditions to be imposed on the facility include the types of
 

operation given in Table 2.1.4-4.
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TABLE 2.1.4-3
 

375 kW MODULE PERFORMANCE REQUIREMENTS
 

The performance requirements for the 375 kW module design are listed below:
 

PARAMETER 


POWER 


TEMPERATURE 

Oxidant Inlet* 

Coolant Inlet 

Fuel Inlet 

Plate Avg. 


*Same as coolant outlet.
 

PRESSURE 


FLOW 

Fuel 

Oxidant 

Coolant (air) 


CELL VOLTAGE 

Open Circuit 

Operating Limit 

Qperating Point 


CELL CURRENT DENSITY 


MODULE VOLTAGE 

Open Circuit 

Operating Limit 

Operating Point 


MODULE CURRENT 


UNITS NOMINAL: 

KWdc 375 

OF (0C) 
360 (182) 
290(143) 
375 (190) 
375 (190) 

Psia 70 

#/hr 
410 
3100 

61400 

mV 
920 
800 
680 

mA/cm2 325 

Volts 
1440 
1260 
1080 

Amps 350 

DESIGN RANGE(1 ) MAX.
 

< 480
 

300-400 (149-204)
 
230-320 (110-160)
 
300-400 (149-204)
 
300-400 (149-204)
 

15-70
 

< 480
 
< 3600
 
< 72000
 

500-800
 

< 4800
 

< 1540
 
< 1340
 
840-1340
 

< 430
 

(1)Provisions are made in this column for 100 more cells.
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TABLE 2.1.4-4: MTF TEST OBJECTIVES
 

A. Performance Testing (Demonstration Units)
 

Performance testing shall encompass short term--steady state tests on a full
 

stack and a demonstration module to verify performance at the following points
 

and other intermediate points.
 

1. Reference Design Point - BOU Full Power
 

2. Minimum Power
 

Module - Most stringent case for 25% power operation'
 

Stack --60 kW
 

3. 	Maximum Power - Account for 10%.variation in module performance between
 

fresh and nearly spent fuel cell, modules
 

B. Transient Testing (Demonstration Units)
 

Provide simulation of full stack and module operation over the following normal
 

and abnormal transient events.
 

1. Cold Iron to Standby
 

2; Standby to Minimum Power
 

3. Minimum.Power to Full Power
 

4. Full Power to Minimum Power
 

5. Minimum Power to Standby
 

6. Standby to Cold 	Shutdown
 

7. 	Faults
 

Open Circuit
 

Short Circuit
 

Loss, of Process Gasses
 

Loss of Coolant
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TABLE 2.1.4-4: MTF TEST OBJECTIVES (CONT'D)
 

C. Endurance Testing (Demonstration Units)
 

Provide trend data of sufficient duration to correlate with 9 cell long term
 

tests.
 

D. Acceptance Testing (Production Units)
 

Provide verification tests at selected conditions from performance tests.
 

Provide initial fuel cell module conditioning.
 

E. Mechanical Design Tests (Demonstration Units)
 

Provide test data to verify key full stack mechanical or physical design
 

parameters.
 

F. Test Cell Check Out and Verification Testing
 

Provide initial check out testing of facility to verify test cell operation.
 

G. Fuel Processor Integration Tests (Demonstration Units)
 

Provide testing to verify integration of fuel processor with fuel cell.
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3., System interface requirements are. to be 

realistic simulation of the following; 

impQsef on, the facility to provide­

-

-

fuel' processor 

pwercond_it.ioning: -

rotating equipment 

system control characteristics. 

stack or-module servicing 

4-. Test conditions to ,be imposed include-the demonstrations,and' operating- map 

given in. Tab-Te 2.,.,4 5-.-5. 

5,., A preliminary assessment 

Table, 2.1.4-6. 

of the measurement requirements- is. -proyided: in, 
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS
 

A. Performance Testing
 

Testing shall be performed over the range of parameters defined below.
 

1. Reference Design Point (BOU Full Power)
 

Fuel Cell Test Parameters 


Anode Gas Pressure, psia 


Cooling Air Pressure, psia 


Cathode Exit Pressure - Anode 

Exit Pressure, psi
 

Anode Gas Exit Temperature, 0F 


Cooling Air Temperature, 0F 


Anode Gas Flow Rate, lbs/hr 


Air Supply Flow Rate, lbs/hr 


Cooling Air Flow Rate, lbs/hr 


Cathode Exit Flow Rate, lbs/hr 


Current, amps 


Anode Gas Composition (moles %)
 

Hydrogen 


Inert Gas (N2 or C02) 


CO 


H20 


Voltage (V) 


Cooling Air Exit Temperature, 'F 


Cathode Gas Exit Temperature, 'F 


Power, kW 


Compressor Air Supply Relative Humidity 


Stack Module
 

70 + 3 70 + 3
 

70 + 3 70 + 3
 

0 to 1.5 0 to 1.5
 

375 + 25 375 + 25
 

290 + 10 290 + 10
 

100 + 10 410 + 40
 

780 + 80 3100 + 300
 

15,300 + 1500 61,400 + 6000
 

780 + 80 3100 + 300
 

350 + 5 350 + 5
 

73 + 1 73 +1
 

21 + 1 21 + 1
 

1 + 0.1 1+ 0.1
 

5+0.5 5+ 0.5
 

< 270 < 1080
 

360 360
 

375 375
 

94 375
 

< 100 < 100
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

Fuel Processor Supply Parameters
 

Natural Gas Flow Rate, lbs/hr 


Water Flow Rate, lbs/hr 


Air Flow Rate, lbs/hr 


2. Minimum Power Point (BOU 25% of Full Power)
 

Fuel Cell Test Parameters
 

Anode Gas Pressure,** psia 


Cooling Air Pressure, psia 


Cathode Exit Pressure - Anode Exit 

Pressure, psi
 

Anode Gas Exit Temperature,** OF 


Cooling Air Temperature, OF 


Anode Gas Flow Rate, lbs/hr 


Air Supply Flow Rate, lbs/hr 


Cooling Air Flow Rate, lbs/hr 


Cathode Exit Flow Rate, lbs/hr 


Current, amps 


Anode Gas Composition (moles 
%)
 

Hydrogen 


Inert Gas (N2 or C02) 


Co 


H20 


Voltage (V) 


Cooling Air Exit Temperature, °F 


Cathode Gas Exit Temperature, 0F 


Power, kW 


Compressor Air Supply Relative Humidity 


Stack Module
 

35 + 4 140 + 15
 

110 + 15 440 + 50
 

180 + 20 720 + 80
 

54-70 + 3 38-70 + 3
 

54-70 + 3 38-70 + 3
 

0 to 1.5 0 to 1.5
 

357-375 + 25 338-375 + 25
 

290 + 10 290 + 10
 

*64 + 6 94 + 10
 

500 + 50 710 + 70
 

*9,800 + 1000 18,000 + 2000
 

*500 + 50 710 + 70
 

*225 + 3 80 + 1
 

73 + 1 73 + 1
 

21 + 1 21 + 1
 

1 + 0.1 1 + 0.1
 

5 + 0.5 5+ 0.5
 

< 270, < 1080
 

360 360
 

357-375 338-375
 

*60 94
 

< 100 < 100
 

*Denotes facility with minimum capacity of 60 kW
 

** The pressure level at 25% of full power operation may vary from 38 pisa 
to 70 psia depending on the selected mode of operation. Likewise the
 
temperature level may vary from 338°F to 375°F
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

Fuel Processor Supply Parameters
 

Natural Gas Flow Rate lbs/hr 


Water Flow Rate lbs/hr 


Air Flow Rate lbs/hr 


3. Maximum Power
 

Fuel Cell Test Parameters
 

Anode Gas Pressure, psia 


Cooling Air Pressure, psia 


Cathode Exit Pressure - Anode Exit 

Pressure, psi
 

Anode Gas Exit Temperature, °F 


Cooling Air Temperature, °F 


Anode Gas Flow Rate, lbs/hr 


Air Supply Flow Rate, lbs/hr 


Cooling Air Flow Rate, lbs/hr 


Cathode Exit Flow Rate, lbs/hr 


Current, amps 


Anode Gas Composition (moles %)
 

Hydrogen 


Inert Gas (N2 or CO2) 


CO 


H20 


Voltage (V) 


Cooling Air Exit Temperature, 'F 


Cathode Gas Exit Temperature, 'F 


Power, kW 


Compressor Air Supply Relative Humidity 


Stack Module
 

20 + 2 32 + 4
 

50 + 5 80 + 10
 

100+ 1 0 160 + 20
 

70 + 3 70 + 3
 

70 + 3 70 + 3
 

0 to 1.5 0 to 1.5
 

375 + 25 375 + 25
 

290 + 10 290 + 10
 

110 + 10 450 + 40
 

870 + 80 3400 + 300
 

16,200 + 1600 65,000 + 6000
 

870 + 80 3400 + 300
 

390 + 5 390 + 5
 

73 + 1 73 + I
 

21 + 1 21 + 1
 

I +0.1 1 + 0.1
 

5+0.5 5+0.5
 

< 270 < 1080
 

360 360
 

375 375
 

100 400
 

< 100 < 100
 

*Denotes facility with ninimum capacity of 60 kW
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

Stack Module
 

Fuel Processor Supply Parameters
 

Natural Gas Flow Rate, lbs/hr 38 + 4 150 + 15
 

Natural Gas Supply Pressure, psia 120 
 120
 
Water Flow Rate, lbs/hr 120 + 15 470 + 50
 

Air Flow Rate, lbs/hr 190 + 20 770 + 80
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

B. Transient Testing
 

The following transients shall be simulated. All operations shall occur at
 
pressures and temperatures that result in acceptable phosphoric acid
 

concentrations.
 

1. 	Cold Iron to Standby (in4 hours)
 

a. 	Introduce nitrogen to anode and cathode channels. 
- Introduce compressed air to the recirculating loop to establish 

0.4 psig pressure level 
- Introduce nitrogen to anode stream and cathode gas exit stream 

between modules and exit control valves to establish 0.5 psig
 
level
 

b. 	Circulate warm air through fuel cell cooling loop andraise FC
 
temperature to > 250°F.
 

- Raise module temperature from ambient to 2500F in < 3 hours 

- Use heated air in recirculating loop 

- Maintain 0.5 psig pressure level in anode and cathode gas 
streams using nitrogen gas. 

c. 	Hold at Standby
 
- Switch from manual control to automatic control,
 
- Maintain fuel cell temperature at > 250'F and 0.5 psig
 

positive pressure in all lines with nitrogen system for up to a
 
60 hour period
 

2. 	Standby to Minimum Power Point (in< 1 hour)
 

a. 	Connect electrical load
 

b. 	Introduce Process Gas to Anode and Cathode 
- 'Switch anode gas composition from nitrogen to design fuel 

composition, 

-	 Switch cathode process gas from nitrogen to-air from 
recirculating air loop. 

c. 	Set current demand at minimum operating point which shall simultan­
eously set anode flow and compressed air supply flow rates corres­
ponding to minimum power levels.
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

d. 	Control recirculation flow rate to ramp fuel cell temperature to
 
minimum power operating point.
 

- Control fuel cell temperature response at average of 50F/min. 
with a maximum of 20°F in 4 minutes. 

e. Raise cell pressure to minimum operating pressure. 
- Raise cooling air pressure from 0.5 psig to the minimumpower 

point pressure level, by controlling,on cathode exhaust flow. 
On a demand schedule compatible with acid inventory controls 
(example - such as constant acid concentration or constant 
acid volume) 

-	 Maintain anode and cathode exhaust pressure differential to less
 
than + 2 psi by controlling anode exhaust flow
 

f. 	Complete steps a to e in 1 hour.
 

g. 	Hold at minimum power operating point.
 

3. 	Minimum Power to Full Power
 

a. Increase current demand from the minimum power operating point to
 
full power operating point at rate of 7.5% to 15% of full current
 
per minute.
 

b. Concurrently with step a, the anodefuel flow and the compressed
 
air supply to the recirculation loop shall be increased,to the'full
 
power point at the same rates.
 

c., 	Control cathode exhaust gas flow rate to either maintain a constant
 
70 psia pressure or increase pressure from as low as 38 psia at
 
minimum power to 70 psia at 3 to 7 psia/minute rate. (See Figure 2)
 

d. 	Control recirculation rate to either maintain constant temperature
 
or increase temperature from as low as 338°F at minimum power to
 
375°F at 3 to 6°Flminute rate. (See Figure 2)
 

e. 	Maintain anode and cathode exhaust pressure differential to within
 
+ 2 psi by controlling anode exhaust flow during transient. 

f. 	Perform steps a through e in parallel.
 

g. 	Hold at full power operating point.
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

4. 	Full Power to Minimum Power
 

a. 	Decrease current demand from the full power to the minimum power
 
operating point at a rate of 7.5% to 15% of full current per minute.
 

b. 	Concurrently with step a, the anode fuel flow and the compressed
 
air supply to the recirculation loop shall be decreased to the
 
minimum power point at the same rate.
 

c. 	Control cathode exhaust gas flow rate to either maintain a constant
 
70 psia pressure or decrease pressure from 70 psia to as low as
 
38 psia at 3 to 7 psia/minute rate.
 

d. 	Control recirculation rate to either maintain a constant 3750F
 
temperature or decrease temperature from 375 0F to as low as 3380F
 
at 3 to 6°F/minimum rate.
 

e. Maintain anode and cathode exhaust pressure differential to within
 

+ 2 psi by controling anode exhaust flow during transient. 

f. 	Perform steps a through e in parallel.
 

g. 	Hold at minimum power operating point.
 

5. 	Shutdown from Minimum Power to Standby
 

a. Lower cooling air pressure and anode gas pressure from minimum
 
operating point to 0.5 psig by controlling cathode exhaust.
 

Maintain anode and cathode exhaust pressure differential to
 
+ 2 	psi during transient.
 

b. 	Reduce fuel cell temperature to 2500F.
 

- Vary cooling air recirculating rate to control fuel cell
 
temperature response at -50F/minute average rate with maximum of
 
-200F in 4 minutes.
 

c. 	Switch cathode and anode flow from process gas compositions to
 
nitrogen gas. Maintain 0.5 psig positive pressure in lines with
 
nitrogen system by closing cathode exhaust valve.
 

d. 	Disconnect electrical load
 

e. 	Complete steps a through d in less than 1 hour.
 

f. 	Hold at standby for period up to 60 hours.
 
- Maintain fuel cell temperature of > 250°F and 0.5 psig 

positive pressure in all lines using nitrogen system 
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

6. 	Shutdown from Standby to Cold Iron 

a. 	Remove heat and continue recirculation of air at flow rate required
 

to cool fuel cell from 250°F to within 200F of ambient within 8
 

hours.
 

b. Maintain positive pressure (%0.5 psig) using nitrogen system
 

Shutdown all, fluid systems
 

7. 	Faults
 

'a. 	Open Circuit
 

- Voltage increases abdve limit of 1400 V 

- If voltage above limit for 0.5 sec, perform steps a through f in 
Section 5 to reach standby. 

b. 	Short Circuit
 

-	 Current increase above limit of 450 A. 

- If current above limit for 0.5 sec, perform steps a through f
 
in Section 5 to'go to standby.
 

c. 	Loss- of Anode-'Fuel Supply
 
-	 If voltage drops below 400V for 0.5 sec, perform steps a through 

f in Section 5 to reach standby. 

d. 	Loss of Cooling Air
 

-	 If circulator RPM or air pressure decreases below minimum values 
for > 0.5 sec, perform steps a through f in Section 5 to reach 
standby, but with reduced temperature cooling rate compatible 
with circulator or compressor supply ratings. 

C. 	Endurance-Testing
 

I. 	Stack Testing
 

a. 	Reference Design Point (,BOU Full Power)
 

*b. Minimum Continuous Hours 500
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TABLE 2.1.4-5: MTF TEST REQUIREMENTS (CONT'D)
 

c. Maximum Hours 2000
 

d. Perform shutdown/startup operational cycle every 500 hours
 

2. Module Testing
 

a. BOU Full Power
 

b. Minimum Continuous Hours 500
 

c. Maximum Hours > 7000
 

d. Perform shutdown/startup opeational cycle every 500 hours
 

D. Acceptance Tests
 

1. Perform selected performance tests.
 

2. Run Infant Mortality Tests
 

BOU Full Power for 100 hours.
 

E. Mechanical Design Tests
 

Provide full stack displacement and tie bolt strain measurements during
 
performance and transient testing.
 

F. Test Cell Check Out and Verification Testing
 

Required by not defined by engineering design requirements.
 

G. Fuel Processor Integration Tests
 

Provide measurement of fuel processor performance during steady state and
 
transient tests. Type of measurements and transient operating constraints
 

deferred until fuel processing configuration defined.
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Sht I of 2 
TABLE 2.1.4-6: MTF PRELIMINARY LIST OF MEASUREMENTS 10/26/82
 

REQUIRED MEASURMENTS SENSOR TYPE STACK MODULE 
OPERATING RANGE ERROR OPERATING RANGE ERROR 

ANODE 

I. AP, Upper to Lower Manifold, I.V. Diff. Press Leads -10 to +10" H20 5% N/A 
2. AP, Anode to Cathode, Exit Manifold, I.V. Diff. Press Leads + 2 psid 5% Same 
3. AP, Anode to Cathode, Exit, O.V. Diff. Press Leads + 5 psid 5% Same 
4. Anode Gas Press, Exit, O.V. Press. Taps 0 to 100 psia 5% Same 
5. Anode Flow Rate, Inlet, O.V. Flow Meter 10 to 150 lbs/hr 5% N/A 
6. Anode Gas Temp., Inlet, O.V. (Qty. 1) T/C Amb. to 400°F 5% Same 
7. Anode Gas Temp., Top, Mid., Bot. (Qty. 3), T/C's Amb. to 400F 5% Only 1 per stack 

? Exit Manifold, I.V. 
8. Anode Gas Temp., Exit, O.V. (Qty. 1) T/C Amb. to 400°F 5% Same 

CATHODE 

9. Cathode Gas Temp., Inlet, O.V. (Qty. 1) T/C Amb. to 400OF 5% Same 
10. Cathode Gas Temp., Top, Mid., Bot. (Qty. 3) 

Exit Manifold, I.V. 
T/C's Amb. to 400°F 5% Only 1 per stack 

11. Cathode Gas Temp., Exit, O.V. (Qty. 1) T/C Amb. to 400°F 5% Same 
12. Cathode Exhaust Flow Rate, Exit, O.V.? Flow Meter 50 to 900 lbs/hr 5% 200 to 4000 lbs/hr 

COOLING AIR 

13. Cooling Air Press., Inlet, I.V. Press. Taps 0 - 100 psia 5% Same 
14. AP, Across Stack, (I.V.?) Diff. Press Leads 0 - 20" H20 5% Same 
15. AP, Cooling Air Inlet to Anode Inlet (I.V.) Diff. Press Leads + 5 psid 5% Same 
16. Cooling Air, Temp., Inlet, O.V. (Qty. 1) T{C Amb. to 400°F 5% Same 
17. Cooling Air, Temp., Exit, O.V. (Qty. 1) T/C Amb. to 4000F 5% Same 
18. Cooling Air, Temp., Exit, I.V. 

Top, Middle, Bottom 
(Qty. 3) T/C Amb. to 400'F 5% N/A 

19. Cooling Air, Flow Rate, Inlet, O.V. Flow Meter 1000 to 20,000 lbs/hr 5% 3500 to 70,000 lbs/hr 

NOTES 

I.V. = Inside Vessel O.V. = Outside Vessel 
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TABLE 2.1.4-6: MTF PRELIMINARY LIST OF MEASUREMENTS (CONT'D) 
 10/26/82
 

REQUIRED MEASURMENTS SENSOR TYPE STACK MODULE 
OPERATING RANGE ERROR OPERATING RANGE ERROR 

20. Anode Gas Composition; H2 TBD 50% to 80% 5% Same 
Inlet, O.V. CO TBD 0 to 4% 5% Same 

CO2 TBD 0 to 100% 5% Same 

21. Anode Gas Composition, H2 
Outlet, O.V. C 

TBD 
TBD 

80% to 0 
0 to 4% 

5% 
5% 

N/A 
N/A 

CO2 TBD 0 to 100% 5% N/A 

22. Air Supply Flow Rate, Inlet, O.V. Flow Meter 50 to 900 lbs/hr 5% 200 to 4000 lbs/hr 
23. Relative Humidity, Air Supply Inlet TBD 0 to 100% 5% Same 

24. Acid Makeup, O.V. TBD TBD cc Same 

25. Fuel Cell Cooling Plates, Temp., I.V. (Qty. 6) T/C Amb. to 400°F 5% Same 

26. Circulator, RPM Tach. TBD TBD 

27. Stack Tie Bolt Loads, Strain Gages, 4 sets S.G. 585 j "/" 5% Same 

28. Stack Tie Bolt Temp., Qty. 4 T/C Amb. to 4000 F Same 

29. Stack Current, O.V. Amps 0 - 500 amps 2% Same 
30. Stack Voltage, Total, I.V. Leads to @ Plate 400 VDC Max. 0.5 % Same 

31. Stack Voltage, 5 Cell Groupings, Leads to Group 0 - 5 VDC 2% N/A 
3 groups/stacks I.V. 

32. Total Module Voltage, Qty. 1, O.V. Leads to Module N/A - 1600 VDC Max., 0.5 % 

33. Fuel Processor TBD 40 Data Channels 2% Same 

Cr 



2.1.5 FUEL PROCESSOR, POWER CONDITIONER, AND ROTATING EQUIPMENT SYSTEMS
 

TECHNOLOGY ASSESSMENT
 

State-of-the art assessments were Performed for conventional fuel processors,
 

power conditioning equipments and rotating equipment. These assessments were
 

performed to determine the adequacy of existing equipment to meet the
 

requirements for fuel cell power plants and to determine the needs for
 

technological improvements. The results of these assessments are summarized in
 

the following sections.
 

2.1.5..l FUEL PROCESSING SYSTEM (FPS)
 

The FPS for PAFC power plants are represented commercially by conventional
 

hydrogen plants utilizing steam reforming of light hydrocarbons. Steam
 

reforming is a well-known technology, and complete modular, skid-mounted
 

hydrogen plants for capacities up to 10 million SCFD are available from a
 

number of suppliers. Conventional plants are normally conservatively designed,
 

resulting in high reliability, moderate efficiency, and relatively high capital
 

costs. They have long startup periods and poor transient response.
 

A comparison between the present technology status and PAFC power plant
 
requirements is shown in Table 2.1.5-1. The items requiring the greatest
 

improvement are the thermal efficiency, reformer height, and capital costs.
 

Conventional plant efficiency is limited by the radiant box efficiency of the
 

reformer furnace. Modifications to operating conditions and better waste heat
 

utilization could theoretically increase the efficiency to 85 percent. Higher
 

efficiencies require either an integrated fuel processor/fuel cell system or an
 

advanced reformer design, such as a radiant/convective furnace or an
 

all-convective furnace. The conventional radiant furnace also requires overall
 

heights in excess of the requirements.
 

2.1.5.2 POWER CONDITIONING SYSTEM (PCS)
 

A review of the applicable literature, experience with power conversion
 

equipment with comparable requirements, and discussions with design specialists
 

indicated that either of two generic types of an inverter circuit could meet
 

the PCS requirements. These are the current sourced, line commutated and the
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TABLE 2.1.5-1
 

FUEL PROCESSING SYSTEM (FPS) DEVELOPMENT GOALS
 

Present Technology PAFC Requirements
 

Fuel Nat. Gas/LPG/Naphtha Nat. Gas/Naphtha
 

Efficiency, percent 65-75 90
 

Operational
 

Cold Start to Standby, hrs 4-8 4
 

Standby to Min Power, hrs 1-2 1
 

Min to Max Power, percent Load/Min 5-7.5 7.5
 

Operating Range, percent rated power 25-100 25-100
 

Operation Semi-Automatic Automatic dispatch
 

from standby to
 
full power
 

Availability, percent 96-99 98
 

Useful Life, years 15-20 25
 

Plot Plan Area, ft2/1000 SCFH H2 25-45 12
 

Reformer Height, ft above grade 60-70 30
 

Capital Cost
 

$/SCFH H2 rated capacity 12-25 5
 

$/kW ac 400-800 130
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voltage sourced, forced commutated types. The former isthe traditional
 

circuit type used in largepower applications such as high voltage dc
 

transmission systems and static VAR generators. The ltter inverter type has
 

seen 'more Iimited -utilization in Targe ac motor drives, uninterruptbg :power
 

supplies, and EPRI sponsored battery and fuel cell PCS development programs.
 

To determine which basic inverter type should be selected for the PAFC power
 

plant application, an evaluation comparing the two types was performed. Table
 

2.1.5-2 shows howthe two compared in seven key areas. The analysis was
 

extended to a tot-al of seventeen areas and when the final assessment was made
 

it was clear that avaiTable technology and experience favors using a current 

sourced, line commutated inverter for this application.
 

The assessment of the technology available to consolidate or combine the 'power
 

outputs from multiple fuel cell modules into a two terminal input to the
 

inverter was more difficult. Literature describing circuitry, identifying
 

problems, and suggesting solutions could not be found. The technology
 

assessment consisted of identifying the expected characteristics of the fuel
 

cell modules at steady state and transient, and the desired module operating
 

regimes. Table 2.1.5-3 lists consolidation circuit requirements identified at
 

this time.
 

2.1.5.3 ROTATING EQUIPMENT SYSTEM (RES)
 

Over 30 vendors were contacted to obtain data on the availability and
 

characteristics of rotating equipment to meet the typical requirements for PAFC
 

power plants.. The following general information was obtained -from a vendor
 

survey and follow up meetings with selected vendors.
 

* 	 A l-ist of rotating equipment suppliers was established; this list
 
represents a good cross-section of suppliers that could meet the
 
RES functional requirements..
 

a 	 Most of the vendors contacted showed limited interest in
 
supplying a RES as a total package concept andpreferred to 'quote
 
on just one or two special pieces of equipment. Three vendors
 
responded with a total RES package concept.
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TABLE 2.1.5-2
 

COMPARISON OF BASIC INVERTER TYPES
 

Current Sourced Line 


Commutated Inverter 


Efficiency
 

95 percent - full load 


92 percent - 25 percent load 


Experience
 

3.5 MW for MHD 

VAR generators of hundred of MVAR 

Up to 1.8 GW to MVdc
 

Fault Handling
 

Prone to frequency short outages. 

Fault clearing easier and always 

automatic. 


Input reactors limit rate of rise 

of dc fault current and make 

protection easier.
 

dc Voltage Ratio Capability
 

No limitations. 


Harmonic Filtering
 

Tuned harmonic filter component cost 

go down with larger sizes. 


Power Factor
 

Required correction. 


Development/Design Time
 

18-24 months 


Voltage Sourced Forced
 

Commutated Inverter
 

95 percent - full load
 

80 percent - 25 percent load (need
 
faster thyristor switching speed for
 
further improvement)
 

Field proven designs by others
 
limited to about 3 kV and 5 MW
 

Commutation not dependent on ac line.
 
Fault clearing and restoration
 
of service always manual.
 

Fuses for dc fault clearing
 
marginally available.
 

Most work to date at 1.3 to 1 ratio.
 
Inverter cost increases significantly
 
with increase in ratio.
 

Most of existing large design per KVAR
 
use phase shifting, summing designs.
 
These transformer costs increase very
 
sharply per kVAR in larger sizes.
 

Has reactive power control
 

30-36 months
 

2-55
 



TABLE 2.i.5-3
 

CONSOLIDATION CIRCUITRY CONTROL REQUIREMENTS
 

e 	 The maximum voltage output of a fuel cell module will be limited to
 
1400 V dc.
 

* 	 Consolidation circuitry will be able to carry up to 700A per module for 
up to ten seconds without damage. 

* 	 Reverse voltage of sufficient magnitude to cause reverse current to
 
flow in any module will be prevented.
 

* 	 Sufficient filtering will be provided in the circuitry to limit any

harmonics caused by electronic switching action from damaging fuel cell
 
modules.
 

* 	 The circuitry will permit the control of the current taken from each
 
module in response to control signals from the central power plant
 
control computer. This control is needed to maximize overall power
 
plant efficiency and to allow for differences in individual module
 
efficiency and to allow for differences in individual module ­
efficiencies due to manufacturing variations and module aging effects.
 

* 	 The circuitry will provide for the combination of currents from up to
 
ten modules with terminal voltages of up to 150 V apart to be connected
 
to each inverter dc bus. Unequal module terminal voltages will be an
 
inevitable consequence of the overall power plant control scheme based
 
on module current control.
 

* 	 The consolidation circuitry will be non-dissipative inorder not to
 
have an adverse impact on the losses and efficiency of the system.
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0 	 All vendors indicated that "off-the-shelf" design equipment is
 
available and that long term RES development work is not
 
warranted with the possible exception of the pressurized
 
circulator.
 

* 	 The pressurized circulator in the air cooling recirculation
 
stream may require some custom design work. Several vendors
 
quoted fan prices about 25 percent higher in cost than for a
 
design at normal atmospheric operation because of the 0.5 to 1
 
inch thick steel casing to house the fan.
 

* 	The compressor(s) is an off-the-shelf piece of equipment but has
 
varying operational characteristics depending on type and
 
required operating range. The compressor type is important as it
 
affects layout, efficiency, and cost.
 

e 	 The steam turbine and gas expander components present no problems
 
and can be purchased off-the-shelf.
 

From the survey and followup meeting with several vendors, seven rotating
 

equipment options illustrated in Figure 2.1.5-1 were selected for a detailed
 

comparative evaluation.
 

Table 2.1.5-4 summarizes the advantages and disadvantages of all seven
 

equipment options. Of the RES configurations studied, Concept 7 has more
 

advantages than disadvantages over the other vendor concepts. Concept 7 is
 

shown to have the smallest footprint, lightest weight, small number of
 

components, rapid startup and shutdown times, small number of spare parts,
 

lowest cost, and good efficiency at rated conditions. Disadvantages are that
 

bypass flow is required to meet the 25 percent low power operation at the
 

pressure level specified. This bypass causes lower overall plant efficiencies
 

(higher heat rate).
 

Figure 2.1.5-2 shows the process flow schematic for Concept 7. The process
 

statepoints on the schematic are for rated conditions. A top view arrangement
 

of this concept is shown in Figure 2.1.5-3.
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Figure A. Concept1 - Centrifugal 

Figure B. Concept 2 - Rotary Screw 

Figure C. Concept 3 - Centrifugal
(D) 

FiueE Cnt4 - 2 etiuaTrain 1 Train 
Figure E. Concept 4 - Centrifugal 

Train 1 Train 2 __ 

Figure F. Concept 5 - Rotary Screw 

Figure G. Concept 6 - Centrifugal 

Notes: 	 Cl R - Air Circulator ST - Steam Turbine 
C - Centrifugal Compressor EXP - Gas Expander 
RS - Rotary Screw Compressor M - Variable Speed Electric Motor 

Subscripts - (1) 1st Stage; (2),2nd Stage 

707015-15A 

Figure 2.1.5-1. Rotating Equipment Concepts
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Table 2.1.5-4
 

SUMMARY ROTATING EQUIPMENT SYSTEM (RES) CONFIGURATIONS
 

Concept 	 Advantages 


* 	Packaged Group of
s 

Equipment 


* 	Intercooling Available 


* 	Good Efficiency at rated
 
conditions
 

* 	Low Cost
 

2. 	 * Capable 4:1 Turndown 

* 	Separate Shutdown Units
 
* 	Ease of Operation
 

3 a 	Single Compressor 


* 	Packaged Group of 

Equipment
 

4 	 * Capable 4:1 Turndown 

* 	Intercooling (two 


stages) 

* Ease of Operation
 
a Simple and Compact
 
* 	At 55 psia single stage
 

compressors available
 

5 a 	Good Efficiency at 

Rated Conditions
 

* Indirect Drive No Gears
 
e Modular Packages
 
* 	Intercooling
 

6 a Separate Units Which 

Can Be Shutdown 


a Ease of Operation 

* 	Capable 4:1 Turndown
 

7 a. 	Packaged Group of 

Equipment 


* 	Intercooling Available 


a Good Efficiency at
 
Rated Conditions
 

a Low Cost
 

Disadvantages
 

e 	Must bypass flow to
 
meet 4:1 turndown
 

* 	Low efficiency at part
 
power
 

s 	Many components
 

* 	Difficult to meet 4:1
 
turndown
 

* 	Low efficiency part power
 

e 	Expensive
 
* 	Two stage compression to
 

reach 70 psia
 

e 	More difficult to control
 

a 66 psia pressure on
 
single stage
 

a Gear Loss
 

a 	Must, bypass flow to meet
 
4:1 turndown
 

a 	Low efficiency at part
 
power
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2.2 FUEL CELL SYSTEMS REQUIREMENTS
 

The primary objective of this task was to develop test specifications in
 

accordance with the FCS requirements for subscale (2x2 inch) fuel cells,
 

nine-cell stacks, and 10 and the 25 kW stacks. The test specifications
 

included requirements for steady-state and transient performance, endurance,
 

key state-points and gas chemistry. The following sections summarize the
 

results of these efforts.
 

2.2.1 25 kW STACK FUEL CELL TEST SPECIFICATION
 

A preliminary test specification was initiated for a 25 kW stack based upon
 

system requirements defined from available design and test data from subscale
 

cell and nine-cell stack tests, system functional analyses and trade-off
 

studies. Limited availability of results from the subscale cell and nine-stack
 

tests has delayed the completion of 25 kW stack design and test requirements
 

and, therefore the completion of the 25 kW short stack test specification.
 

Although a preliminary 25 kW stack test specification was not issued, the
 

system performance requirements and design requirements were identified and
 

documented. The preliminary 25 kW stack performance and instrumentation
 

requirements are summarized in Tables 2.2.1-1 and -2.
 

2.2.2 FUEL CELL HARDWARE TEST SPECIFICATIONS
 

The initial subscale cell and nine-cell stack test specifications were issued
 

to perform tests to obtain the technology characterization for fuel cell and
 

stack design and performance prediction. The 10 kW stack test and measurement
 

requirements and testing conditions were also identified. However, the 10 kW
 

stack test specification was not issued pending availability of needed design
 

and operating test results from the subscale cell and nine-cell stack testing.
 

Subscale cell test specifications were issued for the first group of the
 

technology characterizations needed as noted in Table 2.2.2-1. The purpose of
 

this first group of test specifications was to: (1)verify process and
 

fabrication reproducibility and control, 2) establish comparative capabilities
 

of electrodes and other cell components performance with a few key process
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Parameter 


POWER 


TEMPERATURE 


Oxidant Inlet 


Coolant Inlet 


Fuel Inlet 


Plate Avg. 


PRESSURE 


FLOW 


Fuel 


Oxidant (.air) 


Coolant (air) 


CELL VOLTAGE 


Open Circuit 


Operating Limit 


Operating Point 


CELL CURRENT DENSITY 


TABLE 2.2.1-1
 

25 kW STACK PERFORMANCE REQUIREMENTS
 

Units Nominal 


kW dc 25 


OF (0C)
 

363 (184) 


277 (136) 


375 (190) 


375 (190) 


'Psia 70 


#/hr
 

8.75 


209 


3325 


mV
 

920 


800
 

680 


mA/cm2 325 


Design Range
 

< 30
 

300-400 (149-204)
 

230-320 (110-160)
 

300-400 (149-204)
 

300-400 (149-204)
 

15-100
 

8.75
 

< 418
 

2900-4350
 

< 1100
 

500-800
 

< 400
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TABLE 2.2.1-2
 

PRELIMINARY LIST OF MEASUREMENTS
 

REQUIRED FOR 25 kW - CELL STACK TESTING
 

Tentative 

Req'd Measurements 

1. Cell Voltage 


2. Cell Current 

3. Cell Temperature 


4. Cell Pressure 


5. Fuel Inlet Pressure 


6. Fuel Press. Drop 


7. Oxidant Inlet Pressure 

8. Oxidant Press. Drop 


9. Coolant/Manifold Seal AP 


10. Fuel to Oxidant Press. Diff. 

11. Fuel Outlet Pressure 


12. Oxidant Outlet Pressure 


13. Coolant Outlet Pressure 

14. Oxidant to Fuel - Exit AP 


15. Coolant AP 


16.. Temp Difference - Cells 

17. Temp Increase - Coolant 


18. Stack Output Voltage 


19. H20 fraction - Exhaust 


20. Power Level, Transients 


21. Cell Internal Resistances 


22. Stack Resistance* 


23. Clamping Load 


24. Pressure Level Transient 


25. Oxidant Utilization 


26. Fuel Utilization 


27. Oxidant Flow Rate 


28. Fuel Flow Rate 


29. Fuel Leakage 


30. Stack Creep 


31. Acid Addition 


32. -Acid Loss 


Tentative Type 

Sensors 

Individual leads 


to each plate
 

Stack Output Anperage 

T/C's in plates 


Press. Taps-Containment 


Press. Taps - Manifold 


Diff Press. Leads 


Press. Taps - Manifold 

Diff Press. Leads 


Diff Press. - Manifold 


Diff Press. Leads 

Derived (5'&6) 


Derived (7 & 8) 


Press. Taps-Manifold -

Diff Press. Leads 


Diff Press. Leads 


i/C's Distr. inplates 

T/C's inPlenums 


Circuit Voltage 


Humidity - fuel exhaust 


Voltage & Amperage 

of stack circuit 

(From Volt. leads) 


(Circuit Resist.) 


Strain gages on 

tie bolts & tie bars 

AP transducers 


Gas Analyzer Inlet & 

Outlet Plenums 

Gas.Analyzer - Inlet & 

Outlet Plenums
 
Flow meters 


Flow meters 


Coolant Outlet Gas 

Analysis 

Displacements & time 


Mass added 


Discharge Rate - Outlet 

Gas Analysis - Outlet 


Operating Error Range
 
Range Est. (%of Max.)**
 
-1.0 to +L.5_volt. l/-a
 

50 to 500A 
 2
 
Amb to 2200C 
 2
 

Amb to 100 psia 
 2
 

Amb to 100 psia 
 2
 

0 to +12" H20 2
 

Amb to 100 psia 2
 
-10 to :12" H20 5
 

-50 to +50 psid 5
 
'r
-10 to +30 H20 5
 

Amb to 100 psia 2
 

Amb to 100 psia 2
 

Amb to 100 psia 2
 
-10 to +30" H20 5
 

0 to +12" H20 5
 
0 to 600C 5
 
0 to,600C 5
 

0 to 100 volts 2
 

0 - 100% 2
 

(>20 kW/sec)
 
(time cbnstants TBD)
 
0 to 1 mrn1 5
 

0 toAlOOm R 5
 

0 to 30OOO psi 5
 
(0to 1 mil/in)
 
(>50 psi/sec) 5
 

1.2 to 5 stoichs 5
 
02
 
50 - 85% H2 2
 

10 to (TBD) kg/hr 2
 

1 to 20 kg/hr I
 

0 to (TBD) (%or ­
ppm)
 
0 to 20 mm 5
 

(TBD) cc 
 5
 

(TBD) cc 5
 
(TBD) cc 5
 

Stack capacitance to be checked by Bridge prior to testing 

** Operating Range Reference, no instrument 
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TABLE 2.2.2-1
 

TEST GROUP DEFINITIONS - 2x2 SUBSCALE CELLS
 

Principal Characterizations Required:*
 

1. Electrode - Performance and Life (Reference 1 - baseline technology
 

understanding)
 

2. 	Matrix and Electrolyte - Performance & Life
 

3. 	Reactant Constituents Effects (Control of key contaminants, air and fuel
 

sources).
 

4. 	Pnysical/Structural Design Eff&cts (Control of key parameters - clamping
 

loads, distortions introduced by tolerances, "shelf" time, handling
 

conditions, etc).
 

*Expected effects due to control of key variables within both design and
 
operating ranges anticipated. Uncertainties inother unknown variables
 
not controllable directly would be included in effect. List is in order
 
of priority. All other variables subsequent to expressed test plan to be
 
constrained by specification:or process-to keepsame (within possible limits).
 

Reference 1: 	 DRM 115 "Definition of PAFC Subscale Test Plan - Electrode
 
Characterization", Sept. 2, 1982 Revision 1.
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variables, 3) establish the test facility and testing compatibilities between
 
Westinghouse and ERC test loops, and 4) to establish pressure effects and input
 

for stack design.
 

Later- subscale cel"tests were defined to establish the fuel cell baseline 

technology, parameter sensitivity understanding and performance characteristics 

related to process and fabrication control adequacy. Quantitative 

understanding of the pertinent variables and-of the design parameters and 

effects of operating conditions as noted in Tables 2.2.2-2, -3, -4 and -5 

requires both cell and stack testing in a designed test approach. 

The voltage and current characteristics with loading and operating conditions
 

(polarization curves) would be established for PAFCs in the first set of tests,
 

with-components fabricated to the same specifications. The consistency of the
 

polarization response and cell to cell performance uncertainties for identical
 
cells must be acceptable for the planned variables tests to be successful.
 

2.2.2.1 REPRODUCIBILITY TESTS
 

A test specification for identical fabrication and testing of eight identical
 
2x2 subscale cells was defined to verify reproducibility. These objectives and
 

test plan were defined and the tests were carried out as summarized in Section
 

3.1.5.
 

BRIDGING TESTS:
 

The data requirements and test plan specified that five batches of electrodes
 

were to be made at AESD and subscale 2x2 fuel cells fabricated from these
 

components and tested at AESD. The electrodes were fabricated according to the
 

specified processes, fabrication, and assembly procedures. However, large
 

manufacturing variations in these components were observed. This variation
 

brought into question the ability to obtain the desired data quality and
 

performance consistency required by the tests.
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TABLE 2.2.2-2
 

AREAS OF DESIGN AND OPERATING VARIABLES
 

1. Hardware Options
 
0 

* Fabrication Facility
 

* Furnace Run
 

* Electrode and Matrix Component "Alternates"
 

* Testing Facility and Loop
 

2. Assembly Options
 

0 Facility
 

* Acid Loading
 

* Clamping Pressure
 

* Compression Cycle History
 

3. Operating Parameter Options
 

* Current
 

* Pressure
 

* Temperature
 

* 02 Flow (Stoichs)
 

* H2 Flow (Stoichs)
 

* Fuel Composition
 

* Impurities
 

* Transient Conditions
 

* Cycles
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TABLE 2.2.2-3
 

MEASUREMENTS FOR PROCESS/FABRICATION CONTROL
 

* 

Test Objective 

Establish cell- to 

cell uniformity -

Acceptable 

Polarization 

and Life Trends 

baseline 

a Establish stack 

assembly effects -

power output/cell 

performance baseline 

* Establish Endurance 

baseline 

Measurable Variable 


* Voltage ,YV 


Resistance 


a Corrosion
 

a Catalyst avail/util 

* Acid condition 


e 	Reactants - inlet and
 
outlet condition
 

* Times 


a Current output
 

a Voltage output 

* Resistance 


a Pressure
 

* Temperature
 

* 	Reactants - inlet and 

outlet conditions
 

a Voltage loss 


# Corrosion loss
 

* Catalyst avail loss. 

* Acid condition 


* Times
 

Values 

Initial Final 
Oper. 
Cond. 

V 

V V, 

/ 

/ 

/ 

/ 

I/ 

. 

/ / 

/ 

/ 
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TABLE 2.2.2-4
 

MEASUREMENTS FOR TECHNOLOGY DESIGN PERFORMANCE
 

Test Objective 


* 	 Establish voltage 


characteristics and 


losses 


* 	 Establish 


Polarization 


characteristics 


* 	 Establish performance 


trend data - voltage 

degradation 

* 	 Acid Management 


Values 

Initial Final 
Oper. 
Cond. 

V/ V 

V 

/ 

/ 

/ 

/ 

/ 

/ 

V/ 

// 

I / 

V 

/ 

/ 

V 

I 

/ 

/ 

V 

V 

V 

V/ 

V 

V/ 

/ 

V/ 

V 

V 

V 

/ 

/ 

/ 

/ 

/ V V 

Measurable Variable 


. Stack voltage open cir. 


* Cell voltage open cir. 


* Stack voltage ­
cond. and during
 
transients
 

s Cell voltage 


a 


* 


* 


* 


* 


* 


* 


* 


e 


* 


* 


* 


* 


oper.
 

@ Acid added 


* Acid losses 


* Pressure 


* Temperature 


e Process Gas Flow Rates
 

* Cell Resistance 


Current 


Pressure 


Temperature 


H2 concentration 


02 concentration 


CO, CO2 concentrations 


Resistance 


Voltage 


Current 


Time
 

Voltage 


Current 


Time 
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TABLE 2.2.2-5
 

MEASUREMENTS TO ESTABLISH OPERATION CHARACTERISTICS
 

lest Objective 


* 	Establish voltage 


characteristics and 


losses - operating 


profiles and events 


* ,Establish Operating 


Effects - Polarization 


characteristics 


(Short and Long 


Term) 


* 	Establish performance 


trend data - voltage 


degradation with 


operating conditions
 

Measurable Variable 


* Stack voltage open cir. 

e Cell voltage open cir. 

a Stack voltage - operating 

'onditions and during
 

transients
 

* Cell voltage 

a Current density 

a Pressure 

a Temperature 

s H2 concentration 

* 	02 concentration
 

* 	CO concentration
 

* 	Resistance 


* 	Voltage 


* 	Current density 


• 	Time
 

Values
 
Oper.
 

Initial Final Cond.
 

V V / 

, V 

V 

V 

/ / V 

/ 	 /
 

V V-V 
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To establish the viability of conducting these tests, a "bridging test" was
 

considered necessary. This test was intended to establish the consistency of
 

performance and what performance variation would be expected from cells
 

fabricated from components that were very similar, and those showing the
 

largest observable variations in thickness, weight, and quality (visible flaws,
 

etc). However, other variables in electrode fabrication became significant.
 

The test plan was extended to include a comparison of cell components having
 

the specified area controlled variables at two levels as noted below:
 

* Non-heat treated and 900°C heat treated PtC catalyst. 

* Low (< 0.45 mg) and high (>0.55 mg) catalyst loading. 

* Thin (< 0.005 in.) SiC and thick (> 0.01 in.) SiC coating. 

W
Net and dry bond lamination.
 

* Low viscosity (ERC) and high viscosity (Westinghouse) Polyox mix. 

This extended bridging and screening test plan is a partial factorial design of
 

a 25 test design that provides all of the direct first order or main effects
 

and second order effects, but assumes that third-order (and higher) inter­

actions are negligible. The test subscale cell unit definitions are given in
 

Table 2.2.2-6.
 

2.2.2.3 FACILITY COMPARISON TESTS (ROUND-ROBIN):
 
/ 

This test specification defined the testing to compare the performance of 2x2
 

subscale cells assembled and tested in Westinghouse facility with identical
 

cells assembled and tested in the ERC facility. This test plan will determine
 

the nominal performance variance range and the data repeatability, and
 

establish the capability to directly compare test results obtained from either
 

facility.
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TABLE 2.2.2-6
 

ELECTRODE COMPARISONS - 2x2 SUBSCALE CELL TEST ASSEMBLIES
 

(25 	Five Variable Partial Factorial Test)
 
Test 
Design 

Catalyst 
Lot #3 Lamination (1) 

Cathode . 
Loading(2) 

SiC 
CoatingC3) 

Percent 
Polyox(4) 

CAS-OOl. Non-H.T. Wet Bond Low Thin W 

CAS-002. 900cC H.T. Wet Bond Low Thin ERC 

CAS-003. Non-H.T. Wet Bond High Thin ERC 

CAS-004. 9000C H.T. Wet Bond High Thin W 

CAS-005. Non-H.T. Dry Bond Low Thin ERC 

CAS-006. 9000C H.T. Dry Bond Low Thin W 

CAS-007. Non-H.T. Dry Bond High Thin W 

CAS-008. 9000C H.T. Dry Bond High Thin ERC 

CAS-009. Non-H.T. Wet Bond Low Thick ERC 

CAS-OIO. 9000C H.T. Wet Bond Low Thick W 

CAS-OIl. Non-H.T. Wet Bond High Thick W 

CAS-012. 9000C H.T. Wet Bond High Thick ERC 

CAS-013.. Non-H.T. Dry Bond Low Thick W 

CAS-014. 9000C H.T. Dry Bond Low Thick ERC 

CAS-Ol5. Non-H.T. Dry Bond Hi'gh Thick ERC 

CAS-0l6. 9000C H.T. Dry Bond High Thick W 

NOTE
 

1. 	Per Process Specification
 

2. Anode loading constant n 0.3 mg/cm2, low cathode load < 0.45,
 
high is > 0.55.
 

3. 	Average of electrode corners, thin < 0.005 in., thick > 0.01 in.
 

4. 	Controlled by source, (Westinghouse or ERC Polyox amount needed for
 
reaching desired viscosity).
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This facility, assembly, and testing comparison was accomplished by an exchange
 

of similar subscale test cells between Westinghouse and ERC as defined below.
 

Test No. Unit Assembled Tested
 

I SC-052* AESD AESD/ERC
 

2 SC-053* AESD AESD/ERC
 

3 E-l ERC ERC/AESD
 

4 E-2 ERC ERC/AESD
 

5 E-3 ERC ERC
 

6 E-4 ERC AESD
 

*These test units are sister units assembled and tested by Westinghouse in the
 

earlier Bridging Tests
 

2.2.2.4 ELECTRODE CHARACTERIZATION TESTS - PRESSURIZED CONDITIONS:
 

The purpose of this test specification is to extend the subscale cell electrode
 

characterization atmospheric test data matrix to include the effects of
 

pressurized operation to establish the technology base for defining cell design
 

parameters and operating constraints for full size cell stacks.
 

This pressurized subscale cell test is a designed experiment of two levels of
 
pressure that dovetails the atmospheric pressure tests conducted inthe
 

subscale cell electrode tests. For this reason these tests have the same base
 

for temperatures, current levels, and reactant utilization and are conducted
 

with the same test plan, except at the prescribed pressure levels. The test
 

plan sequence is shown in Table 2.2.2-7.
 

These tests will establish the change in key parameters and the operating
 

characteristics of fuel cell performance with changes in operating pressure
 

level. Specifically, this requires determination of the change in nominal cell
 

measured (and IR free) voltage for the controlled variables.
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TABLE 2.2.2-7
 

PRESSURIZED2x2 SUBSCALE TEST PLAN SEQUENCE
 

Shutdown or
 
Additional
Atmospheric Steady State 
 Mapping Opti m l
Tests Pressurize Pressurized Depressurize Test''
 

< 150 Hrs 4 Hrs 300 Hrs 
 100 Hrs TBD
 

* Repeatability(2) a Startup to * Polarization * 
10 points per * Shutdown
 
* Cell Resistance part load 
 at 3, 30, Table 4 * Polarization
 
a OCV (intermediate 300 hours(3) a Polarization . OCV
* Polarization pressure) 
 @ end of e Operational Transients
 
a 02 gain * Up to full * Conditions per mapping * Endurance
 
s H2 gain rated con- Table 3 
 e Start/stop Cycles


ditions 
 a Development Options
 

Note: (1)All tests run with 83 percent H2 utilization SRG (except 100 percent H2 for H2 gain)
 

(2)Verify measurements with installed cells and demonstrate repeatability within uncertainty

required by parameter perturbation.
 

(3)Minimum of four points - H2 utilization constant, oxidant at constant stoichs for 4 current levels.
 

(4)Shutdown or TBD options.
 



The test plan is identified in Table 2.2.2-8. Specific mapping conditions to
 

provide a direct comparison of these data with stack testing for determining
 

scaling effects are defined in Table 2.2.2-9.
 

NINE-CELL STACK TEST
 

A test specification for up to 32 nine-cell stacks was issued. The objectives 
of the nine-cell stack test plan as presented in Reference 1 are to demonstrate 
PAFC stack performance and determine the operating characteristics of the fuel 

cells in an in situ stack environment with the smallest logical stack Size that 

would adequately determine individual cell data for:
 

* 	 Baseline Technology - establish technology base for 12xl7 nominal
 
size cells in stack conditions to support larger stack and fuel
 
cell design and performance predictions.
 

* 	 Key Fuel Cell Parameter Characteristics - develop design and
 
operational understanding of key parameters to support design and
 
operation of fuel cell stacks in a system.
 

* 	 Interaction Effects - determine relationships of key fuel cell
 
parameters to provide an understanding of effects of their
 
changes in combination on performance characteristics for design
 
and operating guidance.
 

* 	 Design constraints and'operating constraints - establish the
 
performance impact and sensitivities needed to guide design of
 
operating envelopes and control of the PAFC system.
 

The pertinent test parameters and variables are summarized in Tables 2.2.2-10
 
and -11. The overall test plan was defined by engineered test designs. This
 

plan permits introduction of additional design or component variables as
 

development proceeds. Four stacks constitute a group to integrate such new
 

variables into the program.
 

The 	test plan for the initial group of four stack tests is presented in Table
 

2.2.2-12.
 

The 	objectives of this first group of nine-cell stack tests are to:
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TABLE 2.2.2-8
 

PRESSURIZED OPERATING CONDITION TESTS**
 

Test -Pressure Current'D nsity Temperature Test Assembly
 
No. (atm) (mA/cm ) (0C) Components
 

2 2.4 325 190 CPS-017 See Table
 

1 4.8 325 190 CPS-021 below for
 

2 2.4 200 190 CPS-022 Cathode
 

1 4.8 200 190 CPS-018 Anode
 

2 2.4 325 200 CPS-019 and
 

1 4.8 325 200 CPS-023 Matrix
 

2 2.4 200 200 CPS-024 Description
 

1 4.8 200 200 CPS-020
 

**Record data for 30, 300 and 300 hours at stipulated test conditions for
 
reactant conditions of 2.5 stoichs air and 83 percent H2 with SRG
 
(75 percent H2, 24 percent C02, 1 percent CO, mole percent) except as
 
specified for polarization data (see Test Plan).
 

Test Cathode Anode Matrix Comments-

Unit I.D. I.D. I.D.(1) Fab & Ass'y.
 

CPS-017 C136-1 A131-8 M042-7 Dry Bond, Non-H.T. Catalyst
 

CPS-018 C136-1 A131-8 M042-7 Dry Bond, Non-H.T. Catalyst
 

CPS-019 C136-1 A131-8 M042-7 Dry Bond, Non-H.T. Catalyst
 

CPS-020 C136-1 A131-8 M042-7 Dry Bond, Non-H.T. Catalyst
 

CPS-021 C134-5 A133-3 M042-7 Dry Bond, 900% H.T. Catalyst
 

CPS-022 C134-5 A133-3 M042-7 Dry Bond, 900C H.T. Catalyst
 

CPS-023 C134-5 A133-3 M042-7 Dry Bond, 900C H.T. Catalyst
 

CPS-024 C134-5 A133-3 M042-7 Dry Bond, 900C H.T. Catalyst
 

Notes: (1) If needed, a sister equivalent matrix sheet may be substituted.
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TABLE 2.2.2-9
 

MAPPING POINTS FOR CELL TO STACK COMPARISON
 

Operating Current 
Points Densitq 

(mA/cm) 

1 325 

2 150 

3 400 

4 150 

5 400 

6 400 

7 150 

8 150 

9 400 

10 325 

11 325 

12 325 

13 325 

14 325 

Pressure 

Level 

(psia) 


70 


40 


40 


100 


100 


40 


40 


14.7 


14.7 


70 


70 


100 


40 


14.7 


Operating Conditions
 

Temperature 

Level 

(0C) 


190 


170 


170 


200 


20D 


200 


200 


170 


1-70 


190 


190 


190 


190 


190 


*All points with 83 percent H2 utilization with SRG.
 

**Establish stable operating conditions.
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Air*
 
Stoichs Time**
 

(Hours)
 

2.0 3
 

4.0 3
 

4.0 1
 

4.0 3
 

4.0 1
 

4.0 3
 

4.0 1
 

4.0 3
 

4.0 1
 

2.0 3
 

4.0 1
 

4.0 1
 

4.0 1
 

4.0 1
 



TABLE 2.2.2-10
 

PERTINENT PARAMETER DEFINITIONS
 

A. Principal Responses to Be Measured
 

During Operation:
 

* Voltages - cells and stack
 

* Power Output
 

* Trend Effects with Time
 

Post Operation:
 

* Corrosion
 

* Dimensional changes
 

* Physical Property changes
 

* Mechanical integrity of stack and components
 

B. Principal Variables To Be Controlled*
 

During Operation:
 

* Pressure Level
 

* Temperature Level - Cell (Mean) 

* Temperature Levels Reactants
 

* Current - (Load)
 

* Time Histories and Cycling profiles
 

* Fuel Composition (utilization)
 

* Flow Rates (reactants and coolant)
, 

* 	 These are not necessarily the controlled parameters, (i.e., cell/stack 

temperature may be controlled by control of the air/coolant inlet 
temperature to meet exit temperature conditions desired.)
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TABLE 2.2.2-10 (Continued)
 

* 	Acid Condition (initial loading inventories,
 
concentrations, or other variable concerns)
 

a 	 Oxidant Concentrations (stoichs)
 

* 	 CO Levels
 

* 	 Reactants Pressure difference
 

C. 	Other Controlled Variables:
 

* 	 Process/fabrication pedigrees
 

* 	 Gas contaminants - process air & coolant
 

* 	 Handling/Events (unintended loads, etc.)
 

* 	 Fuel Composition (H20, C02, CO, etc.)
 

D. 	Variables to Characterize/Define by Nine Cell Stacks
 

1. 	Hardware Options Levels
 

1. 	Fabrication Facility 2
 

2. 	Furnace Run (Batch) 2­

3. 	Electrode "Alternates" (See Text) 2
 

4. 	Testing Loop 2
 

2. 	Assembly Options Levels
 

1. 	Acid Loading 2
 

2. 	Clamping Pressure 1
 

3. 	Compression Cycle History I
 

3. 	Operating Parameter Options Levels
 

1. 	Current 3
 

2. 	Pressure 3
 

3. 	Temperature 3
 

4. 	02 Flow (Stoichs) 2
 

5. 	H2 Flow (Stoichs) 2
 

6. 	Fuel Composition 2
 

7. 	Impurities (TBD) 2
 

8. 	Time and Cycles 3
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TABLE 2.2.2-I1
 

MEASUREMENTS FOR STACK MECHANICS
 

Test -Objective 


1. 	Establish dimensional 


characteristics and 


stability (creep) 


2. 	Establish sealing and 


seal characteristics/ 


performance 


3. 	Determine Thermally 


induced displacements 


and transient impacts 


4. 	Determine flow 


channel variances 


and characteristics. 


5. 	Establish design 


stresses 


-Measurabte VariabTe 


@ Dimensions 


e Displacements
 

s Loadings 


e Times 


* Leakage rates 


@ Pressure levels 


* Pressure differences 


* Temperature 


@ Open circuit voltage 


• Clamping loads 


* Dimensions 


e Times 


a Dimensions 


e Displacements 


* Temperatures 

e Loadings. 

* Times
 

a Pressure level
 

@ Pressure drops
 

e Displacements 


* Dimensions 


a Deflections 


* 	Loads 


Values 
Oper.-

Initial Final Cond. 

/ 

/V V 

V 

V/ 

/ V 

/ V 

V 
V V V 

/ V / 
V V 

/ 

/ 

V V 

/ / 

V 4 

V 

V V 
/ V / 
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TABLE 2.2.2-12
 

TEST PLANOl) - SEQUENCE
 

Additional
 
Atmospheric Startup Steady State Mapping Optiqnjl
 

Tests Pressurize 	 Pressurized Pressurized Test 4)
 

< 50 Hrs 4 Hrs 	 300 Hrs 100 Hrs TBD
 

* Repeatability(2) a Expected operating . Polarization * 22 points * Shutdown
 
* OCV line to 1/4 at 3, 30, 	 * Polarization
 
• 	Polarization power point 300 hours(3) e Polarization * OCV 

H2 * Increase pressure @ end of e Operational Transients 
3000F to full power * Conditions mapping * Electrical Transients 
4 ST., 80% H2' point 375°F e Endurance 
50-200 mA/cmC 	 70 psia * Test Cell Exchange
 

2.5 	ST., 80% H2 a Add mapping 
325 mA/cm 2 • Load Variation (Design)
 

s Start/stop Sequence

* Development Options
 

Noted: (1)All tests run with SRG
 

(2)Verify measurements and stack control repeatability within'uncertainty required.
 

(3)Minimum of four points - H2 utilization constant, oxidant flow rate held at steady state
 
condition.
 

(4)TBD options, transients and continuing development - stacks beyond W-009-07 - will extend
 
these options.
 



0 Establish reference baseline performance of existing technoiogy
 
full-size fuel cells in a stack environment, and determine
 
reproducibility obtained with existing process, fabrication, and.
 
assembly controls and specifications.
 

a 	 Demonstrate stack operating characteristics over operating map 
and esta0lJsh measurement -repeatab-il-it-y. " 

* 	 Provide performance "screening" information for heat treated
 
catalyst, dry bonded electrodes, and seal material alternatives
 
using "buffer" fuel cells Numbers 1, 2, 8, and 9 (outside of
 
cooler plates containing five-cell unit stack).
 

The 	results of the nine-cell stack testing completed are presented in Section
 

3.2.5.
 

2.2.3 FUEL CELL MANUFACTURING PROCESS SPECIFICATIONS
 

The 	process specifications listed below for the manufacture of fuel cells were
 

completed and approved, by NASA-Lewis.
 

PS - 598047 Compression Molded Carbon Plates
 

PS - 598048 Electrode Catalyst Layer
 

PS - 598049 Electrode Support Layer
 

PS - 598050 Electrodes
 

PS - 598054 Electrolyte Matrix
 

The nine-cell Stack Subassembly Procedure (PAFC-006, Rev'ision 1) and Assembly
 

Procedure (PAFC-007, Revision 1) were completed and approved by NASA Lewis.
 

A five-cell stack (Number E005-OOl) was assembled and tested at ERC. The
 

objective of this stack was to-compare the Mat-l layers fabricated at
 

Westinghouse and ERC.
 

The 	construction features of this five-cell stack are as follows:
 

Anodes 10 percent Pt/C, 0.3 mg/cm2 nominal loading, 
dry pressed 

Cathodes . 10 percent Pt/C, 0.5 mg/cm2 nominal loading, 
dry pressed 
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Mat-I layers u 10 mils thick, cell numbers 2 and 5 supplied 

by Westinghouse 

Sic :u 7 mils thick 

Seals Teflon 'shim stock 

Electrolyte 100 - 101 percent 50cc/cell H3PO4 

Compression .56 PSI 

A summary of the testing is presented in Table 2.2.3-1. Initial performance at
 

1 atm. was relatively low (% 612 mV/cell at 95 mA/cm2 and 175°C).
 

Performance increased slowly until it reached 672 mV/cell at 95 mA/cm 2 and
 

300 hours, At this point the stack was pressurized. The stack was tested for
 

over 100'hours at 5 atm. A polarization curve is presented in Figure 2.2.3-1.
 
A summary of stack data is presented in Table 2.2.3-2. No performance
 

difference was observed between the cells with ERC or Westinghouse .Mat-l
 

layers. After - 500 hours the testing was discontinued. Upon disassembly of
 

the stack, Cell 2 cathode plate and backing paper were found corroded. Cathode
 

plates and backing papers for the other cells were wet with acid.
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TABLE 2.2.3-1
 

SUMMARY OF TESTING 'FOR STACK E-005-O01
 

Total hours tested 521
 
Total -hours tested--at 5- atm. pressure- 103 

Start-up

Average OCV = 928 mV 

Average Cell Voltage = 612 mV 
at -95 mA/cm2 , 1 atm, 175oC. 

T.C.'s at fuel inlet overheatino. 
5 hours cell performance low, fuel sensitive. 

Possible cause: air leaking into fuel. 

Reactant gases interchanged 4 times in 50 hrs 
20 hours- (2 complete cycles) each'time sulfur 

odor detected in H2 exhaust. 

Average cell voltage = 638 mV/cell 190 hours 
at - 95 mA/cm 2 , I atm 1900C. 

Intermittent Fuel and Oxidant Starvation 

Average OCV = 938 mV, I atm, -332 hours 
1900c. 
Average 
at - 95 

cell voltage = 672 mV 
mA/cm 2 , I atm, 1900C. 

Average cell resistance = 0.20 mQ 

Test Continuing 
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TABLE 2.2.3-1 (CONTINUED)
 
Average OCV = 876 mV, I atm., 
150 0C
 

333 hours Pressurization ard stabilization 

Average OCV = 1020 mV, 5 atm., 
150oC
 

336 hours Endurance started 336 hours 
Average Cell voltage = 778 mV at 

-95 mA/cm 2, 5 atm., 1900C
 
80% fuel utilization
 
50% oxidant utilization
 

Average Cell Resistance = 0.17 mr! 
Maximum Cell Voltage = 785 mV 

(Cell 5)
Minimum Cell Voltage = 771 mV 

(Cells I and 2) 

Average Cell voltage = 774 mV 
-95 mA/cm 2 , 5 atm., 1900C 

at 

Maximum Cell Voltage = 785 mV 

Minimum Cell 
(Cell 5) 

Voltage = 745 mV 
(Cell 2) 

439 hours- Power failure caused system 

shutdown and depressurization 

454 hours- System restarted 

Average Cell Voltage = 608 mV at 
-95 mA/cm 2 , I atm., 1900C 

Average Cell Resistance increased 
from 0.17 m Pl (5 atm.) to 0.52 m. 
(0 atm.), 150 0 C, no load 521 hours 

Testing discontinued 
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TABLE 2.2.3-2
 

STACK E-005-O01 PERFORMANCE DATA
 

1 ATM INITIAL 1 ATM PREPRES URE 5 ATM PRESSYRE
 
200 mA/cm 200 mA/cm 	 200 mA/cm
 

CELL-----------------------------------	 ------------------ CELL 
NO TERMINAL IR FREE TERMINAL IR FREE .TERMINAL IR FREE NO
 

mV mV mV mV mV mV 

1 555 592 583 619 699 733 1
 
2 	 555 592 588 624 703 737 2 
3 556 593 591 627 709 743 3.
 
4 575 612 610 646 723 757 4
5 560 597 598 634 716 750 5
 

AVERAGE 560 597 594 629 710 744 
 AVERAGE
 

TOTAL 2800 2984 2970 3148 3550 3722 TOTAL
 

RESISTANCE: I ATM INITIAL - 0.91 mn 
1 ATM PREPRESSURE- 0.89 ma 
5 ATM PRESSURE - 0,86 mn
 

TEST CONDITIONS: 	190°C - 80% FUEL UTIL 50% OXIDANT UTIL -

HYDROGEN/FUEL & AIR/OXIDANT 



2.3 SYSTEMS INTEGRATION
 

This section summarizes the conceptual designs developed for the FCS, FPS, PCS,
 

and RES unit. The approach for defining and controlling system interfaces
 

during subsequent design and fabrication periods is also described.
 

2.3.1 FUEL CELL SYSTEM (FCS) DESIGN
 

This section discusses the conceptual design developed for the FCS.
 

2.3.1.1 SYSTEM DESIGN DESCRIPTION
 

The FCS design is based on using the fuel cell module illustrated in Figure
 

2.3.1-1. The module consists of individual fuel cells arrayed in stacks and
 

has a nominal electric output rating of 375 kW at the BOU. The FCS design is
 

illustrated schematically in Figure 2.3.1-2. Twenty fuel cell modules are
 

arranged in two groups of ten. Each group is supplied with cooling air and
 

process air from the RES and hydrogen-rich fuel from the FPS. The air is
 

distributed through manifolding to the individual modules. After removing heat
 

from the fuel cell stacks, the cooling air is routed to a return manifold which
 

conveys the cooling air to the steam generation system. Within each module a
 

fraction of the cooling air is extracted to supply oxygen to the cathode side
 

of the module.
 

The fuel cells consume approximately 83 percent of the supplied hydrogen and 50
 

percent of the supplied oxygen. The unused fuel and process air are exhausted
 

from the modules through separate lines. The unused fuel is returned to the
 

FPS and the cathode exhaust is directed to the RES for energy recovery. The
 

fuel supply lines, fuel exhaust lines, and cathode exhaust lines to each module
 

are provided with shut-off valves so that individual modules can be isolated.
 

2.3.1.2 SYSTEM PERFORMANCE CHARACTERISTICS
 

The FCS steady-state performance is a function of the system operating level,
 

and the condition of the cells as each module ages. Table 2.3.1-1 presents
 

fuel cell parameters over the normal operating range from BOU to EOU.
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TABLE 2.3.1-1
 

FUEL CELL SYSTEM PERFORMANCE SUMMARY
 

Beginning of Use End of Use
 

Full Power Minimum Power Full Power Minimum Power
 

Gross dc Power (MW) 7.5 2.10 6.62 1.89 

Terminal Voltage (volts) 1070 1220 940 1090 

Heat Rate* kJ/hr 7900 7000 9000 7800 
(Btu/kWh) (7500) (6600) (8500) (7400) 

Cooling Air Flow kg/hr 
(lb/hr) 

O.57x10 6 

(1.26xi0 6) 
O.llxl0 6 
(0.25x106) 

O.66xi0 6 
(1.46xi0 6) 

0.13xlO 6 
(0.29x106) 

Fuel Flow kg/hr 
(lb/hr) 

3.65xi0 3 

(8.05xi03) 
0.90xl0 3 

(1.98x,03) 
3.65xi0 3 

(8.05xi0 3) 
O.90xlO 6 

(I.98x10 3) 

Process Air Flow kg/hr 
(lb/hr) 

2.82xi0 4 

(6.22x104) 
0.69x10 4 

(l.53x10 4) 
2.82xi0 4 
(6.22x lO4) 

0.69xi0 4 
(l.53x10 4) 

Operating Pressure kPa 482 296 482 296 
(psia) (70) (43) (70) (43) 

Operating Temperature 'C 190 190 190 190 
(OF) (375) (375) (375) (375) 

*For FCS alone, based on higher heating value hydrogen utilized in the FCS.
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The BOU values represent system performance with all modules operating at their
 

rated operating level, while the EOU values assume that all modules in the
 

system are operational but have fully degraded to the allowable limit, This
 

limit is defined as an average terminal voltage of 0.60 volt per cell at a
 

current density of 325 mA/cm2, as compared -w-ith a BOU voltage of 0.68 volt at
 

the same current density. The heat rate for the FCS decreases at part powe&
 

because the terminal voltage and the efficiency of the fuel cellPodules
 

increases under reduced load.
 

For off design operation, with one failed fuel cell module isolated, each of
 

the remaining nine modules on the same electrical bank of.thp system will be
 

carrying about ten percent more current than those in the other bank. The
 

cooling air flow through each of the nine remaining modules is essentially
 

unchanged because the isolated cell still receives cooling flow? The result is
 

that the modules in the nine module bank will be operating at about 3C (50F)
 

hotter than the nominal average cell temperature, and those in the ten module
 

bank-will be operating at about 3% (5°F) less than the average. Changes in
 

fuel cell performance due to these temperature differences will tend tp
 

equalize the operating temperature somewhat.
 

For transient operation, the fuel cell operating temperature responds to
 

perturbations with approximately a 15 minute time constant. Response times for
 

other fuel cell system parameters are much faster. The terminal voltage
 

response to electrical disturbances is essentially instantaneous. Responses tP
 

changes in fuel flow rate take place with a time constant of slightly under one
 

minute.
 

2.3.1.3 SYSTEM ARRANGEMENT
 

The FCS is arranged in two groups of ten modules for the 7.5 MW plant. The
 

conceptual design of one of the ten-module groups is shown in Figure 2.3.1-3.
 

Ten fuel cell modules are supported in two rows of five modules oi .n elevated
 

platform above the piping system.
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Cooling and process air are supplied through a 1.2m (4 ft) diameter manifold
 

which traverses the length of the system, immediately below the platform and
 
midway between the two rows of modules. Air is supplied to each module through
 

a short 0.4m (16 inches) diameter branch pipes The -cool-ing--a-ir-, -after
 
traversing the module internals, is returned through another 0.4m (16 inches)
 

lineto a 1.2m (4 ft) diameter air return manifold.
 

The fuel supply and return lines are 15 cm (6 inches) diameter and are
 

supported intwo rows immediatelybelow the outermost edges of the mounting
 
platform. The fuel lines and the 20 cm (8 inches) diameter process air return
 

lines, which are similarly supported, are connected to penetrations at the
 

module pressure vessel lower head, through short lengths of small diameter
 

piping. This piping is 5 cm (2 inches) diameter, for the fuel supply and
 
return, and 10 cm (4 inches) diameter for the process air return. The modules
 

and their piping'system and valves are thermally insulated to reduce heat
 
losses to acceptable levels. Gate valves are provided in all the fuel and
 

process air connections to the modules to enable any of the modules to be -shut
 

down independently of the system.
 

The symmetry of the piping arrangement provides for uniform distribution of
 

fuel, and cooling and process air between the modules comprising the fuel cell
 
system. The pipe sizes are selected so that the pressure drops through the
 

fuel cell stacks dominate the flow resistances in the system; thus promoting
 

equal flow distribution between modules as well as between the fuel cells
 

within a module.
 

The overall height of the FCS is 8m (25 ft). The overall length and width of
 

the ten-module assembly are approximately 10m and 7m (33 ft and 23 ft),
 
respectively. The module support platform is approximately 4m (14 ft) above
 

ground level.
 

Access is provided to the fuel cell modules from below for attention to
 

electrical and piping connections, and acid replenishment systems. Access is
 

also provided from the sides of each ten-module group and via an aisle between
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the two five-mbdule rows within each ten-module group to facilitate replacement
 

of the fuel cell modules.
 

The physical location of the FCS ten-module groups inrelation to the
 

interfacing plant systems is suitably arranged so that thermal expansion
 

effects in the large four foot diameter cooling air pipes can be accommodated.
 

by hinged bellows in the piping runs external to the FCSwithout overstressing
 

the pipes in bending or exceeding limiting axial loads and moments at the fuel
 

cell system interfaces.
 

Piping thermal expansion effects within the FCS ten-module group are
 

accommodated by bending of the 40 cm (16 inches) diameter branch pipes thus
 

eliminating the need for additional multiple-bellows systems. The feasibility
 

of this approach was verified in a preliminary piping stress analysis performed
 
to evaluate the bending stresses inthe branch pipes resulting from thermal
 

expansion of the piping system relative to the ambient temperature supporting
 

structure. The piping configuration analyzed is illustrated in Figure
 

2.3.1-4. The finite element compute program WECAN (Reference 1) was used in
 

the analysis.
 

The resultant bending stresses in the branch pipes are presented in Table
 

2.3.1-2 and were compared with the ANSI B31.1 Power Piping Code (1977) of
 

Reference 2.
 

2.3.1.4 INSTRUMENTATION AND CONTROL'
 

The overall approach to control of the FCS during plant operations is to
 

individually control current from each fuel cell module. A single overall
 
control is provided for each of these flows. Individual control of the
 

performance of each module is provided by the PCS and the current of each
 

Reference 1. WECAN-Westinghouse Electric Computer Analysis, User's Manual,
 
Westinghouse R&D Center, February 10, 1982.
 

Reference 2. ANSI B31.l Power Piping Code, 1977 Edition.
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TABLE 2.3.1-2
 

STRESS RESULTS FOR THE 0.4m (16 INCH SCHEDULE 30) AIR PIPES
 

Return Loop 

Bending Thermal 


Location Stresses 

MPa (psi) 


At frame 146 (21,172) 


90 Elbow 33 (4,783) 


49 (7,111) 


45 Elbow ---


At Large Pipe 79.(11,452) 


Supply Loop Allowable
 
Bending Thermal Stresses
 
Stresses from Ref. (2)
 
MPa (psi) MPa (psi)
 

161. (23,390) 163 (23,620)
 

68 (9,914) 163 (23,630)
 

67 (9,733) 163 (23,630Y
 

108 (15,602) 163 (23,630)
 

75 (10,896) 163 (23,630)
 

71 (10,285) 163 (23,630)
 

2-97
 



module is controlled to maintain its temperature equal to the average
 

temperature for all operating modules in a given electrical bank. This
 

electrical control provides the adjustment necessary to compensate for
 

variations in flow characteristics between modules as well as for variations in
 

electrical characteristics.
 

The controls for the fuel cell plant will follow the electrical power demand
 

and provide cooling and process air, and fuel as required to match the
 

electrical load. The controls which regulate the cooling and process air are
 

not part of the FCS as such. These control functions are provided by the
 

controls associated with the RES. Overall temperature control is obtained by
 

varying the performance of the circulator, and thus the cooling air flow, in
 

response to the-mean temperature of the fuel cell modules. The net mass flow
 

rate of air delivered by the compressor is regulated to be proportional to the
 

total current being generated in the FCS. This is accomplished by varying the
 

compressor speed and/or by adjusting the compressor bypass flow.
 

The SGS also influences the temperature control. Pressure control valves in
 

the FPS and the RES maintain the saturation pressures in high and low pressure
 

steam generators at the desired values. Control of these pressures, inturn,
 

regulates the sink temperature for the cooling air.
 

The module operating pressure is regulated by controls directly associated with
 

the FCS. The operating pressure for the FCS, as well as for the RES, is
 

established by the pressure of the cooling air. The pressure drops in the
 

cooling air channels and the cathodechannels are small compared to the 483 kPa
 

(70 psia) operating pressure in the system. Therefore, pressures measured at
 

any point in this loop are representative of pressures anywhere on the air side
 

of the system. 'A pressure control valve regulates the flow of process air to
 

the RES expander and maintains the pressure in the process air return piping at
 

the desired level. This valve and the compressor controls provide complete
 

flow and pressure control for process air under normal operating conditions.
 

For inerting the system, and for abnormal conditions when insufficient flow
 

capacity is available through the expander, an auxiliary valve is provided
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which vents the cooling air return ducts directly to the atmosphere;- The
 

setpoint for the pressure control loop is a function of the compressor speed.
 

A flow control valve is provided in the FCS to regulate the flow of fuel to the
 

system. This flow is directly proportional to the current being drawn from the
 
FCS. Pressure control of the fuel in the FCS is established by a pressure
 

control valve between the fuel return manifold and the FPS. This valve
 
operates to maintain a low pressure difference between the fuel return manifold
 

and the process air return manifold under normal operating conditions. For
 

abnormal conditions, or when the system is being purged, an additional valve is
 

provided which vents the fuel return manifold directly to the atmosphere.
 

No control valves are provided to regulate fuel, cooling air, or process air
 

flow to individual modules. In order to accommodate differences in flow and
 
performance characteristics between individual modules, the inverter system
 

provides for adjusting the current supplied by each module individually. The
 

module current is controlled to maintain the operating temperature of each
 

module equal to the mean temperature of all the modules inthe appropriate
 

electrical bank in the fuel cell system. In addition, the current controller
 

maintains the total current equal to the current required to meet the load
 
demand. The temperatures required for this function and to compute the mean
 

temperature required for control of the cooling air circulator are measured at
 

the fuel return manifold for each module. This is representative of the mean
 

operating temperature of all the fuel cells comprising each fuel cell module.
 

Manually operated shutoff valves are provided on the fuel supply, fuel return,
 

and process air return connections for each fuel cell module. These valves
 

permit isolation of a malfunctioning module from the FCS, and also eliminate
 

the flow of cathode air. With these valves closed, the remainder of the plant
 

can remain operational with minimal impact on the overall plant performance,
 

until a convenient time is found to replace the malfunctioning module.
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2.3.2 FUEL PROCESSOR, POWER CONDITIONER, AND ROTATING EQUIPMENT SYSTEMS DESIGNS
 

This section discusses the conceptual designs developed for the FPS, PCS, and
 

RES.
 

2.3.2.1 FUEL PROCESSING SYSTEM (FPS)
 

FUNCTIONAL REQUIREMENTS
 

The primary function of the FPS is to convert steam and hydrocarbon fuel to a
 

hydrogen-rich gas for use in the fuel cells. Secondary functions of the FPS
 

are: to remove impurities (carbon monoxide, etc) which are detrimental to fuel
 

cell performance from the fuel stream, to remove water from the fuel stream, to
 

provide process heat for steam generation, and to recover combustion gas waste
 

heat to the maximum extent possible to enhance overall power plant efficiency.
 

The FPS consists of all the necessary equipment, controls, and instrumentation
 

required to perform the functions defined above. Major equipment will include
 

a fuel cleanup system to remove impurities detrimental to FPS and fuel cell
 

performance, a steam reformer to convert the hydrocarbon fuels into CO, CO2
 

and H2, shift converters to convert water and CO into additional H2 and
 

C02, and rotating machinery to deliver compressed air and recover waste
 

stream energy.
 

Combustion processes to supply heat to the steam reformer will be part of the
 

FPS and will be capable of burning fuel cell anode exhaust gas as the primary
 

fuel. Natural gas or naphtha will be used to supplement this primary fuel as
 

required for stable control of the combustion process. Pressurized combustion
 

is used to increase overall power plant efficiency, by minimizing gas pressure
 

losses, reducing equipment sizes, and permitting the generation of electric
 

power from the furnace exhaust gases. The FPS will be equipped with a
 

turbo-compressor that provides compressed air for combustion. The pressurized
 

furnace exhaust gas will be used to superheat steam and preheat the combustion
 

air before being expanded through a gas turbine to drive the compressor and to
 

generate electric power. Process gas heat exchangers will be used to increase
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power plant efficiency. Water for process gas cooling will be supplied to the
 
FPS from the SGS. Air cooling will be used to remove from the product stream
 

before delivery to the FCS.
 

SYSTEM DESCRIPTIdN
 

The FPS flow schematic is shown in Figure 2.3.2-1. The process flow starts at
 

the fuel inlet from the fuel handling system. Pressurized natural gas or
 
naphtha at ambient temperature isheated to 3710C (7000F) by recovering energy
 

from the high temperature shift product stream. In the case of naphtha,
 
preheating consists of vaporization, followed by superheating. The natural gas
 

and naphtha preheating units are arranged in parallel and valves are used to
 
select the desired fuel. The feed stream isthen desulfurized by absorption on
 

hot z.inc oxide. For naphtha, the feed gas is hydrogenated ahead.of the ZnO
 
beds in a hydrodesulfurization reactor using a small product recycle stream to
 

provide the hydrogen. After desulfurization, approximately six percent of the
 
feed gas is taken off for auxiliary furnace firing. The remaining feed gas is
 

mixed with superheated steam and preheated by the reformer product gas to 427°C
 

(8000 F). The mixed feed is converted in a catalytic steam reformer to a
 
mixture of H2, CO and C02' plus unreacted CH4 and H20. The reformer is
 

a recuperative tube-in-tube design that recovers approximately 20 percent of
 
the reformer energy directly from the reformer product gases, thus reducing
 

furnace firing requirements. The reformed gases exit the reformer at approx­

imately 5930C (1100°F) and are recuperatively cooled by process preheaters to
 
382°G (7200 F). The gases then enter an adiabatic high temperature shift (HTS)
 

converter where the temperature is raised to 4490C (8750F) and approximately
 
60 percent of the CO is converted to CO The HTS product is cooled by the
 

feed preheaters and then used to produce approximately 0.26 kg/s (2100 lbs/hr)
 
of low pressure steam. The process gas at 2060C (4020F) then enters a low
 

temperature shift (LTS) converter where the temperature rises to 253°C (4870 F)
 
and most of the remaining CO is reacted. The LTS product is used to raise
 
steam and then is cooled by a recuperative heat exchanger and a direct contact
 
condenser. The dried product gas containing 74.2 percent H2 is reheated to
 

191°C (3760F) and sent to the fuel cell anode. For operation with naphtha,
 
five percent of the dry fuel gas.is recycled to the hydrodesulfurization
 

reactor.
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On the combustion side of the process, ambient air is pressurized to 469 kPa
 

(68 psia) and preheated to 400°C (7500F). The preheated air is then burned
 

with heated anode exhaust gas and the auxiliary feed gas. Combustion takes
 

place in a pressurized, fluidized bed combustor operating at 900°C (16500 F).
 

The combustion gases leave the fluidized bed and pass through a convective
 

reformer section where they are cooled to 655% (1210 0 F). The gases are then
 

further cooled by the air preheater and steam superheater, finally entering an
 

expansion turbine at 505*C (9410F).
 

Steam for the reforming process is provided by the steam generation system
 

(SGS). Saturated steam at 710 kPa (103 psia) and 166°C (3300F) is superheated
 

to 266C (511F) by the combustion exhaust gases and is mixed with the
 

desulfurized feed gas. At the lower temperature end of the system, process gas
 

is used to generate low pressure steam from SGS feedwater. The low pressure
 

steam is returned to the SGS.
 

Major FPS equipment are listed in Table 2.3.2-1. The FPS is arranged in an
 

area of approximately 16.0 m (52 ft) by 14.3 m (47 ft) as shown in Figure
 

2.3.2-2. Equipment and piping runs are arranged to provide space for
 

inspection and maintenance. All pipe runs will be located at sufficient height
 

to facilitate movement around the process units. The largest FPS component is
 

the reformer vessel, which occupies a space of approximately 5.3 m (17 ft) in
 

diameter and is 8.8 m (29 ft) high. The anode condensate recovery system and
 

turbine exhaust water recovery system will be located adjacent to the FPS.
 

SYSTEM PERFORMANCE
 

Gross hydrogen production is 1.53 Normal m3/s (4.93 x 106 SCFD). Approxi­

mately 83 percent of the hydrogen is consumed in the fuel cells and the
 

remainder is returned to the FPS. Net hydrogen consumed is 1.27 Normal m3/s
 

(4.09 x 106 SCFD). Natural gas feed is 0.348 kg/s (2760 lbs/hr). The FPS
 

efficiency, based on the higher heating value of the natural gas and the net
 

hydrogen, is 92 percent. This efficiency does not include the effect of import
 

steam, export steam, or the energy contained in the hot, pressurized combustion
 

gas exhaust.
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TABLE 2.3.2-]
 

FUEL PROCESSING SYTEM',(FPS) MAJOR EQUIPMENT
 

Zinc Oxide Absorbers
 

A-df6desUfurization Reactor
 

Steam Reformer/Reformer Furnace
 

High Temperature Shift Reactor
 

-Low Temperature Shift Reactor
 

turbo Compressor with Motor/Generator
 

Recycle Gas Compressor
 

Anode Condensate Recovery.System (including air coolers)*.
 

Air Preheater
 

Combustion Preheater
 

Steam Superheater
 

Reformer Feed Preheater
 

Natural Gas Preheater
 

Naphtha Vaporizer/Superheater
 

Process Gas Cooler I -(Steam Generator)
 

Process Gas Cooler II (Steam Generator)
 

Initial 'Catalyst Charges
 

,Process Piping, Valves and Fittings
 

FPS Control System and Localr Control StatiOn
 

Flare Gas System
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Figure 2.3.2-2. Fuel Processing System (FPS) Layout
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Gross and net hydrogen production using naphtha feedstock are maintained
 
constant at 1.53 normal m3/s (4.93 x.10 6 SCFD) and 1.27 normal m3/s
 

(4.09 x 1O6 SCFD), respectively. The naphtha feedrate is 0.36 kg/sec 
(2890 lbs/hr). The FPS efficiency is 96 percent. It should be noted that the 
higher FPS efficiency using naphtha is partiatly offset by recycle compressor 

power requirements and increased steam demands. Overall power plant efficiency
 

using naphtha will be less-than when operating on natural gas.
 

2.3.2.2 POWER CONDITIONING SYSTEM (PCS)
 

FUNCTIONAL REQUIREMENTS
 

The conceptual design of the Power Conditioning System is based on the appli­

cation of state-of-the-art, current sourced, line commutated converter and
 
digital control technologies. The system design combines a second generation,
 

redesigned version of the successful-inyerter system delivered to the Component
 

Developmen.t and Integration Facility (CDIF) in Butte, Montana by Westinghouse.
 

The inverter system is supplemented by newly developed circuitry to consolidate
 
or combine the currents from a number of fuel cell modules. Figure 2.3.2-3
 

illustrates the relationships between the major system components, the fuel,
 

cell modules and the Utility Station Equipment.
 

SYSTEMDESCRIPTION
 

FUEL CELL MODULE INTERCONNECTIONS
 

Twenty fuel cell modules will furnish dc input power to the PCS. These twenty
 

power sources are connected in various series/parallel arrangements to deliver
 
the power at the required voltage and current. A fuel cell module will have a
 

nominal rating of 375 kW and will deliver 351 amperes at 1068 volts.
 

The twenty modules are divided into two groups of ten. Each group is then
 
arranged in five parallel pairs and connected to one of two inverter inputs.
 

The resulting nominal input to each 3.75 MW inverter will then be:
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Beginning of Use Full Power 25% Power 

Current (amps) 1755 400 

Voltage (volts) 2136 2376 

Power (kW) 3750 950 

End of Use Full Power 25% Power
 

Current (amps) 1755 400
 
Voltage (volts) 1884 2100
 

Power (kW)' 3330 -850
 

It should be noted that these are nominal values assuming that all modules are
 

matched initially, are of the same age, and degrade with age at the same rate.
 

From a practical standpoint this will not be true. The system design therefore
 

includes consolidation circuitry to compensate for voltage mismatches between
 

modules covering the full spread of possible conditions.
 

Plant .ppwer output is specified between 1700 kW and 7500 kW, but the PCS will
 
ne capable of accepting dc power from the fuel cell modules and converting it
 

to ac power at any module power output. The dc input voltage ratio over which
 
an inverter must operate is normally an important inverter design considera­

tion, but is of little concern with the present design. For this application,
 

it has been specified that inversion will take place whenever the modules can
 

deliver current and maintain their terminal voltage at 400V dc or above. This
 
will result in a dc voltage ratio requirement of about three for the inverter
 

system.
 

CURRENT CONSOLIDATION
 

The preferred operating mode for the fuel cell modules is to have each module
 

deliver an equal current to its inverter. The currents will be programmed to
 

vary slightly to compensate for differences in module cooling capabilities
 

resulting from tolerances on manufacturing and non uniform aging effects.
 

Manufacturing tolerances and module aging effects will also result in different
 

module terminal voltages for the same module currents. If pairs of modules ­
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were simply connected in parallel as shown in Figure 2.3.2-3, the module
 

terminal voltage mismatches would result in interactions between the modules
 

and in some modules delivering less power than desired. To alleviate this
 

situation, a "current consolidation" design was established to change the
 

module outputs before summing the currents at a common voltage.
 

Current consolidation, in general, is accomplished as follows. Each of the
 

modules will have a terminal voltage of V +AV where V is the average of all
 
terminal voltages and the Us are deviations above or-below the average.
 

Adjusting a module's terminal voltage to V at the current summing point
 

requires a device which can add or subtract voltage from a module's terminal
 

voltage without changing the value of the current flowing. To meet such a
 
requirement, increments of power will be transferred between module output
 

current paths.
 

This transfer ismade to a common power point which can act as either a source
 

or a sink depending on the direction of power flow by "differential converters."
 

Fortunately, current sourced, line commutated circuits meet the requirements
 

for differential converters. Switching devices are gated on in an alternating,
 

timed sequence by low power control circuitry and are gated off naturally by ac
 

from the common transformer. This is a single phase configuration and will
 
result in a 120 Hertz ripple. The required power interchange will take place
 

by electromagnetic coupling in the common transformer and the only power drawn
 
from the ac line will be reactive power and a relatively small amount of real
 

power to make up for any circuit losses. The switch firing times will be
 

adjusted so that the converter either rectifies, and thus adds voltage to the
 

moaule voltage, or inverts, and thus subtracts voltage from the module voltage
 

while maintaining current flow at the desired level. This will result in equal
 

voltage relative to the fuel cell module common at each of the transformer
 

winding center taps (the current summing point in the circuits).
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2.3.2.3 ROTATING EQUIPMENT SYSTEM (RES)
 

FUNCTIONAL REQUIREMENTS
 

The primary function of the RES is to provide a supply of clean, pressurized
 

air to the FCS to replace air consumed on the cathodes.ide of the fuel cells. 

The RES receives steam from the SGS and oxygen depleted cathode exhaust air
 

from the FCS. The energy inthis stream is converted into mechanical shaft
 

power to drive circulating and compressing equipment. One of the key RES
 

design objectives is to help minimize the overall power plant heat rate.
 

SYSTEM DESCRIPTION-


The RES consists of a steam turbine, gas turbine expander, two stage
 

centrifugal air compressor, air circulator, and a variable speed'electric
 

motor. The rotating machinery equipment is skid mounted, modular, and packaged
 

as a single unit. A process flow schematic for the RES is shown in Figure
 

2.3.2-4. Key statepoints are summarized inTable 2.3.2-2.
 

The steam turbine uses low pressure steam from the SGS to produce mechanical
 
shaft power to help drive the circulator and compressor. Steam exiting the
 

steam turbine is sent to an air cooled condensor in the SCS.
 

The gas expander receives cathode exhaust gas from the FCS. The cathode
 

exhaust gas entering the expander consists of approximately 76 percent
 
nitrogen, 11 percent oxygen, and 13 percent water. This gas is expanded from
 

483 kPa (70 psia) to 110kPa (16 psia) to provide power for driving the
 

compressors and circulators. The gas stream after exiting the expander is
 

routed to a WRS. Separation of water from the cathode exhaust stream after the
 
expansion provides approximately 25 percent more power from the expander than
 

can be achieved if water were removed prior to expansion.
 

The circulator returns the cooling air to the FCS at absolute pressures ranging
 

from 289 kPa (42 psia) up to 490 kPa (71 psia) over the operating range. The
 

pressure rise across the circulator is approximately 6.9 kPa (I psia) at full
 

power at a recirculating air temperature of 146°C (2950F).
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Figure 2.3.2-4. Rotating Equipment System (RES) Flow Schematic
 

2-111
 



i 

Table 2.3.2-2
 

ROTATING EQUIPMENT SYSTEM (RES) OPERATING REQUIREMENTS
 

* 	Air Circulator
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, 'C (0F) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 0C (°F) 


Fluid 


* 	 Centrifugal Compressor*
 

(Two Stages)
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


inlet Temperature, 0C (0F) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 0C (OF) 


Fluid 


* 	 Steam Turbine
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, 'C (0F) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, °C (OF) 


Fluid 


Gas 	Expander**
 

Flow, kg/hr (lb/hr) 


Inlet Pressure, kPa (psia) 


Inlet Temperature, 0C (0F) 


Outlet Pressure, kPa (psia) 


Outlet Temperature, 0C (OF) 


Fluid 


Full Power 


662,840 (1,460,000) 


482 (70) 


145 (293) 


489 (71) 


147 (296) 


Air 


28,239 (62,200) 


101.3 (14.7) 


26 (80) 


482 (70) 


143 (291) 


Air 


8,808 (19,400) 


365 (53) 


140 (284) 


21 (3) 


61 (141) 


Steam 


28,466 (62,700) 


475 (69) 


192 (378) 


110 (16) 


73 (163) 


Air (02 depleted) 


Part 	Power
 

115,089 (253,500)
 

296 (43)
 

149 (300)
 

296 (43)
 

149 (300)
 

Air
 

18,160 (40,000)
 

101.3 (14.7)
 

26 (80)
 

296 (43)
 

114 (237)
 

Air
 

l226 (2,700)
 

365 (53)
 

140 (284)
 

21 (3)
 

61 (141)
 

Steam
 

18,205 (40,100)
 

289 (42)
 

144 (292)
 

110 (16)
 

64 (148)
 

Air 	(02 depleted)
 

*Bypass flow of 11,214 kg/hr (24,700 lb/hr) to the gas expander is required
 
for part power operation to prevent surge.
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A two stage centrifugal air compressor is used to replenish the cathode process
 

gas used as the oxidant in the fuel cell system. The air is filtered to remove
 

particulates greater than three microns prior to compression and pressurized to
 

the system operating pressure. A line is added from the compressor outlet head
 

so that excess pressurized flow at low power operation can be sent to the gas
 

expander where some of the compression energy is recovered. This bypass air
 

flow is required to prevent surging of the compressor at low flow rates.
 

An electric motor is also provided to meet the total RES power requirements.
 

The design incorporates a variable speed (frequency controlled) 400 HP motor.
 

SYSTEM PERFORMANCE CHARACTERISTICS
 

bypass flow from the compressor outlet is required at low power operations to
 

prevent compressor surging to recover some of the compressed air energy. At 25
 

percent power, for example, the output flow from the compressor is approxi­

mately 2.5 times greater than that required for makeup air. Most of this
 

excess compressed air goes to the gas expander. At full power operation a
 

better match with the compressor characteristics is achieved and no compressed
 

air is bypassed. The RES operates at peak efficiency at full power with the
 

compressor arrangement. Efficiency decreases at part power because of the
 

excess air compressed and because the gas expander and compressor are operafing
 

at lower efficiencies.
 

Table 2.3.2-3 gives the power requirements for the RES design for full, and part
 

power at BOU and EOU conditions. The BOU part power case requires the most
 

power from the electric motor 169 kW (227 HP).
 

SYSTEM OPERATION
 

The RES is designed to operate as a single unit coupled to a common gear
 

arrangement. During plant startup, the compressor and the circulator are
 

driven by the electric motor. When the plant is operating at normal
 

conditions, the steam turbine and gas expander contribute to the driving power
 

requirements.
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TABLE 2.3.2-3
 

ROTATING EQUIPMENT SYSTEM (RES) POWER REQUIREMENTS
 

Steam Turbine (kW) 


Gas Expander {(IW) 


Air Compressor-s (kW) 
(two stages)
 

Air Circulator (kW) 


Motor Power Required (kW) 


Full Power Part Power 

BOU EOU BOU EOU 

592 705 52 77 

1,090 1088 442 482 

-1500 -1500 -659 -659 

.­,228 -351 -4 -5 

46 58 169 105 



The operating characteristics of the RES are s6ch that the compressor must
 

follow an anti-surge protection line. Safety margin exists between the
 

protection line and the actual surge line. As plant power is reduced it
 

becomes necessary to bypass excess compressed air not required for fuel cell
 

cathode supply. A compressor by pass valve opens automatically and the excess
 

air is introduced to the expander inlet to recover energy. Figure -2.3.2-5
 

shows an operating map indicating the surging limits andanti-surge protection
 

line. At part power operation, the compressor can only reduce air flow to
 

18,160 kg/hr (40,000 lb/hr) at 296 kPa (43 psia) without surging. The amount
 

of makeup air required for the FCS cathode supply at this power rating is only
 

6,951 kg/hr (15,310 lb/hr). Because the minimum compressor outlet flow at 25
 

percent power is 18,160"kg/hr (40,000 lb/hr), it is necessary to bypass 11,209
 

kg/hr (24,690 lb/hr) of compressed air to the expander. The expander will
 

recover some of the energy expended to compress this excess air.
 

SYSTEM ARRANGEMENT
 

A compact arrangement of the RES is illustrated in Figures 2.3.2-6 and
 

2.3.2-7. The area occupied by the RES is 91.5 m (300 ft2) and the system
 

weighs 25 tons. Overall RES height and width are 3.8 m and 2.8 m (12.5 ft and
 

9.1 ft), respectively. The equipment is designed for truck transportation to
 

the plant site. However, special shipment permits are needed because height
 

and width exceed normal, shipping constraints.
 

2.3.3 SYSTEM INTERFACE REQUIREMENTS AND CONTROL
 

The objectives of this task were to define preliminary system interface
 

requirements and to develop a methodology for the documentation and control of
 

the system interfaces.
 

A hierarchy of requirements documents and interface control documents were
 

developed to define the methods of documenting and controlling interfaces
 

between systems. These interface controlling documents and their relationships
 

are illustrated in Figure 2.3.3-1. The overall plant level requirements are
 

defined in a plant requirements specification with reference to the process
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Figure 2.3.3-1- Interface Control Documents
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flow diagram and the plant measurements requirements list. The process flow
 

diagram establishes the various system boundaries (schematically) and
 

identifies the statepoints between interfacing systems. The parametric
 

requirements for these statepoints are defined on an interface statepoint
 

.drawing. The instrumentation and control system requirements are developed
 

from the plant level measurements requirements list.
 

At the system level, plant level requirements are amplified in the individual
 

system requirements specifications, the System interface Control drawing
 

(schematic), the system piping and instrumentation diagram, and a system
 

measurements requirements list. The latter two documents establish the system
 

interface requirements for instrumentation and control. A system level
 

statepoint drawing and individual interface control drawings are used to define
 

all physical, functional, and procedural interfaces for each system.
 

A plant level system specification tree was developed and is shown in Figure
 

2.3.3-2. There are eighteen Systems defined for the plant.
 

An interface management plan was prepared which delineates responsibilities and
 

defines methods for initiating formal interface control documentation for
 

identifying and controlling component and system interfaces. This plan also
 

sets forth the procedural requirements for effecting changes to baseline
 

documents to assure that the impact of proposed changes are considered and
 

changes are acted upon properly.
 

2i3.3.1 INTERFACE CONTROL DOCUMENT PREPARATION
 

The interface management plan delineates the functions of the specifications
 

and Interface Control Documents (ICD). Responsibilities and flow of informtion
 

for baselining interfaces are shown in Figure 2.3.3-3.
 

2.2.3.2 CHANGE CONTROL
 

Since interface details may change as designs evolve and mature, and may chanqe
 

in actual manufacturing; ICDs will be subject to change control to maintain
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consistency with the equipment and facility designs. This will be accomplished
 

through a change control system which ensures that changes to baseline
 

documents are processed and controlled in a manner that:
 

* 	Documents the basis and justification of a proposed change.
 

* 	Ensures an impact evaluation of the safety, performance,

schedular, interface, and financial effect of a proposed change.
 

* 	Assures that the proposed change is not in conflict with other
 
documents or that any conflicts are resolved in the approval
 
process.
 

The 	responsibilities and flow of information for revising baseline ICDs are
 

highlighted in Figure 2.3.3-4.
 

2-123
 



Impact Assessment. 

SystemInt~rtor Im~ esnrs I-Architect Engineer 

Responds with Impact. 

Change Control Board 

Disapproved L ___ 

Reviews DCP0Ispes o 

sueswthRevsoIstutions. 

$ 
SPrimary System Des gnerwthRvioInruio. 

ISystemIntegratosso 
Architect Engineer 

SReviews C, p sposior Relase 
Issues with RequestRevises iCDh 

'for Release. 
Issees atrdU Dntr t 

oPArchitect Engineer 

Primary SystemDesigner,Reviewses Reviperovsfor ReleUse. 

Figure ~~ ~ ~ ~ ~2..w.ItraeCnrlDcf~ 'seithlo Revision FlowruChartsIsue RvsdCDfrPoet Ue 
itemIn r AotetEngineer esignersItegrato IIsstemD

Issues Updated Doc. Status Report 

( I CD )Figure 2.3.34. Interface Control Docutnent Revision Flow Chart 

2=124
 

177015-10 



3.0 FUEL CELL DEVELOPMENT AND TEST
 

The 	primary objectives established for fuel cell development and test task were:
 

* 	 Improve the existing PAFC materials data base and establish
 
baseline materials specifications and process procedures for the
 
electrodes, carbon matrix and silicon carbide layer, and bipolar
 
and cooling plates.
 

* 	 Establish PAFC component and stack performance, endurance and
 
design parameter data needed for design verification for power
 
plant application.
 

The balance of this section discusses the achievements made relative to these
 

objectives in terms of the test plans, reports, analyses, design descrip­
tions, final designs and various material, process, and test specifications
 

developed.
 

3.1 SUBSCALE FUEL CELL DEVELOPMENT
 

3.1.1 DEVELOPMENT STATUS
 

The design of the 2 x 2 inch subscale fuel cell, developed under the OS/IES
 
program, was developed into a final working design. The design requirements
 

were defined establishing the functional and operational requirements, and
 

performance goals. Assembly methods were developed and assembly fixtures were
 
designed to control the assembly processes. A detailed assembly procedure was
 

developed that defined-the required assembly techniques.
 

Prior to initiation of the subscale cell test program, a number of cells were
 

fabricated and tested that demonstrated reproducibility of the assembly and
 

testing techniques. While developing this repeatable cell assembly, the design
 

evolved through a series of modifications to eliminate inconsistent test
 

results. Cross leakage problems that occurred with early test cells were
 

corrected by changing the cell edge configuration and eliminating a Teflon
 

gasket. Cell compression requirements were increased from initial values.
 

Various acid application techniques were evaluated and a "wet" cell assembly
 

was selected.
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The production of heat treated graphite/resin subscale end plates which had
 

been a problem was successfully resolved. An end plate design with molded
 

grooves was produced without delaminations and excessive curvature.
 

Approximately 50 sets of these plates were produced-and- used in test
 

assemblies.
 

Both the design and assembly procedure were verified by the performance
 

reproducibility study in which groups of cells were built and tested for times
 

in excess of 1000 hours. These cells gave a standard deviation of
 

approximately 5 mV and a 95 percent confidence range Of n 5 mV which is
 

considered adequate for the required subscale testing program. Evaluation of
 

lot No. 3 catalyst, being used for the current nine-cell testing,program, was
 

completed and the results gave a subscale IR-free performance of 670 mV at
 

200 mA/cm2 . A number of subscale performance evaluations were Completed
 

including cell transient response, performance decay with cell voltage, kinetic
 

study of oxygen reduction, effect of operational parameters on all performance,
 

effect of air flow rate on cell performance, and the effect of -preheating
 

p'rocess gases on cell performance.
 

The first of two Westinghouse provided subscale pressurized subscale test
 

facilities was completed and pressurized testing was initiated. 'Cell perfor
 

mance was evaluated over the pressure range of from ambient up to approximately
 

7 atmospheres (100 psia) using electrodes produced with lot No. 3 Catalyst. At
 
2­the proposed plant conditions of 4.74 atm (70 psia), 325 riA/cm , 190°C, and 

80 percent H2 utilization a cell terminal voltage of 700 mV and an IR-free 

voltage of 740 mV were measured for these electrodes. 

A total of 65 subscale cells was assembled and tested, acquiring approximately
 

60,000 hours of operating time.
 

3.1.2 SUBSCALE FUEL CELL DESIGN DESCRIPTION
 

An artist's illustration of the subscale cell assembly is shown in Figure
 

3.1.2-1. To meet the functional requirement that the cell be representative of
 

the full size stack design, the basic stack features, i.e., compression plates,
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Figure 3.1.2-1. Subscale 2 x 2 Inch Cell Test Assembly
 



current collectors, tie bolts, and cell components (plates, electrodes and
 

MAT-I matrix), were incorporated into the subscale cell design. The tie bolts
 

were placed outboard of the cell plates in an arrangement typical of the full
 

size stack design. Cell component seals are an elastomer material (Viton) and
 

the MAT-l matrix is terminated inside of the seals. The process gas channel
 

patterns on the end plates are molded to the identical cross-sectional geometry
 

of full size plates.
 

Resistance strip heaters, thermal insulation blocks, and heater retainer plates
 

external to the basic cell are not typical of a full size stack but are
 

required for temperature control. These items are placed outboard of the basic
 

cell components and are held in place with an additional set of tie rods. The
 

tie rods are tightened slightly to hold the heaters in position but not enough
 

to add any additional compression load to the basic cell.
 

In the subscale cell, the MAT-I matrix layer and the anode are identical in
 

area. The anode covers the 5 x 5 cm (2 x 2 inch) groove pattern in the anode
 
plate, forming a 0.25 cm (0.10 inch) border around all four sides of the groove
 

pattern. The anode gasket surrounds the anode like a picture frame, with a
 
slot for the acid supply groove. The gasket is bonded to the anode plate with
 

Viton adhesive. The MAT-I is positioned inside the anode gasket on top of the
 

anode.
 

The cathode is positioned on the cathode plate in a similar manner to the
 

anode, with a similar picture frame gasket. The cathode is larger in area than
 

the anode, extending beyond the anode edges on all four sides. The cathode
 

extends over the acid supply groove in the anode plate. Because of the size
 

difference, the inside edge of the anode gasket compresses against the cathode
 

surface. This double gasket seal concept provides a very effective seal
 

against acid and process gas cross or external leakage.
 

The silicon carbide layer of the cathode is exposed directly to the acid supply
 

enabling the acid to wick to the cell components through the porous silicon
 

carbide layer.
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Process fuel and air supply and return lines are Teflon tubes attached to the
 
electrode plates with epoxy. Manifold header grooves machined into each plate
 

distribute and collect flows. Permanently attached resistance and voltage
 

probe wires (one to each plate) are provided to monitor operational perfor­
mance. Sheathed thermocouples located in holes in the compression plates are
 

provided for control of the strip heaters. The electrical resistance load is
 
connected to the cell by attachment to the gold plated copper curreht
 

collectors which extend fromthe top of the cell.
 

3.1.3 SUBSCALE FUEL CELL ASSEMBLY
 

To meet the objective of providing reliable test data, it was mandatory that
 

the subscale assembly procedure be reproducible. Previous experience with
 
Teflon edge seals was inconsistent in that frequent cell gas leakage was
 

encountered in cells using this approach. To correct this, a design using
 
Viton edge seals coupled with controlled compression was developed. Also, the
 

assembly procedure was modified to use wet assembly of the silicon carbide
 
layer (0.6 cc acid added) as well as a wet (float filled) matrix. The subscale
 

test results using the final version of this assembly procedure are presented
 

in Section 3.1.4.
 

The assembly procedure used for building cells for pressurized testing is the
 
same as for the unpressurized except for additional hardware and fittings to
 
insure positioning and retention of the gas flow tubing in the area where
 

connections are made to the end plates.
 

3.1.4 SUBSCALE FUEL CELL TESTING
 

SUBSCALE PERFORMANCE REPRODUCIBILITY STUDY
 

To gain experience with the developed subscale cell design, a.series of cells
 

SC-006 through SC-028 were built and tested. These cells were all built
 
basically dry with 0.4 ml of 100 percent acid added to the cathode SiC layer
 

during assembly.
 

In the course of this series-of cell builds, a number of assembly conditions
 
and design changes were made. For example, the cell component compression
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(electrodes plus matrix) was fixed at 12 percent, the Teflon gasket was
 

omitted, the relative size of the matrix and anode fixed, the method of
 

attaching the electrodes to the end plates established and wet cell'build was
 

acopted. In addition, several generations of molded and heat treated (to
 

900°C) end plate geometries were evaluated. While the results obtained with
 

these cell-s were somewhat variable, itwas concluded that the assembly design
 

and procedure were reproducible and that a series of eight cells could be built
 

to satisfy the reproducibility performance goal.
 

To demonstrate this, two groups of cells were built (eight in one group) from
 

Westinghouse components and (four in the second group) from ERC repeating cell
 

components using wet assembly; that is,the MAT-] layer was float filled in 100
 

w/o acid at room temperature and 0.6 ml of acid was added to the SiC layer of
 

the cathode during assembly. The components used are identified inTable
 

3.1.4-i. These cells were tested at 190 + 2°C for 1000 hours at 200 mA/cm 2,
 

80 percent hydrogen utilization, and five stoich air flow. The individual cell
 

internal resistance and open circuit voltage after 100 hours of cell operation
 

are given in Table 3.1.4-2. The IR-free cell voltages for all cells tabulated
 

for each 100 hours of operation -upto 1000 hours are presented in Table
 

3.1.4-3. Analysis of the data was performed and the mean performance values,
 

standard deviations, and range for the 95 percent confidence interval are
 

presented in Table 3.1.4-4. Group No. 1 cells, using the Westinghouse produced
 

components, gives a standard deviation of about 5.6 mV which is an acceptable
 

reproducibility.
 

Polarization curves for Group No. 1 cells are shown inFigures 3.1.4-1 and
 

3.1.4-2 and are quite similar. Tafel slopes measured over the low current
 

densities (up to about 80 mA/cm2) range from 95 to 105 mV/decade. Oxygen
 

gain data was determined for Cell SC-039 in Group No. 1 and SC-045 in Group
 

No. 2 and are given in Figures 3.1.4-3 and 3.1.4-4. These data show the
 

voltage gain to be about 70 mV after a test duration of approximately 200 hours.
 

It should be noted that the intent of this group of tests was to verify the
 

cell design and assembly procedure. The electrodes used in this study are from
 

Lot No. 1 catalyst and were produced in early to mid 1982.
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TABLE 3.1.4-1
 

REPEATING COMPONENT IDENTIFICATION
 

Group No. 1 Cells 

Westinghouse Produced Components 

Anode A087-8 0.29 mg Pt/cm2 

Cathode C055-3 0.43 mg Pt/cm 2 

Group No. 2 Cells
 

ERC Produced Components
 

Nominal 0.3 mg Pt/cm 2
 Anode No. 266 


Cathode 90-8903-102 Nominal 0.5 mg Pt/cm 2
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TABLE 3.1.4-2 

CELL RESISTANCE AND, OPEN CIRCUYT VOLTAGE AFTER 100 HOURS 

-Ce-11-	Reststanca, Open Circuit Voltge
 

(n4.) .mv)
 

Group 	 No. 1 Cell&s, 

SC 03,6, 8.4, 915
 

SC-03,7 8.4 914
 

SC,-03,8 7.1 9Q5, 

SCA,9 6.9, 9.Q4 

S,-O4.1 6.8 9Q5, 

SQ-042; 7.2, 90.4 

SC-0q3 7.5 91,11 

SC-Q4,4 6.8 906, 

Sro,up. Nq.,. Z Qell:s­

SC-045 7.3, 917 

SQ-0.46, 8.4 920 

,Q.-04 7,2, 930 

SC-048 7,4. 926, 
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TABLE 3.1.4-3
 

TEST TIME VERSUS IR-FREE VOLTAGE PERFORMANCE (VOLTAGE IN MILLIVOLTS)
 

Test Time (Hr) 

Cell Identification Initial 100 200 300 400 500 600 700 800 900 1000 

Group No. 1 

SC-036 645 648* 646 646 644* 652 649 648 647 646 646 

SC-037 634 643 644 654 651 649 653 654 656 656 655 

SC-038 645 650 654 653 644 647 647 647 646 645 647 

SC-039 648 657 657 656 648 648 651 647 646 644 643 

SC-041 639 644 648 639 637* 645 647 646 648 650 647 

SC-042 648 652, 650 646 648 649 647 651 651 646 646(1) 

SC-043 643 643 645 647 648 647 645 647 646 643 642 

SC-044 651 650 651 652 651 651 649 652 654 653 647 

Group No. 2 

SC-045 656 666 669 667 668 668 664 664 661 656 655 

SC-046 665 673 669 669 669 668 671 667 664 661 659 

SC-047 664 662 666 666 669 668 669 666 665 665 665 

SC-048 661 658 658 658 660 656 655 652 653 652 650 

*Indicates 100 percent H33P04 added to cell reservoir. 

(1)Test terminated after 985 hours. 



TABLE 3.1.4-4
 

ANALYSIS OF RESULTS OF SUBSCALE CELL REPRODUCIBILITY
 

Time (Hr) 

Group No. 1 Mean 

(8Cells) (mV)* 


Initial 644.0 


100 648.8 


200 648.8 


300 649.1 


400 646.4 


500. 648.5 


600 648.5 


700 649.0 


800 649.3 


900 647.9 


1000 646.6 


Group No. 2
 
(4 Cells)
 

Initial 661.5 


100 664.8 


200 665.5 


300 665.0 


400 665.5 


500 665.0 


600 664.7 


700 662.2 


800 660.7 


900 658.5 


1000 657.3 


Standard 

Deviation 


(mv) 


5.46 


4.93 


4.91 


5.62 


4.63 


2.27 


2.56 


2.93 


3.96 


4.64 


3.89 


4.04 


6.40 


5.20 


4.83 


4.36 


6.00 


7.14 


6.95 


5.44 


5.69 


6.34 


Range for 95 Percent
 
Confidence Interval
 

(mv)
 

644.1 + 4.6
 

648.4 + 4.1 
648.8 + 4.1 

649.1 + 4.7
 

646.4 + 3.9
 

648.7 + 1.9
 

648.5 + 2.1
 

649.0 + 2.4
 

649.2 + 3.3
 

647.8 + 3.9
 

646.7 + 3.3
 

661.4 + 6.4
 

664.9 + 10.3
 

665.5 + 8.3 

665.5 + 8.2 

667.0 + 7.4
 

665.0 + 9.5 
664.6 + 11.2 

662.4 + 11.2
 

660.7 + 8.6
 

658.5 + 9.0
 

657.2 + 10.0
 

*IR Free (Measured cell voltage gave same standard deviation and
 
confidence intervals as IR Free)
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SUBSCALE EVALUATION OF LOT NO. 3 CATALYST
 

A series of six cells was built from electrodes made with Lot No. 3 catalyst
 

and tested at ambient pressure for times in excess of 1000 hours. The
 

electrodes tested and their loadings are shown in Table 3.1.4-5 while the
 

IR-free cell voltage at.test intervals of every 100 hours up to 1000 hours is
 

given in Table 3.1.4-6. The average performance for the cells is above 670 mV
 

IR-free and about 20 mV higher than that found for the reproducibility study
 

electrodes.
 

ALTERNATE MATRIX TEST CELLS
 

Two cells, SC-068 and SC-072, were assembled and testing initiated to evaluate
 

alternate matrix acid transport materials. Alternates being evaluated are
 

Stackpole PC-206 and Kureha type KCF carbon paper. The laterial acid transport
 

wicking behavior of these materials is presented in Section 3.7.5 and was
 

better than that determined for MAT-l. These cells were built utilizing the
 

standard assembly procedure but with a modified assembly design. The carbon
 

paper was cut to the same size as the cathode, thus permitting it to pick up
 

acid from the acid reservoir. To accommodate this, a 0.13 mm (0.005 in) Teflon
 

gasket was added between the two Viton gaskets normally present.
 

At 200 mA/cm2 , 190'C, ambient pressure and standard gas flows, the
 

performance shown in Table 3.1.4-7 is essentially equivalent to that obtained
 

using the MAT-I layer and the same electrode, see Tables 3.1.4-5 and 3.1.4-6.
 

It should be noted that both of these cells had relatively low open circuit
 

voltages, approximately 875 mV, and had relatively large cross leaks when the
 

air is cut off with the cells on open circuit. The modified cell construction
 

is thought to be the cause of the cross leak and not the presence of the
 

alternate acid transport material. Due to the large pore size in these
 

materials, they would not be expected to provide high bubble pressures but the
 

SiC layer on the cathode has been shown to provide a 90 kPa (13 psi) or greater
 

bubble pressure.
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TABLE 3.1.4-5
 

REPEATING COMPONENT IDENTIFICATION FOR EVALUATION OF LOT NO. 3 CATALYST
 

Lo-ding Loading 
Cell No. Cathode mg/cm Anode Eg 

SC-050 C119-4 0.49 A123-1 0.29 

SC-051 C119-4 0.49 A123-1 0.29 

SC-052 C119-4 0.49 A123-1 0.29 

SC-053 C119-4 0.49 A123-1 0.29 

SC-056 C116-2 0.48 A121-1 0.30 

SC057 CI16-2 0.48 A121-1 0.30 
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TABLE 3.1.4-6
 

IR-FREE VOLTAGE (mY) FOR CELLS BUILT WITH LOT NO. 3 CATALYST (1 )
 

Cell Ident. Test Time, Hr.
 

No. INITIAL 100 200 300 400 500 600 700 800 900 1000
 

SC-050 660 679 680 679 677 671 670 671 668 668 669
 

SC-051 663 678 680 678 676 678 676 675 674 672 671
 

SC-052 682 680 681 679 678 676 678 676 675 676 675
 

SC-053 678 677 680 676 678 676 675 672 671 673 673
 

SC-056 675 675 674 674 673 672 671 670 668 665 665
 

SC-057 666 676 677 676 673 674 676 675 675 672. 672
 

Average 670.6 677.5 678.6 677.0 675.8 674.5 674.3 673.2 671.8 671.0 670.
 

(1)Data for 190'C, 200 mA/cm2, 80 percent H2 Util., 20 percent Air Util., Ambient Pressure.
 



TABLE 3.1.4-7
 

DATA ON CELLS HAVING ALTERNATE MATRIX MATERIAL
 

Cathode
 

Identification 


Pt. Loading mg/cm2 


Catalyst Lot No. 


Anode
 

Identification 


Pt. Loading mg/cm2 


Catalyst Lot No. 


Matrix 


Gasket 


Assembly 


Open Circuit Voltage, mV 


Temperature, °C 


Current Density, mA/cm2 


Oxygen Utilization, percent 


'Hydrogen Utilization, percent 


Internal Resistance, mQ 


Testing Time, Hours 


IR-Free Cell Voltage, mV 


SC-068 


C119-4 


0.49 


3 


A123-1 


0.28 


3 


PC-206 


(Stackpole) 


2 Viton 


1 Teflon 


Matrix Wet 


Cathode SiC 


Wet 


880(1) 


190 


200 


20 


80 


6.9 


500 


670 


(1 Relatively high cross leak with air off-drop of s 

SC-072
 

C1l9-4
 

0.49
 

3
 

A123-1
 

0.28
 

3
 

Type KCF
 

(Kureha)
 

2 Viton
 

1 Teflon
 

Matrix Wet
 

Cathode SIC
 

Wet
 

875(1)
 

190
 

200
 

20
 

80
 

9.8
 

168
 

682
 

30 mV in 30 seconds.
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CELLS FOR THERMAL CYCLING
 

Thermal cycling tests were conducted on two cells, SC-050 and SC-051, which had
 

previously been tested for approximately 1000 hours. The cycle used was from
 

190 to 150°C at which point the external load and gas flows were removed and
 

the cell allowed to cool to ambient temperature (21 to 24C). After a hold
 

time of either 16 or 72 hours at ambient temperature, the cells were heated to
 

140*C, the external load and process gas flow restored, and the cell heated to
 

190'C. Several cycles were completed and the performance before and after
 

these cycles is given in Table 3.1.4-8. There appears to be no significant
 

performance decrease after this limited cycling. The average loss per cycle
 

would appear to be between 1 and 2 mV. Cycling will be continued until at
 

least ten cycles are accumulated on each cell.
 

SUBSCALE ENDURANCE TESTING
 

Endurance tests were initiated on subscale cells SC-003 and SC-005 under the
 

following operating conditions: 200 mA/cm2, 191'C, ambient pressure, five
 

stoich air flow rate, and 80 percent H2 utilization. The detailed cell
 

components, testing conditions, and experimental results are summarized in
 

Table 3.1.4-9. These subscale cells used the ERC-designed cell configuration
 

and Westinghouse-produced electrodes with MAT-l matrix.
 

After having accumulated about 3000 operating hours, cell SC-O03 exhibited a
 

peak voltage of 632 mV at 200 mA/cm2 . Subsequently, the cell performance
 

deteriorated slightly with time. Inthe first 10,000 hours of operation, the
 

average deterioration rate of slightly less than 2 mV per 1000 hours.
 

Subscale end plates produced by Westinghouse were evaluated in SC-005 for the
 
first time. Despite poor initial performance, the terminal voltage of'SC-005
 

gradually improved to a peak value of 620 mV.
 

CORRELATION OF PERFORMANCE DECAY WITH CELL VOLTAGE
 

After reproducibility testing at 200 mA/cm 2 for approximately 1600 hours,
 

three subscale cells were used to investigate the correlation between
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TABLE 3.1.4-8
 

EFFECT OF CYCLING TOAMBIENT TEMPERATURE' ON CELL
 

PERFORMANCE AT 1900C AND'200 mA/cm
2
 

Cell SC-050,
 

Start of Cycling 


Cycle 1 


CycTe 2 

Cycle 3 


Cycle 4 


Cycle 5 


Cell SC-051
 

Start of Cycling 

Cycle 1 

CycT& a 
Cycle 3 

Cycle 4-


Cell 

Resistance 


(no) 


7.5 


7.0 


7.6 


7.7 


7.9 


8.0 


6.9 


7,5 


7.9 


8.3 


8.0 


IRAFree 

Cell Voitage 


(mv), 


673 


673 


671, 

676 


672 


667 


674 


674 


669 


667 


665 


Performance Time at Ambient 
Change 
(mv) 

Temperature 
(Hours) 

-

0 72' 

-2' 16 

+3 1:6 

-l 1'6 

-6 72 

-. 

0 16 

-5 72' 

-­7' 1,6' 

-5 72 
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TABLE 3.1.4-9
 

COMPARISON OF COMPONENTS AND PERFORMANCES OF
 

SUBSCALE CELLS FOR ENDURANCE TESTS
 

Cell No. 


DESIGN CONFIGURATION 


Cathode
 

Identification 


Pt Loading, mg/cm2 


Anode
 

Identification 


Pt Loading, mg/cm2 


MAT-I
 

Identification 


Gasket
 

Type 


End Plates
 

Type 


Performance at 200 mA/cm
2
 

Temperature, 0C 


Oxygen Utilization, % 


Hydrogen Utilization, % 


Testing Time, Hr 


Peak Cell Voltage, mV 


Final Cell Voltage, mV 


Internal Resistance, nQ 


IR-Free Cell Voltage, mV 


SC-003 


ERC 


C014-4 (AESO) 


0.52 


A015-4 (AESD) 


0.34 


M019-2 (AESD) 


Two Untreated Teflon 


Heat Treated (ERC) 


191 + 2 


20 


80 


10,262 


632 


619. 


4.6 


642 


SC-005
 

ERC
 

C014-4 (AESD)
 

0.52
 

A015-4 (AESD)
 

0.34
 

M019-2 (AESD)
 

Two Untreated Teflon
 

Heat Treated (AESD)
 

191 + 2
 

20
 

80
 

8,865
 

620
 

571
 

9.6
 

619
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performance decay and cathode voltage at 1900C and ambient pressure. Subscale
 

,
cells SC-037, SC"038, and SC-039 were operated at 80, 10, and 200 mA/cm2
 

respectively, so that their initial IR-free cell voltages were inthe range of
 

700-800 mV, above 800 mV, and below 700 mv.
 

For Cell SC-038 operating at 10 mA/cm2, the IR-free cell voltage dropped by
 

10 mV in the first 950 hours of continuous testing, while its internal
 

resistance increased from 10.6 m to 11.9 nf. In the identical period of
 

time, the measured IR-free cell voltage of SC-037 (operating at 80 mA/cm
2
 

decreased slightly from 724 mV to 722 mV and its internal resistance increased
 

to 11.0 m from 10.0 mQ. After replenishing the acid reservoirs of these
 

two subscale cells, no improvement was observed in either cell internal
 

resistance or IR-free cell voltage. Although the internal resistance of SC-039
 

(at 200 mA/cm2) increased by about 0.7 nf inthe first 900 hours of opera­

tioni its IR-free cell voltage remained practically constant at 655 mV during
 

the test. The replenishment of acid in SC-039 resulted in a reduction of about
 

0.3 nM inthe internal resistance. This investigation is still under way.
 

SUBSCALE CELLS FOR PROCESS VARIATION EVALUATION
 

Several cells were assembled and testing initiated to evaluate fabrication
 

process variations, namely SC-069, SC-070, and SC-071. Included inthis group
 

of cells are variations in the method of electrode lamination to the backing
 

paper and the effect of catalyst heat treatment on cell performance. The
 

combination of modified electrode lamination and catalyst treatment has
 

resulted in IR-free performance as high as 695 mV at 200 mA/cm 2.
 

TRANSIENT RESPONSE
 

Studies were performed using subscale cell SC-Oll, to determine the transient
 
response of performance with respect to the variation of current density. As
 

illustrated in Figure 3.1.4-5, the test cell was prepolarized at 325 mA/cm2
 

for about two hours. Instantaneously, the operating current density was
 

reduced to 200 mA/cm 2 and both the cell voltage and internal resistance were
 

monitored as a function of time. Air flow was held constant during the tests,
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which resulted in 20 percent utilization at 325 mA/cm 2 and 12 percent at
 

200 mA/cm2. Hydrogen flow was adjusted at the two current densities to
 

maintain 80 percent utilization. Due to the gradual increase of acid concen­
tration at the lower current density, the observed cell voltage decreased
 

slightly and the internal resistance increased with time. After about ten­

minutes of equilibration, both parameters were considered stable.
 

Under open circuit condition, the internal resistance increased with time.
 

However, a stable open circuit voltage was obtained in about five minutes.
 

After allowing the test cell to remain at open circuit potential for five
 

minutes, an operating current density of 200 mA/cm2 was imposed. As seen in
 

Figure 3.1.4-5, the internal resistance and cell voltage stabilized within ten
 

minutes. It is thus concluded that, in the measurement of polarization curves,
 
stabilized cell voltage and electrolyte concentration at a desired operating
 

current density are achievable after about ten minutes of equilibration.
 

EFFECTS-OF VARIATIONS IN KEY OPERATIONAL PARAMETERS ON CELL PERFORMANCES
 

To normalize the experimental data from subscale cell tests, the-effects of
 

minor variations in three key operational variables (temperature, current
 

density, andair flow rate) on cell performances were investigated in cell
 

SC-Oll. At three constant current densities 100, 200, and 325 mA/cm2, the
 
cell voltage was measured as a function of temperature in the range of 181 to
 

201C. The results are shown in Figure 3.1.4-6, where Ecell' T c-Ecell, 191o C
 

represents the difference between the cell voltage at T°C and 191*C. As
 
expected, the observed cell voltages did not increase linearly with increasing
 

temperature. At 200 mA/cm 2 and 1910C, for example, the increase in cell
 

voltage with increasing temperature was % 1.3 mV/°C.
 

Figure 3.1.4-7 illustrates variation of measured cell voltage with operating
 

current while maintaining a constant temperature of 191C and constant flow
 
rates of air and H2 . Ecell' I -Ecell' lo denotes the difference
 

Detween the cell voltage at the true operating current I and at the desired
 

operating current 10. In this study, the desired operating currents were
 

2.5, 5.0 and 8.12 A, representing the current densities 100, 200 and
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325 mA/cm2, respectively. At 200 mA/cm2, a two percent increase (about
 

O.lA) inthe desired operating current caused a cell voltage loss of U 3 mV.
 

At constant operating current density and temperature, the measured cell
 

voltages were sensitive to air flow rates below four stoich as evidenced in
 

Figure 3.1.4-8. At increased operating current density, the measured cell
 

voltages became more sensitive to change in air flow rate. At flow rates above
 

five stoich, however, no detectable influence was observed on cell perfor­

mance. It was decided that all the unpressurized subscale cells should:be
 

operated at a minimum air flow rate of four stoich. Consequently, a ten
 

percent system error in the flow meter would have minimal effect on the
 

measured cell voltages.
 

DEPENDENCE OF KINETIC PARAMETERS FOR OXYGEN REDUCTION ON OXYGEN CONTENT
 

For oxygen reduction on carbon-supported platinum catalysts of 0.52 mg/cm
2
 

loading, kinetic studies were performed using subscale test cell SC-018, with
 

air, pure oxygen, and N2-02 mixed gases containing 35 and 49 v/o oxygen.
 

Hydrogen utilization remained at 80 percent and oxidant gas flow rates were
 

kept at three stoich with respect to 325 mA/cm2. After the correction of
 

anodic overpotentials and ohmic losses, the Tafel plots and kinetic parameters
 

for 02 reduction are shown inFigure 3.1.4-9 and Table 3.1.4-10, respec­

tively. The measured Tafel slopes ranging from 102 to 105 mV/decade are
 

approximately independent of oxygen concentration in the inlet oxidant gases.
 

Therefore, the variation of oxygen concentration results in no change in the
 

reaction mechanism. However, the observed exchange current densities increase
 

with increasing oxygen concentration (see Table 3.1.4-10). In comparison with
 

air, the use of pure oxygen improves the cathode voltage by 75 mV at current
 

densities in the range of 20-200 mA/cm2. This voltage gain results from the
 

reduction of activation polarization and a slight increase of the Nernst
 

potential.
 

EFFECTS OF AIR FLOW RATE ON CELL PERFORMANCES
 

After continuous operation at 200 mA/cm 2 and three stoich air flow rate for
 

1800 hours, subscale cell No. 18 was used to investigate the dependence of cell
 

3-27
 



'700
 

(C~il) 0 100 mA/au2 

dFAir 5'­

640 -dCell)_ 

620 - W 2 

620 -- 200mA/cm 

'Subscale Cell SC-Oll 
19191 C, 1 Atm. 100 w/o H34O 
Cathode: 0.52-mg-Pt/€= 2 

Anode: 0.31 mg-Pt/cm2 

-680 
H2 Utilization: 80% 

560 

325 MA/a9
 
~54O (Cll,.d
 

d2FAir
 

520 1 1
 
0 2 4 6 8 10 12 

Air.Flow Rate. Stoich 

Figure 3.1.4-8., Effects of Air Flow Rate on the Mieasured.Cell Voltages
 
at 100, 200, and 325 mA/cm

2
 

3-28
 



35vv/o0O2-B vioNN 

700-


S 
191°C. I Atm., 'DoODO) W/o H3pO4
Cathode :0.52 nemg 
Anode : 0.34 mg-PW= 2 

650 Utihzat'"m -S%H2
Oxidant Ons Flownstv: 3 Swto~h (325 mAI=n2 ) 

550, 
8 10 20 3D so 100 200 3H 5w goo3 

CURIRENT DENSITY, mAj.r
2 

Figure 3.1.4-9. Tafel Plots for Oxygen Reduction in
 
Laminated Porous Cathodes
 

3-29
 



TABLE' 3,. 1,..4-10 

EFFECTS OF OXYGEN CONTENT OF KINETIC: PARAMETERS FOR, 

OXYGEN. REDUCTION, AT'T9:IWC AND; AMBIENT PRESSURE 

Oxi'dant, Gas Air- 35% 0'2,- 65% N: 49%- 02- 51% N2 Oxygen 

Flow;Rate* -, mtZmin, 4401 262' 188 9:7,
 

-3
Observed; Exchange 2.1x.10 3 5,,4 x 10 , 7'.2' x. 107 3 1'O.x. 10-2
 
Current Dens.i-ty,
 
mA/cm2: 

Tatel: Slope, 102 10, 105. 102
 
mV/decade.
 

Cathode., Potenti-a-l- at 684, 710. 7,24' 7591
 
200 mA/cm2,, mV,/RHE
 

*Flow rates, were maintai'ned' at- three' sto ch; at 325 mA',cm2 . 
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performance characteristics on the air flow rate. By maintaining the hydrogen
 

utilization at about 80 percent, the overall cell potentials at various flow
 

rates were measured as a function of current density. 'After correcting for
 

ohmic losses and anodic overpotentials, typical polarization curves for oxygen
 

reduction are given in Figure 3.1.4-10. At current densities below 100
 

mA/cm2, the polarization potentials of the air electrode were approximately
 

independent of the air flow rate. However, the observed limiting current
 

densities are extremely sensitive to the flow rate. Increasing air flow rate
 

resulted in a large increase inthe limiting current density.
 

In the electrolyte film, the mass transfer resistance of dissolved oxygen
 

molecules produces the so-called concentration overpotential. From the
 

measured limiting current densities, the concentration overpotentials at
 

325 mA/cm2 and various air flow rates were calculated and are shown in Table
 

3.4.1-11. Note that the achievable maximum current densities were predicted on
 

the basis of 100 percent oxygen utilization at different flow rates. The
 

observed limiting current densities were close to the predicted maximum current
 

densities. The concentration overpotentials decreased significantly with
 

increased air flow rate. At the projected air flow rate of about two stoich,
 

there was approximately 7 mV cathode potential loss, resulting from the
 

concentration overpotential in the electrolyte film.
 

Shown in Figure 3.1.4-11 are the internal resistances as a function of air flow
 

rate in stoichs. At a constant flow rate, for example three stoich, the
 

increase of operating current density from 100 to 325 mA/cm2 reduced the
 

internal resistance by nx0.4nm.
 

For a particular test cell, the decrease of internal resistance resulted from
 

the variation of acid concentration. It is thus concluded that, at constant
 

air flow rate (instoichs), the electrolyte concentration inphosphoric acid
 

fuel cells is dependent on the operating current density.
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TABLE 3.1.4-11
 

EFFECT OF AIR FLOW RATE ON CONCENTRATION OVERPOTENTIAL
 

Observed Limiting Maximum Achievable** Calculated Concentration
 
Air Flow Rate Current Dnsity Current De~sity Overpotential t 191°C
 

m/min Stoibh* (mA/cm (mA/cm ) and 325 mA/cm (mV)
 

195 1.33 465 432 12
 

232 1.58 515 514 10
 

327 2.22 730 722 6
 

368 2.50 840 813 5
 

441 3.00 910 975 4
 

*Referring to the current density 325 mA/cm 2
 

**Based on 100 percent oxygen utilization
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PRESSURIZED SUBSCALE CELL TESTING
 

The first Westinghouse provided subscale pressurized test loop was completed
 

and checked out in late March, 1983 and is shown in Figure 3.1.4-12. The
 

second system was approximately 90 percent complete at this reporting period.
 

Each system is capable of testing four subscale cells simultaneously at
 

pressures of up to 1,380 kPa (200 psig).
 

The first four cells tested in the operational system were SC-049, 060, 061,
 
and 062 and their component identification is provided in Table 3.1.4-12.
 

Figure 3.1.14-13 shows the variation of measured terminal voltage and IR-free
 

cell voltage of SC-062 at 325 mA/cm2 as a function of pressure up to 6.8 atm,
 

690 kPa (100 psia). The test was conducted at 190*C, 5 stoich air flow rate,
 

and 80 percent hydrogen utilization. At 4.74 atm (70 psia), the initial
 

terminal voltage performance of this cell was about 692 mV, which is 10 mV
 

higher than the projected cell performance goal for the PAFC power plants. In
 

reference to the ambient pressure, the cell voltage gains arising from the
 

pressurization are illustrated inFigure 3.1.4-14 for subscale cells SC-060,
 

SC-061 and SC-062. The linear line depicts the anticipated voltage gain as
 

represented by an equation of the form:
 

2.3 RT (I +5
(V1gain--) log P [1] 

where P is the operating pressure in atm. At the projected plant operating
 
pressure of 4.74 atm (70 psia), the average voltage gain in these cells is
 

108 mV, which is in good agreement with the value predicted by Eq. [2).
 

Under the operating conditious: 325 mA/cm2, 1900C, 4.74 atm, 5 stoich air
 

flow rate and 80 percent H2 utilization, long-term performance stability
 

studies were conducted on the four subscale cells. The variation of cell
 

performances with time is presented in Table 3.1.4-13. Subscale cell SC-049
 
was pre-tested at 200 mA/cm2 and ambient pressure for over one week. Thus,
 

its internal resistance and cell voltages were relatively stable during the
 

testing. Prior to the pressurization tests, subscale cells SC-060 through
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TABLE 3.1.4-12 
PRESSURIZED CELL COMPONENT IDENTIFICATION 

Cell Ident. Cathode Anode Catalyst Lot No. 

SC-049 

SC-060 

SC-061 

SC-062 

Ident., 

C055-3 

C119-4 

C116-2 

C119-4 

loading 
mg/cm2 

0.43 

0.49 

0.48 

0.49 

Ident., 

A087-8 

A123-1 

A121-1 

A123-1 

loading 
mg/cm 2 

0.29 

0.28 

0.30 

0.28 

1 

3 

3 

3 
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TABLE 3.1.14-13
 
VARIATION OF PERFORMANCE CHARACTERISTICS OF PRESSURIZED SUBSCALE CELLS WITH TIME
 

Cell I.D.. Performance Testing Time* (at 325 ma/cm 2
 

60 Hours 630 Hpurs 820 Hours
 

SC-049 
 Terminal Voltage, mV 649 666 661
 
Internal Resistance, n 7.5 7.5 
 7.7
 
IR-Free Cell Voltage, mV 710 
 727 723
 

SC-'060 Terminal Voltage, mV 
 681 668 658
 
Internal Resistance, ma 7.Q 
 7.9 8.6
 
IR-Free-Cell Voltage, mV 739 
 732 728
 

s SC-061 Terminal Voltage, mV 674 653 643
 
Internal Resistance, mnf 7.7 
 9.1 9.8
 
IR-Free Cell Voltage, mV 737 
 727 723
 

SC-062 Terminal Voltage, mV 
 689 67.6 673 
Internal Resistance, tW 6.O 7.1 7.6
 
IR-Free Cell Voltage, mV 738 734 
 735
 

*Subscale cells were tested at 325 mA/cm2
 , 190.C, 4.74 atm, 5 stoich air flow rate and
 
80 percent H2 utilization.
 



SC-062 were operated at ambient pressure for less than 100 hours. The internal
 

resistances of these three cells increased with time, presumably due to the
 

gradual loss of electrolyte. The IR-free cell voltages also decreased in the
 

long-term test. Starting initially in May, 1983, the air flow rate was
 

intentionally reduced to 2.5 stoich and the pressurized stability studies of
 

these four subscale cells are continuing.
 

3.2 NINE-CELL STACK DEVELOPMENT
 

3.2.1 DEVELOPMENT STATUS
 

The nine-cell stack design was completed and sufficient components for seven
 

stacks were manufactured. Procedures for manufacture of the cell repeating
 

components, electrode/plate subassembly, and final stack assembly were
 

developed. Manufacturing and assembly personnel were trained to these
 

procedures.
 

The nine-cell stack test program was performed utilizing two Westinghouse
 

provided test facilities. Six stacks were assembled of which five were
 

tested. One stack was used to gain stack assembly experience. The ability to
 

conduct two tests simultaneously was demonstrated. The longest test duration
 

was 670 hours.
 

Operation of each of the five stack tests had to be curtailed due to one or
 

more cells in each stack limiting operation. Primarily, these stacks have
 

provided a better understanding of the stack mechanics during assembly and test
 

operations. They have also provided needed experience in pressurized stack
 

testing. Characterization testing, related to a basic understanding of stack
 

design parameters and interaction effects, was initi4ted which includes
 

evaluation of acid upset conditions and limited mapping evaluations.
 

Problems were encountered early in the program with producing flat molded/heat
 

treated bipolar and cooling plates. While development-work continued to learn
 

how to produce consistently flat plates, the plates used were machined from
 

molded blank plates and subsequently heat treated to 9000C.
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Final reports were issued for the first two stacks and test results for the
 

remaining three stacks are continuing to be evaluated.
 

3.2.2 NINE-CELL STACK DESIGN DESCRIPTION
 

The developed nine-cell stack design is shown in Figure 3.2.2-1. This stack is
 

designed to reproduce, functionally, the 10 kW stack design to the extent
 

permitted by reasonable consideration of cost and test facility constraints.
 

All repeating components of the stack are the same as in the 10 kW design. The
 

stack design incorporates a cross tie bar and tie rod arrangement for loading
 

the stack, and other non-repeating hardware features.
 

The molded bipolar plates are provided to separate the process gases and have a
 
"zee" channel configuration on both sides. The two cooling plates have a "zee"
 

channel configuration on one side and a "tree" cooling channel configuration on
 

the opposite side, the end plates have a "zee" channel configuration on one
 

side and a straight, closed-end groove pattern on the opposite side. Edge
 

seals (flat gasket type) of a fluoroelastomer are compressed between adjacent
 

plates to seal against acid and process gas leakage. The "tree" side of the
 

cooling plates are butted against each other to form the cooling air passages.
 

Fluoroelastomer edge seals fit between cooling plates along the process gas
 

sides, only, to prevent process gas leakage between process manifolds and
 

cooling air leakage into process manifolds. Anode and cathode-electrQdes are
 

bonded at the edges to their respective surfaces of the bipolar, cooling, and
 

end plates. The ERC MAT-l layer fits inboard of the edge seals between the
 
anode and cathode. The edge seal surrounding the anode and MAT-] is narrower
 

than that surrounding the cathode. Thus, the edges of the MAT-l and anode are
 

compressed by the cathode edge seal to prevent internal process gases cross
 

leakage around the edge of the cell. This design also seals against acid
 

weepage at the outside of the stack since tha MAT-l is completely enclosed by
 

the edge seals.
 

The plate "zee" process channel faces incorporate 0.038 cm (0.015 inch) thick
 

by 0.794 cm (0.312 inch) wide graphite bridges which span the process gas
 

channels at the edges of the plates. The bridges prevent the edge seals from
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compressing into the grooves and restricting gas flow. The graphite material
 

is compatible with the plate material and is strong enough at stack operating
 

temperatures to withstand the compressive loads caused by the edge seals.
 

The stack is terminated at each end with a-gold/nickel plated copper current
 

collector plate followed by two Micarta insulator plates and a carbon steel
 

compression plate. The electrical connection takeoff is through a centrally
 

located terminal post. Guard heaters, which fit into recesses in one of the
 

insulator plates of each set, are provided to maintain in situ five cell stack
 

temperature conditions similar to tepetitive five cell conditions of larger
 

stacks.
 

The nine-cell stack design uses, a cross tie bar stack clamping arrangement with
 

compression plates that are the same size as the cell plates. Therefore, the
 

tie rods are removed from the cooling manifold region allowing manifolds to be
 

used for separate monitoring and contrbl of the cooling air.
 

The process gas manifolds are aluminum with corrosion resistant Viton coating
 

to protect against phosphoric acid attack. Their design allows for universal
 

installation at either the process fuel or process air inlet or exit
 

locations. Manifold sealing is provided by flat gaskets. A layer of uncured
 

Viton material is applied in contact with the side face of the-stack. A
 

Micarta insulator frame and a layer of cured Viton material are placed between
 

the uncured layer and the manifold. At an elevated temperature preconditioning
 

process, the uncured layer cures and conforms to the face of the stack. After
 

preconditioning, subsequent manifold removals are at the separation between the
 

manifold and the insulator frame so that the frame to stack seal remains
 

undisturbed. The process gas manifolds are bolted onto the edges of the top
 

and bottom compression plates. The cooling air manifolds are also Viton coated
 

aluminum and are bolted and sealed to the stack similar to the process gas
 

manifolds.
 

Other features of the nine-cell stack design include acid fill and drain tubes
 

sealed to the stack end plate by a fluoroelastomer O-ring. The process gas
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manifolds have a provision for acid drain tubes to collect acid that may
 

accumulate in the bottom of the manifolds, either through entrainment in the
 

exit gas fl'ow or through leakage at the electrode/edge seal interfaces. All
 

manifolds have ports for attachment of pressure sensing instrumentation. When
 

installed in the test vessel, the nine-cell stack is supported on standoffs
 

connected to the four tie rods.
 

3.2.3 NINE-CELL STACK TESTING
 

In orcer to establish key design parameter data and interaction effect needed
 

to guide stack and module design efforts, nine-cell stack tests were performed
 

that included:
 

a Performance and mapping characterization
 

* Transient characterization
 

- startup/shutdown
 

- cyclic effects on performance
 

a Endurance characterization
 

- cell performance trends 

- acid makeup 

* Characterization of stack mechanics
 
- stack loading/relaxation
 

- cell gasketing
 

- stack resistance
 

Test specifications and test operating plans were developed'for the first seven
 

planned nine-cell stacks (identified as stacks-WO09-Ol thru -07). The test
 
objectives for stacks W009-04 thru -07 are summarized in Table 3.2.3-1 and
 

additional data pertaining to the stack configuration on features is shown in
 

Table 3.2.3-2.
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TABLE 3.2.3-i 
NIiNE CELL STACKS , W009-04, 0'5, 06, AND 07 

fGenera' Objectltves 

0 Est~blis'h reference baseli;ne :performance ,And determine reproducibility of existi,ng tecbnology. 

0 Demonstrate stack pperating -haracteristics and assess repeatability over the operating range.. 

,s 'Provide screen ,,ginformatl',on to evaIuate iperformance trends of heat tr eated catalyst and dry bonded 
elecarodes,. 

Addiitonail Specific 'Stack (Objectives 

'W009_04 W009-015 1W009-06 W009-07 

SDetenmine performance
variaton wljth;n a 
st&ck,. 

. Assess performance 
trend mith !ieat 
treat ,catayst. 

* Provide additonal 
tests to tnore'ase 
confidence limits 

e Asisess performan ce 
trend with heat treat 
tclatadyst and dry 'bonded 

of stack ,perfor- electrodes,. 
imance varation. 

o Evaluate Test Loop #3. 
repeatability. 

, Evaluate Test 
ILooqp #3 
repeatabliIiy. 

a Asses's the effects 
of pressure cyclilng 

* As'sess the effects of 
compressIve load 
Icyc Iin,g. 



TABLE 3.2.3-2 

STACK TEST PROGRAM 

Stack ID: W009 -04 -05 -06 -07 

Cells 1 and 2 Baseline 9000 Ht Catalyst Baseline Dry Laminated and 
9000 Ht Catalyst 

Cells 3 thru 7 Baseline Baseline Baseline Baseline 

Cells 8 and 9 Baseline 9000 Ht Catalyst Baseline Dry Lamination and 
9000 Ht Catalyst 

Bipolar Plates --------------------- Machined------------------------------

Seals * -------------------- Teflon-- - -----------------­7.----------+ 

Acid -------------------- 93% 42 ml to 46.5 ml ---------------------------

Load Instrument No Yes No Yes 

Additional Tests Start/Stop Load Var. Start/Stop Load Var. 

Test Loop 2- +3 2 + 3 2 3 



Summary test results for stacks WO09-Ol thru -06 inclusive are summarized in
 

Table 3.2.3-3. Test reports for stacksWO09-Ol and -02 were prepared and
 

issued.
 

8.3 10 kW-FUEt CELL *STACI DEVELOPMENT
 

3.3.1 DEVELOPMENT STATUS
 

A 10 kW stack design requirements document was developed and a final design in
 

accordance with these requirements was essentially completed. The final
 

detailed design for all long lead components was completed and then released
 

for procurement. Initial cost and delivery difficulty was encountered with the
 

polyethersulfone molded manifolds. After numerous discussions with vendors,
 

however, it was concluded that the manifold could be made from an extruded slab
 

of polyethersulfone and machined as required for the fuel and oxidant manifold
 

chambers.
 

3.3.2 10 kW STACK DESIGN DESCRIPTION
 

The 10 kW stack mounted in the test loop pressure vessel is shown in Figure
 

3.3.2-1. The stack contains 44 cells in eight groups of five with two cells at
 

each end. Each group of five cells is separated by cooling channels. The
 

remaining cell components in the five-cell group are separated by bipolar
 

plates. the Section 3.2.2, nine-cell stack discussion relative to the "zee"
 

and "tree" pattern bipolar and cooling plates, respectively, is applicable for
 

this stack and istherefore not repeated herein.
 

Viton elastomer seals are provided along the edges of the "Zee" channel faces.
 

The seals are supported at the plate edge by the graphite bridges. The
 

electrodes and matrix are confined to the area inside'the seals. Seal
 

thickness is set to accommodate tolerance variations in the electrodes and
 

allow approximately 12 percent compression of the electrodes and assembly.
 

The cell stack ends in gold/nickel-plated copper collector plates followed by
 

Micarta insulator and carbon steel compression plates. Four stainless steel
 

tie rods, extending the length of the stack and inserted through holes in the
 

3-48
 



TABLE 3.2.3-3
 

NINE-CELL STACK SUMMARY
 

Stack WO09-Ol
 

a Initial evaluation of stack mechanics
 

* 	Developed stack compression procedure
 

* 	Utilized for checkout of test facility loop #2
 

Stack W009-02
 

* 	 Operated 500-hours (180 hours at 1 atm, 320 hours at 4.7 atm);
 
603 mV/cell avg. at 325 mA/cm2' , 190 0C, 4.7 atm
 

* 	 Evaluation of acid upset conditions and subsequent impact on corrosion
 
of bipolar plate
 

* 	 Initial evaluation of electrical transients and ripple effects
 

Stack W009-03
 

e Evaluation of modified Viton cell seal design
 

* 	Develop cell subassembly and stack assembly procedures
 

Stack W009-04
 

e 	 Operated 670 hours (170 hours at 1 atm, 500 hours at 4.7 atm);
 
620 mV/cell avg. at 325 mA/cm2 , 190'C, 4.7 atm with SRG
 

* Conducted limited mapping characteristics
 

a Utilized for checkout of test facility loop #3
 

Stack W009-05 and W009-06
 

* 	 Testing initiated and continuing. 
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edges of the compression plates, achieve the required initial clamping pressure
 

of approximately 50 psi. The compression, insulator, and copper collector
 

plates are made somewhat wider than the cell plates to accommodate the clamping
 

rod holes and to provide support for the electrical connections at the edges of
 

the collector plates. The compression plates are also-somewhat longer than the
 

insulator and copper collector plates which are the same length as the bipolar
 

plates, inorder to locate the process fluid supply manifolds on the end faces
 

of the stack. A shim plate, made of Micarta material of the same shape as the
 

insulator plate, is provided at the too of the stack to allow the distance
 

between the compression plates to be matched with the overall length of the
 

manifolds, while accommodating the overall stack hei'ght resulting after
 

compression.
 

The manifolds are made from a fiberglass filled polyethersulfone material and
 

are held in contact with the end faces of the stack by tie rods. Teflon tubing
 

around the tie rods insulates them from the stack. The manifolds are sealed to
 

the faces of the stack by 0.47 cm (3/16 inch) diameter Viton 0-rings. Two
 

0-rings are employed in each manifold, one encircling the fuel cavity and the
 

other process air cavity.
 

The process gas connections to the manifolds are provided with removable
 

orifices to ensure a controlled pressure drop across the stack. Flow
 

deflectors are provided between the orifices and the stack to prevent
 

impingement of the orifice jet on local plate flow passages and ensure a
 

well-distributed, low velocity, flow of gases into the manifold cavities. The
 

connections are inserted throughsimple circular holes inthe manifolds, sealed
 

by fluorelastomer 0-rings and held in place by retainer clamps and bolts
 

threaded into the manifolds. The connections also support the process gas
 

stainless steel piping.
 

The phosphoric acid is supplied to the stack through a 0.94 cm (0.375 inch)
 

diameter Teflon tube. The tube is clamped to a machined Teflon connector
 

retained in a drilled hole inthe compression plate and sealed to the uppermost
 

cell end plate by means of a fluorelastomer 0-ring. Provision is made for
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shimming at the connector retainer to compensate for variations in the stack
 

shim plate thickness. Excess acid is drained at the bottom of the stack using
 

a similar arrangement. The stack acid supply and drain lines.are terminated in
 

Teflon penetrations at the pressure vessel., The penetrations are sealed by
 

steel caps during operation but are accessible after Shutdown by removal of the
 

steel caps.
 

The stack electrical connections consist of copper connectors clamped to the
 

copper collector plates with bolts and supported from the Micarta insulator
 

plates. A 4/0 nickel coated TFE insulated cable is swaged to the copper con­

nectors and routed to insulated pressure vessel penetrations. The cables are
 

supported along their length to prevent whipping under short circuit fault
 

conditions.
 

Provision is made for instrumentation leads via three 15 cm (6 inch) diameter
 

penetrations in the facility pressure vessel.
 

3.4 25 kW SHORT STACK DEVELOPMENT
 

3.4.1 DEVELOPMENT STATUS
 

The 25 kW stack design requirements document was developed and in accordance
 

with these requirements a design package was completed. This design package
 

consisted of detail and assembly drawings, supporting analysis, and a design
 

description document. A partial release of long lead hardware (i.e., the
 

plastic process distribution manifolds and piping details) was made. To date,
 

all potential vendors contacted have failed to submit unqualified, acceptably
 

priced quotations for injection molding the manifolds. Suggestions were
 

received for performing the work as a development program, with no guarantee of
 

success and at the risk of substantial monetary increments. Consideration is
 

being given to machining the 25 kW stack manifolds from extruded stock and
 

deferring the injection molding process to the 100 kW stack, where larger
 

initial monetary investments could more reasonably be justified.
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3.4.2 25 kW STACK DESIGN DESCRIPTION
 

The 25 kW stack mounted inthe test facility pressure vessel is illustrated in
 

Figure 3.4.2-1. The stack assembly is supported from a carbbn steel lower
 

support plate which is mounted on the cooling air outlet pipe and two support
 

columns. Many of the 10 kW stack design features described in Section 3.3.2
 

are applicable td the 25 kW stack, and thus are not reported herein.
 

The 25 kW stack contains 104 cells in 20 groups of five with two cells at each
 

end of the stack. Each group of five cells is separated by cooling channels
 

with the design identical to that used'for 10 kW stacks.
 

Figure 3.4.2-2 is an illustration which shows the "Zee" process channel and
 

the "treed" cooling channels geometry.
 

The cell stack ends in gold/nickel-platedcopper collector plates followed by
 

Micarta insulator plates and carbon steelcompression plates. Four stainless
 

steel tie rods, extending the length of the stack and inserted through holes in
 

the edges of the compression plates, achieve the required initial clamping
 

pressure of approximately 50 psi. Provision, ismade for heating the tie rods
 

on the inlet side of the stack to minimize the tendency for the stack to bow
 

due to differential thermal expansion of the rods. Heated air is channeled
 

from the cooling air outlet plenum through grooves machined in the upper
 

insulator plate to the inner diameters of insulating tubes placed around the
 

cold-side rods. The heated air then flows downward in the annular spaces
 

between the rods and the insulating tubes to grooves machined in the lower
 

insulator plate. Reference to Figure 3.4.2-1 should be made for details of
 

these features. The grooves in the lower plates then transfer the air to the
 

process air outlet bobbin connectors.
 

The .manifolds materials and design configuration is also similar to that
 

described for the 10 kW stack. The 25 kW stack manifolds, however, are
 

reinforced by stiffening ribs which also serve to divide up each of the
 

manifold cavities into a number of smaller compartments. Each compartment is
 

supplied from, or supplies, an individual gas connection. The stiffening ribs
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and associated detail and much of the detail described in the following
 

paragraphs, are defined in Figure 8.4.2-1.
 

The process gas "Tee" connections to the reinforced plastic manifolds are made
 

of unreinforced polyethersulfone and are provided with removable orifices to
 

ensure good distribution of flow along the length of the stack. Flow deflec­

tors are provided between the orifices and the stack to prevent impingement of
 

the orifice jet on local plate flow passages and to ensure a well-distributed,
 
low velocity, flow of gases into the manifold cavities. The "Tee" connections
 

are inserted through simple circular holes in the manifolds, sealed by
 

fluorelastomer O-rings and held in place by retainer bars and bolts threaded
 

into the manifolds. The "Tee" connections also support the process gas piping
 

along the length of the manifolds. Simple polyethersulfone "bobbin" type
 

sections of pipe, supported between the "Tee" connectios and sealed by
 

O-rings, are used in the supply and return piping to accommodate thermal
 

expansion motions and misalignment. This arrangement also avoids the
 

application of large forces to the plastic manifolds during the attachment of
 

the piping.
 

Fuel supply and return, and process air return bobbin connectors are supported
 

between tha lowermost manifold "Tee" connections and stainless steel piping
 

weldments mounted from the lower pressure vessel head. Positive support from
 
the stack lower compression plate isprovided for these bobbin connectors so
 

that, when the stack is removed from its supporting structure, disconnection of
 

the process fluid lines occurs automatically as the lower ends of the bobbin
 

connectors are withdrawn from the piping weldments mounted on the vessel lower
 

head. The uppermost manifold "Tee" connections are terminated by means of caps
 

held in place by rollpins.
 

The process air supply bobbin connector at the uppermost manifold "Tee"­

connection engages at its upper end with a transfer pipe connected at its other
 

end to a penetration at the vessel lower head. Heated and filtered air is
 

supplied to this vessel penetration, from the facility, through an external
 

pipe and is then conveyed to the upper end of the transfer pipe and into the
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bobbin connector and "Tee" connections to the manifold. The lowermost manifold
 

"Tee" connection of this piping is terminated by means of a cap held in place
 

by rollpins.
 

In the particular arrangement illustrated, a continuously operating acid
 

management system, if required, could be incorporated and is being considered.
 
The cap details shown would require modification to provide for this
 

capability. Alternatively, an internal acid reservoir can be accommodated in
 
the pressure vessel if such a system is determined to be more suitable.
 

3.4.3 STRUCTURAL ANALYSIS
 

A structural analysis of the 25 kW stack design was completed which included
 
the stack mechanics and the stack-to-vessel interface support structure. A
 

stack mechanics evaluation was performed to determine the component loads,
 

deflections, and stresses. The general purpose structural analysis program,
 
WECAN (Reference 3-1), was used to perform this static analysis. The materials
 

data base was composed of known industrial data, empirical test data, and
 
elastic properties of the current fuel cell stacks.
 

Anisotropic material properties, directional thermal expansion .values, and
 

effective material properties were required to accurately simulate the
 

structural characteristics of the stack. It was assumed that all components
 
(anode-matrix-cathode) and the bipolar plates can be modeled as a structural
 

material with effectivje material properties. This eliminates individual
 
definition of each cell. Anisotropic material properties are used to simulate
 

large axial deflection with very small lateral deflections. Directional
 

thermal expansion values were employed to simulate the manifold assembly
 

procedure and the negative creep effects in the cell components.
 

Ref. 3-1 	"WECAN-Westinghouse Electric Computer Analysis," 82-7E7-WESUP-Rl,
 
Third Edition, Rev. R. Edited by A. W. Filstrup.
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3.4.3.1 MODEL.DEVELOPMENT
 

The 25 kW structural model was based on an earlier representation of the 10 kW
 

stack mechanics model. This model was updated to include the following:
 

* 	 Current effective material properties for the cell components
 
(anode-matri-x-cathode).
 

* 	 Anisotropic (or orthogonal) material properties to simulate the
 
correct lateral displacement response of the stack at the cell
 
component level.
 

* 	 More accurate representation of the plastic manifold to verify
 
actual manifold stresses and deflections.
 

* 	 The elimination of belleville springs in the 10 kW stack
 
compression load train.
 

Due to the element size of the existing 10 kW structural model (785 elements),
 

this model was used with some corrections to account for differences in the
 

overall height of the stack instead of developing a new, larger 25 kW model.
 

Geometrically, the 25 kW stack contains three planes of symmetry. The three
 

planes of symmetry are: 1) centerline of 41.9 cm (16.5 inch) side, 2) center­

line of 29.8 cm (11.75 inch) side, and 3) mid-plane of the overall compressed
 

height.
 

Generally, 3-D isoparametric solid elements were used with orthotropic material
 

properties. The elements were generated in a manner to permit easy modifi­

cation of material properties and accurate simulation of the stack geometry.
 

The manifold detail was improved over .the 10 kW model to better define the
 

stresses and displacements in the new plastic manifold. The axial and
 

horizontal rib sections were added to simulate the reinforcement of the
 

manifold.
 

The combined isometric view of all components of the 1/8 section model of the
 

25 kW stack is shown in Figure 3.4.3-1. The compression plate and insulation
 

plates are shown to be coincident for simplicity.
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3.4.3.2 STACK LOADING CONDITIONS
 

The purpose of this evaluation was to determine the response of the stack to
 

specific structural and thermal conditions. The following four loading
 

conditions were selected:
 

* Pre-Assembly Condition - This condition pertains to the situation 
when the stack has been assembled and heated to approximately
 
77% (170°F). The stack is then compressed to an average of
 
0.344 MPa (50 psi) over the fuel cell area. This assumes that
 
the manifolds have not been installed.
 

a 	 Assembly Condition - This condition extends the preassembly 
condition to include the manifold at 77°C (170'F). The worst
 
case condition was evaluated with the assumption that the
 
manifold has a 0.0355 cm (0.014 in) interference between the
 
compression plates.
 

* 	 Normal Operating Condition - This condition assumes the cell
 
components of the stack to be at normal operating temperature of
 
190C (3750 F). Cooling inlet air temperature is assumed to be
 
146% (295°F) and no gas pressure differential is assumed to
 
exist across the stack.
 

* 	 Long Term Operation - This case provides a preliminary indication
 
of the possible effect of creep on the cell components. The
 
thermal and mechanical conditions are the same for the normal
 
operating condition except that the cell materials and seals are
 
specified to have a negative coefficient of thermal expansion to
 
represent the dimensional changes due to.creep. For this case
 
the assumption was made that each cell interface creeps 0.00846
 
cm/cell (0.0033 inches/cell) over the operating life of the stack.
 

The 25 kW stack was designed with a manifold to provide a passive compressive
 

load mechanism. Once the compression loads for the stack and manifold are
 

established, changes in load on the stack are determined by temperature changes
 

and creep effects. The stack was modeled based on this situation. The tie rod 

,displacements are set to produce the preloads desired in the pre-assembly ­

condition and they then remain constant throughout the analysis. Changes in
 

the stack pressure and bolt loads then occur as functions of the temperature
 

changes.
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3.4.3.3 ANALYSIS SUMMARY
 

The pre-assembly and assembly load cases wereperformed to determine the
 

following aspects of the stack assembly procedure:
 

* 	 'Determine gap between compression plates after the stack was
 
compressed.
 

a 	 Determine the required bolt deflection and load to produce an
 
average of 0.34 MPa (50 psi) pressure on the stack.
 

* 	 Determine the distributed loads on stack' manifold'and seals when
 
the stack is completely assembled and held at dry room
 
temperature conditions.
 

The results of these cases indicated low stress with only a minimal amount of
 

load on the manifold. As expected, a stress discontinuity was found between
 

the cell components and the seal region.
 

The 	normal operation case indicated loads and stresses which were.well within
 

the design limits for this operating condition. The stack bolt loads manifold
 

stresses and cell compressive pressure, all increased due to the change in
 

temperature of 114% (205'F). The cell compressive pressure only increased
 

from 0.35 MPa (,49.0 psi) to 0.36 MPa (52.0 psi). The-increased stack bolt load
 

developed due to this temperature change appears to be properly distributed
 

between the stack and manifold. The manifold peak compressive stress increased
 

to 20.7 MPa (3005 psi). This stress is below the short term tensi'le strength
 

of 76 MPa (11,028 psi) @ 180°C but the long term strength may be closer to
 

27.6 MPa (4000 psi) which would reduce the margin of.safety currently indicated.
 

The 	long term operation case represents the initial estimate-of the effect of
 

cell component creep on the stack loads and stresses. Data obtained from the
 

nine cell stack program was used toapproximate the cell component creep
 

deflection of 0.0084 cm/cell (0.0033 inch/cell). The actual creep is expected
 

to be lessthan that indicated in the nine-cell stack tests. -

The stack-bolt loads and cell compressive pressures dropped during this case
 

with most of the load shifting to the manifold. The cell compressive pressure
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indicates a drop of 44.2 percent near the top of the stack from the beginning
 

of life to the time required to achieve the previously listed creep
 

deflection.
 

In summary, the results of the static stack mechanics evaluation indicate that
 

the 25 kW stack design meets the design objectives and the calculated stresses
 

are less than the allowables. The results indicate the manifold functions as
 

designed. The stack load appears to be correctly distributed between the
 

manifold and stack at the operating temperature. This is partially due to the
 

high coefficient of thermal expansion of the insulation plate. The cell
 

compressive pressure of approximately 0.345 MPa (50 psi) is maintained during
 

the assembly and normal operating conditions; however, the long term normal
 

operating,case indicates a 44.2 percent reduction in the cell compressive
 
,
pressure due to creep effects. This is based on a conservative estimate of the
 

creep rate and only represents an initial assessment of the creep effect on the
 

Toads developed in the stack and the manifold. Additional testing is necessary,
 

to verify that the assumed materials' properties used in,this analysi's and,the
 

manifold/stack loads are adequate to preclude gas leakage.
 

3.4.3.4 ANALYSIS OF STACK-TO-VESSEL INTERFACES
 

In addit-ion to the stack mechanics evaluation reported above, the structura.l
 
adequacy of the fuel stack support structures-and piping was evaluated'..
 

The results of this analysis are listed below and indicate that the stack to
 

vessel interfaces are structurally adequate.
 

0 	Support Legs - The two ASTM A36 angle legs were modeled, as
 
straight bars pinned at both ends. The maximum load each leg;
 
will have to support was found to be 1423N (320 lbs). The legs
 
were found to be structurally adequate for these loads.
 

SCooling Air Return Pipe - The 20.3 cm (8 inch), Sch. 40,
 
ASTM-A234 pipe was evaluated for both horizontal loads and
 
vertical loads. The pipe was agsumed to, be rigidly bolted to the
 
floor and base plate. The force acting normal to the stack and,
 
plenum caused both twisting and bending in the pipe. The largest
 
of these stresses was found to.be bending and had'a maximum value
 
of 7.24 MPa (1,050 psi). The results of this analysis have shown
 
that the cooling air return is adequate to support the weight of
 
the stack and plenum.
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* 	 Process Air Pipe - The significant loads on the 6.35 cm 
•7[2.5iitnKcSch. 40, ASTM-A312 process air pipes are caused by
 
movement of the fuel stack. These horizontal deflections are
 
transmitted to the process air pipes causing small bending
 
stresses. The maximum bending stress was calculatedto be 21.2
 
MPa (3,073 psi). This is well within the allowable stress limits
 
of the material. In the vertical direction, slip joints between
 
the pipe.and fuel stack allow either component to move
 
unrestricted.
 

* Fuel Pipe - The loads on the ASTM-A312 fuel pipe are similar to
 
those on the process air pipe. The same analytical techniques
 
were used and the maximum stress was found to be 9.8 MPa
 
(1,420 psi), well within the maximum allowed.
 

0 	 Flange Bolts -'The 304 SS flange bolts were evaluated for the
 
various loading conditions imposed on the pipes. The largest
 
membrance stress found was only 9.84 MPa (1,427 psi) and occurred
 
on the process air pipe flange.
 

* 	 Thermal Stresses - Thermal expansion of the fuel and process air
 
pipes are significant only in the vertical direction and are
 
accommodated for in the pipe slip joints. The calculated worst
 
case bending stress was found to be 4.86 MPa (704 psi). The
 
thermal stresses in these structures are well within the
 
allowable stress values.
 

3.5 100 kW STACK DEVELOPMENT
 

3.5.1 DEVELOPMENT STATUS
 

The 	100 kW stack design requirements document was developed and a preliminary
 

design was completed in accordance with these requirements. Also, a narrative
 

description of the design was prepared.
 

3.5.2 100 KW STACK DESIGN DESCRIPTION
 

The 100 kW stack test assembly is very similar in concept to the 25 kW stack
 

design described in detail in Section 3.4 and employs identical support
 

structure and piping components, where possible. The main differences are the
 

longer stack, cooling air outlet plenum box, electrical power take-off-wires,
 

acid lines, and pressure vessel. In addition, process air in.the 100 kW stack
 

is piped directly from the cooling air outlet plenum box (as in the 375 kW
 

module design) instead of via a separate vessel penetration provided in the
 

25 kW Stack.
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The test assembly incorporates maximum component commonality with the Loop 1
 

test assembly configuration and the 375 kW module design (see Section 3.6). In
 

this arrangement, the 100 kW stack and its cooling air outlet plenum box
 

interface with the module designed internal support structure.- Process ai.r is
 

supplied fromthe cooling air outlet plenum box. A departure was made from the
 

prototypical module piping manifold arrangement on the vessel lower head, to
 

avoid the need.for blanking.off and, possibly, bleeding the piping legs for the
 

three missing stacks.
 

The 100 kW stack contains 419 cells in 83 groups of five with two cells at each
 

end of the stack. Each group of five cells is separated by cooling channels
 

and is of a design configuration identical to that described for the 10 kW
 

stack. Many of the 10 and 25 kW stack desigh features as described in
 

Sections 3.3.2 and 3.3.3 are applicable to the 100 kW stack, and thus are not
 

reported herein.
 

The reinforced plastic manifolds are each assembled from two identical
 

half-length fiberglass reinforced polyethersulfone moldings, joined at stack
 

mid-height and are held in contact with the end faces of the stack by tie
 

rods. Teflon tubing around the tie rods insulates them from the stack. The
 

manifolds are sealed to the faces of the stack by 0.5 cm (3/16 inch) diameter
 

Viton'O-rings. Two 0-rings are employed in each manifold, one encircling the
 

fuel cavity and the other the process air cavity. The plastic manifolds are
 

reinforced by stiffening ribs which also serve to divide up each of the
 

manifold cavities into a number of smaller compartments. Each compartment is
 

supplied from, or supplies, an individual gas connection.
 

The process air supply bobbin connector at the uppermost manifold tee
 

connection engages at its upper end with a transfer pipe connected at its other
 

end to the cover plate of the cooling air outlet plenum box. The plenum box is
 

generally similar in concept to that of the 25 kw stack design, but is longer
 

to suit the 100 kW stack. The 100 kW plenum box is usable in both the facility
 

and the-module vessel designs and issealed to the stack using plastic angle
 

components prototypic of the module design. Heated air from the stack cooling
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channels is conveyed to the upper end of the process air supply piping. The
 

lowermost manifold tee connection of this piping is terminated by means of a
 

cap held in place by rollpins. The process air supply penetration in the Tower
 

head of the facility vessel is sealed off with a blanking cover.
 

The stack assembly is supported, in the case of the test facility version, from
 

a carbon steel lower support plate which is mounted on the cooling air outlet
 

pipe and two support columns. These support details and the piping weldments
 

mounted on the facility vessel lower head are identical with those of the 25 kW
 

stack design. Inthe case of the 100 kW stack in the module vessel, the lower
 

support plate, cooling air outlet ducting and eight support columns are
 
identical with those of the 375 kW module design. The piping weldments mounted
 

on the lower head of the vessel differ from those used in the module in that
 

provision is made for only a single stack.
 

Provision is made in the facility and module vessel test assemblies for
 

instrumentation leads via three 15 cm (six inch) diameter penetrations in the
 

facility vessel and two in the module vessel.
 

The resulting 100 kW stack preliminary design is defined to the point from
 

which detail drawings can be prepared. Detail drawings of the plastic process
 
gas manifolds, long lead hardware, were completed and released for use in
 

negotiations with potential vendors. To date negotiations with vendors have
 

not resulted in obtaining a firm commitment to manufacture the half-length
 

manifold by injection molding. As a result, a design layout study was started
 
to investigate the possibility of assembling the manifold by joining together
 

four relatively short sections. The shorter sections should be more suitable
 

for injection molding than the half-length components and should greatly
 

increase the number of potential molding vendors possessing the necessary
 

facilities.
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3.6 375 kW MODULE DEVELOPMENT
 

16.1 nEVELOPMENT STATUS
 

nreliminary equipment specification was developed for the 375 kW module, and
 

in accordance with this specification a conceptual design was completed which
 

is illustrated in Figure 3.6.1-1. The nominal design parameters of the module
 

are presented in Table 3.6.1-1 at beginning-of-use (BOU) of the plant.
 

Although designed to provide an electrical output of 375 kW dc at full power
 

operating conditions at beginning-of-use (BOU) the module is also capable of
 

producing up to 400 kW as a replacement modul'e when combined with degraded
 

modules.
 

3.6.2 375 kW MODULE DESIGN DESCRIPTION
 

The 375 kW module consists of four stacks of fuel cells supported inside a
 

containment vessel with their cooling air outlet passages discharging into the
 

space formed between the stacks. Cooling air is admitted to the pressure
 

vessel cavity, surrounding the stack assembly, and flows through passages
 

provided in the stack to the space between the stacks. The cooling air enters
 

and leaves the vessel through the lower head, allowing the vessel cylinder and
 

upper head to be easily removed for maintenance of the fuel cell stacks.
 

Figure 3.6.2-1 illustrates the cooling air flow path schematically. Process
 

air is piped to the stacks from the cooling air outlet cavity through holes in
 

the top plate which separates the inlet and outlet cooling air cavities.
 

Figure 3.6.2-2 illustrates the process air flow path. Fuel is piped to the
 

stacks from a manifold in the lower region of the pressure vessel fed from a
 

supply bobbin passing through a penetration in the lower vessel head. Figure
 

3.6.2-3 illustrates the fuel flow path. The fuel and process air return lines
 

from the stacks are led into similar manifold and bobbin connections to
 

penetrations through the lower vessel head. Figure 3.6.2-4 illustrates all of
 

the above flow paths in a schematic, illustratipn of the module.
 

3-66
 



ORIG NAL PAG. In 
OF POOR QUALITY 

~Manifold 

Mnfl 
Process Air 

Supply
 

Fuel Supply 

Fuel Return I ProcestuAir 

Fuel Cell
 
Stacks
 

t Fuel Supply 

Fuel Return -. Process Air 
. Heated Return 

Cooling Air 
Air 

707015-19
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TABLE 3.6.1-1
 

MODULE DESIGN PARAMETERS
 

Parameter Nominal
 

POWER 375 kW dc
 

TEMPERATURE
 

Oxidant Inlet* 185 (365) 0C (°F)
 

Coolant Inlet 147 (297) °C (°F)
 

Fuel Inlet 191 (376) -C (OF)
 

Plate Avg. 191 (376) 0C (°F)
 

*Same as coolant outlet.
 

PRESSURE 482 (70) kPa (psia)
 

FLOW
 

Fuel (simulated Reformate
 
Hydrogen-, 80% Utilization) 183 (403) kg/hr (#/hr)
 

Oxidant (air 2.0 stoichs) 1423 (3135) kg/hr (#/hr)
 

Coolant (air) 28,570 ('62,930) kg/hr (#/hr)
 

CELL VOLTAGE
 

Open Circuit 920 mV
 

Operating Limit 800 mV
 

Operating Point 680 mV
 

CELL CURRENT DENSITY 325 mA/cm2
 

MODULE VOLTAGE
 

Open Circuit 1440 Volts
 

Operating Limit 1260 Volts
 

Operating Point 1080 Volts
 

MODULE CURRENT 351 Amps
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Each fuel cell stack contains 419 cells in 83 groups of five with two cells at
 

each end of the stack and is of a design configuration essentially identical to
 

that described in Section 3.5.2 for the 100 kW stack.
 

Provision is made for heating the stack compression tie rods on the inlet side
 

of the stack to minimize the tendency for the stack to bow due to differential
 

thermal expansion of the rods. Heated air is channeled from the cooling air
 

outlet plenum through grooves machined in'the upper insulator plate to the
 

inner diameters of insulating tubes'placed around the cold-side rods. The
 
heated air then flows downward in the annular spaces between the rods and the
 

insulating tubes to grooves machined in the lower insulator plate. The grooves.
 

in the lower plates then transfer the air to the process air outlet bobbin
 

connectors.
 

The four stack assemblies are supported from a carbon steel support plate
 

mounted on the cooling air outlet piping and four support columns. The upper
 

end of the cooling air outlet plenum, formed between the stacks is closed by a
 

carbon steel cover plate. Leakage of cooling air into the plenum between the
 

stacks is limited by corner seals bolted to the adjacent edges of the stack
 

manifolds.
 

A conceptual definition was developed for a continuously operating acid
 

management system. This system employs an acid reservoir and micropump or
 

pumps to deliver acid to the stacks. The complete system, including micropumps
 

and acid reservoir, would be contained within the pressure vessel environment.
 

The micropump would be energized by means of compressed air lines, penetrating
 

the pressure vessel.
 

Two 15 cm (6 inch) diameter penetrations are provided in the vessel lower head
 

to accommodate instrumentation. Each penetration has the capability of
 

accommodating several multiple lead compression fittings.
 

Support for the stacks against seismic loads in the horizontal direction is
 

provided by four adjustable support bolts on a 90 degree spacing around the
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upper circumference of the pressure vessel. The Supports are individually
 

adjustable to suit the particular dimensions of initial or replacement
 

cartridges following installation of the pressure vessel. Four guide bars
 

supported between the stack compression plates protect the Stacks from damage
 

during installation of the vessel.
 

Some of the major physical characteristics of the module are listed in Table
 

3.6.2-1b The module external interfaces are listed in Table 3.6.2-2.
 

Consideration was given to prevent the phosphoric acid from freezing during
 

module storage and transporation periods by keeping the cell environment at a
 
minimum temperature of 37.8°C (1000F) in a dry atmosphere of -12.2°C (106F)
 

dewpoint or less. A candidate heating concept was developed to achieve this.
 

The approach employs tubular heating elements mounted in the module cooling air
 

outlet plenum between the stacks. Heat is distributed to all cells by natural
 

convection. Design effort Was initiated to define the heater provisions inthe
 

module.
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TABLE 3.6.2-I
 

MODULE PHYSICAL CHARACTERISTICS
 

Vessel Height 3.5 m (11 ft, 6 in)
 

Vessel Diameter 1.37 m (4 ft. 6 in)
 

Base Plate Diameter 1.68 m.(5 ft, 6 in)
 

Weight 5400 kg (6tons)
 

Module Contains four Stacks of 419 Cells 83 5-cell groups
 
2 2-cell groups
 

Cell Plate Dimensions (machined) 0.419 m x 0.3 m
 
(16.5 x 11.75 in)
 

Stack Height 2.44 m
 
(.8 ft) (approximately:
 

Stack Weight 621 kg (1370 Ib)
 

Vessel Cylinder Weight 1088 kg (2400 Ib)
 

Automatic Disconnection of Process
 
Fluid lines during cartridge replacement
 

Pressure Vessel - Carbon Steel to ASME Section VIII
 
Division 1 for 586 kPa (85 psia) and 204'C (400'F) capability
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TABLE 3.6.2-2
 

MODULE EXTERNAL INTERFACES
 

Pressure Temperature 	 Flow Rate
 

Pipe Size (psia) (kPa) (F), (KT (lb/hr) (kg/hr)
 

Cooling Air - In 	 16" Flanged (150 Ib) 71 (489) 297 (420) 69,930 (28,540)
 

Cooling Air - Out 16" Flanged (150 Ib) 70 (482) 365 (458) 59,820 (27,130)
 

Process Air - Out 4" Flanged (150 lb) 69 (476) 378 (465) 3,135 (1,422)
 

Fuel - In 2" Flanged (150 Ib) 71 (489) 376 (464) 403 ( 183)
 

Fuel - Out 2" Flanged (150 lb) 70 (482) 376 (464), 378 C 171)
 

Acid - In (4) 1/4" N/A N/A
 

Acid - Out (4), 1/4" N/A N/A
 

Electric Connections 	 * Vessel feedthrough, two
 

s Wire connections 4/0 avg stranded nickel-coated copper conductor
 

* Terminal AMP', Inc., 	Part No. 325609
 

Module Voltage 	 1070 (Operating)
 

1260 (Operating Limit)
 

1,440 (Open Circuit),
 

Module Current 	 351, amps,
 

Module Power 	 375 kW
 

Mlodul'e Heat Rate, 	 7540 BTU/kWh
 



3.7 FUEL CELL MATERIALS CHARACTERIZATION TESTING
 

There are many raw materials utilized in the manufacture of the repeating cell
 
components. This section addresses these cell components raw materials. Also,
 
evaluations and/or characterizations performed of these raw materials and
 
resultant cell components including chemical,-physical, mechanical, thermal,
 

electrical and corrosion behavior are described.
 

3.7.1 RAW MATERIAL SPECIFICATIONS
 

Eleven raw material Purchasing Department Specifications (PDS) were developed
 
and utilized for procurement purposes to manufacture the fuel cell repeating
 

components.. These specifications were prepared for the materials listed in
 

Table 3.7.1-1.
 

3.7.2 PLATE MATERIALS
 

This section summarizes effort conducted to evaluate the bipolar and cooling
 

plate materials.
 

3.7.2.1 PLATE FLATNESS
 

Initial bipolar plate molding efforts resulted in a complex curved surface.
 

The plates were generally concave toward the ribbed section at each of the gas
 
inlet and outlet regions (.see Figure 3.7.2-1) such that an "S"-edge profile
 

existed in the 31.4,cm (12.375 in.) direction.
 

The typical out of flatness was determined to be about 0.1 cm (0.04 in.) in the
 
as-pressed or molded condition. After heat treatment, this edge profile out of
 
flatness increased and ranged from 0.3 to 0.8 cm (0.12 to 0.32 in.); Inspec­

tion of plates heat treated in a short cycle revealed the occasional presence
 
of cracks through the thickness in the flow grooves-running parallel to the
 

31.4 cm edge. Plates heat treated using the other longer cycles have not shown
 
these cracks. The heat treated plates were essentially flat in the 44.1 cm
 

(17.375 in.) direction and no cracks were found in the grooves parallel to that
 

edge.
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TABLE 3.7.1-I
 

RAW MATERIAL SPECIFICATIONS
 

Mdterial-(Supplier and Grade)­

1. 	 ArtifiCial Graphite Powder
 
'(Asbury-A99)
 

2. 	 Platinum Catalyst
 
(Johnson Matthey-Type ERC)
 

3. 	 Phenolic Resin Powder
 
(Reichhold-29-703 Varcum)
 

4. 	 Carbon Black
 
(Cabot-Vulcan XC-72)
 

5. 	 rEP-Fluorocarbon Resin
 
(DuPont-Teflon 120)
 

6., 	 TFE-Fluorocarbon Resin
 
(DuPont'Teflon 30)
 

7., 	 TFE-Fluorocarbon Resin'Powder
 
(DuPont-Teflon 6C)
 

8. 	 Silicon Carbide Powder
 
'(Carborundum-l000 grit green)
 

9. 	 Carbon Sheet Material
 
(Stackpole-PC206)
 

10. 	 Hydrocarbon Solvent
 
(Guard-All Chem.-Shell Sol 340)
 

11. 	 Resin, Water Soluble Thickener
 
(Polyox WSR-301)
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Figure 3.7.2-1. Edge View of Five-Cell Group Test Configuration
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Flatness measurement of molded, heat treated cooler plates revealed the typical
 
"s"pattern in the 31.4 cm direction with an out of flatness of up to 0.35 cm
 

(0.13 in.). The curvature inthe 44.1 cm length is concave toward the "Tree"
 

pattern side with an out of flatness of up to 0.8 cm (0.32 in.). Also noted
 

was a pronounced rippled surface on the "Zee" side corresponding to the spacing
 

of the "Tree" grooves on the reverse side.
 

Water immersion density and its variation within the "Zee-Zee" heat treated
 

plates was determined for two molding cycles. Plate ZZ-8 molded using a
 

five-minute cycle showed very little density variation-throughout the plate.
 

Of the 18 locations evaluated, all were 1.77 g/cc with the exception of three,
 

and the lowest of these was 1.72 g/cc. Plate ZZ-77 molded using a two-minute
 

cycle resulted in a plate having slightly more density variation, ranging from
 

1.70 to 1.77 g/cc. The short cycle is, however, capable of producing
 

acceptable plates. Mercury intrusion porosity data on both molded flat and
 

"Zee-Zee" plates in the heat treated condition, presented in Table 3.7.2-1,
 

indicates the two geometries have generally similar pore characteristics.
 

A mechanical evaluation of the curvature in the molded/heat treated bipolar
 

plates was-performed. Various flattening type test configurations mere
 

conducted on dry mixed A99 graphite/resin plates to determine whether plates
 

having the typical large "S" curvatures could be flattened sufficiently for use
 

in cell stacks without cracking. Individual warped plates, without and with,
 

dry electrodes placed on each side of the plate, were flattenedbetween steel
 

compression plates to both a pre-selected final dimension and to a maximum load
 

of 345 kPa (50 psi). The results of these initial tests were inconsistent in
 

that some plates cracked while other did not. By considering the deformation
 

effects of t4he electrodes a simple test criteria was developed. A warped plate
 

would not fail in a stack, ifthe warped plate survived a compression test
 

between rigid plates to a flatness equivalent to the average plate thickness
 

plus 0.00762 cm (0.003 in). This test also indicated that the warped platelhad
 

a tendency to locally imprint on the electrode with the plate groove pattern,
 

as would be expected due to localized high contact loads. In an effort to
 

evaluate this effect and insure that warped plates could be loaded to,normai
 

stack loads, a five-cell stack was assembled. Machined cooler pilates, warped
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TABLE 3.7.2-1
 

PRELIMINARY POROSITY. DATA - BIPOLAR PLATES
 
(TEST TO 60,000 PSI MERCURY INTRUSION PRESSURE)
 

Pressed and Heat Treated
 

Property ZZ Plate Flat Plate
 

Void Volume (g/cc) 0.026-0.032 0.026-0.033
 

Pore Size Distribution Diameter (A) < 36-200 < 36 to 200
 

Surface Area (m2/g) 16.3 14.6-20.8
 

Bulk Density (Hg) (g/cm3) 1.835 1.911
 

Percent Porosity 5.94 5.89
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bipolar plates, and dry electrodes were loaded to 345 kPa (50 psi) while
 

recording load and deflection. This small test-unitoduplicates the five cell
 

unit which is used in larger stack arrangements.7 The general test configura­

tion used for the five cell unit is shown on Figure 3.7.2-2. Examination of
 

the bipolar plates after this test revea-led that only one plate cracked as a
 

result of this loading. All tests involving electrodes revealed a tendency to
 

locally imprint the electrode backing paper with the groove pattern. This
 

imprint effect was not consistent as to specific areas or intensity. This test
 

confirmed the inconsistent behavior of a curved bipolar plate when mechanically
 

flattened.
 

Based on the inconsistent results of these tests, it was concluded that
 

reliable cells and cell stacks could not be produced using plates having the
 

"S" curvatures produced using the plate molding technology developed'f6r
 

straight groove bipolar plates.
 

Major emphasis was placed on examination of processing parameters, raw material
 

evaluations, and heat treatment cycles to establish the reason for the large
 

out of flatness observed and to develop either alternate processing or materials
 

technology or a combination of these to produce an acceptable bipolar plate.
 

A number of different graphite/carbon materials were procured and evaluated.
 

These materials included Shawinigan Acetylene Black, Vulcan XC-72, A99 Regrind,
 

Airco Speer (-20p), Texas Wilmington Coke, POCO-PXB-5Q-325, and Stackpole
 

MF958. The various powders were processed into molded and heat treated plates
 

with varying degrees of success. The acetylene and carbon blacks are difficult
 

to process due to their bulk and fine particle size. They do produce flat
 

plates, but their use was discarded due to mixing,problems.
 

The regrind A99 powders in various mesh sizes produce essentially flat plates
 

with an out of flatness of about 0.08 cm (0.030 in.). The POCO and Stackpole
 

graphite powders likewise produce plates which-have similar out of flatness
 

values. The Airco Spear powder produced plates which have slightly less
 

curvature than the A99 powder but ismuch greater than the other materials
 

evaluated and thus marginal with regards to stacking behavior. The electrical
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resistivity and mercury porosimetry data for a number of the developmental
 

plates is presented inTables 3.7.2-2 and 3.7.2-3. The resistivity data
 

indicate that those plates which are relatively flat have resistivity ratios of
 

in-plane value to thickness value or vice versa that are about one (approxi­

mately 3.2 mfh-cm in both directions). The porosimetry data indicate that the
 

POCO and Stackpole powders result in plates having bulk densities approximately
 

equal to that of the A99 material, while the regrind A99 results in a plate
 

having a slightly lower bulk density of about 1.70 g/cc. The flatness results
 

together with the density and electrical resistivity indicate that several Of
 

the alternate materials are capable of producing a plate that is substantially
 

flatter than the A99 material and should be a satisfactory replacement.
 

Several other replacement graphite powders are currently being evaluated as
 

well as processing variations involving the forming of the prepressing from the
 

dry mix at high pressing pressures at ambient temperature or at a temperature
 

above ambient but lower than the final plate pressing temperature. These
 

additional process variations together with those materials already evaluated
 

indicate that acceptable plates can be produced. The powder availability in
 

terms of power plant required quantities and overall production cost will
 

dictate Which of the various materials and processing variations are chosen.
 

3.7.2.2 PLATE CORROSION
 

Post-mortem examinations of the cell components from five cell stack Z-O01
 

revealed the presence of localized but rather extensive corrosion on the
 

cathode side of several of the bipolar plates. This corrosion appears as a
 

localized softening of the plate process channel ribs. Analysis of the
 

corrosion residue and parent plates were performed to provide an understanding
 

ofthecorrosion mechanism and residue and to provide insight into possible'
 

approaches to minimizing or eliminating this corrosion. Included in the
 

analysis of the plates were optical microscopy, scanning electron microscopy, N
 

Methyl Pyrrolidone extraction, infrared spectrographic analysis of the extract,
 

thermogravimetric analysis of the materials, X-ray diffraction, and simulated
 

electrochemical corrosion of selected samples.
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TABLE 3.7.2-2
 

ELECTRICAL RESISTIVITY OF DEVELOPMENT PLATES
 

e(Thickness) e(Plane) Ratio Ratio 

Plate No. Powder (mQ-cm) (nf-cm) (eT/eP) (eP/eT) 

ZZ59 A99 6.09 1.40 4.35 0.23 
ZZ142 A99 Regrind 3.14 3.19 0.98 1.02 
ZZ170 A99 Regrind 3.16 3.03 1.04 0.96 
ZZ167 A99 Regrind 3.47 3.26 1.06 0.94 

ZZ144 Stackpole 2.26 2.05 1.10 0.90 

ZZ160 Poco 11.05(1) 3.22 3.43 0.29 
ZZ212 Poco 3.07 3.38 0.91 1.10 
ZZ219 Poco 3.11 3.59 0.87 1.15 
ZL283 Poco 3.21 3.95 1.09 0.92 

ZZ125 Shawinigan ND(2) 4.14 ND ND 
Acetylene 
Black 

ZZ132 Vulcan XC72R ND 3.88 ND ND 

ZZ256 Airco Spear 3.79 2.25 1.68 0.59 

ZZ257 Airco Spear 6.02 3.02 1.99 0.50 

(1)Value probably incorrect 
(2)Not determined. 
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TABLE 3.7.2-3
 

MERCURY POROSIMETRY DATA FOR DEVELOPMENT PLATES
 

Skeletal Bulk Specific Pore Specific Pore Porosity
 
Plate No. Powder Density Density Volume Suface Percent
 

(g/cc) (g/cc) (cc/g) (m /Ig)
 

ZZ59 A99 1.94, 1.93 1.86 0.022, 0.020 9.8, 9.4 4.1, 3.7
 

ZZ63 A99 1.95, 1.95 1.88, 1.87 0.021, 0.022 10.8, 10.3 3.9, 4.1
 

ZZI42 A99-Regrind 1.80, 1.80 1.69, 1.69 0.037, 0.036 16.0, 15.5 6.3, 6.1
 

ZZ167 A99-Regrind 1.83, 1.85 1.71, 1.70 0.038, 0.047 17.0, 15.0 6.5, 8.0
 

ZZ170 A99-Regrind 1.80 1.71 0.030 15.3 5.1
 

ZZ144 Stackpole 1.91, 1.91 1.86, 1.85 0.016, 0.015 8.7, 9.0 2.9, 2.9
 

ZZI60 POCO 1.,85 1.82 -0.011 5.6 2.0
 

ZZ219 PO00 1.84 1.80 0.012 9.8 2.2
 
ZZ283 POCO 1.86 1.83 0.007 3.8 1.3
 

ZZ256 Airco Spear 2.12 2.03 0.f020 11.4 4.2
 

ZZ257 Airco Spear 2.15 2.04 0,025 13.5 5.2
 



Optical metallography specimens from stack cell number three were washed to
 

remove the acid present, vacuum dried, vacuum impregnated with mounting resin
 

to support the corrosion residue, and polished for examination. These samples
 

revealed that the A99 graphite powder phase of the plate did not appear to be
 

corroded, but that the carbonized resin binder phase.was almost completely
 

removed in the corrosion areas. Also, the A99 graphite does not reveal any
 

apparent intercalation. Additional metallography on washed and dried samples
 

of the corrosion residue confirm that the appearance of this residue is
 

identical to-that of the A99 graphite powder used to produce the plates.
 

Evaluation of stack tested versus untested (from same production run) plates
 

reveal no major differences in either density, void volume or emission
 

spectrographic analysis, thus eliminating possible variation in processing from
 

plate to plate or within an individual plate as a major contributor to the
 

observed corr6sion.
 

Penetration of phosphoric acid into a corroded plate from stack Z-001 was
 

further examined using scanning electron microscopy (SEM) and energy dispersive
 

analysis (EDA). Samples prepared.,from the corroded'regions by fracturing
 

rather than sectioning and polishing revealed the presence of phosphoric acid
 

through the entire plate thickness in areas of heavy corrosion while at the
 

edge of corroded regions the presence of acid was detected only near the
 

cathode side of the plate.
 

N Methyl Pyrrol.idone extraction data for samples of stack Z-O01 corroded and
 

uncorroded plate material, as heat treated but untested plate material, as
 

cured plate material and pyrolyzed phenolic resin are given inTable 3.7.2-4.
 

These data indicate that the material heattreated to 9000C still contains some
 

organic material after this heat treatment. Additional confirmation of this is
 

provided by the TGA data giVen in Table 3.7.2-5. These-data revaal that both
 
the heat treated plate material and resin were not completely converted to
 

carbon by the 9000C heat treatment cycle, but still contain material which can
 

be pyrolyzed by either higher temperature or for longer hold times at 900°%.
 

Additional TGA and N Methyl Pyrrolidone extractions were performed on flat
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TABLE 3.7.2-4
 
SOLVENT EXTRACTION AND INFRARED SPECTROGRAPHIC DATA
 

SampleIdentification 


Z-0O01, soft torroded(2) plate area 


Z-O01, solid uncorroded(2 )-plate area 


NR53, heat treated but not tested in stack 


As-cured plate. Sum of two extractions. 

(Plate 	N6. 3417) 


,A 	 Pyr6lyzedj phbholic resin (29-708) 

60 second§ as 9000C 


(1)N Mtyl Pyrrolidone 

(2)Water washed'And died pridr to extrabtibn.
 

NMP, Percent
 
Extradtablet1) 


7.59 


6.00 


3..33 


1.03 


24 


Infrared Spectrum
 

Some type of organic
 
mateti aT. 

Same spectrum as above.
 

Same spectrum as above.
 

Organic material, but
 
different from the extratt
 
found in heat treated plates,
 

Organic material same as
 
found in extract from
 
astuted platesg
 



TABLE 3.7.2-5 

PLATE/MATERIAL THERMOGRAVIMETRIC ANALYSIS 

Material or Plate Identification 2500C 5000C 7500C 9000C 10000C 

Z-001, soft(l) corroded area 

NR53, heat treated untested plate 

Phenolic Resin, 29-703 

0.5 

0.3 

5.25 

0.75 

0.3 

23.0 

1.25 

0.6 

45.0 

2.5 

2.0 

47.5 

5.5 

4.0 

51.5 

(I) Sample washed several times in water and dried before analysis. 
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plate samples of 70 wt percent A99 graphite/30 wt percent 29-703 resin. These
 

samples were heat treated at temperatures of 900, 1200, 1600, 2300, and
 
2700°C. The 1200 and 16000C samples revealed the presence of an extractable
 

organic residue while those heated to 2300 and 2700°C did not. The TGA data at
 

1000C indicated that the samples previously heat treated up to 1200°C showed a
 

weight loss of about 2.7 percent, a weight loss of about 1.5 percent at 1600'C,
 
a weight loss of about one percent at 23000C. It should be noted that weight
 

losses of approximately one percent are most likely associated with the
 

presence of absorbed moisture during sample storage prior to performing the
 

TGA. Combination of the TGA and NMP extraction data leads to the conclusion
 

that the 900°C heat treatment does not completely pyrolyze the resinphase and
 

that a higher heat treatment temperature is required if only a carbon residue
 

(from the resin,phase) is to be obtained in the heat treated plate. An
 

alternate to the higher heat treatment temperature may be longer residence time
 

at a lower temperature.
 

X-ray diffraction data obtained on the A99 graphite powder used in plate
 

manufacture, samples of corrosion product, and various heat treated plate
 

samples are presented in Table 3.7.2-6. The C-interplanar spacing ranges from
 

6.734 to 6.754 angstoms. While the data range is larger than anticipated for
 

this graphite, it is typical of the range generally found' i'n a manufactured
 

graphite and does not suggest that intercalation of the A99 graphite phase is
 

occurring during the corrosion process. In addition, the data indicate that
 

heat treatment of the plate material over the temperature range of 900% to
 

2700% does not change the C-interplanar spacing, indicating the stability of
 

the A99 graphite over that range of temperature.
 

With the exception of one plate (Cell 7) from stack W009-02, post-mortem 

examination of plates from,a number,of recently tested cell' stacks,,, has failed, 

to reveal the presence of corrosion. In several of these, stacks, intentional 

"defects" or abnormalities were included' in an effort to cause corrosion to 

selectively occur. The one pliate from stack W009-02 reveal'ed the presence of 

minor corrosion on the cathode side in several, locations., Metallographic 

examinations of these regions, revealed the same type of residue previously 
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TABLE 3.7.2-6
 
X-RAY DIFFRACTION OF GRAPHITE POWDER AND PLATE MATERIAL
 

Material C/2, A C, A 

A99 Powder 3.367 6.734 

Corrosion Residue 3.37 6.74 

Plate - 900C H.T. (AESD) 3.37 6.74 

Plate - 900C H.T. (ERC) 3.377 6.754 

Plate - 2700C H.T. (ERC) 3.377 6.754 

Natural Flake Graphite(l) 3.359 6.719 

KC Graphite 3.359 6.718 

(I)Data from R. E. Nightingale, "Nuclear Graphite," Academic Press, 1962.
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described for stack Z-001; 6amely A99 graphite particles with the carbonized
 

resin phase either completely removed or almost completely removed in the
 

region showing the greatest attack. In areas adjacent to the soft regions, the
 

early stages of corrosion were detected. Ih these areas, the resin residue
 

phase revealed initiai attack on and near the surface but had not been
 

completely removed, and thus still provided skeletal support for the A99
 

particles.
 

Based on post-mortem examination of plate corrosion, its occurrence requires
 

the presence of acid at the cathode plate face and an ionic path to the anode.
 

Once this is established corrosion may occur, the rate being dependent on the
 

acid concentration at the cathode graphite surface. The most likely sequence
 

of the plate attack isthe selective corrosion of resin phase progressing from
 

the surface into the plate thickness.
 

3.7.3 SEAL MATERIALS
 

The stack design relies on effective edge cell-to-cell seals as well as
 

manifold-to-stack seals. Seal tests were conducted to simulate the seal
 

configuration planned for the 10 and 25 kW stacks. The materials selected and.
 

tested are based on several specific parameters such as: gas sealability,
 

structural stiffness, acid corrosion resistance, compression set, and stability
 

at 2000C. The commercial availability of stock sheet forms is an important
 

consideration, therefore, the thickness of samples tested are not necessarily
 

the thickness for the stack application. Generally, gas sealability,
 

structural stiffness, short term compression set and operating temperature
 

stability parameters are exhibited via a sealing test at ambient temperature
 

and 200'C. The general seal test configuration is shown on Figure 3.7.2-2. A
 

flowmeter, capable of detecting flow rates as low as 0.003 cc/min (air), is
 

placed in series with the gas inlet to provide a more quantitative measure of
 

seal leakage. The testing was done on a stack of five or six picture frame
 

seals attached to heat treated 10 x 10 cm (4 x 4 inch) graphite/resin plates or
 

one surface with Viton cement. A linear variable displacement transducer
 

(LVDT) is used to define the seal displacement as a function of time. The load
 

and displacement values are recorded continuously on a strip recorder to
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evaluate the structural characteristics. Dry nitrogen gas was used to
 
internally pressurize the seal stack to either 7.6 kPa (I psi) or 34.5 kPa
 

(5 psi). Usually, two stacks were used to evaluate the ambient temperature and
 

operating temperature (2000C) conditions. Table 3.7.3-1 tabulates the seal
 

leakage rates for seal materials tested.
 

Evaluation of two candidate cell-to-cell fluorelastomer seal materials was
 
completed, namely IER-SV811-3 (24 Shore A, hardness) Viton sponge, 0.32 cm
 
(0.125 inch) thick and Pelmor, PLV-10059 (60 durometer) solid Viton 0.14 cm
 
(0.055 inch) thick. Structural stiffness and seal (leakage behavior were
 

evaluated for the Viton sponge at ambient temperature and 200'C (3950F) for
 
seal deflections of approximately 32, 50 and- 68 percent. The leakage
 

characteristics were determined to be acceptable at both temperatures and for
 
the range of deflections examined for the sponge material. The 32 and 68
 

percent compressive strain values represent the extremes of the seal com­
pression requirements based on dimensional variations inthe repeating cell
 

components. The results at ambient temperatures indicate non-linear
 

compression stress versus seal strain characteristics over the compression
 

range tested. This non-linear curve is evident on Figures 3.7.3-1 and 3.7.3-2
 

for the 32 percent and 50 percent strain curves, respectively. These curves
 

also indicate ambient temperature and operating temperature stress-versus­

strain curves. Figure 3.7.3-2 indicates a relatively linear curve over the
 

range of loading. A low modulus of elasticity value of 496.4 kPa (72.0 psi) is
 

obtainea for this load/strain range. This low modulus is also exhibited in
 

Figure 3.7.3-2 over the same load/strain range, however the curve increases
 

sharply between 30 to 50 percent strain. A modulus of elasticity of 1544 kPa
 

(224.0 psi) was calculated for this strain region. These figures also show a
 
significant permanent set after being heated to the operating temperature of
 

2000C. The sponge material, when compressed and heated up to operating
 
temperature, softens and condenses into a solid material. When this material
 

densifies to a solid, additional loading indicates a significant increase in
 

load for a small displacement (i.e., the modulus of elasticity increases). The
 

ambient temperature modulus of elasticity values, which were calculated after
 

being tested at 200'C, are 2.804 MPa (406.8 psi) and 11.473 MPa (1664.0 psi)
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Material 


Viton Sponge (0.32 cm,
 
IER-SV811-3, 

25 Shore A, hardness) 


Viton Sponge, (0.32 cm, 

IER-SV811-3) 


Viton, Sponge (0.32 cm, 

IERSV811.-3): 


V.iton Sponge (0'.32 cm',, 
IER-SV81,1,-3") 

Viton. Sponge (6.,32 cm,, 
IERSV,8:l'l -3)' 

TABLE'3.7.3-1
 

CELL-TO-CELL SEAL TEST CONFIGURATION AND MATERIALS
 

(Seal Width = 0.5 cm, Nominal 9.27'cmx 9.78 cm Picture Frame)
 

Test Temp. Leakage (Nitrogen Gas Pressure) Compressive Stress on
 
0C 7.6 kPa (1.1 psi) 34.5 kPa (5 psi) Seal Area (kPa,)
 

20 1.5%/min 3.0%/min: 	 684.6,
 
(or 60% strain),
 

20 None, None 	 137.8
 
(or 32% strain)
 

20 None None. 	 351.6
 
(or 50% strain)
 

2Q None None 	 2347.6
 
(or 68%, strai,n) 

200 None None 	 at 32, 50 to 68% 
strain values 



19GTS iii i 24 

Seal Width = 0 2 in. (0.508 cm) 2 

2Seal Area = 3 0 in.
2 (19.5 cm ) I 

1399 Seal Total Thicknes Original = 0.563 in. (1.43 cm) 20 

0 Cycle 1 (Before Thernal Cycle)
 
A Cycle 2 (Before Thermal Cycle @392-F) t
 

110.3 0 Cycl 3 (After 30 Hr.. @ 392oF) 16 

827 12.°At. / 
/E
 

552 8 

27.6 r4 

0 0 
0 in i 25 30 45 50 55 

Viton Sponge Seal Strain (xlO 2 nJn. or cmr/crn) 

707015-7 

Figure 3.7.3-1. Compressive Stress Versus Seal Strain for Viton Sponge/Viton
 
Cement at Ambient Temperature Before and After Thermal Cycle
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482.3 70 

60413.6 -	 Seal Width = 0.508 cm (0.2 in.)
2

Seal Area = 18.77 cm (2.91 in.2 )
 

Seal Total Thickness = 1.663 cm (0.665 in.)
Cycle"1 

I0 Ambient Temperature 
344.7 	 - - Cycle 2 50 

A Cycle 3-2000 C (3920 F) 

0 Cycle 4- Amtbient TemperatureI 

40275.7 

0 	 A
3Ea206.8 


T137.9 	 0 

68.9 	 10 

0 	 0 
0 10 20 30 40 50 60 70 

Viton Sponge Seal Strain (x10-2 in./in. or X10-2 cm/cm) 

707015-BA 

Figure 3.7.3-2. 	Compressive Stress Versus Seal Strain for Viton Sponge/Viton
 
Cement at Both Ambient and Operating Temperature Conditions
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for the 32 percent and 50 percent cases, respectively. These curves also
 
indicate that after being exposed to the 200 0C temperature, the resilience or
 
compliance of the material is significantly reduced. This is evident via the
 
large change in load over a small strain value. -An additional test was
 
performed usinga new seal stack and loaded to obtain 68 percent compression of
 
the seals. This test also indicated nonlinear characteristics with tangent
 
modulus of elasticity values in the high strain range of 25.5 MPa (3700 psi).
 

This modulus value -isconsiderably higher than that obtained for a solid Viton
 

sample of 50 durometer hardware.
 

The Pelmor Viton seal material wa tested in a five unit test stack at ambient
 

temperature to determine structural characteristics. Two loading cycles were
 
performed to define the modulus of elasticity value. This material gives a
 

relatively linear compressive stress versus strain curve over the range of 0 to
 
2070 kPa (0-300 psi) and a 2070 kPa (300 psi) compression stress produced a
 

23 percent strain- as shown on Figure 3.7.3-3. The chord modulus of elasticity
 
was 9.51 MPa (1380 psi) which is about 28 percent greater than that previously
 

determined for a 50 durometer Viton material.
 

As previously discussed, the amount of compression set and temperature
 
stability at operating temperature are key parameters which must be verified'.!
 
The first long-term high temperature evaluation of Viton seal materials was
 
completed using.,Precision Rubber Viton Compound 19356. 'Thetest unit was
 
assembled with only one set of Viton seals attached with Viton cement on one
 

surface. The unit was compressed 30 percent at ambient temperature. The
 
measured modulus of elasticity was 9.88 MPa (1433 psi). Belleville spring
 

washers were placed under the head of each bolt in order to maintain a constant
 
load on the test unit. The assembly was heated to 190'C (375F) for 2500
 

hours, then unloaded, measured, and recompressed at ambient temperature to
 
determine the change in modulus and permanent compressive set. A comparison
 

with initial loading curves indicates the ambient temperature modulus increased
 
by a factor of 1.82 to a value of 17.96 MPa (2600 psi) and the dimensional
 

changes indicated an 81 percent compression set after 2500 hours. This
 
compression set is slightly higher than published data would indicate.
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A number of screening tests were run on potential fluorelastomer cell seal
 

materials at 200°C (3950F) in 100 w/o H3PO4 for durations of at least
 

500 hours, without applied potential. The visual observations of the materials
 

are given inTable 3.7.3-2. With the exception of the Kalrez, most of the
 

specimens showed minor reaction with the acid in that they were slightly
 

discolored and the Viton samples revealed some swelling and acid pick up. The
 

Kalrez showed no acid attack, swelling or embrittlement. The acid reaction
 

with the other materials may or may not represent a potential source of cell
 

contamination.
 

3.7.4 ELECTRODE MATERIALS
 

Characterization of the dimensional (thickness) and weight variation of
 

electrode components utilized in the construction of stacks DG-001, Z-00l and
 

Z-002 plus five lots each of standard production anodes and cathodes was
 

compiled for analysis of variation and cause of this variation. The data
 

indicated a rather large variation in final thickness and weight, thickness
 

varied by up to 0.1 mm (0.004 in.) in an individual electrode and the average
 

final thickness varied by up to 0.125 mm (0.005 in.) from electrode to
 

electrode. This thickness variation results in corresponding weight varia­

tions. The principle cause of this thickness variation is the variability of
 

the backing paper (PC-206) as received from the vendor. This material is used
 

to support the rolled catalyst layer plus the SiC layer in the case of
 

cathodes. Initial variability of this paper is reflected throughout electrode
 

processing and in the final product. Evaluation of individual backing paper
 

sheets indicates thickness variation within a sheet of material of up to
 

0.125 mm (0.005 in.) and about the some range of variation from sheet to sheet
 

in a vendor supplied lot of material. At present, the only solution to thi.s
 

problem is an inspection of each sheet of material for average thickness to
 

eliminate these sheets having extreme thickness variation. Alternate suppliers
 

are being evaluated to determine if their products are more uniform and can
 

provide an alternate backing paper or replacement for the PC-206 material.
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TABLE 3.7.3-2
 

ELASTOMER ACID COMPATIBILITY SCREENING TEST DATA
 

Material Comments
 

Kel-F, 06-3655 Minor acid discoloration.
 
0.15 cm (0.060 in.) thick No apparent embrittlement.
 

Viton solid, PLV-lO059, No. 58 Minor acid discoloration.
 
Viton solid, PIV-l0059, No. 53 No apparent embrittlement.
 
0.15 cm (0.060 in.) thick Some swelling and acid pickup.
 

Viton sponge, IER SV811-3 Minor acid discoloration.
 
0.32 cm (0.125 in.) thick No apparent embrittlement.
 

Some swelling and acid pickup.
 

Fluorel, FC 2181 Slight acid discoloration.
 
Fluorel, FC 2330 No apparent embrittlement.'
 
0.15 cm (0.060 in.) thick
 

Kalrez, K00506, No. 1058 No acid attack.
 
0.15 cm (0.060 in.) thick No apparent embrittlement or swelling.
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3.7.4.1 CATALYST
 

A large lot of catalyst (18 kgs) referred to as Lot 3 procured for production
 

of nine-cell stack electrodes was received but inspection revealed the presence
 

of contamination in the form of large foreign particles (up to 0.3 cm) such as
 

glass, ceramic, wood and other debris. This material was rejected and returned
 

to the vendor and rejected a number of times.
 

Radiography of finished electrodes was performed initially to determine if it
 

could be used as a means of assessing variability within a finished electrode.
 

It was performed using a Faxitron unit at 70 kV, ultrafine grain film (Kodak
 

Industrex R) and without intensifying screens. Initial results did not
 

indicate electrode variability, but did indicate the presence of numerous small
 

high density particles (hundreds per electrode layer) scattered throughout the
 

catalyst layer. Particles ranged in diameter from a few hundredths of a
 

millimeter up to 0.75 mm. SEM and EDA analysis of these particles left in the
 

original electrode layer indicated trace amounts of iron and nickel as well as
 

platinum and sulfur as expected. To obtain a more definitive analysis of the
 

dense particles, several of the larger ones were removed from the catalysed
 

layer for EDA examination. The analysis indicated that the particles were high
 

in iron with varying amounts of chromium and nickel present. At this time no
 

definite conclusions can be drawn concerning the source of the particles or
 

their effect on electrode performance.
 

Chemical analysis of Lot 3 catalyst together with that of previously used Lot
 

No. 1 catalyst, Vulcan XC-72 support, finished cathode layer from Lot No. 1
 

catalyst and ERC cathode are given in Table 3.7.4-1. As expected, these
 

spectrographic analyses indicate higher Fe, Cr and Ni in the catalyst and
 

finished electrodes than in the Vulcan XC-72. In addition, the emission
 

spectrography indicated the presence of palladium. The increase in the foreign
 

elements are presently thought to be associated with operations performed by
 

the catalyst vendor. The palladium accounts for 1.09 percent of the total
 

platinum present in Lot 1 catalyst and 0.54 percent of the platinum present in
 

Lot 3 catalyst. The overcheck of platinum loading in finished cathodes was
 

determined by both wet chemistry and X-ray fluorescence. The data given in
 



EMISSION SPECTROGRAPHIC 

TABLE 3.7.4-1 

ANALYSES OF ELECTRODE LAYERS, CATALYST AND CATALYST SUPPORT MATERIAL 

ERC Cathode Layer 

AESD Cathode Layer 

Vulcan XC-72, P.O. 65499 

Lot No. 1 Catalyst P.O. 56742 

Lot No. 3 Catalyst P.O. 64723 

Al 

.02 

.04 

.02 

.01 

.02 

Ag 

.003 

.0001 

k.0001 

<.0001 

<.0001 

B 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

Be 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

Bi 

<.001 

<.001 

<.001 

<.001 

<.001 

Ca 

.03 

.02 

.02 

.001 

.001 

Cd 

<.003 

<.003 

<.003 

<.003 

<.003 

Co 

<.001 

<.001 

<.001 

<.001 

<.001 

Cr 

.002 

.001 
<.001 

<.001 

.01 

Cu 

.003 

.003 

.0001 

.0004 

.0008 

Fe 

.03 

.06 

.003 

.01 

.03 

Ga 

<.0005 

<.0005 

<.0005 

<.0005 

<.0005 

Ge 

<.0005 

<.0005 

<.0005 

<.0005 

<.0005 

F" ERC Cathode 

AESD Cathode 

Vulcan C72 

Lot No. I Catalyst 

Lot No. 3 Catalyst 

La 

-

-

-

-

-

Mg 

.01 
.01 
.01 
.0003 

.0003 

Mn 

.0002 

.001 
<.0001 

.0001 

.002 

Mo 

<.001 

<.001 

<.001 

<.001 

<.001 

Nb 

<.003 

<.003 

<.003 

<.003 

<.003 

Ni 

.002 

.003 

<.001 

.,002 

.01 

P 

<.005 
<.005 

<.005 

<.605 

<.005 

Pb 

<.002 
<.002 

<.002 

<.002 

<.002 

Sb 

<.002 
<.002 

<.002 

<.002 

<.002 

Si 

>1 
.05 

.03 

.01 

.03 

Sn 

<.001 
<.001 

<.001 

<.001 

<.001 

Ti V W Zn Zr 

ERC Cathode 

AES. Cathode 

Vulcan XC-72 

Lot No. 1 Catalyst 

Lqt No. a qataly'st 

.093 

.008 

.001 
<,001 
OQ3, 

.003 

.003 

<.0001, 
.001 

.008 

-

-

-

-

-

.001 

.001 

<.OOl 

<.001 

<.001 

<.001 
<.001 

<.001 

<.QO 

<.001 



Table 3.7.4-2 indicate fair agreement between the two methods, but do not
 

indicate acceptable agreement between the calculated and measured platinum
 

loadings. Additional work is'required to resolve this difference. Analyses
 

performed on the support and catalysed support are given in Table 3.7.4-3,
 

including sulfur, pH and surface area of the catalyst.
 

The performance of Lot No. 3 catalyst in subscale tests is reported in Section
 

3.1.5.
 

3.7.4.2 SILICON CARBIDE
 

The processing formulation utilized to apply the silicon carbide layer was
 

altered to incorporate the use of viscosity control for the Polyox WSR-301
 

(polyethylene oxide homopolymer) water solution and the SiC slurry which is
 

roller bar coated on the cathode. Previously this was done based on
 

controlling the weight of constituents used in formulation of the mix and not
 

on measured viscosity. The previous SiC coating, while giving reasonably good
 

performance, was variable in integrity on the electrode; they frequently were
 

susceptible to cracking and spalling. The bubble pressure of this previous SiC
 

layer as measured using a modified stainless steel Gelman in-line filter (47 mm
 

diameter) gave results which ranged from 110 to 186 kPa (16 to 27 psig). The
 

SiC layer was float filled for 15 minutes inrulO0 w/o H3PO4 prior to
 

oubble pressure measurement using helium.
 

The revised processing using a controlled Polyox viscosity produced electrodes
 

with heat treated SiC layers which were adherent and did not show layer cracks
 
or spalling. The bubble pressure of these layers ranged from 91 to 136 kPa (13
 

to 19.5 psig). While slightly lower than the earlier coatings, these bubble
 

pressures are considered acceptable based on current design requirements.
 

Porosity of this revised process SiC coating was determined for two thickness
 

[using 0.18 mm (0.007 in.) and 0.25 mm (0.010 in.) shims]. The porosity for the
 

thinner material ranged from 55 to 58 percent (averaging 56.3 percent) while the
 

thicker material ranged from 56 to 59 percent (averaging 57.7 percent). These
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TABLE 3.7.4-2
 
PLATINUM ANALYSIS OF CATHODES
 

Cathode Calculated Pt Analyzed Pt Analyzed Pt.
Identification 
 mg/cm2 wt. chem. mg/cm2 X-ray Fluorescence, mg/cm2
 

ERC-Typical 
 0.50 to 0.55 0.50 
 u0.44
 
Production Cathode
 

AESD-C-055-1 
 0.43 
 0.32 
 % 0.37 



TABLE 3.7.4-3
 

MISCELLANEOUS EVALUATIONS OF CATALYST AND SUPPORT
 

Weight Percentage
 
Material of Sulfur pH Surface Area, m2/g
 

Vulcan XC-72 1.4 6.8 217.2
 

Lot No. 1 Catalyst 1.0 4.5 209.5
 

Lot No. 3 Catalyst 1.0, 1.] 5.0 198.3
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data indicate a relatively small spread in the porosity and are similar to the
 

average value of 58.8 percent previously reported for the old mixing process.
 

It was determined that the viscosity of Polyox WSR-301 solutions were not in
 

agreement with typical vendor data. Limitation in shelf life of old material
 

as well as a rather wide range in as supplied viscosity (depending on the
 
degree of polymerization of the production lot) became apparent, see Figure
 

3.7.4-1. A more recent shipment of this material contains a stabilizer and the
 

shelf life now used is suggested to be at least six months.
 

The resin solutions are non-Newtonian in that the viscosity varies with the
 

shear rate. Thus in measuring the viscosity, the method used to measure it can
 

influence the results especially in the higher Polyox concentration ranges.
 

Figure 3.7.4-2 shows Union Carbide (using a Brookfield Viscosimeter, No. 1
 
spindle at 2 rpm) compared to AESO (National Instrument Co., Dip-N-Read Model
 

VT-02, Rotor No. 3 at 62.5 rpm) solution concentration of resin versus solution
 

viscosity results.
 

The acid wicking rate of the SiC layer produced by the previous procedure was
 

evaluated and the rate and acid-content are 4.1 mm/hr. This is substantially
 
higher than that of the MAT-l material, suggesting that the principle lateral
 

acid transport layer is the SiC. While the presently formulated material has
 

not been evaluated, based on the porosity data, it should be quite similar to
 

previous material.
 

3.7.4.3 AMMONIUM BICARBONATE
 

A series of experiments were initiated to characterize the particle size and
 

distribution of the ammonium bicarbonate utilized in electrode manufacture.
 

The grinding of this material in production is done in Shell Sol. 340. It was.
 

noted that the ground powder once dried is unitable and decomposes relatively
 

quickly at ambient temperature. Thus, dry techniques for particle analysis
 

cannot be utilized. The only reliable techniques for particle analysis that
 

seem practical are wet techniques using a fluid such as alcohol, which does not
 

reactwith the ammonium bicarbonate. Samples were prepared using anhydrous
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Figure 3.7.4-1 Solution Viscosity Versus Concentration Polyox WSR-301
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200-proof ethyl alcohol to remove the Shell Sol 340 and for storage to prevent
 

decomposition of the fine particles. This technique of specimen storage
 

appears satisfactory although the tendency for the bicarbonate particles to
 

agglomerate during storage in the alcohol was noted. The use of alcohol should
 

permit particle size analysis using techniques such as Microtrac or Coulter
 

Counter.
 

3.7.4.4 BACKING PAPER
 

Mercury porosimetry of typical wet proofed backing paper samples and its
 

reproducibility inone sheet were determined.' These data are given in Table
 

3.7.4:-4 and typical pore volume versus intrusion pressure (pore radius) curves
 

are given inFigure 3.7.4-3.
 

To determine the effect of compressive stress on the electrical resistance of
 

Teflon impregnated (40 w/o) electrode backing paper, a ten high stack of 7.6 cm
 

square backing paper samples were cyclically compressed up to 690 kPa (100 psi)
 

between gold plated flat end contact plates. While the resistance values
 

presented in Table 3.7.4-5 include the sheet to.sheet contact resistance of the
 

paper, contact resistance to the end plates and change in-resistance within
 

each sheet of material due to compaction, the data are felt to reflect the
 

relative resistance behavior of this electrode component in cell stacks. Under
 

compressive stresses above about 207 kPa (30 psi), the resistance of the stack
 

shows only a minor decrease-with increasing stress and relatively small changes
 

upon multiple loadings. These data suggest that the Teflon layer on the
 

boiling paper fibers is not being damaged by imposition of this stress level. or
 

by limited cycling.
 

3.7.5 MATRIX MATERIALS
 

Two types of conventional MAT-l material were evaluated, the older reference
 

material made by mixing in a Ross Blender, limited to about 16 sheets- (full
 

cell size) per mix and the second more rec6nt type mixed in a Schold Mixer
 

capable of producing approximately 100 full size sheets per mix. The reason
 

for making this process change is economics of MAT-l production. MAT-l
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TABLE 3.7.4-4 

BACKING PAPER MERCURY POROSIMETRY DATA 

Material Specific Pore 
Volume, cc/g 

Specific Pore 
Surface, m2/g 

Test Pressure 
Range (kPa) 

C-034-4-BPI 

C-034-4-BP2 

C-034-4-BP3 

C-014-2-BP 

0.92 

0.91 

0.94 

1.09 

0.19 

0.20 

0.22 

0.23 

0-16.5 

0-16.5 

0-16.5 

0-16.5 
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Figure 3.7.4-3. 	 Pore Distribution Versus Mercury Intrusion Pressure
 

for Wet Proofed Backing Paper
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TABLE 3.7.4-5
 
ELECTRICAL RESISTANCE OF COMPRESSIVELY LOADED TEFLON BACKING PAPER (40 wt. percent Teflon)
 

Resistance, Mill'iohms
 

Stress Cycle I Cycle 2 Cycle 3 Cycle 4
 
ka psi Loading Unloading Loading Unloading Loading, Unloading Loading Unloading
 

69 10 27.0 12,5 16.5 11.0 14.0 10.2 13.5 10.0 
138 20 17.5 8.7 11.0 7.7 9.4 7.3 8.8 7.0 
207 30 23.0 7.4 8.4 6.6 7.6 6.2 7.4 6.0 
276 40 10.5 6.7 7.4 6.0 6.7 5.7 6.5 5.6 
345 50 9.0 6.3 6.6 5.7 6.2 5.4 5.9 5.2 
414 60 8.0 6.1 6.3 5.5 5.7 5.2 5.5 5.1 

,t 483 70 7.5 6.0 5.9 5.4 5.5 5.1 5.3 4.9 
552 80 6.7 5.9 5.7 5.3 5.3 5.1 5.1 4.9 
621 90 6.4 5.9 5.5 5.3 5.2 5.1 5.0 4.9 
690 100 6.0, 5.9 5.4 5.3 5.1 5.1 4.9 4.9 



material proauced in the Schold Mixer were evaluated after mixing two different
 

'times; Exp-002-2-2 was mixed for seven minutes and Exp-002-3-1 was mixed for
 

ten minutes.-


Characterization data for-the two types of MAT-I indicate that the materials
 

are quite similar. The minor differences which were found are considered to be
 

within the acceptable limits for the MAT-I material. 'Wicking rate and-acid
 

content of the material is presented inTable 3.7.5-1, mercury poro imetry data
 

is given in Table 3.7.5-2 and the reactive helium flow rate versus pressure
 

differential for dry matrix material is shown in Figure 3.7.5-1. These.data
 

substantiate the above conclusions regarding differences in the two materials.
 

The bubble pressure determined with helium and using a modified stainless steel
 

Gelman in-line filter (47 mm dia) on float filled material (15 min. in 100 w/o
 

H3PO4 at ambient temperature) was 345 kPa (50 psig) or greater for the
 

reference material (M043-15 and 16), 296.5 to 324 kPa (43 to 47 psig) for
 

Exp-002-2-2 material and 338 to 345 kPa (49 to >50 psig) for Exp-002-3-1.
 

A second process change, the addition of a second heat treatment of thejiatrix
 

to eliminate possible impurity residues left from the Shell Sol 340, was
 

briefly evaluated. Since it was felt that only minor changes, likely
 

undetectable, would result from this additional heat treatment, detailed
 

characterization was not performed. However, the material was tested in and
 

compared with the reference material' in subscale ambient pressure cell tests.
 

No differences in performance attributable to the added heat treat process
 

difference were found.
 

Evaluation of a replacement for the MAT-I material having the capability for
 

increased lateral acid transport was initiated. The replacement materials
 

being considered are Stackpole PC-206, Kureha E715, Kureha CP-B-40 and Pfizer
 

FD-33 carbon or graphite papers. As shown in Table 3.7.5-1, all except the
 

Kureha CP-B-40 material have vertical acid wicking rates about 20 times that of
 

the MAT-l material and acid storage capabilities either equal to or greater
 

than the MAT-I. Due to the relatively large pore size of these materials they
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TABLE 3.7.5-1 

WICKING RATE AND ACID CONTENT OF MATRIX MATERIALS 

ThThkicness Average Wicking Rate Acisd Content 
Material (mm), ,mm/hrj (mf (,cid)/cm2 ) 

Reference Matrix 0.28 1.02 0})178 
(M043-I 5")' 

'New 'Matrix. 0.27 1.00 D.9,068 
'(Exp-002-2-2)
 

iNew Matrix 0.26 1.04 O1.94 
'('Exp-002-3-l) 

Kureha -Graphite 0,.44 22.3 .O;Q224 
Paper E71 5, 

Kureha ,Carbon -0,,.,33 0.95 0,-Q31
Paper CP-B-4O 

St adkpole ;Graphite D0.43 37.2 '0.t0292 
.Paper PC-206 

,Pfizer 'Carbon. '0,.34 20,.2 0110,0 
'Paper :FD-33 
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Material 


R~ference Matrix 


M-043-16 


Reference Matrix 


M-043-15 


New Matrix 


Exp-002-2-2 


New Matrix 


Exp-002-3-1
 

TABLE 3.7.5-2 

MERCURY POROSIMETRY DATA FOR MATRIX MATERIALS 

Skeletal Bulk Specific Pore Specific P2re Median Pore Porosity 

Density-(g/cc) Density (g/cc) Volume (g/cc) Surface (m /g) Dia (Angstroms) (%) 

1.73 0.44 1.703 99.4 440-550 74.6 

1.70 0.43 1.746 109.9 440-550 74.8 

1.74 0.43 1.760 104.0 440-550 75.4 

1.74 0.43 1.735 99.0 440-550 75.1 

1.76 0.40 1.913 105.1 440-600 77.1 

1.70 0.40 1.910 102.6 440-600 76.4 

1.81 0.41 1.862 101.4 440-550 77.1 
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Figure 3.7.5-1. 	 Relative Flow Rate Versus Pressure for Dry
 

Matrix Materials
 

3.116 



should exhibit very low bubble pressures and thus the SiC layer on the cathode
 

must provide the gas separation interface in the cell structure. Acid
 

corrosion (100 w/o) with no imposed potential was evaluated for these materials
 

and they were found to be stable for times of 500 hours or greater. Two of the
 

materials were tested in subscale tests; namely PC-206 and Kureha E715. The
 

cell performance of these materials at ambient pressure were presented in
 

'Section 3.1.5.
 

3.7.6 OTHER STACK MATERIALS
 

3.7.6.1 CURRENT COLLECTORS
 

Evaluation of plated current collectors was completed. The contact resistance
 

data after approximately 900 hours of 2000 C exposure in air for gold and nickel
 

plus gold platings are given in Table 3.7.6-1. The superiority of the duplex
 

plating is apparent, increasing only from 0.75 ma to 1.5 ma as a result of
 

the thermal exposure. While duplex plating greatly reduces the current
 

collector oxidation, its adequacy in the presence of acid from spills, etc. has
 

yet to be demonstrated.
 

3.7.6.2 PLATE BRIDGES
 

A series of tests was initiated to evaluate thin bridge members to prevent the
 

collapse of the cell electrodes backed by fluorelastomer (Viton) seals in the
 

areas of gas inlet and outlet flow channels of the "Zee" bipolar p.late geo­

metry. When loaded, the compressible Viton seal backing causes the electrode
 

(anode or cathode) to be forced into the gas flow channels, locally fracturing
 

the electrode and blocking the flow groove inthe plate. To correct this
 

problem, a thin, rigid member between the electrode and the plate grooves was
 

examined. The test configuration is shown inFigure 3.7.6-1. Materials
 
evaluated for the rigid bridge members are given inTable 3.7.6-2, and the
 

results of load versus deformation data are given inTable 3.7.6-3. The
 

summary of compressive pressure requiredto initiate deformation of the bridge
 

support material is given inTable 3.7.6-4. Twelve tests were performed but
 

only the key test results were included on the tables of results. The strain
 

values listed in Table 3.7.6-3 include the deformation of the Viton, anode and
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TABLE 3.7.6-]
 

CONTACT RESISTANCE OF VARIOUS COLLECTOR PLATES
 

AFTER AIR EXPOSURE AT 2000C
 

Collector Plate Initial Contact Exposure Time Final Contact 
Description Resistance, rnQ Hrs Resistance, mr 

Bare Copper 0.72 72 21.5 

Copper + Gold Plate 0.50 888 14.5
 

Copper + Nickel Plate 0.75 888 1.5
 

+ Gold Plate
 

3-118
 



I-s Heat Treated Plates 

Flat Neat Treatd Plate Load 
Supponrt Pterial
Iftckmass: 

0.005 ln/0.0127 m 
or
 

0.01 in/.0254 an
 

Anode 1 
0.019 n/0.0483 thck LoadAterial 
3 x 3 square sheet RUdth: 0.25 ln/0.635 

Viton 0.060'/1.524 MGas Heat Treated Plate 
inch thick 
Seals - 0.20"/D.5C 
wide 

t. " square. 

Figure 3.7.6-1. Electrode Seal Interface Test Configuration
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TABLE 3.7.6-2
 
TEST PARAMETERS FOR VITON SEAL AND SUPFVORT MATERIALS
 

.Parameter
 
DescOipton 


Material Type 


Width (in/cm) 


Thickness (in/cm). 


Attachment'Method 


Number of Layers 


Supplier 


Viton 


Cdred 'and cut, 


from sheet 


0.20/0.508 


0.60/1.524 


Vito cement 

(one side)
 

2 


Shields Rubber 

C6; 

Pgh,, PA, 


Tefloni 


Cured -and 


skived 


0.20/0.508 


0.005/.012,7 

and' 


0.01/.0254 


None 


2 


Modern 

Plastics and 

Glass, Inc. 

Bridgeport, CT 


rES-Victrex 


Extruded and cut 


from sheet 


0.25/0.635' 


0.005/.0127 

and 


0.01/.0254 


None 


9 

Westlake 

Plastics 

Company 

Lenni, PA 


Kapton 


Extruded and cut 


from sheet. 


0.25/0.635 


0.005/.0127 

and
 

0.01/40254
 

None 


2
 

DuPont 

Polymer 
Products 
Department, 
Wilmington, bE 

Graphit
 

Machined
 

from plate
 

0.25/0.6A5
 

0.013/0.033
 

None
 

Stackpole
 
Grade 202Q
 
Stackpoie
 
Carsor Co,
 
St. Mary's, PA
 



TABLE 3.7.6-3
 

SUMMARY OF LOAD VERSUS DEFORMATION COMPRESSION TEST DATA
 

AT 	 a (1)'
AT 	 :
 

Stress Number of E = Area 	
Permaint Temperature Tangent Modulus
Support Nomjnal Maximum a = Load; Area Test Cycles P 


psi 	 Total Strain(l) Srain ) of Test (0F)of Elasticity
Material inL Applied Load 

Test and (cm2) lbf (kPa) Performed Avg.
 
Number Thickness (Newtons) Last in/in (cm/cm) 	 in/in (cm/cm) (0C) psi
 

(MPa)
(1) 


77 1250.2

I None 1.2 235 95.83 2 1 .245 0.83 


(25) (8.62)
(7.74) 	 (1045.3) (1350.2) 


77 873.9
2 None 1.2 120 100.00 2 1 .159 .057 

(25) (6.03)
(7.74) 	 (533.8) (639.5) 


1846.4

3 Teflon 1.2 300 250.00 2 1 .231 .100 77 


(25) (12.73)
(.01/ (7,74) (1334.5) (1723.7). 

.0254cm)
 

.228 .060 77 2000.0
4 2 PES-Victrex 1.2 312 260.00 2 1 

(25) (13.79)
(.005"/ (7.74) (1387.8) (1792.6) 


.0127 cm)
 

1 	 .081 77 1628.4

5 Kapton(2) 1.2 270 225.00 2 	 .229 


(25) (11.23)
(.005"/ (7.74) (1201.0) (1551.3) 

.0127 cm)
 

1 .289 .150 392 1379.5
6 2 PES-Victrex 1.2 268 223.33 2 

(200) (9.51)
.01"/.0254 (7.74) (1192.1) (1539.8) 


cm)
 

1 	 .228 .060 77 2566.6
7 Graphite 0.80 244.5 305.6 	 1 

(25) (17.7)
(0.013"/ (5.16) (1087.5) (2107.0) 


.033 cm)
 

(1)Data based on average of cycles indicated.
 
(2)Grain of material perpendicular to channels.
 



--

TABLE 3'7.6-4
 

SUMMARY OF COMPRESSIVE PRESSURE REQUIRED TO
 

INITIATE DEFORMATION OF SUPPORT MATERIAL
 

Material .. Ambient Temperature 
 -

arnd
 
Thickness Cycle 1 


TFE 55 psi 

(0.01 in/ (379.2 kPA) 

'0.0254 cm)
 

PES-Victrex(l Y 
(0.005 in/ 110 psi 

(0.0254 cm) (758.4 kPa) 


PES-Victrex(l) 116 psi, 

(0.01 in/ (799.8 kPa) 

0.0254 cm)
 

Kapton(l) 124 psi 

(0,005 in/ (854.9 kPa) 

(0.0127 cm)
 

Graphite 305 psi( 2) 

(0.013 in/ (2103.0 kPa)
 
0.033 cm)
 

Cycle 2 


73 psi
 
503.3 kPa)
 

'80 psi 

(551.6 kPa) 


100 psi 

689.5 kPa) 


76 psi 

(524.0)' kPa)
 

Ooerating-Temperature
 

Cycle 1 'Cycle 2 Cycle 3
 

74 psi 

(510.2 kPa) 


116 psi 

799.8 kPa) 


. 

103 psi 85 psi
 
(710.2 kPa) "(586.1 kPa)
 

94 psi -­

(648.1 kPa) -­

" -~
 

(1-Grini perpendicular to channels..
 

(2)The graphite did-not exhibit any real deformation of the support material
 
at this point.
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bridge material. Since the actual strain of the assembly i's the important
 

aspect, the modulus of elasticity value represents the effective modulus of the
 

bridge region. Both visual and stress-versus-strain curves were used to define
 

a stress at which the bridge material deformed into the grooves of the plate.
 

In certain cases, the transition point was exhibited via a change in slope on
 

the stress-versus-strain curve. Subsequent load'deformed the bridge into
 

grooves and produced indentations into the bridge material surface. The
 

results of this study indicated that the only acceptable material for the long
 

term creep capability would be the Stackpole 2020 graphite machined from stock
 

material.
 

All of the materials evaluated for .bridge member application were given
 

preliminary corrosion tests for 500 hours at 200'C (no applied potential) in
 

100 w/o H3PO4 . No major corrosion was visible on any of the materials
 

tested and the 2020 graphite showed no acid interaction.
 

3.7.6.3 PHOSPHORIC ACID
 

Modification and checkout of two Teflon-lined autoclaves (750 cm3 volume) was
 

completed. These two systems capable of operating up to about 2300C are being
 

used for corrosion studies on cell components and materials and for the
 

measurement of physical properties of phosphoric acid at elevated temperar
 

tures. An all-Teflon corrosion cell and a conductivity cell were fabricated.
 

Corrosion testing of bipolar plate material (67 w/o A99/33 w/o resin heat
 

treated to 900 0C) was done in 94 w/o acid at 190% and 690 kPa (100 psia).
 

Corrosion current was measured after 24 hours equi'libration at each potential.
 

The first cycle data are in good agreement with previously published data. The
 

second cycle data for the same sample resulted in differences in the corrosion
 

current particularly at the lower potentials. These differences are likely
 

associated with changes in the "true" surface area of the sample after being
 

corroded at higher potential in the first cycle. These studies again
 

demonstrate the problem of definingthe true corrosion area to be used for data
 

analysis and comparison of materials.
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At temperatures above 170?C,.published quantative data on the conductivity of
 

phosphoric acid is quite limited. To supplement available data, a limited
 

effort was undertaken to obtain specific conductivity data for this acid over
 

the temperature range from 160% to 210°C.
 

3.7.6.4 STACK MECHANICS
 

Small scale -stack mechanics tests were performed to determine the cell
 

components,structural characteristics at ambient and operating temperature. A
 

test stack of ten units (electrodes, matrix and bipolar plates) was tested.at
 

ambient temperature and 2000C. The 7.6 cm x 7.6 cm x 10 unit high stack used
 

plates cut from heat treated digas configured plates. This provided the first
 

data on cell compression stress as loaded between ribbed plates in the dry
 

condition (no acid).
 

This configuration produces a contact area equal to 16 percent of the gross
 

area of 58.06 cm2 (9.0 in2 )! This ribbed configuration may cause larger
 

deflections during compression due to this reduced area. It should also be
 

noted that the "zee" bipolar plate design produces constant areas of 16 percent
 

or 40 percent based on the location on the plate. Therefore, the data obtained
 

from thi's test is directly applicable to 16 percent contact area of the plate.
 

However, the weighted average contact area of the plate is actually 33 percent
 

of the gross plate area. Therefore-, full size stack compressed to 344.7 kPa
 

(50 psi) will produce an effective contact pressure on the cell components df
 

1034.1 kPa (150 psi). This effective contact pressure is critical for
 

maintaining a low contact resistance and precluding the cracking of the backing
 

paper. The test compressive load was limited to 1034.1 kPa (150 psi) contact
 

stress which should occur during actual test conditions.
 

The test unit was cycled from 0 to 172.3 kPa (0 to 25 psi) stress based on the
 

gross area, three times to remove slack in system and reduce the plastic
 

deformation which may develop in the stack. The stack was then heated to 200C
 

and cycled one time before being held at temperature for 85 hours. The load
 

relaxation was monitored to determine the amount of creep deformation which may
 

occur at operating temperature.
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Figure 3.7.6-2 shows a plot the compressive stress verses cell strain based on
 
gross area. The loading cycle produces a non-linear stress-versus-strain
 

curve. The stack was allowed to relax (cross-head fixed) between cycles 2 and
 

3. The nominal modulus of elasticity values increased between cycle I and
 

cycle 4, which were 4.68 MPa (680.0 psi) and 6.37 MPa (923.9 psi), respec­

tively. With the stack loaded at the end of cycle 4, the test unit temperature
 
was increased to 2000C. Figure 3,.7.6-3 shows the results of the high tempera­

ture loading cycles. During the heat up phase, a permanent set of apprdxi­
mately 1 percent strain occurred. The modulus of elasticity values for~cycles
 

1 and'2 at operating temperature are almost identical at 7.84 MPa (I137 psi).
 

These modulus of elasticity values are considerably lower than test data
 

obtained for flat compression samples. This test unit with bipolar plates,
 
2
 

arranged in a Digas configuration, only provides a contact area of 9.29 cm


(1.44 in2) rather than the nominal '58.06 cm2 (9.0 in2). The ambient test
 

data for cycles 1 through 4 are shown on Figure 3.7.6-4 using the effective
 

contact area. The cycle 1 and cycle 4 modulus of elasticity values for the
 

effective area case become 32.57 MPa (4725.0 psi) and 38.61 MPa (5600 psi.,
 
respectively. The first cycle modulus values are consistent with the results
 

obtained for flat tests using dry components. The total strain exhibited by
 

these tests is smaller than that exhibited by previous tests using flat
 
plates. Since the ribbed plate loading is more prototypic of the actual stack
 

conditions, these values will be used for future evaluations and studies.
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137.9 - 0 Cycle 1 20 
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ft 
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Figure 3.7.6-2. 	 Nominal Compressive Stress Versus 10-Cell Stack Strain for
 
Dry Stack with Heat Treated Bipolar Pl:ates at Ambient
 
Temperature for Cell Group VI
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-
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Figure 3'.7.6-3. Nominal Compressive Stress Versus 10-Cell Stack Strain for'
 
,Dry Stack with Heat Treated Bipolar Plates at Operating Temperature
 
of 2000C for Cell -Group VI (includes ambient cell pre­
conditioning)
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Figure 3.7.6-4. 	Effective Compressive Stress Versus 10-Cell Stack Strain
 
for Dry Stack with Heat Treated Bipolar Plates at Ambient
 
Temperature Cell Group VI (ambient cell pre-conditioning)
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3.8 ADVANCED FUEL CELL DEVELOPMENT
 

3.8.1 CATALYST AND SUPPORT
 

Two cells.with 900'C heat-treated Pt (Cells 3009 and 3010) and two with
 

standard Pt (Cells 3011 and 3012) were tested to compare the stability of the
 

heat-treated versus non heat-treated catalyst. Atmospheric IR-free performance
 

of the heat-treated catalyst cells was 't 676 mV at 200 mA/cm2 while that of 

the standard Pt cells was n 673 mV. All these cells showed a good stability 

during the testing period. Based on these experiments, no significant 

difference between the stability of heat-treated Pt and standard Pt-was
 

evident; however, long term stress testing is required to clearly differentiate
 

the stability of the two materials. It should be noted that the Pt surface
 

area of the heat-treated catalyst is lower than the standard catalyst.
 

Eight cells (3017 through 3024) were assembled and tested to study the
 

performance of Pt catalyst on heat-treated carbon.supports. These cells showed
 

% 17 to % 44 mV lower IR-free performance in comparison to the cells
 

containing standard Vulcan support. These cells also showed U 10 mV higher
 

oxygen gain than the cells built with-a standard Vulcan catalyst support.
 

These results confirm theresults obtained under the NASA LeRC DEN3-205
 

program, however the cells tested under the DEN3-205 program did not contain
 

Mat-] layers.
 

2 
Six of these cells were tested at 70 psia and 325 mA/cm . Pressurized 

performance of these cells was also lower than the pressurized performance of
 

the standard Vulcan cells. This difference in performance is attributed to a
 

difference in the wetting characteristics of the heat-treated and non
 

heat-treated supports.
 

It is concluded that further effort isrequired to optimize the electrode
 

structure with respect to the heat-treated catalyst support materials.
 

3.8.2 ACID MANAGEMENT
 

Effort was directed at standardizing the method for calculating the acid volume
 

change between various operating conditions. After examining the available
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literature for the vapor pressure and temperature data* the following
 

conclusions and assumptions were made:
 

* 	 Although the accuracy of the MacDonald-and Boyack* equations is
 
1-imited* at' Tow temperatures (, room temperature) and operating 
temperatures (%190'C), they are probably the best choice.
 

* 	 It is assumed that the electrolyte in the cell package js in
 
thermodynamic equilibrium with the reactant gases. This is a
 
very simplified assumption and it may not be strictly
 
applicable.
 

* 	Average water partial pressure determines the average electrolyte
 
concentration in the cell package.
 

The MacDonald and Boyack equations were used to develop constant concentration
 

curves (Figure 3.8.2-1) and constant volume curves (Figure 3.8.2-2). These
 

curves facilitate the determination of electrolyte concentration and
 

electrolyte volume (inthe cell package) for the desired operating conditions.
 

Several acid inventory control members (AICM) were fabricated by stamping an
 

FEP solution on one face of the backing paper and spraying an FEP solution on
 

the opposite face (Figure 3.8.2-3). The dotted wetproofed areas allow gas flow
 

through the backing paper to the electrode layer. The sprayed-on face of the
 

backing paper remains in contact with the bipolar plate. The FEP content for
 

fifteen AICMs was nt 43 percent +3 (one standard deviation). Table 3.8.2-1
 

* References for Vapor Pressure of H3PO4 

(1)MacDonald, D. I., and Boyack, J.R.; "Density, Electrical Conductivity, and
 
Vapor Pressure of Concentrated Phosphoric Acid," Journal of Chemical and
 
Engineering Data, Vol. 14, No. 3, July 1969, pp 380-384.
 

(2) Brown, E.H., and Whitt, C.D.; "Vapor Pressure of Phosphoric Acids,"
 
Industrial and Engineering Chemistry, Vol. 44, No. 3, March 1952, pp.
 
615-618.
 

(3)Fontana, B.J.: "The Vapor Pressure of Water Over Phosphoric Acids," Journal
 
of American Chemical Society, Vol.- 73, 1951. p. 3348.
 

3-130
 



70 Wt %H3 PO4 

10,000-- . 90 

-0 
-0 
-0-
10 

-0 

-
0. 

-99 

.-0 . 

94 
96 

100 

- - -102 

-00 -- 00 1#0 - -p lo 
E -#, - - - 10400I

E 100- -0 - -0 Op r 

a.l owl 

101 

'IV 

00, 

a:ystm:OPO 

-00 
,-

00 

--

~ 
- -e 

-0 -4 

-
de 

p 0 
-0 

-
. 

O­
-* -

-

1000, 

1 -­ - -0 --1--II 10 001 1 - 10 IS 

22 31 40 50 61 72 85 98 112 -127 144 162- 182 204 227 2540 C 

+13.5 +3.4 +3.3 +3.2 +3.1 +3.0 +2.9 +2.8 +2.7 +2.6 +2.5 +2.4 +2.3 +2.2 +2.1 +2.0 +1.9 

Figure 3.8.2-1 

100 

T 0)K 

Water Vapor Pressure Versus Temperature for Constant Concentrations 
(System: HgPO4 and Water) 



10,000 NOTE: V, =C-- dc,100 .. . ' // 

.9 cc/gH3 PO4 

8. 

1,000 

where VC = Volume pergram H3PO4 
d =Density of Acid 

C = Acid Concentration (Wt%) 

// 

.6 

.58 

.-
0 

E 

100 *55
.55 

54 

c 10 53 

eQL 

1 .52 

0.1 

+3.5 

22 31 40 

+3A +3.3 +3.2 

Figure 3.8.2-2 

50 61 72 85 98 112 127 144 162 182 204 

+3.1 +3.0 +2.9 +2.8 +2.7 +2.6 +2.5 +2.4 +2.3' +2.2 +2.1 

1000 
TO K 

Water Vapor Pressure Versus Temperature for Constant Volume 
(System H3PO4 and Water) 

227 

+2.0 

2540C 

+1.9 



@@@@.
 
0@00 

CCATALYST LAYER 

BACKING 

'SELECTED WETPROOFED AREA I 
[ COMPLETELY WETPROOFED AREA 

Figure 3.8.2-3 AICM-Anode Backing
 



TABLE 3.8.2-1
 

REPRODUCIBILITY OF THE AICM MANUFACTURING PROCESS
 

INITIAL INITIAL %DOTTED-

AICM THICK VEIGHT AREA
 
# (IN.) (GR.) WT% FEP
 

W33 .014 18.20 40
 

W34 .015 19.12 44
 

W43 .016 19.79 40
 

W45 .015 20.50 46
 

W46 .015 19.77 44
 

W47 .14 20.23 39
 

W53 .015 20.18 38
 

W54 .015 19.65 43
 

W55 .015 20.04 46
 

W56 .014 19.73 43,
 

W57 .012 19.90 45
 

W58 .015 19.41 43
 

W59 .014 20.20 41
 

W60 .014 18.77 47
 

W61 .015 20.00 39
 

BACKING SIZE = 17.75" x 12.75" 

STAMPED AREA = 16.50" x 10.50P 

NUMBER OF FEP DOTS = 1265 

DOT AREA = .29 cm2 
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demonstrates that the manufacturing process is reproducible. The electrolyte
 

pick-up for these AICMs was measured by float filling samples at 1609C
 

(electrolyte concentration \ 100 percent at 20*). Table 3.8.2-2 compares.the
 

electrolyte pick-up of the AICMs, non-wetproofed backing paper and fully
 

wetproofed backing paper. It is apparant that the AICM member has the
 

capability to absorb the electrolyte volume expansion. These AICMs will be
 

tested in a 12 inch x 17 inch nine-cell stack. Additional work is required to
 

optimize AICM with respect to the following parameters:
 

* Range of the electrolyte volume expansion
 

* Spacing and the size of the dot pattern
 

* Effect of the AICM configuration on the contact resistances
 

a Lateral transfer of the electrolyte
 

A test apparatus for measuring gas flow resistance through porous media (e.g.,
 

backing paper) was designed and fabricated (Figure 3.8.2-4). This apparatus
 

will be used to characterize the various cell components.
 

3.8.3 POISON EVALUATION
 

Various materials were selected for chemical analysis under the poison
 

evaluation plan. These materials are listed in Table 3.8.3-1.
 

Tne amount of hydrofluoric acid solubles found inthe silicon carbide is cause
 

for concern because it can react with the electrolyte and change its
 

properties. Significant levels of sulfur were found in Vulcan carbon and
 

backing paper.
 

A sample of Stackpole backing paper was heat treated to 900°C to determine if
 

this could remove some impurities. Table 3.8.3-1 shows that sulfur was not
 

removed after heat treatment.
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TABLE 3.8.2-2
 

COMPARISON OF ACID PICKUP IN WETPROOFED,
 

NON-WETPROOFED, AND AICM BACKING PAPER
 

PERCENT OF TOTAL** 
MATERIAL SAMPLE PICKUP* VOLUME FILLED 

(cc) 

Non-FEP Backing 1 .699 	 '71.0
 
2 .663 	 72.2
 
3 .657 	 71.6
 
4 .621 	 67.7
 
5 .611 	 71.2
 

Mean .650
 
Std. Dev. .035
 

FEP Backing 1 .021 	 2.1
 
2 .021 	 2.3
 
3 .042 3.8 
4 '.031 2.8 
5 .037 	 3.3
 

Mean .031
 
Std. Dev. .009
 

AICM 	 1 .39 37.4
 
2 .44 	 42.3
 
3 .47 	 44.8
 
4 . .41 	 39.3 
5 .43 	 -40.8
 

Mean .43
 
Std. Dev. .03
 

Acid pickup determined by float filling 2 x 2 inch samples in 1600
 

phosphoric acid (acid concentration was n 100 percent at 20'C).
 

** Percent of total volume filled equals 

Acid Pickup (cc-) x !D0
 
Sample Bulk Volume (cc)
 

'NOTE: 	In a 12 x 17 inch fuel cell with an initial electrolyte volume of
 
50cc,' an AICM backing has the capacity for an additional 22cc
 
(a 44 percent volume increase of the initial 50cc),.
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Figure 3.8.2-4 	Apparatus for Characterizing Gas Flow Through
 

a Thin Porous Sheet (e.g. Backing Paper)
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TABLE 3.8.3-1
 

CHEMICAL ANALYSIS OF FUEL CELL COMPONENTS AND MATERIALS
 

SELECTED FOR POISON EVALUATION
 

'Semiquantitative Emission Spectrographic Analysis 

MATERIAL OR 
CO1IPONENT 

tackpole Paper 

s Received 


tackpole Paper 

000 C Heat-treatment 


eflon 30 
S Received' 

sbury A-99
 
raphite As Received 


Licon Carbide
 
Received 


ircum Resin 

Received 


alcan Carbon 

Received 


ilcan Carbon * 
)0OC Heat Treatment 

Pt/Vulcanl
 

Pt/Vulcan

0
)o0C Heat Treatment 


SULFUR 

0.08% 


0.046% 


ND< .01% 


.016% 


.04% 


1.00% 


0.98% 


0.96%* 


0.98%-


CHLORIDE 


0.13% 


.034% 


.042% 


RD <.01% 


.027% 


.046% 


.038% 


ND <.01%* 


ND <.01%-


>% . - i% .01 - .1% 

Si 


Sl,Fe,Mg, 

AlCa,Cu 


Si Al 


Mg 


Pt Pd 


Pt Pd 


.005 - .01% 

B, Mg, Ca 


Si, Mg, Ca 


Mn, Ni,Ti 


Fe,Mg,Ti,Cu, 

Ca
 

SiCu,Al 


SiMg,Ca 


Si,Mg,Ce 


SiFrg,Cut
 
Ca, Ag
 

0 - .005% 

Cu, Fe 


B, Pe, Cu 


B, Pb,Sn, 

V, Cu 


B, Ni,V 


SiFe,Mg 


Fe 


FeAI,Cu
 

Fe,CuAg 


REMARKS 

Sulfur & Chlorine need to
 
be reduced. Metallic im­
purity levels seem ok.
 

Metallic impurities about
 
the same as previous. Woul
 
like further reductions on 
sulfur and chlorine levels.
 

Analysis on dry wt. basis.ND-not detected.
 

Iron 0.33% by Atomic absor;­
tion ND-not detected.
 

HF Soluble Si-3.96%
 

All levels in prefabricated
 
material look ok.
 

Sulfur & Chlorine need to
 
be reduced
 

Ag-10ppm by Atomic Absurjtc
 

Pd-821 ppm by Atomic Absorp­
tion
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Chemical analysis of 900 0C heat-treated Vulcan also shows negligible reduction
 

inthe sulfur content. An acid leached Vulcan sample was sent for analysis.
 

Discussions were held with Cabot Corporation regarding the removal of the
 

sulfur from Vulcan XC-72. They indicated that most of the sulfur was bound in
 

the structure of the carbon due to their manufacturing process and could not be
 

removed without affecting the structure of the carbon. Chemical analysis of
 

catalyzed Vulcan also shows negligible reduction inthe sulfur content due to
 

catalyzation. X-ray dispersion analysis of the catalyst identified some silver
 

and palladium particles.
 

Four subscale (2 inch x 2 inch) cells (numbers 3025 through 3028) with
 

"cleaned" Mat-l layers were assembled and tested. Two of these cells were
 

built with the Mat-l layers manufactured with 9000C heat-treated Vulcan XC-72
 

and the other two with the Mat-I layers manufactured with 1900C phosphoric acid
 

leached Vulcan XC-72. The IR-free performance of the "cleaned" Mat-l cells was
 

% 682 mV at 200 mA/cm2 and 1 atm. pressure, while the corresponding
 

standard Mat-l cells (3001, 3002, 3005, 3006 and 3010) showed an average of 

672 mV. The difference of t 10 mV does not clearly indicate that the 

"cleaned" Mat-I was responsible for the improvement. Further testing is
 

required to confirm these results. Cell 3029 was built without using the Mat-l
 

layer. This cell had an IR-free performance of ,701 mV at 200 mA/cm2 and
 

I atm. pressure. Figure 3.8.3-1 presents the polarization curves for Cell
 

#3029. Figure 3.8.3-2 presents the polarization curves for the "cleaned" Mat-I
 

Cell #3028 and no Mat-l Cell #3029. A close examination shows that the
 

performance of both cells (3028 and 3029) is equivalent (885 mV) at low current
 

density (20 mA/cm2). The-cell containing the Mat-l layer (3028) has lower
 

.
IR-free performance at 200 mA/cm 2


It is suspected that the Mat-i layer (10 mil thick) adds an extra ionic
 

resistance to the cell package, which is not measured by the conventional
 

resistance measurement techniques. This-will be investigated inthe next
 

logical unit of work.
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3.8.4 CORROSION ANALYSIS
 

3.8.4.1 VITON SEALS
 

Corrosion testing of Viton samples was completed during this period. The data
 

(Table 3.8.4-1) indicates that neither material may be acceptable for long term
 

use fn phosphoric acid fuel cells. During the test, both the Viton sponge
 

(SV811-3) and Viton sheet (PLV-l0059) absorbed large amounts of acid (8.3-29.0
 

percent) while at the same time the Viton was corroding. After extraction of
 

the acid, the sample showed a weight loss of between 1.3 and 7.6 percent. The
 

Viton sponge samples which showed the greatest acid absorption and attack, also
 

.showed dimensional instability. The samples grew asmuch as 2 millimeters in
 

length and width during immersion. This expansion was mostly recovered after
 

acid extraction. PLV-10059 (Viton Sheet) which showed the greater dimensional
 

stability and less weight loss, changed color from grey to black, and developed
 

small blisters on the surface. Pictures of the PLV-10059 (Viton Sheet) in
 

Figure 3.8.4-1 show the change in surface condition during testing. No
 

physical property testing was performed on any samples before or after testing,
 

so it is not known if any significant change in physical properties occurs
 

after exposure to phosphoric acid at 3750F. Previous analyses performed on
 

Mosite 1028 Viton showed a weight loss of 3.2 percent after 336 hours and 7.7
 

wt. percent acid absorption (no quantative data is available for this sample's
 

dimensional stability). Reviewing this data poses a serious question about the
 

use of Viton in phosphoric acid fuel cells as gasketing material. While this
 

test is severe, it is indicative of problems that may arise due to long term
 

exposure of Viton gaskets such as a loss of elastic properties. Organic
 

poisons may also be liberated from the corroding Viton which may affect fuel
 

cell performance.
 

3.8.4.2 SEPARATOR PLATES
 

Atmospheric corrosion testing of heat-treated graphite Resin/molded with the
 

following graphite materials was conducted.
 

* A-99
 

* Asbury 4421
 

* Poco
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UI TABLE 3.8.4-1
 

3 RESULTS OF CORROSION TESTING AND ACID TOLERANCE CHARACTERISTICS
 

U
 OF VITON SEAL MATERIALS
 

3 RCING TIE,MRS. INITIAL Wn AT I W= pNG VTCAIN "T I"S ARTER 
ATERIAL ACID TW. n, g WIG q U Cn, q A ACING. s EXTRACTION sq REMARKS 

Mlisterinq 
Sitrn
 

PLV 10059 

Pe0mor0I- 168 
 and dark­

aing ofRa1.7899 bovaorie1.899 1.9344L.934 1.M7 144.5 23.5 surface 

A attowlo 3 
I 18964 

375F*60 Duroveter 

of surface 

30.2 increased
1.7826 1.8985 .1524 115.9
X 3 1 - a loss-1.6% 

Viton Sponge Not1 ,eatlcDIfiss
Notiea
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PLV 10059 (Sheet) After 198 Hours
 
in -100% H3PO4 at 375 F
 

PLV 10059 (Sheet) As Received
PLV 10059 (Sheet) After 352 Hours 

in v 100% H3PO4
 

Figure 3.8.4-1 Results of Corrosion Testing of PLV 10059
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Figure 3.8.4-2' Comparison, of Corrosion Behavior for A-99 Regrind 
Material and Standard (A-9,9) Plate Material 



o 9000 C HEAT-TREATED PLATE 32% VARCUM RESIN 
BALANCE A-99 GRAPHITE RIBBED PLATE 

A ZZ-144 STACKPOLE GRAPHITE 0.0-5.7% CORRODED 
O ZZ-144 STACKPOLE GRAPHITE 5.7 -9.5% CORRODED 
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Figure 3.8.4-3 Comparison of Corrosion Behavior for Stackpole 
Graphite ZZ-144 and Asbury A-99 Plate Material 



o 9000 C HEAT-TREATED PLATE 32 W/O VARCUM RESIN 
BALANCE A-99 GRAPHITE RIBBED PLATE 

O ZZ-160 POCO GRAPHITE 0-4.2% CORRODED 
o ZZ-160 POCO GRAPHITE 4.2-7.0% CORRODED 
A ZZ-160 POCO GRAPHITE 7.0 -9.7% CORRODED 
* ZZ-160 POCO GRAPHITE 9.7-10% CORRODED 
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Figure 3.8.4-4 Comparison of Corrosion Behavior for Poco Graphite 
and Standard (A-99) Plate Material 
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Figure 3.8.4-5 Corrosion Tafel Plots for Miscellaneous Materials 



From the above tests it is concluded that except for the Poco material all the
 

other materials tested under this program are very similar in their corrosion
 

behavior.
 

3.8.4.3 STACK CORROSION EVALUATION TESTS
 

Two stacks (12-cell and 6-cell) were assembled at Westinghouse and tested at
 

ERC to evaluate the possible corrosion causing mechanism(s). Details of these
 

stack assemblies are provided in Tables 3.8.4-2 and 3.8.4-3.
 

Several experiments were conducted prior to stack fabrication to arrive at the
 

procedures for introducing possible corrosion causing modes inthe cells, such
 

as crossleaks and continuous ionic short circuits. Procedures to create the
 

crossleaks and continuous ionic path were developed and are presented in
 

Figures 3.8.4-6 and 3.8.4-7, respectively.
 

Preliminary experiments were also conducted to apply corrosion resistant
 

coatings on the bipolar plates so that their effect could be tested inthe
 

12Tcell and 6-cell stacks. The test results indicated that the coatings which
 

were applied, significantly increased the contact resistance between the ­

electrode backing and the bipolar plate. It was therefore concluded that the
 

coatings should not be used in these stacks.
 

Test plans for the 12-cell and 6-cell stacks were finalized in consultation
 

with NASA. The 12-cell stack was assembled at Westinghouse and tested at ERC
 

to evaluate the effects of the following stack defects on bipolar plate
 

corrosion:
 

* Less than "normal" acid in a cell
 

e, More than "normal" acid in a cell
 

s Oxidant flow maldistribution
 

* Built-in crossleaks
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TABLE 3.8.4-2
 

RANDOMIZED CELL ARRANGEMENT
 

FOR THE 12-CELL .STACK ZO04
 

CELL NO. CONDITION
 

1 lOcc Less Acid 

- Normal Cell* 

3 Normal Cell* 

4 Oxidant Flow Maldistribution 

5 lOcc Excess Acid
 

6 Built in Crossleak
 

Cooler
 

7 Normal Cell*
 

8 lOcc Less Acid
 

9 lOcc Excess Acid
 

10 Normal Cell*
 

II Oxidant Flow Maldistribution
 

12 Built in Crossleak
 

* Acid Concentration 96 percent 

'35cc on MAT-i Layer
 

13cc on SIC layer
 

2 cc in the acid channel
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TABLE 3.8.4-3
 

RANDOMIZED CELL ARRANGEMENT FOR THE,
 

6-CELL STACK Z-O03 
 -

Cell No. Condition
 

1 
 Cathode Backing and Plate Wet
 

2 Anode and Cathode Backings and
 
Plates Wet
 

3 Normal Cell
 

4 Cathode Backing and Plate*Wet
 

5 Anode and Cathode Backings and
 
Plates Wet
 

6 Normal Cell
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- 1/2" DIAMETER HOLE 

THROUGH MAT- I LAYER 

- COCENTERED 
I /---1/8" DIAMETER 

OF SiC REMOVED 

ELECTRODE 
BACKING PAPER 

Figure 3.8.4-6 procedure for Introducing
 

a Cross Leak in a Cell
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3. DIA CYLINDER 
VITON GASKET 

/ ELECTRODE BACKING 

ELECTRODE 
CATALYST LAYER 

PROCEDURE:
 

1. 	Electrode Catalyst Layer placed face down on flat surface.
 

2. 	Etch area to be wetted with Chemgrip Treating Agent.
 

3. 	Apply Viton Glue to cylinder rim and place gasket on rim.
 

4. 	Place cylinder with gasket on area to be wetted. Place
 
A lbs. of weight on top of cylinder.
 

5. 	Fill cylinder with enough Isoproponal and water (Ratio 50:50)
 
to create a 1.25" Static head.
 

6. 	After 5 minutes siphon off Isopropanol and water.
 

7. 	Fill cylinder with H 3PO. to create a 1.25" static head.
 

8. 	After "-l hr. disassemble.
 

Figure 3.8.4-7 Procedure for Wetting Backing to Create
 

a Continuous Ionic Path
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The stack was disassembled after ' 420 hours of testing (out of which 400
 

hours were logged at 5 atm. and t 200 mA/cm2). No evidence of apparent 

bipolar plate corrosion was found. Based on this effort, it can not be
 

concluded that the above mentioned defects do not in some unknown way affect
 
the bipolar plate corrosion. It is possible that the degree of severity.of the
 

-defects was not sufficient to cause corrosion. Table 3.8.4-4 presents a
 

summary of the major events which occurred during testing. Figure 3.8.4-8
 

presents the life graph of Stack Z-004.
 

The six-cell stack (Z-003) was assembled at Westinghouse and tested at ERC to
 

evaluate the possible effect of an ionic path connection between two or more
 

cells on bipolar plate corrosion. Table 3.8.4-5 presents a summary of test
 

events for this stack. Figure 3.8.4-9 presents the life graph of Stack Z-003.
 

The stack was disassembled after 600 hours of testing (out of which 574 hours
 

were logged at 5 atm. and 190 mA/cm2). No evidence of apparent bipolar plate
 

corrosion wasjfbund. Based on this effort it could be concluded that plate
 

and/or backing paper wetting by itself does not drastically affect the bipolar
 

plate corrosion rate. It is possible, however, that the degree of wetting was
 

not sufficient to create enough of an ionic short to accelerate the corrosion.
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TABLE 3.8.4-4
 

SUMMARY OF TESTING FOR STACK Z-004
 

Total hours tested u 420 

Total. hours tested at 5-atm. pressure V 400 

Start -Up 

Average OCV n 860mV 
Average Cell Voltage n 561mV at 140 
mA/cm2, 1 atm., 1707C 

20 hours 

Pressurization and Stabilization 

Endurance Started 40 hours
 

Average Cell Voltage % 661mV at % 200 
mA/cnm2, 5 Atm., 189TC, 80% H2 
utilization, 50% Air utilization 

Average Cell Resistance =0.22 m
 

Maximum Voltage 707 Cell #2
 
Minimum Voltage 628 Cell #11
 

54 hours Momentary-lO psia drop on 
anode loop due to anode 
condensate drain malfunc­
tion. No loss in performance 
after resetting. 

90 hours System lost 35 psi pressure
momentarily due to failure 
mode control system malfunc­
tion. No loss in performance 
after resetting. 

290 hrs. System lost 8 psi pressure 
momentarily due to failure 
more control system
malfunction. No loss in 
performance after resetting. 

Average Cell Voltage 420 hours Stack depressurized auto­
676 mV at u 200 mA/cm2 matically due to H2 supply 
5 atm., l960C, 80% H2 utili- distrubance while unattended
 
zation, 50 percent Air utilization Stack shutdown and
 
maximum voltage = 707 Cell #2, disassembled.
 
minimum voltage = 641 Cell #6
 
Avgerage Coil Resistance = 0.24 ma
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OPERATING CONDITIONS 

PRESSURE: 
TEMPERATURE: 

FUEL/ OXIDANT: 
FUEL UTILIZATION: 

OXIDANT UTILIZATION: 
CURRENT DENSITY: 

5 Atm. 
1900C 

H2 /Air 
80% 

50% 
2 200 mA/cm2 

I I 

>700 

E 

C,. 

0 
600 

Maximum 

0 5O0 
. Average

Minimum 

400 
0 

I 
100 

Figure 3.8.4-8 

I 
200 

TIME , hrs. 

Life Graph of 12-Cell Stack Z-004 

I 
300 400 



TABLE 3.8.4-5
 

SUMMARY OF TESTINGFOR-STACK Z-O03
 

TOTAL HOURS TESTED: 600
 
TOTAL HOURS TESTED 'AT 5 ATM. PRESSURE: 574
 

Start
 

Carbon Dioxide purged through
 
the anode loop for 10 minutes
 

Average PCV = 880 mV (I atm., 174°C) 

Average ell Voltage = 728 mV at 
15 mA/cmC, 1 atm., 1440C 

4 hours 

Pressurization and Stabilization 


Endurance started'at 25 hours 


Average Cell Voltage = 673 mV at
 
190 mA/cm2, 5,atm., 1990C,
 
80 percent fuel utilization,
 
33 percent oxidant utilization
 

Average Cell Resistance = 0.20 m
 

Maximum Cell Voltage = 694 mV (Cell 4)
 

Minimum Cell Voltage = 627 mV (Cell 6)'
 

300 hours 


Cell 1 showed gas flow sensitivity
 
Possible cases: blocked flow
 
channels in the end cells. The
 
stack was stabilized by increasiig

the oxidant flow through the stack.
 

Effort was made to run the stack at
 
an electrical load higher than
 
190 mA/cm 2. Since there was no
 
cooling plate inthe stack, it
 
tended to overheat. Hence,, lowered
 
to 190 mA/cm2.
 

Oxidant inlet temperature and
 
utilization were set at 78°C and 33
 
percent respectively, to control
 
the stack operating temperature.
 

Fuel inlet (Cell 4) and oxidant
 
outlet '(Cell 5) temperatures
 
increased and remained high
 
(216-246°C) for 1 'hours. This may
 
have been causedby a crossleak
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TABLE 3.8.4-5 (CONTINUED)
 

SUMMARY OF TESTING FOR STACK Z-003
 

Endurance completed at 599 hours
 

Average Cell Voltage = 667 mV at
 
180 mA/cm22, 5 atm., 197 0C, 80%
 
fuel utilization, 33% oxidant
 
utilization
 

Average Cell Resistance = 0.25 nm 

Maximum Cell Voltage = 678 mV (Cell 3)
 
Minimum Cell Voltage = 647 mV (Cell 1)
 

Depressurized at 600 hours 


Disassembly 


between the fuel inlet and oxidant
 
outlet manifolds. The electrical
 
load as reduced from 190 to 180
 
mA/cm6 to control the above
 
temperatures. Because of the
 
malfunction, however, the average
 
terminal cell voltage dropped by 32
 
mV and average cell internal
 
resistance increased by 0.06 m.
 

Avg. cell resistance increased from
 
0.48 (5 atm.) to 0.63 (1 atm.)
 
nQ, 1420C, no load
 

Findings:
 

9 No apparent corrosion of graphit 
- plates 

a 	No significant wetting of plates
 
even though the temperature
 
near the oxidant inlet was
 
.120-1300C
 

* 	Gas channels of Cells 1 and 6 in
 
the inlet and outlet manifolds
 
appeared to be severely blocked
 
by 	Viton Gaskets
 

* 	Deposits, mostly reaction
 
produce of Aluminum and
 
Phosphoric Acid were found in
 
the oxidant outlet manifold.
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OPERATING CONDITIONS
 

PRESSURE: 5 Atm. FUEL/OXIDANT: H2/Air OXIDANT UTILIZATION: 33% 
TEMPERATURE: 190 0 C FUEL UTILIZATION: 80% 

900 I I I I 
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Figure 3.8.4-9 Life Graph of 6-Cell Stack Z-003 



3.8.5 PLATE MOLDING
 

3.8.5.1 MOLDING OF FLAT MK-II PLATES WITH SHOULDERS
 

Molding trials were conducted for flat MK-II plates with shoulders. A number
 
of experiments were conducted to establish the relationship (molding parameter
 

surface, MPS) between the mold temperature, preheat time and the amount of
 

flash generated (Figures 3.8.5-1 and 3.8.5-2). It should be pointed out that
 
the MPS changes with the preform weight and thickness, plate design, mold
 

clearances and the molding procedures. Mold temperature and preheat time are
 
selected from the MPS diagrams so that the amount and the variation inthe
 
amount of flash generated is limited. Experiments were also conducted to
 

adjust the material distribution inthe preform (eggcrate distribution) to
 

achieve the required dimensional tolerances. Table 3.8.5-1 summarized the
 

physical property measurements of the molded plates. Twenty 0.245 inch thick
 

and twenty 0.170 inch thick plates were molded after these experiments.
 

Dies for MK-II pattern plates were received and inspected. These dies were
 
further modified to incorporate recent design modifications. The reworked dies
 

were received and found to be satisfactory.
 

Flat plates were machined and heat-treated to 900'C. Table 3.8.5-2 shows the
 
dimensions of the plates after heat-treatment. The flatness and dimensional
 

tolerances of these plates were very good. This procedure will be used until a
 

process for molding the Z-Z and Z-Tree plates is finalized.
 

Molding experiments demonstrated the feasibility of molding the plates with
 
decreased cycle times. The current cycle is of five minutes duration and the
 

experimental plates were molded in as short as 30 seconds cycle time. The
 
properties of the plates molded with the shortened cycle times require further
 
evaluation to determine the effects of fuel cell operation. Table 3.8.5-3
 
presents a comparison of the physical properties of the plates molded with
 

varied molding cycle times.
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Figure 3.8.5-1 	 Molding Parameter Surface (MPS) for the Z-Pattern Flat Plates
 
(Graphite/Resin) with Shoulders (Plate Thickness 0.245 Inch)
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Figure 3.8.5-2 Molding Parameter Surface (MPS) for the Z-Rattern Flat
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TABLE 3.8.5-1
 

PHYSICAL PROPERTY MEASUREMENTS OF FLAT
 

Z-PATTERN PLATES MOLDED WiTH VARIED CONDITIONS
 

Z PATTERN FLAT DIES (AO-BO)

32% VARCUM 297.03/-68%-A99 GRAPHITE 
'PREHEAT LINE CALCULATED SO TOP DIE IS 1/32" INTO PREFORM 
TOTAL MOLDING TIME = 2 MINUTES
 

PPre-Form Bulk Corn.
 

Plate Weight Temp. Pre-Heat Density Flash Length Width Thick AC AM AE
 
No. G °F Sec. G/CC G In. In. Mil. Mil. Mil. mil.
 

7922 1400 320 30 1.75 119 17.36 12.32 - -- 9 11 
7921 1400 320 40 1.77 91 17.35 12.37 240 -- 12 13 
7920 1400 320 50 1.79 61 17.3 12.35 239 -- 9 13 

7912 1400 340 0 1.81 175 17.32 12.34 222 25 20 27 
7910 
7911 

1400 
1400 

340 
340 

10 
10 

1,.81 
1.79 

120 
148 

17.32 
17.32 

12.34 
0 

228 
234 

21 
26 

17 
21 

24 
35 

7909 1400 340 20 1.81 101 17.32 12.33 232 17 18 20 
7908 1400 340 30 1.81 67 17.32 12.34 238 19 18 21 
7907 1400 340 - 40 1.81 27 17.32 12.33 245 10 11 13 
7906 1400 340 50 1.81 9 17.33 12.34 247 6 11 10 

7879 1400 360 0 1.80 169 17.31 12.33 224 5 7 8 
7882 1400 360 0 1.82 199 17.31 12.33 217 24 24 26 
7877 1400 360 10 1.81 132 17.32 12.34 228 5 11 8 
7878 1400 360 10, 1.80 139 17.32 -12.34 228 5 8 9 
7881 .1400 360 10 1.83 140 17.32 12.33 225 20 19 22 
7876 1400 360 20 1.81 88 17.32 12.34 235 10 12 12 
7875 1400 360 30 1.81 34 17.32 12.33 243 12 15 13 
7874 1400 360 40 1.80 16 17.33 12.33 246 14 19 19 
7872 1400 360 50 1.80 5 . 17.33 12.34 247 6 15 13 
7873 1400 360 50 1.80 9 17.34 12.34 247 3 11 10 

7898 1400 380 0 1.83 182 17.32 12.33 218 21 21 23 
7896 1400 380 10 1.81 84 17.33 12.34 235 20 20 21 
7897 1400 380 10 1.80 86 17.33 12.33 236 17 15 20 
7894 1400 380 20 1.82 16 17.33 12.34 245 3 9 8 
7895 1400 380 30 1.81 13 17.33 12.35 248 7 8 11 
7893 1400 380 30 1.80 8 17.33 12.34 247 8 11 12­
7892 1400 380 40 1.79 15 17.35 12.35 250 - 4 8 9 
7891 1400 380 50 1.75 12 17.36 12.36 252 21 16 '23 

7926 920 320 20 1.80 24 17.32 12.35 169 4 7 5 
7925 920 320 30 .1.80 20 17.31 12.33 171 6 10 8 
7924 920 320 40 1.79 16 17.31 12.34 172 4 7 7 
7923 920 320 50 1.78 12 17.36 12.38 174 -- 3 3 

7919 920 340 0 2.82 45 17.32 12.34 164 13 16 18 
7917 920 340 10 1.82 27 17.33 12.34 167 9 11 13 
7918 920 340 10 1.82 29 17.33 12-34 167 19 12 .14 
7916 920 340 20 1.82 17 17.33 12.34 167 6 11 10 
7915 920 340 30 1.82 13 17.33 12.34 169 9 13 13 
7914 920 340 40 1.83 8 17.33 12.34 169 2 9 7 
7913 920 340 50 1.82 5 17.33 12.34 169 5 12 11 

7890 920 360 0 1.83 54 17.33 12.34 162 12 15 15 
7888 920 360 10 1.82 31 17.33 12.34 166 10 13 14 
7889 920 360 10 1.82 24 17.34 12.34 166 7 13 12 
7887 920 360 20 1.82 16 17.32 12.34 170 4 8 8 
7886 920 360 30 1.81 13 17.34 12.35 169 1 8 9 
7885 920 360 40 1.77 15 17.35 12.35 172 5 13 12 
7884 920 360 50 1.75 11 17.36 12.37 175 10 14 17 

7905 920 380 0 1.84 58 17.32 12.34 163 16 -13 19 
7903 920 380 10 1.82 12 17.32 12.34 169 4 9 10 
7904 920 380 10 1.83 12 17.33 12.34 170. 2 7 8 
7902 920 380 20 1.80 5 17.33 12.33 173 5 7 IO 
7901 920 380 30 1.78 6 17.32 12.33 175 5 8 11 
7900 920 380 40 1.78 5 17.33 12.34 '177 4 5 7 
7899 920 380 50 -- 5 17.33 12.34 180 1 -- 4 

Ac = Difference between the highest and lowest corner measurement.
 
Am = 	Difference between the highest point in the middle of plate and the lowest point
 

around the edge of plate (Includes the corners).
 
Ae = Difference between the highest and lowest point around the edge of plate (ficludes


the corners).

NOTE: All measurements are expressed in mils. (.001").
 

2ISLE-1
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TABLE 3.8.5-2
 

DIMENSIONAL MEASUREMENTS OF 900C HEAT-TREATED
 
MACHINED MK-II PLATES
 

(32 wt% Varcum 29-703/68 wt% Asbury A99)
 

Type of Plates N 
Average 
Length 

Average 
Width 

Average 
% Shrinkage 

Average1 

AC 
(Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.)

After After 
Length Width Machining HT. 

AB Bipolar 8 	 16.734 11.888 3.43 3.49 .0027. .00233
 
(0.007) (0.12) 	 (.043) (.032) (.002) (.002)
 

AC Cooler 8 	 16.728 11.910 3.43 3.30 .0068 .0054
 
(.011) (.012) (.071) (.037) (.002) (.002)
 

BC Cooler 9 16.734 11.907 3.41 3.35 .0047 .0063
 
(.003) (.004) (.025) (.036) (.002) (.004)
 

BD End Plate 4 16.730 11.910 3.39 3.30 .0043 .0041
 
(.007) (.006) (.040) (.033) (.001) (.002)
 

IAC isthe maximum corner thickness, minus the minimum corner thickness.
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-
TABLE- 3".8.-5:3


COMPARISON OF DIMENSIONAL AND:PHYSICAL
 
PROPERTIES FOR PLATES'WITH VARIED MOLDING
 

CYCLES
 

TOTAL DENSITY LENGTH IN INCHES WIDTH IN INCHES
 
CYCLE
PLATE # 


MIN. G/CC MEAN STD.DEV. N MEAN STD'.DEV. N,
 

ZZ-41 5 1.77 17.327 .003 4 12.343 - .003 6 
ZZ-42 1.77 17.325 .004 4 12.338 .006 6 
ZZ-43 1.77 17.325 .005 4 12.342 .005 6 

AVERAGE 17.326 .004 12.341 .005 

12.338 003
ZZ-38 2 1.77 17.320 .004 4. .- 6
 
*ZZ-39 1.77 17.323 .006 4 12.337 .004 6 
AVERAGE = 17.321 .006 12.337 .003 

ZZ-50 1/2 1,77 17.312 .008 4 12.331 .008 6 
ZZ-51 1.71 17.318 .017 4 12.341 .008 6 

AVERAGE = 17.315 .013 12.336 .009 

------------------------------ 7---------------------- ---------------­

* THESE PLATES.WERE MOLDED AT WESTINGHOUSE AND CHARACTERIZED AT ERC.
 

N IS THE NUMBER OF MEASUREMENTS FOR THE PLATE REFERENCED.
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3.8'.5.2 MOLDING OF MK-I COOLER AND BIPOLAR PLATES
 

MK-II cooler and bipolar plates were successfully molded with Asbury A-99
 

graphite and Varcum resin. Visual appearance of the as-molded plates was very
 

good; however, it was noticed that these plates did not remain "flat" after
 

heat treatment. Figures 3.8.5-3 and 3.8.5-4 represent exaggerated characteris­

tics of the molded. and subsequently heat-treated MK-IJI bipolar and cooler
 
plates. The warpage was larger than desirable and therefore methods were
 

investigated to produce acceptable plates.
 

Visual examination of the machined heat-treated MK-If bipolar and cooler plates
 

did not show these characteristics. To investigate the reason for the warpage
 

micrographs were obtained for cross sections of the machined and molded
 

plates. These micrographs (Figures 3.8.5-5 and 3.8.5-6) indicated that the
 

orientation of the graphite particles is different inthese two plates. This
 

was 	attributed to the "Anisotropic shape" of the A-99 graphite particles.
 

It was decided that the following process and material variations should-be
 

evaluated to improve the flatness of the heat-treated plates.
 

a 	 Wet mixing of graphite/resin powders
 

* 	Alternate graphite and carbons
 

Several experimental trials were conducted with various materials. Table
 

3.8.5-4 summarizes the results and physical property measurements for these
 

plates.. The following conclusions were made.
 

Regrind material yield acceptable MK-II plates.
 

* Wet mixing improves the isotropic nature of the composite plate.
 
This is supported by the electrical resistivity measurements
 
perpendicular and parallel to the pressing directions.
 

* 	Shrinkage after heat-treatment is higher for plates molded with
 
wet-mixed materials.
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TABLE 3.8.5-4 

SIIMARY OF HEAT TREATED EXPERIMENTAL PLATES MOLDED WITH 
ALTERNATE GRAPHITES (SEE APPENDIX C FOR DETAIL INFORMATION) 

"COOLER".PLATES 

GRAPHITE % SRINKAGE 

LENGTH WIDTH 

FLATNESS (IN.) 

LENGTH WIDTH 
LARGE 

BORDER 

RESISTIVITY 
(MILLIOHM-CM) 

-----------------------
PERP. PARALLEL RATIO. 

BULK 
DENSITY 

(G/CC) 

MACHINED 
A-99 
PLATE 

REGRIND 

AIRCO 

4421 WET 
DRY 

9039 WET 
DRY 

A-99 WET 
DRY 

-

4.60 

4.39 

4.70 
3.21 

3.27 
3.16 

4.46 
3.67 

-

4.54 

4.30 

4.17 
3.01 

3.33 
3.08 

4.15 
3.20 

0.02 

0.05 

0.08 

0.09 
0.16 

0.19 
0.17 

0.14 
0.13 

-

0.00 

0.02 

0.02 

0.05 
0.03 

0.05 
0.06 

0.03 
0.05 

-

3.70 

2.40 

1.40 
1.30 

2.50 
2.10 

1.80 
3.70 

-

6.45 

3.60 

2.25 
4.65 

3.85 
5.60 

2.55 
5.40 

-

1.74 

1.47 

1.61 
3.58 -

1.54 
2.79 

1.42 
3.38 

1.59 

1.52 

1.74 
1.68 

1.33 
1.40 

1.69 
1.70 

"BIPOLAR" PLATES 

GRAPHITE t SRINKAGE 
.............. 
LENGTH WIDTH 

FLATNESS (IN.) 
...............-
LENGTH WIDTH 
LARGE 

BORDER 

RESISTIVITY 
(MILLIOHM-CM) 

-----------------------
PERP. PARALLEL RATIO 

BULK 
DENSITY 
(G/CC) 

REGRIND 

9026 

AIRCO 20 

4421 WET 
DRY 

4735 DRY 

9039 WET 
DRY 

A-99 WET 
DRY 

5035 

4.33 

3.09 

4.52 

4.85 
3.22 

3.45 

4.46 
3.23 

4.71 
3.63 

3.67 

3.77 

2.97 

4.71 

5.24 
3.52 

3.22 

4.76 
3.28 

5.14 
3.94 

3.93 

0.00 

0.05 

0;03 

0.01 
0.03 

.0.02 

0.01 
0.04 

0.04 
0.02 

0.03 

0.01 

0.02 

0.04 

0.04 
0.09 

0.06 

0.08 
0.09 

0.09 
0.10 

0.09 

4.20 

2.70 

4.60 

1.40 
1.20 

0.86 

2.30 
4.30 

1.70 
1.30 

1.70 

3.75 

4.95 

6.95 

3.30 
3.85 

3.35 

4.80 
6.90 

1.92 
3.50 

4.10 

0.89 

1.83 

1.51 

2.36 
3.21 

3.90 

2.09 
1.60. 

1.13 
2.69 

2.41 

1.68 

1.68 

1.37 

1.80 
1.76 

1.80 

1.58­
- 1.35 

1.69 
1.68 

1.76 

1. ALL GRAPHITE OR CARBON MATERIALS MIXED-WITH 32 WT% VARCUM 29-703 PHENOLIC RESIN.
 
2. % SHRINKAGE IS CALCULATED FROM THE DIMENSIONS OF THE PLATES AFTER COMPRESSION MOLDING
 

VERSUS AFTER 900'C HEAT TREATMENT.
 
3. WET MIXES WERE MADE BY DISSOLVING THE RESIN IN A SOLVENT, THEN ADDING THE GRAPHITE OR
 

CARBON, MIXING, DRYING, THEN GRINDING THE DRIED MATERIAL.
 

4. ALL MOLDING CONDITIONS CONSISTANT WITH PAFC 003 REV#3 EXCEPT THAT: 2 MINUTE MOLDING
 
CYCLES WERE USED, AND PREFORM-PRESSURE WAS INCREASED TO 50 TONS.
 

5. PERPENDICULAR TO PRESSING SAMPLES WERE 5 BY 5 INCH BARS CUT FROM A PLATE'S EDGE.
 
THE PARALLEL TO PRESSING SAMPLES WERE CUT FROM THE BARS AND MACHINED ROUND (.4" DIA.)
 
A FOUR POINT MEASURING METHOD WAS USED FOR BOTH TYPES OF SAMPLES. THE RATIO IS THE
 
PARALLEL VALUE DIVIDED BY THE PERPENDICULAR RESISTIVITY VALUE.
 

6. AFTER HEAT nREAT TO 900-C FLATNESS IS MEASURED BY TRACING AN EDGE, CONNECTING THE END
 
POINTS INE LI) DRAWING TWO PINES LINES L2 and L3 THAT ARE TANGENT TO THE PROFI E
 
AND PARALLEL TO tHE LINE Ll. THE DISTANCE BETWEEN LINES L2 AND L3 IS USED TU CHARATRZ
 
FLATNESS.
 
A) S-TYPE CURVATURE
 

L2- -I--- - - - - - - - - - -

LI-----

L3 - - - - - ---- - - - - - - -


B) BOWED CURVATURE
 

L2----------------

L1 & L3 ------------ - --------- ­
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It is believed that the regrind process reduces the anistropy'(shape) of the
 

graphite/carbon composite. Figure 3.8-5-7 represents a simplified explanation
 

of this behavior.- The number of plates molded with the regrind material was
 

small due to the limited availability of material. The following three
 

materials were selected for further Work: Asbury 4421, Superior 9026, and
 

Regrind Asbury-4421.
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e Graphite/Resin 
agglomeraze 

(See (a) belsw) 

'Resin binder 

b) Graphite/Phenolic Resin Composite Molded 'withthe Regrind Material.
 

ORIGNAL PAS M5 

OF POOR QUALIW'2 

V Graphite Particle 4 
orientation
 

Resin Binder
 

D2123
 

-(a) Graphite/resin Agglomerate Cured or Partially Cured
 

before Comcrcssion Molding.
 

Figure 3.8.5-7 	Random Graphite Particle Orientation in a
 

Regrind Material/Resin Composite
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4.0 FACILITIES DEVELOPMENT
 

4.1 SUBSCALE 2 x 2 INCH CELL PRESSURIZED TEST FACILITIES
 

Assembly and checkout of two 2 x 2 inch subscale cell pressurized test
 

facilities was completed. Table 4.1-1 lists the capabilities of these
 

facilities. Each of these facilities is capable of testing four 2 x 2 inch
 

cells independently and simultaneously. Figure 4.1-1 is a photograph of the
 

completed facility in operation. Table 4.1-2 lists the verified operating
 

conditions during the check-out.
 

Cells numbered 3001 to 3008 were primarily assembled for checking out the new
 

2 itch x 2 inch cell pressurized test facilities. Performance of these cells
 
At 325 mA/cm 2
 at various pressures is presented in Tables 4.1-3 and 4.1-4. 


and 70 psia, the best cell terminal voltage was 691 mV (IR-free 736 mV) for
 

80 percent fuel utilization (H2) and 50 percent Air Utilization. The
 
2
corresponding terminal voltage at 400 mA/cm and 70 psia pressure was 658 mV
 

(IR-free 723 mV). At 120 psia and 325 mA/cm2, the maximum terminal cell
 

.voltage was 716 mV (IR-free 768 mV), and at 400 mA/cm2 the corresponding
 

terminal cell voltage was 695 mV (IR-free 759 mV).
 

4.2 NINE-CELL STACK TEST FACILITIES DEVELOPMENT
 

Design of a new 12 inch x 17 inch nine-cell stack pressurized test facility was
 

completed. The materials for fabricating this facility were ordered. This
 

*facility will be fabricated during'the second logical unit of work.
 

Table 4.2-1 lists the capabilities of the new design. Table 4.2-2 lists the
 
range of the design operating conditions. Table 4.2-3 presents details of the
 

specifications of the failure mode control system for the 12 inch x 17 inch
 

stack pressurized test facility. Table 4.2-4 presents the summary of the
 

materials ordered and received for fabrication of the test facility.
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TABLE 4.1-1
 

2 x 2 INCH CELL. PRESSURIZED TEST FAQILJTY CAPABILITIES
 

* 	 Capable of testing up to torn cells simIl tagQpsly 

a Independent flow control of PrQ s gasg5 for each cell 

a Open circuit tests with fuel and/pr oxidant off can be performed 

* 	Load transients with greater than 3 milli5econd switching -time can be
 

studied
 

* 	Automatic individual cell shut-down if *ll votage Pr temperature is 
outside the set ranges (ranges can be changed) 

* 	 Automatic system shut-down if byrogeq detected in vessel 
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TABLE 4.1-2
 

2 x 2 INCH CELL PRESSURIZED TEST FACILITY VERIFIED OPERATING CONDITIONS
 

Pressure Range 


Standard Gases 


Current Range 


Fuel Flow Range 


a450 

a 

Oxidant Flow Range 


Temperature Range 


0 to 135 psig (1to 10.2 atm.) 

(pressurization rate of % psi 

per minute)
 

H2 fuel, air oxidant, auxiliary
 
inputs for special gases
 

15 to 600 mA/cm2 (0.37 to 15 amps) 


Up to 80 percent utilization at 

mA/cm2
 

60 percent tQ 100 percent
 
at 600 mA/cmL for H2
 

mA/cm 2 for SRF (dry)
 

Up to 50 percent utilization at 

50 mA/cm2
 

27 percent to 100 percent utilization
 
at 600 mA/cm2
 

30 to 2500C (Independently controlled 

for each cell)
 

Limitation
 

Present procedure and control
 
equipment
 

Amp meter
 

Flow measuring equipment
 

Flow measuring equipment
 

Fuel Cell Parameters
 

- m m m m - a ai DIa aII an a -i a I a ­



TABLE 4.1-4
 
2 x 2 INCH PERFORMANCE DATA OBTAINED DURING TEST FACILITY CHECKOUT (IR-FREE VOLTAGE)
 

1 ATM.(14.7 PSIA)* 4.76 ATM.(70 PSIA)+ 8.16 ATM.(120 PSIA) 

CELL NO 

------

IRFREE IRFREE IR FREE IR FREE 
VOLTAGE VOLTAGE VOLTAGE VOLTAGE 

@CELL 2O-02 20@ 22.2 @ 2 
20 mA/cm 200 mA/cm 50 mA/cm 200,mA/ch 

mV mV mV mV 
---------------- ------------------------- z-----------

IRFREE IRFREE IRFREE 
VOLTAGE VOLTAGE VOLTAGE 

2400 2 @ 2 
325 mA/cm 400 mA/cm 50 mA/cm 

mV mV mV 
=------------------ ---------------

IRFREE IRFREE 
VOLTAGE VOLTAGE 
20 2 @ 
200@mA/cm 325 mA/cm 

mV mV 
------- -------------

IR FREE' 
VOLTAGE 

2 
400 mA/cm 

mV 
---------­

3001 809 672 799 764 734 714 
3002 

3003 

3004 
3005 

3006 
3007 

3008 

812 

812 

806 

803 

814 
808 

Bid 

670 

672 

665 

668 

672 
669 

673 

829 

815 

---

---

831, 
806 

791 

772 

760 

746 

765 

766 
761 

754 

739 

736 

725 

731 

7J4 
726 

726 

723 

713 

706 

722 

719 
-­

706 

858 

851 
8831 

800 

' 797 
797 
798 

784 

*** 

764 
769 
768 

760 

751 

755 
759 

* 
+ 
W 

CONSTANT FLOW DATA 
80% FUEL (H2) 50% OXibANf (A~fR) UILAIdN' 
CELLS NOT TEStED At TNiS PRESSURE 



0 

TABLE 4.2-1
 
12 x 17 INCH STACK PRESSURIZED TEST FACILITY CAPABILITIES
 

* 	 Capable of testing up to a nine-cell stack
 

* 	 Measurement of Fuel, oxidant and cooling flow pressure drops
 

* 	 Cooling inlet temperature control
 

Backup flow monitoring
 

* 	 Fine control of electrical load
 

* 	 Automatic failure mode control system
 

* 	 Load transients with greater than 3 milliseconds switching time can be
 

studied
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TABLE 4.2-2 

12 x 17 INCH STACK PRESSURIZED TEST FACILITY 

DESIGN OPERATING CONDITIONS RANGE 

Limitation 

Pressure Range 0 to 135 psig (Ito 10.2 atm) pressurization 
rate of approximately 2 psi per minute 

Present procedure and control 
equipment 

Standard Gases 

Current Range 

H2 fuel, air, oxidant, auxiliary inputs 
for special gases 

50 to 460 mA/cm2 (50 to 500 amps) Amp meter 

Fuel Flow Range Up to 80 percent utilization at 50 mA/cm2 

50 to , 100 percent utilization at 460 mA/cm 2 
Flow measuring equipment 

Oxidant Flow Range Up to 50 percent utilization at 50 mA/cm2 
20 to ,100 percent utilization at 460 mA/cm 2 

Flow measuring equipment 

Temperature Range 30 to 2500C Independently controlled end plate 
temperatures 

Stack parameters 

Cooling 100 scfm air Ambient to 2000C Blower & heater elements 



TABLE 4.2-3
 

SPECIFICATIONS OF THE FAILURE MODE CONTROL SYSTEM FOR
 

12 x 17 INCH STACK PRESSURIZED TEST FACILITY
 

Trip Point
 
Problem 	 (Adjustable) Action
 
Stack Undervoltage 	 0.5-3.0 volts Remove Load
 

(group of 2 or 3 cells)
 

Stack Over Temperature 150-2500C 	 Remove Load
 

Vessel Over Temperature 100-175°C 	 Remove Load
 
Stop Process
 
Flows
 
Depressurize
 
System
 

H2 in Vessel Gas 1 percent or Remove Load
 
4 percent Stop Process
 

Flows
 
Depressurize
 
System
 

Power Failure 	 Longer than Remove Load
 
1 minute
 

Longer than 	 Remove Load
 
30* minutes 	 Stop Process
 

Flows
 
Depressurize
 
System
 

* Due to Loss of Back-up 	Power and Supply Air 
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TABLE 4,.2-4
 

PROGRESS REPORT
 

12 x 17 INCH PRESSURIZED STACK TEST FACILITY 

DATE DATE *DATE +DATE #DATE 
ITEM ORDERED RECEIVED' MOUNTED INSTALLED CALIBRATE COMMENTS 

PANEL FRAME ** ** 
PANEL ALUMINUM 
MAIN VESSEL ** ** 
VAPORIZER 
WATERTRAP ** 
CONDENSER 
VOLTMETER & SWITCH ** ** 
AMMETER & SHUNTS ** ** 
PYROMETER & SWITCH ** ** 
TEMP JACK PANEL ** ** 
TEMP CONTROLLERS ** ** 
AIR PREHEATER 03-04-83 05-13-83 Q-4 E23114 
RECIRC. HEATER 03-31-83 Q-2 E23217 
DATA MONITOR 03-03-83 03-17-83 Q-1 'E23140 
DIMMER SWITCHES 
UTILITY BOX ** ** 
REGULATORS ** ** 
PRESSURE GUAGES ** ** 
FLOW CONTROLLERS 03-22-83 04-21-83 Q-4 E23117 
RECIRC. FLOWMETER 04-05-83 Q-2 E23301 
ROTAMETER 03-10-83 04-15-83 Q-3 E23146 
HIGH VOL ROTAMETER 03-09-83 Q-2 E23118 
3x6 3-PEN RECORDER 02-28-83 04-12-83 
6x6 3-PEN RECORDER ** **-­

Q-2 E23057 

PRES CONTROLLERS 02-28-83 Q-3 E23057 
PRES TRANSMITTER 02-28-83 05-16-83 Q-8 E23057 
CONTROL VALVES 03-03-83 05-19-83 Q-5 E23129 
SOLENOID VALVES 03-04-83 03-18-83 Q-6 E23092 
BUTTERFLY VALVES 03-28-83 05-02-83 Q-2 E23280 
SUPPLY VALVES 03-08-83 03-17-83 Q-18 E22710 R-6 
CHECK VALVES 03-08-83 03-17-83 Q-5 E22110 R-6 
RECIRC LOOP PIPING 04-11-83 E23343-E23336-

E23219 
RECIRC BLOWER 03-09-83 04-28-83 Q-4 E23116 
VARIABLE FREQ CNTL 02-28-83 03-22-83 Q-2 E23046 
VAPORIZER PUMP 02-28-83 03-24-83 Q-1 E23058 
VARIAC ** ** 
CNTL VALVE TRIMS 03-04-83 04-26-83 Q-3 E23098 
VESSEL FITTINGS 
HOUR METER 
DEW PT. HYGROMETER 02-23-83 03-17-83 Q-2 E23110 
SAFETY CIRCUIT 04-24-83 
BATTERY ** ** 
LOAD BANK 
SCANNER/APPLE ** ** 

* DATE INSTRUMENT WAS MOUNTED INTO PANEL OR FRAME 
+ DATE INSTRUMENT WAS WIRED AND/OR PLUMBED INTO SYSTEM 
# DATE INSTRUIIENT WAS CALIBRATED (TEST OPERATIONAL) 
** - AVAILABLE FROM PREVIOUSLY PLANNED FACILITY 
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