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This final report provides a summary of the tasks performed on

Contract, NAS8-35189 for the Atmospheric Sciences Division of the System

Dynamics Laboratory of the Mnrshall Space Flight Center.

1.0 BACKGROUND

New Technology, Inc. (NTI) began this 12-month study with the goal of

enhancing the capabilities of the Atmospheric Modeling and Sensor Simulation

(AMASS) system. This system is used in processing atmospheric measurements

which are utilized in the evaluation of sensor performance, conducting design . -

concept simulation studies, and also in the modeling of the physical and

dynamical nature of atmospheric processes. These results may then be evalu-

ated in order to furnish inputs into the final design specifications for new

space sensors intended for future Spacelab, Space Platform and free-flying

missions. In addition, data gathered from these missions may subsequently be

analyzed to provide a better understanding of the requirements for atmospheric

modeling.

The following study tasks were proposed in order to both enhance the

AMASS system utilization and attempt to integrate the AMASS system with other

existing equipment to facilitate the analysis of data for modeling and image

processing.

1.1 COMMON GRAPHICS PACKAGE

Perform a study to determine the feasibility of establishing a common

graphics package (e.g., NCAR graphics package) for the systems used in atmos-

pheric modeling and sensor simulation studies. This commonality of software

could lead to significant simplification in setting up modeling software as

well as possibly reducing the need to transfer data files between systems to

access graphics software.

1.2 RJE METHODOLOGY

Investigate the possibility of connecting the systems together via RJE

methodology in order to provide better utilization of computer resources

available to the scientific user community in a cost-effective manner. Use of

RJE techniques is preferred over interactive terminals for several reasons,
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including reducing the need to learn extensive JCL and allowing the conven-

ience of batch mode for large modeling programs.

1.3 PROTOTYPE DEVELOPMENT

Determine techniques which might improve system performance, select

the most promising, specify required material for development of the proto-

type, make recommendations, and subsequently test prototypes to assure feasi-

bility of use in a normal operating environment.

1.4 WRITEABLE CONTROL STORE

Since the sensor area of image processing involves gathering data from

sensor simulation of mosaic arrays as well as the analysis of real data which

actually is transmitted from the sensor, both rapid CPU speed and high band-

width input/output (I/0) are of the utmost importance. Therefore, a study was

recommended to determine benefits which may be derived by coding selected

portions of software into Writeable Control Store (WCS) in an attempt to

decrease program execution time.

1.5 HARDWARE OPTIMIZATION

It was proposed that a study be undertaken in order to improve exe-

cution performance of atmospheric models. Since raw computer speed is the

driving factor in this environment, an evaluation of the means in which

hardware optimization could be accomplished would seem most desirable. A

prime area of interest here was the evaluation of individual modeling programs

to determine where the areas of intense execution concentration reside and

resolution of techniques for improving general system performance.

1.6 ARRAY PROCESSOR

In a similar manner as described in Section 1.5, it appeared that the

addition of an array processor to the AMASS might permit a significant improve-

ment in the execution speed of models. Selection of a candidate program and

use of it as a benchmark to run on a similarly configured system equipped with

an array processor could provide valuable comparative results for the evalu-

ation followed by appropriate recommendation based on that study.
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1.7 LINK TO HIGH—SPEED COMPUTER FACILITIES

,A study was recommended to determine how the AMASS could be linked to

other existing or projected NASA high—speed computer facilities (e.g., Class 6

system proposed for MSFC). Important factors for consideration included

communications, ease of operation from the standpoint of the user scientist,

and providing as much transparency to the user as possible to minimize the

necessity of learning extensive job control languages and utilities.

2.0 SUMMARY OF ACCOMPLISHMENTS

The following subsections reflect status of each of the individual

work tasks. Figure 1 shows the milestone chart for all tasks. Due to the

lengthy period required to procure equipment, work on hardware optimization

and the array processor was deferred until items arrived. Attention was

directed instead toward RJE methodology and the high—speed computer link.

CONTRACT MONTH

SUBTASK 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12

COMMON GRAPHICS
PACKAGE

RJE METHODOLOGY

PROTOTYPE
DEVELOPMENT

WRITEABLE CONTROL
STORE

HARDWARE
OPTIMIZATION

ARRAY PROCESSOR

LINK TO HIGH-
SPEED COMPUTER
FACILITIES

Fig. 1 Milestones
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2.1 COMMON GRAPHICS PACKAGE

The National Center for Atmospheric Research (NCAR) graphics package

was implemented and checked out on the AMASS system. It was determined that

capability to support FR-80 microfiche output could also be added relatively

easy. Although the NCAR code used at the Goddard NASA High Speed Computing

Facility (NHSCF) differs somewhat from the version at MSFC, the basic features

of their package offer substantial compatibility. A Tektronix 4115B color

graphics terminal was installed and checked out on the AMASS system. The

existing NCAR metacode translator presented no problems.

2.2 REMOTE JOB ENT11Y (RJE) METHODOLOGY

The possibility of connecting to the Class 6 Cyber 205 at the NHSFC

was investigated. Protocols evaluated included RJE 2780/3780 and HASP emu-

lator packages. HASP was selected due to its versatility and compatibility

with RJE software at Goddard. Equipment necessary for accomplishing the

connection was specified and ordered as prototype items. The system was

reconfigured, and the connection entablish.d and checked out.

A user meeting at NHSFC was attended by K. Parker of NTI and

L. MacLean of MSFC. Other remote users included JPL, MIT, University of

Wisconsin and University of Maryland. This meeting provided an opportunity

for remote users to alert NHSFC to their problems as well as offer a chance

for users to exchange information.

2.3 PROTOTYPE DEVELOPMENT

The RJE/HASP interface described in the previous section was developed

in this manner to determine if the interface would perform satisfactorily.

The following items were procured under this contract:

Selector Channel M32-010

Quad Synchronous Adapter M47-002

Line Conditioning Module M47-005

Cable (LCM to Modem) 25 ft M47-007

HASP Emulator S70-015-ABC

UDS 208/AB Modem

4 ;
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2.4 WRITEABLE CONTROL STORE

The Writeable Control Store with associated FORTRAN enhancement

software package was installed on the AMASS. Numerous benchmarks were run to

evaluate the relative improvement in execution speed over the standard

configuration.

2.5 ARRAY PROCESSOR

It immediately became obvious that the CPU power offered by the AMASS

would not satisfy requirements of running multiple modeling/simulation pro-

grams simultaneously. A study was undertaken (sce attachment) of off-the-

shelf AP's available which would offer standard interface to the Perkin-Elmer

3250 with reasonable cost ($70 - $90k). During this time, an FPS AP-120B

array processor was borrowed from another lab for feasibility studies. It was

determined that although the currently available AP's meeting these specifica-

tions did not offer much more than the borrowed AP, at least three vendors

indicated cost-competitive, standard-interface units would be available within

months. The recommendation was made to continue experimentation with the

AP-120B and keep monitoring the AP market.

2.6 SOFTWARE OPTIMIZATION

Modifications were made to the P-E operating system in an attempt to

speed up the overall system performance. The multiterminal monitor system was

modified to disable the heuristic scheduling algorithm. This allows manual

modification of the time slice granted each user. This becomes more important

as the job mix changes from CPU-bound to I/0-bound. A recommendation was made

to obtain the FORTRAN Z compiler to provide universal optimization capability.

This software was received; however, the upgrade is not compatible with the

existing revision level. The correct revision should arrive when the P-E

extended software maintenance contract goes into effect.

2.7 HARDWARE OPTIMIZATION

The original configuration of the AMASS is shown in Fig. 2. Figure 3

depicts the current hardware configuration. The dotted lines indicate items

under procurement. The following equipment was recommended and subsequently

procured and installed:

5
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Fig. 2 AMASS Configuration
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• Four-way interleaved memory

• Additional 2 Mbytes Memory (total of 4 Mb)

• Array Processor (on loan)

• Tektronix 4115 color terminal

• Tektronix 4691 color hardcopy

• Tektronix 4006 terminal (2)

• Tektronix monochrome hardcopy

• 600-Mb disc storage

• Selector channels

• 4800-baud bisynchronous model/quad synchronous
adaptor (QSA).

The selector channels were installed to create a separate data path for (:)

the original 300-Mb disc (2) tape drive,	 (3) array processor, and (4)

	

'r	 600-Mbyte (actually two 3GO ?Ibyte discs on a shared controller) disc drive.

The 4800-baud modem and QSA work with HASP software to permit RJE

connection with other sites such as GSFC. Four-way interleaving was installed

in an attempt to increase overall speed as were the selector channels

	

-	 described above. Equipment recommended but not acquired includes:

• MPS upgrade for P-E (with one APU)

• Chromatics color graphics terminal (to support
doppler radar/lidar)

• Additional 4 Mbytea memory (total 8 Mb).

2.8 OTHER

Classes in modems and image processing offered by UAH were attended by

Ms. Parker as well as training at the University of Wisconsin for the Man

Computer Interactive Data Acquisition System (McIDAS). General consulting was

also occasionally offered to various users to assist them in optimizing use of

the AMASS.

Currently a study is underway to determine the best means of imple-

menting an overall data management plan for the facility. This will also 	 I

facilitate transportability of data between the HP, Harris and Perkin-Elmer.

8
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2.9 TRAVEL

Thu following trips were required for the purposes listed:

Destination	 Duration	 Purpose

University of Wisconsin 	 1 week	 Study and evaluation of
Madison, Wisconsin	 methodology of ingesting

Goddard Space Plight
Center

Greenbelt, Maryland

image data into the AMASS
for use in image proceso-
ing which may be quasi-
real time

1 day	 Meeting regarding RJE
bOL cen AMASS and Class G
equipment

9
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Section I. INTRODUCTION

The Atmospheric Science Division (ASD) is faced with the problem of

maintaining adequate throughput for its users at reasonable cost. In general, it
has been estimated that the throughput requirements of a typical university or
industrial computer center are escalating at a rate of 15 to 20 percent per year,
based on either Central Processing Unit (CPU) seconds or connect tine. This
Qrowth can perhaps be attributed to two basic causes. The first is an increase
in the number of applications amenable to analysis or modeling by computers. The
second is the use of increasingly sophisticated analytical techniques and models.
Certainly the field of atmospheric science reflects such growth in both areas as
demonstrated by the increasing dependence on computers to perform the intense
"• number crunchLng" required by many of the algorithms for such items as cloud
modeling, weather forecasting,'satellite and radar data reduction, and image
processing.

Although these throughput nerds have in some cases been satisfied by using
centrally-located large-scale vector processing machines such as the Cyber and

Cray, there frequently exists a need to locate the computer resources within the
confines of the laboratory or research facility. Minicomputers are often used in
performing these research tasks; however, the numerical calculation requirements
can overwhelm such a machine, and processing time to accomplish the manipulation
of the data may exceed all requirements. Often computationally intensive
problems have been relegated to be run after hours in order to avoid interference
with interactive user activity during normal working hours. '

Currently, one project in which the ASD is involved is the development of a

cloud modeling program, which is predominatly CPU-bound on the Perkin-Elmer (P-E)
3250 system. Not only does the software require on the order of days to execute;
other users are excluded for all practical purposes from being allowed to run
while the model Is executing. One obvious approach to solve this problem is to
offload the code to a Cray or Cyber class machine, particularly since the code
seems well-sulcc.d to vectorization. This approach is being followed; hardware
-and software required to utilize the Houston Automatic Spooling Program (HASP) on
the P-E to allow connection to the Cyber 205 at Goddard Space Flight Center
(GSFC) have been installed. However, this will not necessarily solve the overall
problem because requirements for ot lier somewhat similar models will certainly
appear later. This approach also involves coordination with GSFC for resources
such as CPU time, disk space, etc.

Anothe r approach to increase and maintain throughput, which appears to be a
cost-effective alternative, is to attach an array processor as a peripheral to
the P-E computer.

The array processor may be considerea to be a computer, optimized in
architecture std instruction set, which accepts blocks of data and instructions,
from a host mini- or large-scale computer-and performs computations at speeds
mauy times those possible by the host alone.

In a typical application, a program is separated into two parts. One,
basically input/output (I/0), is executed by the host computer while the other,

11
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compute-bound, is executed by the array processor. For discussion purposes,
compute-bound will imply that the routine or program actually expends 80 percent
or more of the total execution time of the program in performing numerical
calculations.

Usually, an array processor is interfaced to a front-end host computer that
handles communications with users, file manipulation operations, and most
peripheral I/O operations (Figure 1). The array processor concentrates on the
computationally intensive operations and effectively acts as a processing unit
for the system. This arrangement imposes a twofold impact on computer
technology:

• A compact, economical minicomputer-based array

processor system could possibly offer computer power
comparable in some ways to that of a multimillion
dollar mainframe system.

o Time consuming (and thus costly) calculations may be
offloaded from a host to an array processor as an
economical move to increase the capabilities of the
host system to handle other users.

The same specialized architecture that causes the array processor to be
super efficient for "number crunching" applications make it ill-suited for other
applications that do not involve intensive arithmetic. Such areas as signal
processing, imagc- processing, speech recognition, and structural analysis are
very well-suited ro using array processors. Due to the compute-intensive nature
of the atmospheric models and extensive use of arrays, it appears that addition
of an array processor could be most beneficial in offloading the P-E and
consequently freeing the CPU resource to enhance throughput for other users.

In the past, due to data and program source limitations, most array
processors were used for special, dedicated applications such as signal or image
processing. In many cases, this meant using modestly sized programs for which
-speed was critical. There has also been a general reluctance on the part of data
processing managers to attach "foreign" equipment to their systems. However,
improvements in array processor architecture, including the incorporation of
hardware to handle much larfer programs, larger quantities of data, and more
accurate data representation as well as the development of enhanced software to
facilitate programming have combined to make the array processor a feasible
alternative solution to the throughput problem.

Within this document, tt:e following array processors will be evaluated for
anticipated effectiveness and/or improvements in throughput by attachment of the
device to the P-E:

Floating Point Systems (FPS) AP-1208	 +
Floating Point Systems 5000
CSP, Inc. MAP-400
Analogic AP500
Numerix MARS-432
Star Technologies, Inc. ST-100



j	 These vendors either currently offer a standard, off — the—shelf interface to the

P—E host, or they plan to have a prototype available. Other vendors which were
omitted, such as Sky have indicated no intention to offer a P—E interface at this
time, primarily due to a limited market demand. Although NUMERIX was included in

`	 this study, they are not committed to providing a P —E interface. However, they
have expressed interest in the possibility and have contacted P—E corporation
regarding the matter.

.r
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Section II. BACKGROUND

Array processors have achieved their speed with state-of-the-art logic
elements combined into functional units that display some combination of the two
keys toward increased throughput: parallelism and pipeline processing. Just as
Direct Memory Access (DMA) transfer may be overlapped with ongoing processing,
architectures that incorporate parallelism allow such operations as floating
point addition, floating point multiplication, integer arithmetic, and data
fetches to occur simultaneously. This parallel processing becomes more efficient
as the number of things that can be done simultaneously increases. For example,
an algorithm performed in 8 seconds using in-line code might require 2 seconds if
Lout distinct processor elements could be used efficiently in parallel.

The array processor has multiple data paths to eliminate communication
bottlenecks that might prevent the various hardware elements from operating in
parallel. The use of multiple data paths is particularly helpful for a number of
reasons. By permitting each element of the machine to have access to the others,
bus constraint problems are removed. The device thus does not need tr wait for
another particular device to become available in order to transfer data. An
important feature of this architecture is that it permits ease of programming and
debugging since no element has to rely on the state of other elements to perform
its function. The net result of using this approach with the Floating Point
Systems architecture, for example, is that up to ten floating point addition,
floating point multiplication, data fetch, deposits of results, address
calculation, etc. can be processed simultaneously during each cycle.

Normally, floating point calculations are not performed at one time;

instead, several intermediate steps may be required. This "pipeline" process may
be used on an array processor to increase hardware utilization by segmenting
time-consuming operations like floating point addition and multiplication.
Consequently, each functional unit can output every machine cycle, once set up,
even if it takes more than one cycle to perform the entire operation for a
segmented unit.

Floating point arithmetic takes longer than accumulator or integer
arithmetic operations. Therefore, pipelining a floating point multiplier and
adder frees array processor designers from basing cycle time on the relatively
long interval required for floating point arithmetic. Since a sum or product can
be initiated every cycle, pipelining increases the number of floating point
operations that can be performed in a given period of time. For instance, Figure
2 depicts the use of pipelined calculation in the floating point multiplier of
the Floating Point System processor. Note that three separate steps are required
to complete the multiplication of two 38-bit floating point numbers. If the
value of X1 times Y1 were desired, the product would be a y..!lable after three
machine cycles, since each stage requires one machine cycle. Using the FPS
machine cycle time of 167 nanoseconds, approximately 0.5 microseconds will be
required to obtain the product of X1 and Y1:

With this pipelined multiplier, it is possible to begin the next product,
say X2 times Y2, when the first product reaches stage 2. Similarly, a third

14
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Figure 2. Floating Point Multiplier
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product X3 times Y3 may begin when the second product is transferred to stage 2
and the first product is transferred to stage 3. This means that a result is
made available on every machine cycle, in this case at a rate of one every 167
nanoseconds.

Array processors differ primarily in how closely they are coupled to their
host computer and in their use of synchronous or asynchronous functional units.
Tightly coupled processors use the host memory as their own, and consequently can
be connected only to the host for which they are designed. Loosely coupled
systems, in contrast, have their own memory and can be connected to different
host computers. The disadvantage of this design is that it requires data
transfers from the host to the processor which may be very time-consuming.
Memory size for loosely coupled systems may nary from a few thousand to several
hundred thousand locations for data ranging from 16 to 64 bits in length. In
most array processors, 32 or 38 bits are used for floating point numbers, while
16 bits are commonly used for integers.

Processors incorporating synchronous timing contain functional units that
operate at the same speed, providing a predictable flow of data. On the other
hand, in asynchronous designs the functional units operate at different speeds,
so control modules are required to ensure that the data flow between units in a
correct, timely fashion.

Elements of a synchronous processor operate according to fixed time
interrelationships, thus largely avoiding the need for a programmer to coordinate

the various subsystems. In addition, the synchronous array processor has a
finite number of machine states and can thus be modeled in software by a
simulator, which enables a user to debug a program interactively, line by line.

Although the asynchronous array processor tends to be characterized by a
capacity for relatively high throughput, it may be arduous to program since its
architecture requires the programmer to assume the burden of coordinating various
asynchronous elements. In addition, program debugging may be quite difficult due
to the unlimited number of machine states.

Both synchronous and asynchronous machines are evaluated in this document.
Individual processor architectures are described for each machine.

16
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Section III. EVALUATION CRITERIA

Requirements of the enhanced P-E or P-E/array processor configuration
include the following:

• Capability to run Fast Fourier Transforms for up to
128 x 128 x 128 arrays.

• Some programmability to permit setup of a sequence of
commands for subsequent execution by the array
processor independent of the host.

• FORTRAN compiler for the array processor.

• Minimum of 1 Mb memory, directly addressable.

• Library of image processing routines.

• Reasonable complement of diagnostic routines to permit
isolation of faults in hardware.

Both internal array processor architecture and host minicomputer system
architecture affect the performance and efficiency of the combined system.

In order to accomplish an effective interface with a host minicomputer
such as the P-E, an array processor should have the following general
capabilities:

• Perform rapid calculations in conjunction with readily available,
standard, relatively inexpensive host minicomputers.

• Interface directly to the host with minimal downtime.

• Have the capability to work independently of the host, which is
required only to transfer computationally intensive problems to the
attached processor and retrieve results when available.

• Offer several specialized processors operating in parallel mode
since multiple parallel processors, under effective control, yield
high speed operation.

• Feature software adaptability which allows program deletions,
changes, or modifications to existing algorithms and enables new
routines to satisfy altered application requirements.

• Provide floating point • data format since rounding hardware in
floating point arithmetic units, which is compatible with fixed-
point formats, promotes improved accuracy.

• Provide a means for directly connecting external devices such as
disk drive, analog-to-digital (A/D) devices, etc. to the

17
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array processor to prevent burdening the host with future additional
I/O requirements. In this manner, interaction between the host
memory and the array processor is limited to transferring final
results to the host.

Several items may be considered to evaluate array processor performance:

• Million Floating-Point Operations Per Second (MFLOPS)

• Function execution times

• Peak memory access rate

• Standardized benchmark programs (e.g., application !rode ur
Whetstone).

Of these, the most appropriate measure is the application program sincre it
provides immediate and direct estimation of anticipated performance improvement.

Use of MFLOPS as a measurement tool tends to be misleading. For example,
suppose it is desired to estimate the vector addition function execution time on
a synchronous array processor with an advertised speed of 12 MFLOPS. The
equation

y(i) = u(i) + v(i)	 , 1 = 1,2,.	 N

requires N floating point additions. Merely dividing N by 12 to yield a time of
83 nanoseconds times N is incorrect because three memory references per addition
are required at a time of 167 nanoseconds per reference. Specifically, the
references are

fetch u ( i), fetch v ( i), store y(i)

'and the time to accomplish these memory references for each addition operation is
167 x 3 = 501 nanoseconds. Therefore, the estimated time per operation is
actually 584 nanoseconds, which differs from the original estimate by '501/83,
which is roughly a factor of six.

Suppose instead that function execution times are used. Assume that the
time required for the vector addition operation is advertized at 0.5 microseconds
per point vector add time. If vectors u and v are read from host to array
processing memory, added to form a result vector y, and written back into host
memory; I/O time dominates arithmetic processing time. Assuming that the
host /array processor operates at a 1-Mb / second memory access rate, 4 microseconds
are required to read the 32-bit sample from host memory and 4 microseconds to
write it back, totaling 8 microseconds I/O time per sample. The 0 . 5 microseconds
per point vector add time is insignificant compared to the 8-microseconds
transfer time.

Since all of these measurements tend to be rather misleading when utilized
on an individual basis coupled with the fact that each user ' s application
typically requires a different mix of operations, timing a specific application
program or some subset of it appears to provide the best direct measure of array
processor performance. Also, by having competing array processor vendors

18

r`'



implement either all or part of an application program, the user can measure both
vendor responsiveness ns well as product performance at the same time. It is
important to note, however, that although a limited number of vendors offer a P-E
interface for their array processor, it may not be possible to run a user
benchmark on a P-E array processor configuration. Perhaps it will be necessary
to benchmark using a different CPU host such as the VAX computer in order to
obtain baseline results for comparison.

Incidentally, due to the effort necessary to convert code to run on an array
processor (without using on array processor oriented FORTRAN compiler), some of
the vendors have been rather hesitant to run any user-selected benchmark code.

In view of these points, the following items will be used as basic
guidelines in evaluation:

• Level of satisfrction of user requirements

• Interface compatibility with host

• Array processor architecture (especially speed and memory
configuration)

• henchmark results (where available)

• Software flexibility and programmability

• I/O requirements (possibility of direct connection to external
devices)

• Cost

Y
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Section IV. TECHNICAL CHARACTERISTICS

The purpose of this section is to provide a brief overview of each of the
array processors undergoing evaluation, namely:

Floating Point Systems (FPS) AP-120B
Floating Point Systems 5000
CSP, Inc. (CSPI) MAP-400
Analogic AP500
Numerix MARS-432
Star Technologies, Inc. ST-100

Introduced in 1976, the Floating Point Systems AP-1208 array processor
allows computational speeds of up to 12 MFLOPS. The data word length and Kable
memory word length are each 38 bits; the instruction word length is 64 bits.
Figure 3 depicts the architecture of the AP-120B.

A fairly recent addition to the FPS product line is the FPS-5000 series.
The general architecture design of this series is shown in Figure 4. Note that
although the overall system is synchronous, the compute processors operate in an
asychronous nature in order to achieve maximum throughput. Another feature of
this series is that these multiple compute processors, termed "co-processors,"
may be used in a configuration to enhance performance. The 5200 and 5300 series
are designed to interface with a. P-E hest and operate in a manner similar to the
AP-120B. Figure 5 shows the FPS-5000 o-ystem and architecture.

Although the currently offered FPS FORTRAN compiler does not support the
co-processor architecture, a new version offering this support is supposedly soon
to be released. The new version should also provide ANSI-77 level FORTRAN.
Currently another problem exists in programming the FPS--specifically the 64KW
page limit. The new compiler is also supposed to correct this problem.

The architecture of the CSPI MAP-400, which was introduced in 1981 is
depicted in Figure 6. The MAP-400 is basically an extension of the MAP-300. The
system actually consists of two MAP-300 arithmetic processing units and a single
Control and Supervisory Processor Unit (CSPU). It is advertized to be capable of
executing 24 MFLOPS.

The Host Interface Module (HIM) performs all Host-MAP transfers of commands
and data. Program Memory (Bus 1) contains the SNAP-II Executive and library.
Each bank of data memory may contain up to 256 K bytes of memory in any
combination of 170-, 300-, or 500-nanosecond access speed. The CSPU is a 16-bit
single-board minicomputer which executea the Snap II Executive Operating System

and provides control over all MAP processors.

Since the CSPI is based on asychronous architecture, it tends to be somewhat

tedious to program. Another consideration is that it was extremely difficult to
get information from the vendor. If this lack of vendor responsiveness provides
any indication of corporate product support after purchase, the performance
features of the MAP-400 seem eclipsed by fear of subsequent maintenance and
programming problems.
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In contrast, contacts with Analogic proved moat favorable. All requests for
information 'and/or technical questions were answered without delay, and frequent
"check-up" calls were received. A week of tuition-free training was also
offered.

The Analogic AP500, which wa q released in 1982, offers a relatively low-cost
array processor with an advertised :ixlmum of 9.4 MFLOPS. Tile accuracy internal
to the pipeline. is 40 bits, with a 32-bit mantissa and 8-bit characteristic.
Thus, the precision of the 32-bit mantissa exceeds that of the 28-bit mantissa of
the 38-bit array processor and similarly, the 24-bit mantissa of the 32-bit array
processor.

The system architecture of the AP500 is shown in Figure 7. It is based on a
Motorola MC 68000 supermicro and supports up to 256 K bytes of program memory and
up to 1 M (32 bit) words of data m mory. Although Analogic does not currently
market an interface to the P-E, one is currently under development end is due to
be released within months.

IThe Numerix MARS-432 is advertized as having computational power of 30
MFLOPS. As in the case of Analogic, Numerix currently does not offer a P-E
interface; however, they have been in negotiation with P-E to develop one.
According to a P-E representative, this Numerix project is still in its 'infant"
stage. Analogic and Numerix are developing their respective interfaces in
response to customer pressure, and estimates for having these items commercially
available vary from a few awnths to possibly a year.

A FORTRAN Development System is available for Numerix which consists of a
FORTRAN compiler, linker, and trace/monitor. In addition, a Microcode
Development System ( pD)S) provides an offline development package, which includes
the macroassembler, microcode debugger, and a utility to provide automatic
microcode optimization.

Figure 8 shows the architecture of the MARS-432. Although an explicit
separation exists between Data Memory (DM) and Program Memory (PM), a data path
between the two does exist. This enables the DM to be used as a bulk storage
area, if necessary, for large PM segments. A second bus (CBUS) exists to connect
all system elements within the machine and the host computer. It supports
-reading and writing various control and data registers in the processing system
and may be used to examine the state of the complete machine. It is also
utilized in dynamic control functions such as starting and stopping ti:e array
processor and signaling significant error conditions.

Perhaps the Cadillac of all array processors, the Star Technologies ST-100
array processor offers an advertised capability of 100 MFLOPS. STAR was formed,"
in 1981 primarily by ex-FPS employees who recognized array processor limitations
such as memory size, addressing conptraints, and host overhead time. Another1
point of concern was that as host minicomuters improved performance, the array
processors did not substantially enhance their capabilities over those offered
during the mid-70's. The original goal of STAR was to produce the first
second-generation machine with adequate speed to increase the system improvement
ratio at 10:1 when used in conjunction with a host and to introduce features to 	 ter,
eliminate or reduce to the greatest extent possible the known disadvantages.
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Figure 9 shows the system architecture of the ST-100. Note that a hardware
division/square root module is included. The standard configuration has 512 K

(32—bit) words of contiguous main memory, expandable to 8 M words. This

essentiall y eliminates the program size and addressing limitations of the first
generation of array processors. An additional 48 K words of data cache allows
buffering of the arithmetic units from main memory, thus allowing simultaneous
I/O vi th computation and obtaining a higher percentage of the maximum speed of
the array processor. Therefore, simultaneous communication of the host computing
system with arithmetic computation is permitted. This feature serves to reduce
host overhead time substantially; this is one of the primary disadvantages of
first generation array processors.

Figure 10 depicts the major flow paths of control an.: data for the ST-100.
The ST-100 can interface to a maximum of seven host computers and may run in
dedicated mode to one or in multi—user mode with all. Thus not only current
systems, but future acquisitions as well, are accommodated.

Table 1 shows a comparative summary of selected characteristics for each of

the array processors under evaluation.
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Section V. SOFTWARE

The increased complexity of array processor hardware (as compared to serial
computer hardware) and the emergence of general —purpose designs combined with a
growing acceptance of array processors among users have had a major impact on the
software.

At first, users had to code their array processors in assembly language.
Because many users resisted this, most manufacturers now provide large libraries
of mathematical functions. These routines are very tightly coded in assembly
language and may be executed via FORTRAN—like calls. Most of these routines
involve repetitive, nonrecursive, floating point calculations. They are
repetitive in the sense that the same mathematical operations are performed on
large arrays of data, but nonrecursive in that operations on the next set of data
can begin before the final reqults of a previous data set are ready. Examples of
repetitive, nonrecursive calculations are matrix operations, smoothing and
filtering of signal processing data, and image enhancement techniques.

Occasionally as the user attempts to replace arithmetically intensive
portions of a program with calls to array processor routines, a needed function
may not appear with those provided in the library. Development software for an
array processor is most helpful in this event. This software typically includes
the following:

• Cross assembler — Assembles programs written in the
array processor assembly language on the host machine.

• Simulator — Acts as an interactive program which runs on the
host to simulate execution of the array processor.

• FORTRAN compiler — Converts FORTRAN subroutines into
array processor assembly language code, which is
subsequently assembled by a cross assembler. For
large FORTRAN application programs, a compiler can
expedite array processor program implementation; often,
however, this is done at the expense of degraded execution
speed.

FORTRAN compilers are commercially available for only a few array
processors. Presently, these existing compilers can handle a subset of the ANSI
66 Standard for FORTRAN. These compilers have been constrained to modest—sized
problems (less than 500 to 1,000 lines of FORTRAN), primarily due to limitations
on the size of program source memory.

In general, the advantage of using a , FORTRAN compiler over hand coding
includes the following:

• Source code remains transportable

• Conversion effort is reduced
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• Debugging is easier (standard FORTRAN on host)

• Source code remains readable

Compability with a FORTRAN environment will probably be far more
important for the new generation of attached processors than it was for the
previous array processors. Coding very large scientific or engineering
programs in assembly language_ tends to be impractical, and library routines
are not always available to duplicate all the mathematical operations of a
typical user. Most users simply run their code through the attached
processor FORTRAN compiler. Some users, of course, will take the additional
step of replacing very small, numerically intensive sections of code with
calls to library routines or with assembly language code of their own.

It is more complicated to obtain an executable program from FORTRAN
source code for a peripheral array processor than for a stand-alone host
computer. In addition to application routines, the attached processor is
usually supported by a compiler, an assembler, and a linker. All of these
program development tools reside in and run on the host computer.

Figure 11 shows that input for the FPS array processor linker consists
of the outputs of the array processor FORTRAN compiler and assembler,
together with any FPS library routines desired by the user. The linker will
in turn generate two files, a Host-Attached Software Interface (HASI) and an
array processor load module. The MASI performs the communication function
between the host and the array processor. It must be run through the host
FORTRAN compiler and linked with the host resident portion of the program
and host library routines to create a file that the host can execute. The
load module contains the code that is run on the attached processor and
transferred from the host during program execution.

In all probability, the FORTRAN compiler is the software module that
'will be one of the most crucial areas in determining the future success of
the general purpose attached array processor. Generating efficient code for
a computer that is pipelined and capable of parallel operations is certainly
a challenging problem for the array processor vendor.

It is anticipated that it will be some time before compiler code
reaches an efficiency level comparable to that generated by an experienced
assembly language programmer. However, some of the vendors indicated that
their companies are currently concentrating on improving their compilers.
Two also indicated that ANSI-77 FORTRAN compilers should be announced
shortly as standard products of their respective companies.

Diagnostics are also frequently provided to enable the user to identify
a hardware problem, isolate the defective board, and exchange it for a
factory or depot-supplied replacement.
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Figure 11. FPS Array Processor Linker Setup
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Section VI. COST DATA

Example configurations (Tables 2 through 5) were priced for purposes

of comparison. Guidelines included 1 Mb of data memory, host interface
hardware and software; libraries, and (if available) the FORTRAN compiler.
Configurations were done to match one another as closely as possible to
facilitate realistic evaluation.

31



Section VII. SUMMARY AND CONCLUSION

None of the array processors under study seemed to perfectly meet
requirements, Currently, a Model FPS AP/20-E is being used on a temporary
basis to evaluate performance of an array processor interfaced to the P-E for
selected program models. It is recommended that this study continue and that
the market be monitored for updates in the status of all array processor
vendots who offer or introduce P-E interfaces. Perhaps within a year or so,
an array processor may become available which aatisfies all requirements,
offers a standard off-the-shelf P-E interface, and is of a more reasonable
cost. Thus, by postponing this purchase for a irhile, a better solution may be
available that is also more cost-effective.

During the course of this study, however, a very interesting approach
appeared. P-E offers an upgrade of the P-E 3250 to a Multi Processor System
(MPS) for a cost comparable to that of the average array processor. This
approach involves modification of the hardware to support one or more
Auxiliary Processor Units (APUs) under direction of the CPU. This method will
permit multiple CPU-bound jobs to execute concurrently while sharing central
memory. Currently this approach seems most appropriate to enhance overall
system performance and throughput. Figure 12 is a quote for this upgrade. It
is also recommended that an additional 4 Mb of memory be purchased at a cost
of approximately $32,000 to support running multiple jobs in an efficient
manner.
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