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SUMMARY

The contents of this addendum to the TIMES Wastewater Recovery Subsystem Finai
Report cover the period from February 1982 through July 1984. Included are
the results of Second Generation Operational Improvements and TIMES II Study
work.

Second Generation Operational lmprovements included six work tasks, the goals
of which were to improve the overall performance capabilities of the original
TIMES preprototype. The six tasks were:

Improved Temperature Control

Water Quaiity Improvements

Subsystem Operational Improvements
Solid Handling Improvements
Wastewater Pretreatment Optimization
Membrane Rejuvenation Concepts

Work performed for these tasks included hardware modifications to the sub-
system, and over 1800 hours of wastewater processing testing to evaluate the
implemented modifications.

The TIMES II Study included four work tasks that addressed new design concepts
for a new, advanced preprototype TIMES., The four tasks were:

Thermoelectric Regenerator Improvement
Recycle Loop pH Operational Criteria

Recycle Loop Component Optimization

Hollow Fiber Membrane Evaporator Improvement

Work performed for these tasks resulted in preliminary design concepts for an

integrated Thermoelectric Regenerator/HFM Evaporator. Included in the desfgn
concepts were preliminary specifications for improved processing components.
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SECOND GENERATION OPERATIONAL IMPROVEMENTS
AND TEST VERIFICATION

SUMMARY

Six tasks are described in this section reflecting subsystem hardware and
software modifications and test evaluation, The overall results are illus-
trated in Figure 79 which shows the water production rate, the specific
energy corrected to 26.5 VDC, and the product water conductivity at various
points in the testing. This figure can be used as a guide to accompany the
discussion of test results in the following sections.

The subsystem configuration determined by the consideration of the results of
the completed work tasks is shown in Figure 80. The changes were integrated
into)the existing subsystem hardware as specified by the Statement of Work
(SOW).

IMPROVED TEMPERATURE CONTROL

Objective

A number of alternative temperature control options were studied and described
under Design and Performance Improvements. Of these, two appeared to offer

the most successful approach towards simplifying the control scheme and reducing
the associated power requirements. The objective of this task is to fabricate,
install, and test hardware in order to determine the better operational design.

Background

Of the eight different temperature control options studied under Design and
Performance Improvement tasks, only Option 2, Figure 72, cold side recircula=-
tion with fan assist, and Option 8, Figure 78, fixed condensate pressure, were
chosen for test evaluation. An effort was made to ensure that an alternative
option would not only perform satisfactorily in its primary role as a tempera-
turg control scheme, but also that a quantitative advantage over the present
design could be demonstrated. Ideally, the chosen approach would reduce the
number_of components, simplify overall subsystem operation, and be capable of.
operating reliably over the range of operating conditions encountered during a
wastewater concentration run. An operating hot side temperature range of 57=
66°C (135-150°F) is desirable, since below that range the membrane permeation
rate decreases, while above that range the urea decomposition rate increases
significantly. To maintain this hot side temperature range, the cold side
must be cooled in some manner, since the TER establishes a not to cold side
differential temperature dependent or, the operating point.
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Results

Both cooling schemes as tested on the subsystem suctessfully maintained
temperature control. Option 8, fixed condensate pressiure, was chosed as the
most desirable technique because it reduces the number of components involved,
and simplifies subsystem operation. In place of a large convection heat
exchanger and recirculation pump, a simpie small, finned-tube heat exchanger
with an integral axial fan is employed. There is no control logic associated
with the cooling process in that the operating conditions are preset by the
accumulator reference spring selection. A new accumulztor spring was installed
that is expected to establish a 57-59°C (135-138°F) operating temperature at
the HFM inlet, with an unconcentrated wastewater feed,

Discussion

As discussed in the Design and Performance Improvements Section, temperature
control Option 2, Figure 72, utilizes a fan cooled, liquid recirculating heat
exchanger. A portion of the total condensate load is recirculated in a Toop
that includes the heat exchanger and TER cold side heat exchanger, thereby
cooling the recirculate and the TER cold junctions. In this way, the TER hot
side heat exchanger inlet temperature is controlled at the operating tempera-
ture of 66°C (150°F).

In contrast, Option 8, Figure 78, utilizes a fan cooled heat exchanger, but in
this case there is no condensate recirculation. The condensate line downstream
of the TER and heat exchanger is subjected to a reference pressure through the
use of a spring-loaded accumulator. This quasi-constant pressure is sensed at
the TER in the area of the porous plates. If the condensing saturation tem-
perature (hence pressure) is higher than the accumulator reference pressure,
condensate flashing will occur and this will immediately cool the TER cold
side, forcing down the hot side temperature as well. The actual operating
temperature is dependent on the accumulator spring reference pressure chosen.

Cold Side Recirculation Testing = Fan Cooled Heat Exchanger

In order to test Option 2, the previcusly employed convection heat exchanger
(Item 211) was modified with duct work and fitted with a shrouded 28 VDC fan.
Otherwise the subsystem schematic was the same as pictured in Figure 41. The
assembly was mounted horizontally directly below the processing package, and
the previously used condensate recirculation pump was connected into the loop.

The subsystem was started on 2/16/82 with a pretreated urine feed and allowed
to reach operating conditions. After a week of non=-continuous coperation, the
dissolved solids level reached approximately 20%, and a failure shutdown due
to recycle tank overtemperature occurred. Within another week of operation,
two more shutdowns were experienced due to recycle tank overtemperature. The
cause was air/vapor locking in the condensate recirculation pump, resulting in
the Toss of cooling for the subsystem. At 139 hours it was deacided to reduce
the speed of the coolant pump (hence suction head) by decreasing the operating
valtage from 28 to 10 VDC., This technique prevented the pump from cavitating,
and stable temperature control was achieved. The subsystem was operated for
nearly two months in this configuration without anyv further loss of tempera-
ture control.
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Constant Prassure Flasl Cooling Testing

At 488 hours, the subsystem wastewater feed was switched from pretreated urine
to a detergent and water mix. Having demonstrated successful operation on
recirculation cooling, it was decided to modify the cooling technique to the
Option 8 configuration, Figure 78. To accomplish this, the recirculation loop
was removed from the subsystem, one end of the heat exchanger was connected
directly to a tap at the TER bottom condensate header, and the other end
connected to the accumulator. At 504 hours, the subsystem was started up
using recirculation and allowed to reach and maintain the 66°C (150°F) operat-
ing temperature for several hours. At that point, the recirculation loop was
disconnected (the capillary temporarily left in place) and constant reference
pressure cooling was initiated. Within two hours, a failure shutdown due to
recycle tank overtemperature occurred. The subsystem was connected to a
vacuum flash (in place of the accumulator) at a pressure of 7.6 kPa (1.1
psia). The evaporator inlet temperature stabilized at 66°C (150°F) after two
hours. Apparently the accumulator suction pressure was not low enough with
the capillary restrictor in the Tine to allow flashing at the porous plates to
occur. It was then decided to remove the capillary from the condensate line,
downstream of the TER, in order to ensure that all the flashing occurred in
the porous plate cold ,1de heat exchanger interfacial area as originally
called for in the Option 8 investigation. With this change, the evaporator
temperature decreased to 64°C (14/°F) «nd remained there overnight. At 552
hours tha TER tap connection was changed so that condensate was drawn from
the TER top condensate header. The evaporator temperature again stabilized

at 64.5°C (148°F) and remained there all day.

Returning to an unconcercrated pretreated urine feed at 583 hours and recon-
necting the accumulator in place of the vacuum flask, the evaporator temper-
ature stabilized at 66,5°C (148°F). The water production rate at this time
was 1.0 kg/h (2.2 1b/h). By 684 hours the dissaTved solids level in the
recycle Toop reached 24 percent and the evaporator inlet temperature had risen
to 68°C (154°F) as expected. At 750 hours, the subsystem was shutdown and the

large ducted heat exchanger was removed and replaced with a small liquid-cooled,

tube in tube, coiled heat exchanger, mounted vertically. The subsystem was
started up with a water feed, and by the next day, temperature control was
lost, so the vertical coil was replaced with a flat stainless steel coil,
tube in tube heat exchanger. The evaporator temperature again stabilized at
60°C (150°F). At 830 hours we attempted to gauge the effect of the different
cooling techniques on gas bubble generation in the condensate Tine. The test
setups are shown in Figure 81, The first test involved running the subsystem
with a constant 18 percent urine solids concentration in the recycle loop,
using the flashing condenser cool1ng scheme. The quantity of gas collected
averaged 85 cc/min (3.0 X 10~ ft3/min) at 8.3 kPa (1.2 psia) steam pressure.
The water production rate at that point was 0.76 kg/h (1.67 Tb/h).

The test was repeated using liquid recirculation as the coo11ng scheme. The
uantity of gas collected averaged 78 cc/min (2.8 X 10=5 £t3/min) at 11.9 kPa
?1 73 psia). The water production rate was 0.70 kg/h (1.54 Tb/h). The test
was repeated a third time using liquid recirculation, but here the regenerative
heat exchanger was bypassed. The quantity of gas collected averaged 84 cc/min
(3.0 X 10-5"ft3/min) at 15.2 kPa (2.2 psia), with a water production rate of
0.86 kg/h (1.%0 1b/h}.
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At 932 hours the TER porous plates were replaced with the original smaller
pore size plates modified by the addition of a 200 X 200 mesh stainless steel
screen tack welded to the surface adjacent to the pin fin heat exchanger.

The former was done in order to reduce the quantity of gas that was being
transported into the condensate flow, and the latter to provide more AT
(henca AP) for_water transport through the plates. At 1,072 hours the 10
Jiter (0.35 ft3) recycle tank was removed leaving only the one liter {0,035
ft3) filter tank as the major volume element in the loop. As seen in Figure
82, with the smaller recycle loop volume, concentrating runs took less time,
and HFM temperature swings became more uniform. With 40 percent solids in the
loop, the nominal HFM temperature reached 70°C (158°F) from an initial point
of 60°C (140°F), The TER cold side temperature, at the 50 percent level in
the accumulator, was 55°C (131°F). This was higher than desired so the accum-
uTator was lowered by 0.25 m (0.83 ft) to create a Tower pressure at the TER,
created by the head of water. Testing continued and the process temperature
range remained essentially the same.

It was decided to replace the accumulator spring with a new spring that would
provide a lTower suction pressure. After this was done, the TER cold side
temperature decreased to 52°C (125°F). The HFM inlet temperature equilibriated
64°C (140°F) with a tap water feed, but it was felt that the membranes were
fouled, resulting in a Tow water production rate. With new membranes the
expected operating temperature would be in the 57-59°C (135-138°F} range.
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WATER QUALITY IMPROVEMENT

Objective

A number of alternative approaches to reducing ommonia levels in the product
water were previously investigated. Of thes2, the most satisfactory approach
was determined to be ammonium ion remova] via a new strong acid ion exchange
resin,

The objective of this task is to replace the presently employed ion exchange
resin located in the posttreatment multifilter, with the new resin previously
demonstrated to be a wmore efficient ammonium ion scrubber.

Background

It was previously found that a strong acid cation exchange resin could be
substituted for the weak acid exchanger employed in the multifiltration can-
ister, in order to reduce ammonium ion levels in the product water. To eval=-
uate this effect, the old resin was removed from the canister and it was
refilled with a quantity of new resin required for 90 days of operation.

Results

The replacement of the weak acid ion exchange resin (used during the TIMES
Acceptance Testing), by a strong acid resin in the posttreatment canister
resulted in the complete removal of ammonium and other jons from the product
water as seen in Table 29. The removal process did, however, lower the water
pH because hydrogen ions were exchanged with the ammonium ions. A weak base
anion exchange resin added to the posttreatment line downstream of the canister
neutralized a portion of the acidity, but it appears thal. a strong base ex-
changer would be required for complete neutralization. 4dditional testing
using a strong base exchanger is recommerided.

Discussion

Upon disasembly of the multifilter assembly, it was discovered that the Ionac
CC weak acid ion exchange resin had become highly compacted and was contamin=
ated with charcoal fines, Since very little room for wet expansion was
allowed when the bed was initially packed, compaction of both the resin beads
and charcoal granules along their common bed interface occurred.
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% Table 29
E
: TIMES

SECOND GENERATION WATER ANALYSIS COMPARISON
! Verification Test, Improved Posttreatment,
: 21% Solids 26% Solids
: Non-Posttreated Posttreated Non-Posttreated Posttreated
§ pH 3.5 4.3 3.3 3.9
EJ‘.
: Conductivity, mmho/em  197.6 146.5 154.3 38.1
E Ammonia As N, ppb 770 1125 3650 <10
4l
é Organic Carbon, ppm 56 20 71 15
E Chromium, ppb <10 180 45 <10
; Iron, ppb <10 180 45 <10
: Nickel, ppb <10 <10 10 <10
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The strong acid ion_exchange resin, IR-118H swells 20 percent when wet, so
only 100 cc (6.1 in3) of wet resin was able to be loaded into the muitifilter
canister. This gives a total removal capacity of 140 milljequivalents.
Assuming an average level of 3 ppm of NHg+ in the product water, this amount
of resin would be sufficient for 90 days of water processing. Urine testing
was initiated on 2/19/82 using the chromic/sulfuric acid pretreatment. Water
samples were taken periodically from the raw and posttreated product water
taps. The results of the water analysis tests are reported in Table 30, It
can be seen that the IR-118H resin was extremely effective in eliminating

NH4+ ions from the raw product water since the level was reduced to <10 ppb
from as high as 133,000 ppb, In addition, conductivity was reduced to approx-
imately 50 mho/cm. Several water quality parameters are plotted in Figure
83 for various recycle fluid pH levels. It should be noted that above pH =
4,5 in the recycle fluid, raw water quality, in terms of NH4+ and conductivity,
degraded rapidly. The reason for the rise in the recycle pH is due to the
time/temperature dependence of the urea decomposition reaction. The time for
concentrating the dissolved solids from 3.5-40 percent was about 200 hours,
which allows the NH3 production to exceed the neutralization capacity of the
incoming pretreated urine.

As more NH4+ is removed from the raw water by ion exchange with hydrogen ions,
the product water pH declines preportionately. This frae mineral acidity
could be absorbed by a weak base anion exchange resin. Any remaining acidity
due to weak acids (either organic or inorganic) would require a different
approach such as the use of a strong base anion exchange resin, with an up-
stream weak base exchanger to protect it from organic fouling. As a partial
test, two weak base exchangers were fabricated using Iopac AFP-329 a macro-
porous styrene divinyl-benzene based tertiary amine resin, and lonac A-260,

a granular aliphatic amine resin. The results are shown in Table 31, It can
be seen that the pH has been raised using the AFP=329 bed, but that complete
neutralization was not achieved. The A-260 bed was able to neutralize the
product water to a greater degree than the AfFP-329,

Before the anion resin beds were tested, the plumbing arrangement of the ion
exchange and charcoal beds was changed. The charcoal which had previously

been upstream of the ion exchanger was now situated downstream., No signifi-
cant effect was noted,
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Table 30
TIMES
SECOND GENERATION WATER ANALYSIS REPORT
_
3/15/82 3/26/82 3/26/82 4/2/82 4/2/82
0800 1000 1200 1030 1430
40.5% Solids 15% Solids 15% Solids 26.5% Solids 26.5% Solids
482-22 482-23 482-24 48225 452-26
DETERMINATION (PT) (non=-PT) (PT) (Non=PT) {PT)
i pH 2.8 3.5 3.6 3.6 4.0
Total Solids, ppm 179.5 2.9 18,2 9.2 15.5
Organic Carbon, ppm 45 54 14 54 15
Inorganic Carbon, ppm 12 71 50 44 69
Chromium as Cr, ppb 16 10 < 10 10 < 10
Iron as Fe, ppb < 10 80 < 10 45 < 10
Manganese as Mn, ppb < 10 < 10 < 10 < 10 < 10
Nickel as Ni, ppb < 10 < 10 < 10 < 10 < 10
Ammonia as N, ppb < 10 590 <10 4350 < 10
Sulfate as 504'2, ppb 135,000 < 500 5150 < 500 < 500
Chloride as C1=, ppb 18,835 210 1950 190 680
Cond, )umhos/Cm 506,0 115.5 96.4 122.1 38.6
Urea, ppm 1.85 1.00 1.60 < 0.5 1.50
Titanium 100 < 100 < 100 < 100 < 100
f 12

AP s o T L v mas Ak A ¢ T

o e,




S S

Y -~

| % HAMILTON Addendum
| STANDARD SVHSER 7236
g Revision A
!
B
f
. Table 30 (Continued)
: TIMES
.E SECOND GENERATION WATER ANALYSIS REPORT
. 2/19/82 2/19/82 3/2/82 3/2/82 3/6/82
0900 1030 0900 1100 0800
104 Solids 10% Soiids 27.5% Solids 27.5% Solids 40.5% Solids
: 482-17 482-18 482-19 482-20 482-21
3 DETERMINATION {Non=PT) {PT) {Non=PT) {PT) {Non-PT)
i oH 4.4 4.7 6.7 3.1 6.6
Total Solids, ppm 3.7 16.9 5,5 87.4 8.6
: Organic Carbon, ppm 30 6 50 22 84
g? Inorganic Carbon, ppm 19 9 69 15 85
ET Chromium as Cr, ppb < 10 <10 < 10 <10 12
- Iron as Fe, ppb 8.5 < 10 24 <10 22
?» Manganese as Mn, ppb < 10 < 10 < 10 < 10 < 10
. Nickel as Ni, ppb < 10 10 < 10 10 12
- Ammonia as N, ppb 1310 < 10 100,000 < 10 133,000
Sulfate as 50372, ppb < 500 < 500 < 500 28,750 < 500
. Chloride as C1~, ppb < 50 620 < 50 13,735 50
; Cond, 4 mhos/C 82.5 11.4 365,2 309.1 ' 464,2
Urea, ppm < 0,5 < 0.5 < 0,5 0.6 3.25
Titanium < 100 < 100 < 100 < 100 < 100
13
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DETERMINATION

pH
Total Solids, ppm
Organic Carbon, ppm

Inorganic Carbon, ppm

Chromium as Cr, ppb

Tron as Fe, ppb

3
‘x
5

Manganese as Mn, ppb
Nickel as Ni, ppb
Ammonia as N, ppb .
Sulfate as 504'2, ppb
Chloride as C1~, ppb
Cond,/unmos/Cm
Urea, ppm

Titanium

Table 30 {(Continued)

SECOND GENERATION WATER ANALYSIS REPORT

TIMES

5/18/82 5/18/82
26% Solids 26% Solids
582~57 582-58

{Non=PT) (PT)
3.3 3.9
2.4 4.0
71 15
52 17
12 < 10
45 < 10
< 10 < 10
10 < 10
3650 < 10
1153 190
154.3 38.1
<100 <100
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Table 31

ION EXCHANGE RESIN RESULTS

Ionac A-260 & A-329 Weak Base Resins

Sampie #1
%on-Postnreated

Posttreated
Post A-329

Sample #2
Non~Posttreated
Posttreated
Post A-329

Sample #3
%on—Fosttreated

Posttreated
Post A-329

Sample #4
Eon-Fosttreated

Posttreated
Post A-260

Water Conductivity Recycle Solids
pH (A mho/cm) pH %
5.45 280 4.85 37.5
4.00 55 aas ——
4,50 40 ——- -
6.45 165 4,40 18.4
3.90 66 -—— ——
4,55 45 -— ——-
7.05 195 4.75 20.7
4.75 38 - ——
7.05 195 -— -
6.25 48 - ——-
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16

A - I - i T . o - _

e e aa in. . airaE . - el T b



et

S % Addendu
HAMILORN m
STANDARD SVHSER 7236

Ravision A
SUBSYSTEM OPERATIONAL IMPROVEMENTS

Objective

A revised procedure for startup and shutdown of the subsystem is desirable to
enable an operator to easily change the operating mcde depending on test
conditions. The objective of this task is to implement hardware and software
modifications to generally provide improved operational capabilities, and
specifically to provide automatic isolation of fluid Tines where needed during
a failure shutdown. The goal is to maintain separation of wastewater and
product water, as well as to allow immediate restart upon correction of the
failure condition.

Background

While the TIMES was designed to provide hands-off operation over the full

range of conditions encountered during normal wastewater processing, testing

to date has indicated that during startup from cold conditions, and after a
failure shutdown, some operator manipulation was necessary. Because of the
membrane tube header seal design, fluid migration, while small, was evident in
the steam shell during transient modes. Upon restart, this accumulated fluid
occasionally migrated to the condensate line, thereby contaminating the product
water. By providing automatic fluid line isolation, it was felt measurable
fluid migration would virtually be halted. In addition, during normal or
failure shutdowns, the subsystem vaceum is broken with an inrush of ambient air.
Upon restart, some of this air is not pumped out by normal purge procedures;

it becomes trapped in the condensate plumbing, and results in near or total

air binding of the accumulator and condensate pump. These and other potential
operating shortcomings can be overcome by making changes in controller based
operating conditions, and through hardware additions and modifications,

Results

Improvements were realized relative to startup and shutdown procedures as well
as to overall operating capabilities, through hardware modifications to the
recycle and condensate loops. .
Flow distribution headers were installed in the HFM to increase fluid veloc-
jties through the membrane bundles, thereby reducing the potential for clogging
of the tubes with locally precipitated miaterial. The large recycle tank was ~
removed from the unit to reduce the urine concentrating cycle time, This
shorter cycle resulted in better recycle fluid pH control and higher quality
water. In addition, cold startup time intervals were reduced significantly.

The condensate pump was fitted with a bypass loop to enable it to keep primed
during episodes of high gas loading. The most significant improvement in the
startup procedure was gained through the addition of a vacuum-break solznoid
valve in the line to the accumulator., This configuration enabled the subsystem
to startup even with a large gas load such as would occur after a failure
shutdown.
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The water production rate calculation was modified so that readings from the
waste storage tank quantity sensor were used instead of the number of accumu-
lator cycles, eliminating the error introduced if gases are present in the
accumulator.

Discussion

The implementation of subsystem hardware modifications and the associated
controller logic, occurred in the two main areas of fluid managemant, namely
the recycle and condensate loops. While changes to the recycle fluid com-
ponents and logic mainly improve the performance capability of the subsystem,
modifications to the condensate loop impact the actual operation of the
evaporation/condensation/product delivery process.

Recycle Loop Modifications
At the end of 1,600 hours of wastewater processing it became obvious that

material occlusion of the membrane tubes was occuring, principally due to a
chromium based precipitate. Chromium is used in the pretreatment mix along

with sulfuric acid. Several times the tubes had to be cleaned by water soaking,

as well as by syringe purging each individual tube.

It was decided to improve the situation by 1) increasing the fluid velocity
threugh the tubes, and 2) removing the 10 Titer (0.35 ft3) recycle tank.

H*M Flow Headers:

¥nile the 25 micron recycle filter will remove particulates entrained in the
recycle fluid, some localized precipitation can occur in flow stagnation areas
where very low fluid velocities occur. This material will not reenter the
bulk fluid stream, and hence will not be removed by the filter. With time, a
clot can build up, shutting down flow even more, resulting in clogged tubes.

The chances of a precipitate material aggliomerating to such an extent as to
clog the HFM tubes are reduced by increasing the bulk fluid velocity. In the
HFM this was done by adding a plate over each end of the tube headers. The
plates distribute the flow into several passes in contrast to parallel flow
through the tube bundles. The arrangement is shown in Figure 84 and the
details are described more fully below.

The TIMES membrane evaporator is composed of 18 membrane bundles with 92
membranes per bundle. Initially the recycle urine flowed through all these
bundles in parallel. To alleviate any flow maldistribution, the design was
changed to increase the pressure drop along the flow path by increasing the
flow velocity within the tubes. This resulted in a new header design in

which the flow path through the 18 tube bundles was modified to 4 passes of 3
bundles each followed by 3 passes of 2 bundles each. The results of this
modification are shown in Table 32 in which the new predicted pressure drop is
21,1 kPa (3.1 psid).
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HOLLOW FIBER MEMBRANE PRESSURE DROP

lubes per pass

Flow per tube kg/h (1b/h)}
Velocity m/sec (ft/sec)

Reynolds No.

Pressure drop per pass kPa (psid)

Total pressure drop kPa {psid)

Initial

Design
{One Pass

Design)

1656

0.11 (0.24)
0.03 (0.10)
35

0.41 (0.06)
0.41 (G.,06)

20

Header Redesign

Passas Passes.
1,2,3,4 5,6,7
276 184

0.66 (1.45) 0.98 (2.17)

0.19 (0.62) 0.28 (0.93)

213 319

2.48 (0.36) 3.72 (0.54)
21.1 (3.06)
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As shown, in the initial design the average velocity through the tubes was
0,030 m/sec (0,10 ft/sec) with a pressure drop through the tubes of 0.41 kPa
(0,06 psid). Experience in heat exchanger and packed bed design indicates
that in a liquid system the pressure drop should be approximately 3.4 kPa (0.5
psid} to prevent maldistribution. Using this as a basic criteria, the TIMES
evaporator was redesigned for a multipass approach. To maintain reasonable
pressure drops [<34.5 kPa (<5 psid}], as well as to maintain an adequate
margin on that number, the specified 3 bundle/2 bundle arrangement was estab-
1ished, The first 4 passes are 3 bundles per pass with an average velocity of
0.19 m/sec (0.62 ft/sec) through each tube and a pressure drop across each
pass of 2.5 kPa (0.36 psid). The last 3 passes comprise 2 bundles per pass
with an average velocity of 0.28 m/sec (0.93 ft/sec) and & pressure drop per
pass of 3.7 kPa (0.54 psid). The higher velocities and pressure drops were
intentionally incorporated in the downstream passes since this is where the
solids concentration will be higher and more scrubbing action will be required.

The tube phys1ca1 properties were as follows: tube 0D = 1,27 cm {0.50 in);
wall thickness = 0.013 ¢m (0.005 in); tube ID = 0,10 c¢m (0.040 in); tube

lerigth = 38.1 cm (15 in). The physical prOpert%es of the urine were as follows:
solids concentration = 40%; density = 1184 kg/m3 (73.9 1b/ft3); viscosity =
1.08 centipoise (2.6 15/h-ft); total flow = 182 kg/h (400 1b/h). The proper-~
ties of urine were extracted from references based on 21°C (70°F) and since

the TIMES aperates at 66°C (150°F) 1t was necessary to scale the viscosity
data. Several techniques are known for establishing the viscosity of mixtures.
In each one of these correlations the mixture viscosity is directly propor-
tional to the viscosity of the pure liquid. Thus, the viscosity of concen-
trated urine at 66°C (150°F) was established by multiplying its viscosity at
21°C (70°F) by the ratio of the viscosity of pure water at both temperatures.

Recycle Tank Removal:

A typical solute concentrating run is shown in Figure 85. As can be seen, the
total time required is approximately 240 hours. As praeviously demonstrated in
the Design and Performance Improvements section, urea decomposition is time
and temperature dependent. As the amount of ammonia from urea decomposition
increases, the pH level also increases due to the neutralization of the avail-
Since the amount of chromium precipitated is pH and
time dependent, a condition exists where this Tong cycle time contributes not
on]* to a large degree of ammonia formation, but to chromium precipitate as
well.

As the volume of the recycie locop is reduced, cycle time is decreased provided
the same water production rate versus solids concentration profile is main-
tained. As seen in Figure 86, by removing the TIMES recycle tank, the total
racycle Toop volume and the associated concentrating cycle time is reduced by
85 percent. This means a concentrating run can be accomplished 1n approxi-
mately 40 hours, significantly reducing the chances for significant precipitate
accumulation,

Once the main tank is removed the recycle loop consists of the 1.0 liter

(0,025 ft3) filter tank, the HFM, TER, and the interconnecting p]umbIng for a
total volume of 1.2 liters (0. 042 ft3).
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Condensate Component Modifications

The porous plate, accumulator, and condensate pump combination were designed

to provide product water free of non-condensible gas on a batch basis. While
*the Teflon gear pump is capable of pumping a small amount of non-condensible
gas, a larger transient load (such as occurs during startup and after a failure
shutdown) supplied by the accumulator causes the pump to effectively become

gas bound, and thereby unable to pump any Tiquid. When this happens, the
accumulator does not empty, and eventually the evaporation/condensation process
is throttled.

Two relatively simple fixes that were implemented included the addition of
both a condensate pump bypass loop, and a vacuum breaking solenoid valve to
the accumulator. These approaches are discussed in the following paragraphs.

Condensate Pump Bypass Loop:

The idea of adding a bypass loop to the pump was to allow a quantity of non-
condensible gas delivered from the accumulator to become trapped between
packets of liquid in such a way that the gears of the pump were always wetted
and therefore primed. The loop consists of a 0,953 c¢m (.375 in} X 61 cm (24
in) iong tube which has a volume greater than the largest expected gas bubble
arriving from the accumylator. As long as the gears of the pump are kept
wetted, some of the gas will be pumped out with liquid, so that eventually
the total two phase flow will be handled. A manual needle valve was also
added to control the amount of bypass.

Accumulator Vacuum Break:

By far the most effective means of ensuring accumulator dumping during a gas=-
bound pump condition is to relieve the vacuum on the reference side of the
accuymulator. The increased pressure pushes the rolling diaphragm towards the
Tow end stop, forcing the two-phase fluid through to the pump inlet, Thus
assisted, the pump is able to keep primed and can then discharge the accum-
ulator. The schematic is shown in Figure 87.

As seen in the schematic, the vacuum break solenoid valve installed into the
subsystem is electrically interconnected to Item 119, the condensate line
isolation solenoid valve. The isolation valve shuts off the condensate 1ine
to the accumulator when the condensate pump is energized. Simultaneously, the
vacuum break solenoid switches from the vacuum source, to a filtered ambient
air source, which is restricted with a needle valve to control the rate of air
bleeding into the accumulator. The air flow is kept Tow enough to minimize
what would be considered cabin air loss, and fast enough to allow accumulator
discharge in a maximum of roughly a one minute interval. When the accumulator
reaches its low 1imit of 25 percent quantity, the vacuum break solenoid is
deenergized aliowing the valve to switch from the ambient air source back to
the vacuum source. Since a finite amount of time (10-20 sec) is required to
purge the air charge and reach full vacuum in the accumulator, the condensate
isolation valve deenergization is delayed by 20 sec using a timer delay. This
prevents condensate from backflowing inte the TER under reverse pressure
conditions present during the reestablishment of the reference vacuum.
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ACCUMULATOR VACUUM BREAK SCHEMATIC
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AccumuTator Production Rate Calculation

The controller logic used to calculate the water production rate was basad on
the number of accumulator dump cycles occurring in a given period of time.
This calculation presumed that only water was collected and discharged from
the known volume of the accumulator, Once non-condensible gas appeared in the
condensate line, it collected in the accumulator, and the delivered volume of
1iquid was reduced proportionately. This Jed to errors in the calculated
water production rate,

In order to circumvent this problem, another technique had to be employed.

With the batch delivery approach employed on TIMES connecting a flowmeter into
the delivery line was not deemed practical. Another direct means of calculat-
ing product water was to employ the gquantity sensor located in the waste
storage tank. Since the recycle loop is constant volume, the volume of product
water delivered must equal the volume of waste fluid introduced. To calculate
a mass balance on the water input and output requires only that the feed

solute concentration be known.

The controiler logic was modified so that the deliverable volume of waste

fluid from the waste storage tank (when corrected for fill cycles) yielded the
approximate mass of water produced. In practice no effort was made toc track
the input solute concentration since no suitable on-line sensor was available
for that purpose. The quantity sensor was constructed of a float and 40
magnetically driven switches that provided a discrete set of outputs as the
liquid level changed, in contrast to a more desirable infinite resolution
sensor. The result was that the calculations performed were based on discrete
data, and an averaging technique had to be employed to smooth out the resulting
output readings.
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SOLIDS HANDLING IMPROVEMENTS

Objective

Presently employed procedures for determining solids concentration, as well as
changing out the recycle tank on the basis of that information, while effective,
are somewhat cumbersome and time consuming.

The objectives of this task are to determine a method for calculating and
displaying the solids concentration, and to evaluate a means by which the
recycle fluid may be purged from the subsystem without removing the recycle
tank.

Background

The subsystem had employed a colormeter/turbidometer in order to determine the
approximate dissolved solids concentration in the recycle fluid. Due to the
fact that some colloidially suspended particles existed despite the filter,
changes in color density, expected to be proportional to dissolved solids,
were not proportional in practice. As a result, the dissolved solids had to
be monitored by taking fluid samples and employing various drying techniques
that took up to two days before rasults could be obtained. When the dissolved
solids level was determined to be elevated, the subsystem was shutdown and the
recycle tank changed out. While providing for spill proof fluid purging, the
tank changeout procedure was cumbersome and resulted in a 3-4 hour interval
before a startup temperature could be reached.

Results

A relationship for determining recycle solids at any point in time based on
the total water produced, was added to the controller Togic. This aliows an
operator to more accurately determine the point at which the subsystem should
be shutdown.

A motor driven valve was substituted for the manual recycle drain valve so

that an automatic recycle fluid dump is initiated at the end of a concentrating
cycle. This allows the operator to maintain hands-off operation of the sub-
system from startup to shutdown.

A batch processing mode was reevaluated for its impact on the specific energy’
requirement. While some possible improvement was indicatd through the use of
this procedure, it is not being recommended since it requires more hardware,
primarily for fluid storage.

Discussion

The overall solids handling procedure could potentially be improved by, 1)
programming the controlier to calculate the dissolved solids based on total
water produced, 2) enabling the recycle loop to be flushed out in place using
interface connections already available, and 3) concentrating the waste fluid
in stages.
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Recycle Snlids Concentrating Calculation

A relationship expressing the dissolved solids concentration based on the

total volume of water produced, can be determined. If factors for the initial
solids level present in the loop, as well as the input feed solids are included
the equation is as follows:

% dissolved solids = 50 \{4.34 + 1,729 Xj, WT =104 + X;

where Xip = solute weight fraction in feed
Xij = solute weight fraction initially in loop
Wr = pounds of product water

It 1s based on the solute weight fraction, X, relationship with urine density
as follows:

density = 0.4775 X +0,99325

The solids equation becomes a useful tool for determining wihien the concen-
trating cycle should be terminated, since the goal of the cycle is to obtain
a certain water recovery. Figure 21 in the Subsystem Analysis section illus-
trates the relationship of these parameters.

Recycle Loop Dump

Once the Targe recycle tank was remgved from the system, the remaining Toop
volume totaled 2.2 Titers {0.077 ft3). The filter tank which now acts as the
only removable recycle component represents 1.2 liters (0.042 ft3) or 54
percent of the total. While it is still possible to remove the tank when the
final desired solids concentration is reached, it is not as efficient to do so
as before, since only 54 percent of the concentrated solids will be removed.

With the addition of a manual three-way drain valve, the subsystem now has

the capability of dumping the concentrated waste fluid out of the recycle
loep, while simultaneously refilling with fresh, pretreated wastewater. Since
there are a number of components such as the filter that create areas of
turbulent flow, and therefore, mixing of the high and low density streams, the
dump procedure had to be tested to determine the optimum dump time. Too
1ittle flush time meant not enough fresh feed replaced the volume of waste
fluid in the loop, resulting in a higher than expected residual solids concen-
tration. Too much flush time meant more fresh feed than needed was used in a
volume replacement basis, resulting in an inefficient process, Dump cycles on
the order of 45 sec. yielded a dump volume of 2.5 liters (C.088 ft3), or
slightly greater than the recycle loop volume. Residual solids concentration
level decreased to 7 percent from a pre-dump level of 32 percent.

It was decided to keep the recycle dump volume at 2.5 1lite.s {0,088 ft3) to
minimize fresh waste fluid loss. Having a higher than usual initial solids
concentration was acceptable as long as the level was known for the solids
calculation. A 5-way electrically actuated valve was installed in place of
Item 104, a 3-way valve, although only two of the positions {(flush and recycle)
were made active. Tne dump position will be utilized when the associated
controller software is implemented at a future date.
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Batch Processing

In previous studies, comparisons were made for operating the TIMES in the
continuously concentrating mode versus adding another holding tank and concen-
trating solids in stages. The latter option allowed for Tess operation at
higher concentration, therefore, lowering the average system specific energy.
The results, with the system as conceived then, was a savings of 11.4 W-<h/kg
(5.2 W=h/1b) or 4.7 percent.

An updated analysis has reviewed this mode of operation with the present
design having a recycle loop volume of 2,2 Titers (0.078 ft3). [t was assumed
that the concentration cycle was from 8 to 44% solids.

Figure 88 shows the TIMES simplified flow loop schematic. In the present
subsystem, pretreated urine, having a nominal 3% solids concentration is fed
into the loop continuously, at a volumetric rate equal to the volumetric
water production rate. When the loop reaches a 44% measured solids concen=
tration the system is flushed with 2.5 1liters (0,088 £t3 ) of unconcentrated
urine. The end result is a Toop with a solids concentration of approximately
8 percent. From here the concentration process is repeated.

In the modified operation, the process would be as follows:

Step 1: The loop, containing urine with approximately 8% solids is run
until solids concentration builds to 25%. The loop is then flushed into
the variable displacement tank using fresh urine from the waste tank

until the variable displacement tank (VDT) is filled. Taking into account
the mixing that would occur, the VDT solids concentration would be approx-
imately 20% and the loop would be Teft with approximately 8.7% solids.

Step 2: The loop is run until the solids concentration reaches 20%, The
waste tank is then shut off.

Step 3: Using the 20% solids in the VDT as feed, the Toop is concentrated
from 20 to 44% solids. The entire system is then flushed, and steps 1-3
repeated.

It is anticipated that, by processing a greater percentage of the urine at
lTower solids concentrations, the subsystem can be made to operate more energy
efficiently., Figure 89 shows subsyscem specific energy, normalized to pure
water 176 W-h/kg (80 W-h/1b) versus solids concentration.

Figure 90 is a graphical representation of the energy that can be saved during
the concentration cycle if the three step process is used. Using straight

1ine integration, this process saves an average of approximately 16.0 W-h/kg
(7.25 W=h/1b) over the continuous process. This is an average of approximately
6.15% energy savings.

The above predictions assume that, for the modified subsystem, no heat leak

from the VDT would occur which would add to make-up heat input. Any required
additional heating would subtract from the predicted advantage.
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WASTEWATER PRETREATMENT OPTIMIZATION

Objective

The acid pretreatment mix presently used in the subsystem is effective as a
biocide and as a pH control agent. Nevertheless, it was felt that it would
be valuable to investigate and compare other pretreatments in the subsystem.
The objective of this task is to evaluate another pretreatment, Oxone powder/
sulfuric acid, for use with urine and wash water, and to compare the results
with those obtained with the chromic/sulfuric acid mix.

Background

Previous subsystem testing has employed a chromic/sulfuric acid pretreatment
mix added to incoming urine and wash water feed prior to introduction into the
recycle Toop. Transients in recycle loop pH towards less acidic conditions
have occurred during the Tong cycle time assocfated with concentrating the
dissolved solids in the Toop, resulting in the need to add extra pretreat into
the loop periodically or, at the Teast, increasing the initial dosage. Recycle
Toop pH control may better be implemented by injecting the pretreatment, or
acid portion only, directly into the loop on demand, especially if a non-liquid
biocide is employed to initially pretreat the urine. In this way, sulfuric
acid, for example, would be used as an additive after the initial pretreatment.

Results

The chromic/sulfuric acid pretreatment mix in the original strength of 0.4%
by wefght was not abie to prevent loss of pH contrel. Doubling the dosage
resulted in excessive chromium precipitation leading to HFM tube clogging.
Leaving the chromium concentration as originally specified, and doubling the
sg]furic content eliminated clogging problems, but tube coating was still
observed.

The Oxone powder/sulfuric acid pretreatment did not result in any precipitate
problems, and actually seemed to clean the chromium coated membranes, pH
control was maintained throughout the test period and overall subsystem per-
formance was enhanced. This pretreatment is recommended for use for urine and
wash water processing over the chromium-based mix.

Discussion
Chromic/Sulfuric Acid Pretreatment

The chromic/sulfuric acid pretreatment recommended to fix free ammonia and
ki1l microorganisms contained the following component propertions:

Chromium Trioxide
Sulfuric Acid
Water

11.0% (by weight)
4.7

44.3
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The pretreat was designed to be added into the mixing tank in the weight
proportion of 0.4% as raw urine was introduced into the subsystem. However,
for all of the testing to date, the urine and pretreatment were actually mixed
outside of the subsystem, because of the nature of the collection logistics,
i.e., it was not feasible to interface the subsystein with donors in a non-
laboratory environment. At the beginning of the urine testing, it became
obvious that a single dose was not sufficient to keep pH levels in the 3-3.5
range very long. This result was also noted by the associated rise in preduct
water conductivity (see Figure 79). Thereafter, the dosage was doubled and
pH control was then maintained. Initial pH averaged 2.2 with this new dosage.
As noted in the previous section, this increased amount of chromium Ted to
more frequent tube clogging by chromium based precipitates. So it was decided
to double only the sulfuric acid proportion and reduce the chromium level back
to the original value. pH levels now initially were 2.4 when 0,4% of pretreat
and an additional 0.075% of HpSO4 was used., The HFM was inspected after this
dosage was used, and although gross tube clogging was not noted, tube coating
was still present.

Oxone:

Oxone was recommended as an alternate pretreatment chemical by NASA/JSC.

Oxone is a DuPont product, available in powder form. In a 1% solution, it is
acidic, yielding a pH level of 2-3, It is usSed in Taundry bleaches and scour-
ing powders, and is a very strong oxidant. It also has the capability te
convert chloride ions to more bjocidal oxidized forms including hypochlorite
jons.

Used for TIMES, the pretreatment procedure consisted of the addition of the
oxone powder and sulfuric acid to a tank of urine in the foiiowing propor-
tions:

Oxone
H2S04
H20

4.0
2.5
5.0

mg/cc

The resulting nominal pH was 2.3. When used with wash water, the urine was
pretreated as usual, and then was diluted with wash water to make a 10% urine/
90% wash water mix. No additional pretreat was added.

A material corrosion test was initiated to evaluate the effect of the oxone
pretreated urine on the subsystem construction materials. The results are
given in Table 33. No effects were noted on any of the materials tested.

The results of urine processing using the oxone pretreatment are included in
Figure 79. Included in that test period is a concentrating run to 53%, a
milestone that was not reached with the chromium-based pretreatment. This run

is shown in Figure 91, Note that the rise in the HFM inlet temperature reached
14°C (25°F),

The first urine/wash water run using the oxone pretreatment s shown in Figure
92. The rise in HFM inlet operating temperature is less than that for urine
alone, due to the Tower solids concentration at the end point.
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Table 33

OXONE/MATERIALS CORROSION TESTING (130°F)

e Lot § ol T b Ko o o

BLE A i e

LA Taie . M

Qa- W P T T A LR | R Ve
4
[1{
H

Solution

Item

Oxone/Urine
(pH = 2.0 - 8.5)

Oxone/Urine/Soap
(pH = 3.0 - 7.0)

28R it

Stainless Steel Tubing
Viton=GF Plug

Hypalon Plug

Viton-A 0-Ring

Nafion Membrane

Viton-GF Molded Plug
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Days Remarks
55 No Change
45 No Change
45 No Change
55 No Change
45 No Change
30 No Change
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As noted in the previous paragraphs, the pH of the wash water/urine mix in the
recycle loop drifted up to neutral values, yielding product water with high
conductivity valves, as seen in Figure 79, The subsystem performance was not
affected, however, until 1,655 hours when a concentrated injection of acid was
added to lower the recycle pH and conductivity. At this point, the detergent
(Bio=Soft HD=-100) decomposed, resulting in membrane fouling and subsequent HFM
performance decay.

In all, 672 hours of waste water processing was performed using Oxone powder
and HpS04 as the pretreatment chemicals, Aside from the manual powder handling

. procedure necessary, no major problems were noted with this pretreatment

formulation once ventilation precautions were established for the off-line
mixing procedure.
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MEMBRANE REJUVENATION CONCEPTS

Objective

Nafion membrane material has been selected for use on TIMES byt data on this
material relative to evaporative waste water processing is very limited. The
objective of this task is to evaluate a number of concepts for membrane refur-
bishment while installed in the subsystem.

Background

After completing several hundreds of hours of urine testing in addition to the
850 hours of urine and wash water Acceptance Testing, an obvious change in

the membrane water transport rate became evident. Whether the change was due
ta chemical interaction between the waste water and the membrane, or mechanical
clogging, or a combination of both, was undetermined. An obvious approach is
to investigate the effect that various chemicals have on subsystem water
production rate. Prime candidates would be strong acids or bases that are
compatible with the materials of construction. Mechanical cleaning does not
appear to be a viable approach, and has not been considered as a serious
candidate.

Results

The HFM evaporator may be cleaned in place using a 5-10% solution of sulfuric
acid. This solution was found not only to dissolve the inorganic fouling
encountered during pretreated urine processing, but also is capable.of ex-
changing hydrogen ions for cations at the Nafion ion exchange sites, thereby
rejuvenating the membrane material chemically.

The use of soaps or detergents requires that the pH of the recycle fluid be
held closer to neutral conditions to prevent decomposition of thaese solutes.
When surfactant precipitates formed during the testing, 5-10% sodium hydroxide
was found to dissclve the contaminants.

A more complete membrane rejuvenation was accomplished outside of the subsys-
tem by soaking the membranes in 20% nitric acid. Both inorganic and organic
contaminants were removed by this process.

Discussion

The HFM tubes had been inspected during the replacement of the silicone rubber
headers with new Viton-GF headers at the end of the Acceptance Testing, and
were found to be clean. After 230 hours were accumulated on the first urine
concentrating run {to 41%), evidence of HFM tube clogging was observed (low
producticn rate). The Svaporator was removed and the 1iquid capacity meas-
ured only 560 cc (34 in3d) instead of its normal capacity of 900 cc (55 in3).
Disassembly of the HFM did reveal many clegged tubes. The material was
assumed to be a chromium precipitate since it was green in color.
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Syringe Cleaning

After a day of soaking in hot water, some of the material cozed out of the
tubes, but this procedura was very time consuming. It was decided to use a
syringe filled with water to force the loosened sludge out of the tubes. This
procedure was also time consuming, but at least provided an accurate assess=-
ment of when a tube was totally clear, After all 1,656 tubes were subjected
to this procedure, there remained at least 10% of the tubes clogged. The

b unit was resoaked in water for several more days. Finally, the HFM was re-

- assembled, and a 27 kg/h (60 1b/h) flow was pumped through _the unit. The

; liquid capacity was retested and found to be 900 cc (55 1n3) once again. The
HFM was then reinstalled into the subsystem.

e

Water Purge Cleaning

S At the end of the second urine concentrating run (to 28%), all the maintain-
able recycle loop elements were removed for an inspection. A large amount of
green sludge was observed on the bottom of the recycle tank, but the HFM
showed no clear evidence of clogged tubes. The tubes did, however, have a

v green coating on the inside wall. It was noted that a water spray from a

- squeeze bottle would wash off the residue from the HFM bottom urine header

.- which was also coated. So, the HFM was reassembled and purged with a DI water
- flow, then reinstalied inte the subsystem.

LS ST

AT e
3 FE" ot

Detergent Cleaning

A third urine concentrating run was initjated, and the water production rate
appeared normal. When the solids reached 12.5%, a pretreated ML-11 soap and
" water feed was introduced into the recycle loop. No apparent performance

2 losses were noted. The subsystem was shutdown at 465 hours and the HFM again
3 removed for inspection, A thick coating of green sludge was seen on the top

. urine header, and several bundlies had at least 10% tube clogging. In addi-
2 tion, a coating wgs again noted on the tube inside walls. The liguid capacity
T was 780 cc {47 in

This time the HFM was reassembled and flushed for one hour, and then allowed
to soak with the detergent solution in the tubes overnight., In the morning,
the detergent solution was drained and the HFM was flushed, reassembled, and
reinstalled into the subsystem. Urine was introduced into the recycle loop to
check baseline performance. Water production rates were worse,

The urine was drained from the subsystem and DI water was introduced and
flushed through the recycie loop. Then a pretreated sodium lauryl sulfate
(SLS) detergent solution was introduced as feed to the recycle loop. Perfor-
mance was improved very slightly.
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y ' Sulfuric Acid Cleaning

. At the 583 hour mark, the subsystem was again shutdown and the HFM removed for

[ inspection. This represented 90 hours of operation on the detergent. The

s Tiquid capacity was measured at 820 cc (49 in®). A visual inspection revealed
no clogged tubes, but a green coating was still visible on most tubes. It was
found that a moderately concentrated solution of HpS504 (5-10%) was effective

: in spot removing the green precipitate, so the HFM was allowed to sit with a

~ 1% H2S04 sotution in the evaporator shell overnight. The next morning, the

b acid was flushed out of the shell. The HFM was reassembled and flow purged

- with a 0.5% H»S504 for one hour. The solution turned green, probably due to

replacement of Cr*3 ions with the H* ions at the ion exchange sites of the

Nafion membrane. The liquid capacity was rechecked and found to be back to

the original volume. The unit was reinstalled.

Bk L

The subsystem was started up with a 1% HoS04 acid solution by volume as the
feed. The unit was operated for twenty-four hours and the production rate
returned to the original baseline level.

SRS T

4

Urine was then introduced into the recycle tank. The pretreatment proportions
were changed to reduce the amount of chromium trioxide while maintaining the
same sulfuric acid Tevel required for pH control. The subsystem was operated
for 155 hours with no apparent degradation of the production rate when com-
pared to the original baseline urine run.

Urine processing continued until 1,220 hours had been accumulated with no
apparent performance degradation. At this point, the pretreatment chemicals
were changed from the chromium trioxide/sulfuric acid mix to oxone/sulfuric
acid. An additional 250 hours were accumulated using this pretreatment with
no apparent adverse effect.

At the 1,475 hour point, a pretreated wash water/urine mix was employed as the

feed. The mixture composition was 10% urine/90% wash water consisting of

- BioSoft-HD-100, a concentrated 1iquid detergent blend. No problems were

, encountered until 1,655 hours when a concentrated HoSO4 fiow was introduced

; into the recycle loop at the filter housing in an otherwise successful attempt

o to bring the loop pH down from 7.5. The Tower pH (2.8} was necassary to
reduce the high product water conductivity levels. Within several hours after
this adjustment, the production rate fell off drastically. At 1,755 hours, a
1% H2504 solution was flushed through the HFM in place in the subsystem for
sixteen hours. In the morning, the circulate was green and sudsy. The sub-
system was restarted, but this time no performance recovery was observed.

L Finally at the 1,860 hour mark, the HFM was again disassembled. No clogged

: tubes were evident, but the tubes were green-black in color and had salt-like

o deposits on the outside surfaces. It was decided to terminate waste water

processing and just use tap water to try to determine the cause of the degraded

performance and if it could be remedied.

R L T B A S SRR L L

; It was presumed that the detergent had decumpesec at the Tow pH levels that
: occurred after the sulfuric acid ingestion for pH centrol. Now the problem
I was to try to remove the coentaminants from the HFM tubes.
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Sodium Hydroxide Flush

The HFM was flushed in place with 1% H2S04 again overnight. By morning, the
solution was green and sudsy as seen before. The spent soluticn was flushed
and new acid solution introduced. The subsystem was started up and improved
performance was observed initially. After twenty-four hours, performance was
degraded somewhat. The HFM was again removed and a slimy, brown material was
found in the headers. It dissolved in a 1% NaOH solution. The same solution
was used to circulate through the HFM in place. The solution immediately
turned brown and had a distinct amine smell.

The subsystem was restarted and some improvement was noted. Finally, a 0.5%
(by weight) CrC13 solution was flushed through the subsystem, and subsequent
to that, full recovery was noted. The recovery was due tc replacement of
salts with chromium which imparts a greater water transport capability to the
membrane.

Nitric Acid Rejuvenation

After the testing was completed, the HFM was removed and the membranes were
observed to be black in color and extremely stiff. The bundles were removed
from the HFM and several tubes were subjected to solutions including bleach,
nitric and sulfuric acids, and concentrated pretreatment solution. Only a 20%
HNO3 mix was able to remove the contaminant and return the memorane to a more
flexible state over a period of twenty-four hours.
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TIMES II STUDY EFFORT
SUMMARY

There are four tasks described in this section reflecting studies performed to
develop a preliminary design concept for a next generation TIMES, The overall
results of the study are the completion of major design analyses, and prelim-
inary configuration layout drawings.

In conjunction with the study, it was necessary to refurbishment the TIMES [
packages, including an upgrading of the computer generated graphics display.
A1l the processing components were installed into the processing package,
while tanks and post filters were installed into the collection package. New
insulation panels were also installed on the processing package.

Thus outfitted, the subsystem was operated on urine and water feeds to estab-
1ish a performance baseline, and to ensure proper operation. After this
checkout, the subsystem was shipped to NASA/JSC where & urine processing test
program was completed. The test results from that program will be included in
a NASA/JSC report.

THERMOELECTRIC REGENERATOR IMPROVEMENT

Objective

In order to meet the goals of lower specific energy, greater ease of maintain-
ability, and enhanced reliability, an improved TER configuration is necessary.
The objective of this task is to study those areas where improvements may be
realized, such as thermoelectric moduie seiection, electrical network wiring,
and condensing section design.

Background

The present TER configuration was selected to provide the required water
production capacity from the condensation of the steam load and reutilization
of the Tatent heat Toad of the process. To ensure condensate transport through
the porous plates, an adequate pressure differential had to be mantained.

This AP was a function of the operating temperature differential across the
TER heat pump. The TER efficiency is inversely proportional to the AT, so in
order to decrease specific energy, the AT has to be decreased as well, OUne
way of doing this is to decrease the TER electrical current., However, the
heat pumping capacity is directly proportional to current, therefore the
number of thermoelectric modules must be increased te maintain a given conden-
sation load.

Another way is removal of the porous plate which serves two purposes; 1)
overall TER reliability is increased, and 2) AP requirements are lower for
transport of condensate from the condenser to the output pump. However, the
output pump must be capable of separating the gas Toad from the condensate, in
order to ensure gas-free product water delivery.

It is necessary to redesign the TER assembly in order to incorporate the above
mentioned modifications in an energy and weight efficient configuration.
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Results

A water production rate of 0.67 kg/h (1.48 1b/h) was obtained using an existing
EMU gas/water separator in place of the accumulator and burper. This was

lower than that obtained for the baseline run, but the subsystem at least
demonstrated stable operation with the separator installed.

The TER was operated at a reduced voltage of 15 VDC, and the specific energy
demonstrated was 85.3 W-h/kg (38.8 W-h/1b). The water production rate at this
operating condition was 0.53 kg/h (1.16 Tb/h). This test demonstrated the
petential for operating the thermoelectrics at reduced power conditions in
order to decrease the specific energy.

It was determined that a reconfigured TER could be operated at significantly
reduced specific energy levels if the totai number (area) of the thermoelec-
trics was increased four-fold. An equivalent performance, larger area thermo-
electric module is available that will minimize the number of electrical
interconnections required for this arrangement. A preliminary TIMES II TER
would incliude 234 thermoelectric modules arranged in a rectangular sandwich
configuration. Two arrays of 117 thermoelectrics would provide an active area
of 0.40 m? (4.34 ft2),

A gas/liquid separator design would require a larger rotating drum than the
one included in the present EMU design. The rotational speed would be 7000
RPM. A single motor could drive the separator and the recycle pump.

The main condenser would consist of small passages so that flow velocities can
be kept high enough to avoid stagnation. An aftercooler would be necessary to
recondense the steam not condensed in the main condenser, in order to provide
a means of additional cooling.

Discussion
Gas Separator Testing

In order to determine the applicability of substituting a gas/liquid separator
for the porous plates on TIMES, a test was conducted using a gas/water separ-

ator designed for the EMU space suit. The performance charactersitics of

this separator were close enough to the gas and liquid output required of the

TIMES condensate stream to allow the interconnecting of the two units as shown
in Figure 93.

In an actual application, there would be no need for porous plates to act as
the main condensing/transport surface in the TER, but it was not possible to
modify the existing TER to eliminate their presence. However, the main point
of the test was to evaluate the operating performance of typical separator
design in handling two phase fluid flow in the proportions typical of a TIMES
process.
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The test was conducted after the newly refurbished TIMES (including new
membranes for the HFM) had accumulated 65 hours of operation on a urine feed.
For this test the feed was changed to tap water, in order to keep the recycle
fluid properties constant. Both the burper line, and the condenser were
combined at the separator inlet., Thus, the total leading of gas and liquid
generated by transport through the membrane walls is present at that point,
and for all purposes, any effect of the porous plate is negated.

The test was initiated by first starting up the subsystem, which then auto-
matically entered the "warming-up" state. The separator motor was then
started, the reference pressure shut off valve opened, and the condensate
shut off valve opened. The separator motor current was 1.95 - 2.00 amps,
giving a power draw of 33 watts,

The test was conducted over a two day period. The results are given in Table
34 and are compared to a performance level obtained on tap water feed operation
immediately preceding the initiation of the separator test.

The plumbing schematic was modified on the second day by moving the inlet
valve ahead of the burper line as well, so that the separator could be com-
pletely isolated. In addition, the reference pressure was reduced to 10 kPa
(1.45 psia) from 10.8 kPa (1.55 psia). Results are given with and without the
product water check valve. The check valve backpressures the separator to
allow efficient separation to occur. The burper line solenoid valve was kept
open 100% of the time, instead of its normal 5% duty cycle.

The water production rate using the separator, in place of the accumulator and
burper was lower than that obtained for the baseline run performed with the
normal subsystem configuration. The evidence for this includes higher HFM
inlet and AT temperatures, and lower TER currents. It is entirely likely
that this is attributable to the choice of reference pressure. The total
water produced was 0.67 kg/h (1.48 1b/h), but the Toss to vacuum was 14% of
this total, which indiates the separator back pressure from the check valve
was too high.

TIMES I TER Power Requirements

The subsystem was operated on urine at 26.5 and 29.U VDC over two nominal 40
hour concentrating cycles. Water production, power and specific energy, are
plotted in Figures 94 through 101, The average specific energy values for
26.5 and 29.0 VDC are 200.2 W-h/kg (91 W=h/1b) and 224.4 W=-h/1b (102 W=h/1b)
respectively. Of those totals, nearly 80% is due to the TER power requirement
as seen in Table 35. In order to fulfill the goal of Tow subsystem specific
energy, it would therefore be necessary to reduce this large TER contribution.
According to thermoelectric operating principles, the easiest way of accomp-
lishing this is to léwer the current required for the heat pumping process.
The TIMES was utilized to evaluate this approach by performing a test where
the TER voltage was reduced to 15 VDC, thereby reducing the current and power
requirement .
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Table 34
EMU SEPARATOR TEST

Subsystem
Parameter Baseline Run #1
Reference Pressure, kPa ——— 10.7
{psia) (1.55)
HFM T °C 57.2 60.4
{°F) (135.0) {140.7)
AT °C 4.1 £.0
(°F) (7.3) (7.2)
Recycle Temperature, °C 50.08 54.3
{°F}) {123.5) (29.8)
Steam Pressure, kPa 13.1 15.8
(psia) (1.9) (2.3)

Current:

TER 1, amps 1.87 1.81
TER 2, amps 1.92 1.87
TER 3, amps 1.80 1.80
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Separator

Run #2
Check

Valve Off Valve On

10.0
(1.45)

60.7
(141.3)

3.6
(6.5)

54.9
(130.9)

16.6
(2-4)
1.77

1.82
1.75

Run #3
Check

10.0
(1.45)

61.7
(143.0)

3.8
(6.9)

55.8
(132.5)

17.2
(2.5)
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TER

Recycle Pump
H/X Fan

Filter Heater
Burp Valve
Condensate Pump

Accumulator Valves

Table 35

NOMINAL POWER REQUIREMENTS

s 26.5 Valts DC
s Water Production
* Unconcentrated Urine

Current
_{A)

5.5
1.2
0.2
1.5
0.7
1.3
0.7
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= 0.9 kg/h (2.0 1b/h)

Duty Effective Specific

Cycle Power Energy

(%) W _(BTU/h) W-h/kgq (W=h/1b)
100 144,3 (492.4) 157.0 (71.2)
100 32.0 (109.2) 35.3 (16.0)
100 5.3 { 18.1) 5.3 { 2.4)
2.5 1.0 { 3.4) 0.9 ( 0.4)
5.0 0.9 ( 3.1) 0.9 ( 0.4)
2.0 0.7 { 2.4) 0.7 ( 0.3)
2.0 0.4 ( 1.4) 0.4 (0.2)

Total 184.6 (630.0) 200.5 (90.9)
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A separate power supply and current meter were connected to the TER, The
subsystem was started up with a water feed and allowed to heat up.

After 6.5 hours, the HFM inlet temperature was still only 50°C (122°F) due to
the reduced amount of heat pumping occurring at 15 VDC. No product water was
evident at this temperature (not enough AP to drive the membrane transport
mechanism) so the test was stopped. A software change was made to allow the
filter heater to remain on during automatic processing, and the TER voltage
was initially set at 29 VDC. Within one hour the voltage was reduced to 15
VDC, and after 4 hours the filter heater was shut off. The HFM inlet temper-
atupe at this point was 53°C (128°F) and stabilized here for the next two
hours. The HFM AT leveled off at 2.3°C (4.2°F), and total water production
(product and burp) was 0.53 kg/h (1.16 1b/h). The TER current was 3.0 amps,
giving a specific energy of 85.3 W-h/kg (38.8 W-h/1b}.

Sizing For Low Specific Energy Operation

The results of the low voltage tests confirmed that the Cambion thermoelectric
element used for TIMES I could be more efficiently operated at Tower power.

An effort then was made to calculate the number of thermoelectric elements
needed to provide the same design water production rate at lower power.

Using the concept of total equivalent weight (TEW) as the basis for comparson,
a map of TER specific energy versus TEW was generated for several multiples of
the present number of thermoelectric elements, and present membrane area. The
results are graphically displayed in Figure 102, The TEW calculation is shown
in Table 36 and is based on a 227 kg/kW (500 1b/kW} penalty for a projected
total specific energy requirement of 143 W~h/1b (65 W-h/1b). The map is
generated by proportioning the projected membrane and TER weights based on the
TIMES I assembly weights. A water production rate of 0.77 kg/h (1.7 1b/h) is
used as a basis for comparison since this is the TIMES I design requirement.

Referring to Figure 102, it is seen that the present design employs 96 thermo-

electric modules and has a membrane PA = 5, A 44% decrease in the TER specific

energy could be theoretically realized, and the COPTER increased from 4.5 to
8.0, by doubling both the number of modules and PA, and decreasing the module
voltage from 0.73 to 0.38 VDC. In order to generate a higher water production
rate at a given COPygr level requires that the module and membrane area be
increased proportionately. For example, in order to obtain a producticon rate
of 1.54 kg/h (3.4 1b/h) at a COPygp = 8, the number of modules = 384 and the
PA = 20, The water production rate can also be increased at the expense of
the COPyggr if the voltage/module is increased for a given number of modules
and membranes. This result is illustrated by the map of thermoelectric char-
acteristics given in Figure 103. It should also be noted that decreasing
COPTER by lowering the voltage (hence current) per module causes the AT
generated across the module to decrease as well. Depending on the actual sub-
system design application, low AT's and associated COP's may be difficult to

realize. . Thus from a practical standpoint, a COPTEr = 8 may not be realizable,

while a COPTggr = 6 should be considered the maximum value for the actual best
design point,
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Table 36

| TOTAL EQUIVALENT WEIGHT
L Equivalent
; Weight

__kg (1b)
. 1) 0.5 Tb/W X 65 %gﬂAx 1.7 1b/h = 26.1 ( 55.3)
X 2) Accumulator 2.4 ( 5.3)
K 3) Recycle Tank 1.4 ( 3.1)
;; 4) Recycle & Delivery Pumps 2.3 { 5,0)
;} 5) Valves 2.3 ( 5.0)
. 6) HFM 7.8 ( 17.2)
£ 7) TER 11.0 ( 25.0)
s 8) Controller 17.8 ( 39.2)
- 70.0 {155.0)
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Thermoelectric Module Comparison

The preceding section indicated that for all practical purposes at least a
four-fold increase in the number of thermoelectric modules would be needed to
produce 1.4 - 1.9 kg/h (3.1 - 4.2 Tb/h) of water at a COPTgR = 6. As a
result, a review of the available data on thermoelectric modules was con=-
ducted in order to optimize the performance of the thermoelectric heat pump
in the TIMES II design. Performance data was provided by the following
vendors:

R ST T TR T s TF TR T T T T T

1, Cambion Division/Midland=Ross Corp.

2, Melcor

3. Marlow Industries, Inc.

4. Borg-Warner Thermoelectrics/Borg=-Warner Corp.

e el et e T e

The Cambion thermoelectric module 801-3958-01, currently used in TIMES, was
compared to Marlow Industries's MI 1142 and to Melcor's CP2-31-10L., These
modules were selected for comparison since they were roughly of the same
size and had an equal number of thermoelements per module. Data on the
Borg-Warner modules lacked completeness, and was therefore excluded from
this study.

The modules were compared at Tp = 27.0°C (80.6°F) and Trgp of 0° and 5.5°C
(10°F), since data for these conditions was readily available. The results
were plotted in Figures 104 and 105. A plot of COPR, Qc/A vs. current, I, was
done for the Cambicn 801-3958-01 at T = 27.0° and 60.0°C (80.6 and 140°F),

and at Tygp = 0, 5.5, 11,1, and 16.,7°C (0°, 10°, 20° and 30°F), to determine
performance changes as operating temperatures are varied {see Figures 106=107),
The COPR was found to be insensitive to temperature, while Qc/A increased for

a given current at the higher operating temperatures. As a first order approx=-
imation, since the COPg for the Cambion module was insensitive to temperature,
the COPR for the other modules would Tikewise be insensitive to temperature.
Therefore, performance maps done for Ty = 27.0°C (80.6°F) would be sufficient
to show performance trends of the various modules at different operating
temperatures,
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As a result of these plots, it appears that there are modules available that b
wotld improve performance of the thermoelectric regenerator in the TIMES. For
example, the Marlow MI 1142 thermoelectric module apparently achieves a higher
COPg for a given P/A than the Cambion 801-3958-01 over the entire range of P/A
inputs considered,.

B

The data provided by Melcor included the dimensions of the thermoelements
contained in the module. This data indicated several interesting trends
in thermoelectric performance (see Figures 108-110).

1, For a given thermoelement cross-section and a constant number
: of couples, “thinner" moduies (shorter thermoelement length)
5 were ;ound to be more efficient (higher COPR for a given P/A
' input).
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2, For a given number of couples and thermoelement length, modules
with a larger thermoelement cross-section were found to be more
efficient. ‘

3. Varying the number of couples while holding constant thermo-
element cross-section and length led to no change in module
performance.

These results indicate that thermoelement cross-section and length are im-
portant parameters to consider when selecting a module. Also, when comparing
modutes of similar performance, the larger modules should be selected in order
that the number of module electrical interconnections can be held to a minimum.

Although the above graphical methods yield the desired results, it is very
Tengthy and time consuming to plot performance curves for all the modules
available over the range of operating temperatures possible., For this reason,
a short, concise method of module selection was developed. This procedure
indicates which module to use, how many modules are to be wired in series in a
bank, and the total number of banks required to pump a given heat load while
maximizing COPR.

Module Seiection Procedure

Giwvan: Ths Tc, Qc, Voltage
Determine: Type of module, total number of modules, and number of banks
to maximize COPp
Define: N = number of couples/module
A =L/A
L = thermoelement length
A = thermoelement cross=sectional area

1. From Th, find ATgaxs V/Npax and Q A/Npax from Figures 111-113.
2. ADTnormalized AT/ OTpax .

3. Using AThormalized and Figure 114, determine the optimum {maximum
COPR) and maximum ?maximum heat pumping) values for IA and normalized
heat load.

4. Using these values for optimum and maximum conditions, the following
table can be filled out:

Parameter Optimum, Maximum

I A{amps/cm) From Figure 114
Normalized Heat Load (N.H.L.) From Figure 114

QA/N (w/cm) = N.H.L. X QA/Npax
Normalized VoTtage (N.V.) = AT/ ATgax

V/N (volts) = N.V. X V/Npax

COPR (QA/NY/ ((V/N)(IX))
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5. The module, total number of moduies, and number of banks can now
be determined:

Voltage Supplied = Volts = M couples in series

Yoit/Couple V/ N
QJc = Q/N = heat load per couple
R
QA/N = A required
G/F .

TIMES II TER

Consideration of the major criteria in the thermoelectric element selection
process leads to the recommended use of o larger area module so that the
number of electrical interconnections are minimized. Cambion thermoelectric
module 801-1010 was chosen for the following sizing calculations, since it is
Targer [4.15 c¢cm (1.635 in) square] than the currently employed element, and
Cambion has demonstrated a high degree of reliability in the TIMES appiication.

At the proposed design operating point, a AT of 5°C (9°F) across the thermo-
electric elements is expected. The performance characteristics for the Cambion
module at this AT are given in Figure 115, Using this information, for a
COPR = 6, current draw is 0.5 amps, yielding a heat load capability of 3155
watts/m2 (1000 BTU/h-ft2). For a design point of 1.93 kg/h (4,25 1b/h) the
heat load will be 1270 watts (4335 BTU/h), yielding a tatal area of 0.40 m2
(4.34 ft2). The total number of thermoelectric modules necessary to provide
that area is 234, The resulting TER specific energy is then 100 W-h/kg (50
W=h/1b), a 30% less than the existing TIMES.

To accommodate this quantity of thermoelectric elements, the TER has to be
configured in a flat rectangular sandwich design. The thermoelectric modules
can be arranged in two arrays, each 9 X 13, to provide the necessary area.
Using the electrical generating characteristics given in Figure 116, the
necessary voltage/chip is 1.5 - 2.0 volts, If the sulbsystem generating
voltage is specified to be 28 VDC, each row of 13 modules can be wireZ in
series, and connected in parallel to the other banks of chips.

Proposed Gas/Liquid Separator Operation

The test of an EMU type separator demonstrated that utilization of a similar
device on TIMES II to place the porous plates function was indeed practical.
The EMU design could be modified to use a lower speed ro:ating drum, in con-
junction with the stationary pitot tube water pickup. Decreasing the speed of
the rotating drum would permit the combination of the separator and the pres-
ently employed recycle pump on a common shaft motor. To compensate for the
lower speed, the drum diameter would have to be increased to generate the
required fluid pressure head {created by the rotational speed) at the pitot
inlet.
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Analytical Relationships:

Acceptable water separator performance occurs when system resistance does not
exceed the pumping capacity of the pitot, thereby preventing liquid carryover
in the gas outlet. Unacceptable performance is encountered when system resis-
tance is low and the pitot passes a mixture of gas and water.

This latter condition, gas inclusion in the product water, is elminated when
the pitot opening is running just under the water level in the trough (Figure
117a). The pressuie head developed at the pitot inlet for this situation is
equivalent to the velocity head of the Tiquid in the trough:

We R.2

APy =Q T~

where:

APy = Trough velocity head
@ = Fluid density
g = Gravitational Constant
W = Fluid rotational speed
Rp Radial distance between pitot and rotational center line

n i n

As the water level in the trough rises {Figure 117b}, a centrifugal force is
added to the velocity head so that total head at the pitot inlet is:

ODPT = APy + APg
and:
. oW
AP = QTQ_ (Rg2 - Rpﬂ)
where:
APT = Total head at pitot inlet
APc = Head due to centifugai force at pitot inlet
Rg = Radial distance to free water surface in trough

These relatienships may be combined so that:

R. 2
APy =Qw2Rp2 [2 -E-Z- 1

1t should be ncted that the fluid rotaticnal speed will be Tess than the
separator drum speed due to slip at the wall. Analytical predictions of
separator performance would resemble the curves in Figure 118, Delivered head
at any flow is total head at the pitot inlet, APy, Tess the pressure loss
through the pitot assembly itself.
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TIMES II Main Condenser And Aftercooler Preliminary Design

A condenser circuit concept was developed for TIMES Il that eliminates the
porous plate, product water pump and condenser burper. This concept uses a
plate-fin condenser, finned tube convective aftercooler and rotary separator.
Preliminary sizing of the condenser and aftercooler was completed.

Deccription:

Blockage and corrosion of the porous platz in the existing TIMES condenser
plus a desire to reduce the total number of system parts resulted in a systems
review to determine possible alternate condenser circuits. The following
assumptions and performance requirements were used:

Average product water rate of 1.4 kg/h (3 1b/h)

Thermeelectric COP of 6

Evaporating temperature of 60°C {140°F)

Condensing temperature of 54°C (130°F)

Parasitic thermoelectric and pump losses to be minmimized

Water vapor Iosg of 1% or less by welght

Average 0.025 m°/sec (0.0i5 ft: 3/min) of noncondensable gas would exist

O 0 O 0 0 0 O

The amount of vapor that could be condensed by the thermoelectric modules is
limited by the assumed COP. Complete condensation and additional subcociing
te eliminate water vapor Toss must be accomplished in a downstream heat ex-
changer (aftercosoler). To eliminate additional subsystem interfaces such as
Tiquid loops, the aftercocler should be cooled by cabir air. Finally, the
condensed liquid and noncondensah1e gas must be separated and the roncondens-
able gas vented.

The resulting cond-nser circuit concept js presented schematicalily in Figure
119. In this system, water vapor and noncondensable gases from the evaporator
are cooled in the thermoelectric-chilled condenser. The required 892 W (3042
BTU/h} to evaporate 1.4 kg/h (3 1b/h) of water at 60°C (140°F) is accompliished
by a power input of 122 W (417 BTW/h) to the thermoelectrics. This provides
734 W (2504 BTU/h) to condeiise vapor on the cold side of the module, resulting
in 1.1 kg/h (2.4 1b/h) of condensate at 54°C (130°F).

The remaining 0.3 kg/h (0.6 1b/h) of vapor is condensed and all of the Tiquid
subcooled to 27°C (80°F) in the aftercooler. The total heat rejection in the
aftercogler is 205, w (700 BTU/h). At the 27°C (80°F) aftercooler exit temper-
ature, the 0.026 m3/sec (G.015 ft /m1n) of noncondensable gas will entrain
0.006 kg/h (0.0014 1b/h) of water vapor. This is a water vapor loss of 0.05%,
which is well within the target loss of 1% or less.

The Tiguid water and noncondensable gas are separated in an EMU-type rotary
separator. This separator will provide a 138 kPa {20 psid) head to the product
water. The noncondensable gas is then vented inte an optional gas volume and

a timed soleneid switch burps the nonceondensable gas te vacuum.,

80

ey e

P erera

= -



STANDARID

URINE

CABIN AIR

wegue  AFTERCOOQLER

Addendum
SVHSER 7236

Revision A

YhE
L
" g D ROTARY
x |V TER 4 € SEPARATOR
N
/ ;
E
L !
N LIQUID
Ha0
? STEAM
H
F
M
ELIMINATION OF:
RECYCLE - POROUS PLATE

~« PRODUCT WATER PUMP
- CONBENSER BURPER

FIGURE 119

TIMES II
CONDENSER CIRCUIT SCHEMATIC

81

-

GAS
VOLUME

VACUUM

B I Eoviblian el S

- JR -




P PP LAY | Rl a SR S

L A

B AR -
AT

8 i B

3 [}{1&'&'&?@: [pgn GIES Addendum
STANDARD SVHSER 7236

Revision A

System control is provided by maintaining condenser line pressure via the gas
volume and burping sequence. The pressure is maintained to hold the condensing
temperature of %4°C (130°F). There is sufficient margin to avoid flashing at
the aftercooler outlet even with some condenser line pressure variation.

Component Sizing:

Both the thermoelectric cooled condenser and the air cooled aftercooler were

5ed The condenser primary heat transfer area of approximately 0.40 m¢ (4.3

was determined by the face area of the 234 thermoelectric modules. The

condenser was sized as a single passage unit with two parallel paths, both
30.5 ¢m (12 in.) wide by 61 cm (24 in} Tong. Ruffled stainless steel fins,
0.19 ¢m (0.075 in) high, 0.005 cm (0.002 in) thick with 7 fins/em (18 fins/in)
were seaected to m1n1m§ze flow area and increase vapor velocity. Based on
0.025 m*/sec (9.015 ft°/min) of noncondensable gas at a conenser temperature
of 54°C (130°F), the mass porportion of noncondensabie gas to steam is 0.,3%.
This results in a reduction of approximately 1/3 in the condensing heat trans-
fer coefficient. Empirical data was obtained at a condensing temperature of
60°C (140°F) and indicated a heat transfer coefficient of 0.08 cal/sec-cmé°C
(600 BTU/hr—ft2-°F) when the effects of the noncondensable gas were included.
This heat transfer coefficient, when used in conjunction with the primary heat
transfer area, indicates a safety factor of more than 5 to accomplish the
required condensation.

However, this approach is expected to result in flow distribution and conden-
sate removal difficulties. The inlet vapor velocity is ony 2.7 m/sec (8.7
ft/sec) and the outlet velocity is enly 0.7 m/sec {2 ft/sec). The calculated
prassure loss is only 0.12 kPa (0.01F psi) if vaper is assumed to exist through-
gt the heat exchanger. This pressure drop is not high enough to force cu¢ =~
densed 1iquid out of the heat exchanger. The final condenser design may require
muiitiple passes to increase the vapor velocity and pressure drop to effect
condensate transport.

A preliminary design of the aftercooler has also been completed., The possi-
bility of incorporating the aftercooler with the condenser in the form of a
section of free convection air cooled external fins was also evaluated. This
approach is unacceptable because:

1}  There is insufficient heat transfer area to reject the heat to the
air with a free convection heat transfer coefficient of 1.4 X 10-%
cal/sec-cm2°C (1 BTU/h-Ft2-°F),

2} If complete condensation and subccoling is obtained, the hot sid»
thermoelectric temperature will be affected.

3) The existing noncondensable gas velocity is so Tow 0.5 cm/sec {(G.3
in/sec) that condensate flow maldistributions will exist.
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For these reasons, a separate finned tube air cooled aftercooler was sized.
Air at 21°C (70°F) was assumed to flow over the finned tubes at a velocity of
4,6 m/sec (15 ft/sec). The total heat rejection rate is 205 W (700 B8TU/h},
which includes condensation of the remaining 0.25 kg/h (0.54 1b/h) of water
vapor and subcooling of the 1.4 kg/h (3.0 1b/h) of 1liquid to 54°C (80°F).
Finned tubes were selected with the following characteristics:

tube 0.D. of 1.0 cm (0.42 in)

fin 0.D. of 2.2 cm (0,861 in)

fin thickness of 0.05 ¢m (0.019 4n)
3.4 fins/cm (8.7 fins/in)

o 0 0 O

With a tube wall thickness of 0.025 c¢m (C.010 in), the inlet vapor velocity is
8.3 m/sec (27.3 ft/sec) and the exiting noncondensable gas velocity is 0.09
m/sec (0.30 ft/sec}. This is expected to produce a liquid slug flow similar
to that observed in TIMES I.

In the condensing portion of the aftercooler, the air s.de heat transfer

coefficient of 2 X 10=3 cal/sec-cm?~°C (16 BTUIh ft2=°F) is controlling.

This results in 35 c¢m (14 in) of tube to condense the remaining waler vapor.

The length of the subcooling section was calculated by combining the air side

coefficient with an assumption of a minimum Nusselt value of 3.66 for parabolic

flow of the liquid in the tube. To subcool the Tiguid to 54°C {80°F) requires

an additional 58 cm (23 in) of tube length, resulting in a total aftercooler

length of 34 c¢m (37 in). The tubes are to be arranged in a cross=-counterflow

8nf1gur‘at1onj The temperature distribution of this component assuming 58
/sec (35 ft°/min) of air flow is presented schematically in Figure 120, as

a preliminary packaging sketch.

For this package, the air flow rate requ1red tg maintain a 4 6 m/sec (15
ft/sec) velocity through the tube bank is 68 m</sec (41 ft /m1n5 assum1ng the
gw to face area is 50%. This is reasonably close to the 58 m

/sec (
t3/min) used in the current unit.
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RECYCLE LOOP pH OPERATIONAL CRITERIA

Objective

Pretreatment of incoming wastewater is necessary to inhibit microbiolcgical
growth and fix the free dissolved ammonia. The objective of this task is to
study the effect of wastewater pH with respect to subsystem operating condi-
tions. Elimination of processing loop pH control components is the goal.

Background

The present subsystem design incorporates a collection package that is
capable of pretreating incoming wastewater and storing it for later use

in the processing loop. A pH sensor is installed in the recycle loop to
control addition of sulfuric acid, in order to maintain a given pH level

in the loop. It would be desirable to elminate this pH control, and

be able to accept whatever wastewater fluid was introduced directly into

the recycle loop. In this way, the processing package could be functionally
separated from a wastewater collection and pretreatment package, providing

a greater degree of flexibility.

Results

With the present subsystem configuration, no pH control scheme was necessary
since under normal operating conditions, pH levels averaged 2.5 using the
Oxone/sulfuric acid pretreatment. It is clear that care should be taken to
ensure the pH of wash water solutions using soaps or detergents is either
neutral or slightly acidic, otherwise chemical degradaticn of the surfactant
will occur.

Urine Feed
Urine testing was performed at HSD and NASA/JSC to indicate the stability of

the wastewater (urine) pH during actual subsystem operation, The pretreat-
ment mix that was used consisted of the following:

COMPONENT % BY WEIGHT MG/CC OF URINE
Conc. H»S0g 17.0 2.32
Oxone 36.8 5.00
Water 46 .2 6,28

Testing revealed that during actual processing, the residence time of the
urine batch in the recycle l1oop was on the order of 50 hours, At the dosage
utilized, the pH remained between 2.0 - 3,0. It became clear that automatic
addition of mildly concentrated sulfuric acid from the pretreat tank would

not be necessary, since that logic was based on a control band of pH 3.8 - 4.2,
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While from a control point of view, the recycle pH should be kept at 2.0 or
s1ightly below, under actual operating conditions a level of 2.5 - 3.0 is more
acceptable. This is the result of water quality considerations previously
discussed., In addition, the use of pure titanium or titaium alloys are recom-
mended for the recycle fluid since even 300 series stainiass steels are subject
to corrosion, especially AISI 347,

Testing also revealed that despite pH control during operating modes,
apparent loss of control occurred during some quiescent periods. This was
evidenced by the discovery of fungal growth inside the evaporator, in areas
of low flow velocity. This phenomena apparently has been observed in other
urine processing subsystems and needs to be investigated more fully.

Wash Water Consideration

While pH on the order of 2.0 is necessary for urine processing, previous
testing at HSD had determined that wash water using a liquid detergent
blead, Biosoft HD-100, was subject to decomposition at low pH levels.

There are four categories of surfactants that are based on the hydrophilic or
solubilizing groups appended to a longer hydrocarbon chain. They are anionics,
nonionics, cationics, and amphoterics. Of the anionics, the carboxylates
represent the soaps, which are the salts of otherwise insoluble fatty acids.
Soaps are not tolerant at all to low pH because they hydrolyze back to the
insoluble fatty acid. Beside the soaps, there are sulfonates, sulfates, and
phosphates. Of these, the sulfonates are the least sensitive to low pH because
the carbon-sulfur linkage is not susceptible to hydrolysis or oxidation under
normal conditions. Sulfates on the other hand, are not as stable because the
carbon-oxygen=sulfur bond is more easily hydrolyzed,

It is recommended that for a wastewater feed consisting of urine and wash
water, ony the urine be pretreated. The resultant pH obtained after dilution
by wash water will then be closer to neutral conditions and therefore less apt
to chemically react with the detergent employed.
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RECYCLE LOOP COMPONENT OPTIMIZATION

Objective

Both the geometry and operation of the recycle loop components contribute to
overail wastewater processing efficiency. The objective of this task is to
optimize the Toop components in a way such that increases in mechanical and
fluid management efficiencies are realized.

Background

The recycle Toop volume of the TIMES has already been reduced by 80 percent by
removing the recycle tank, This was done to create a nominal 40 hour cycle
for 95 percent water recovery. By doing so it was felt that the average
specific energy would be lower than the previous large volume loop configura=
tion that allowed excessive urea breakdown to occur, resulting in degraded
water quality and performance capabilities. A disadvantage of the present
configuration is that the filter and filter tank make up 50 percent of the
total recycle loop volume. This filter volume causes excessive mixing of
fresh and concentrated fluid, so that some guantity of solids are Jeft in the
loop after each dump/flush cycle. As a result, decreased water recovery on
the subsequent cycle occurs if the wastewater is not concentrated to a higher
solids level, and the specific energy is therefore proportionately increased.

The major source of parasitic energy consumption on the existing subsystem,
however, is the recycle pump motor. The currently employed brush, DC motor is
gprobably the least efficient of the commercially available fractional horse-
power motors.

Results

It was determined that operating the TIMES with a small recycie loop volume in
crdar to obtain concentrating cycles of 40«50 hours will not diminish the
desired 85% water recovery efficiency, provided the proper initial to final
dissolved solids level ratio is maintainable for each cycle.

A 400 Hz AC induction motor can be utilized to replace the present permanent
magnet DC brush type. The AC motor will operate at least 50% more efficiently
and will provide more reliability and longer life. ’
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Discussion

Recycle Loop Volume

For a dynamic process such as TIMES where water is produced from a constant

volume recycle loop, the relationship expressing water recovery in terms of
water produced is:

= Mass of water produced
% Rec. Mass of water jnputted + mass water initially in loop X 100
or: y -
HoO
% Rec. = ~—— W2 X 100
()'fn in (1-Xip) +{1 X5 (1=X3)
Where: w = Density of water Vin = Volume of fluid feed
in = Density of fluid reed Vi = Volume of recycle loop
Q1 = Density of initial recycle fluid Xi, = Solids fraction of fluid feed
VHo0 = Volume of water produced Xy = Solids fraction of initial feed

Expressed in terms of initial and final weight fractions, Xj and X¢, respec-
tively, the relationship can be expressed as:

% Rec. = Mass of water inputted - mass of water final X 100
" Mass of water inputted + mass of water initial

or:
(1=Xip) Mri, = (1-Xf) Qf V4
(1=Xip) Mrip * (1-X5) Qi Vi

% Rec. = X 100

Where: Xj, Xijp, Q. defined as before

and: Q¢ = Density of final recycle fluid
X¢ = Solids fraction of final recycle fluid
MTiy = Total mass of fluid feed

The relationship of processing duty cycle with water production rate, percent
water recovery, and recycle loop volume with a 2% solids feed is given in
Figure 121, It should be clear that a higher average production rate and
smaller volume lead tc a reduction in cycle time.

The percent water recovery becomes important to the specific energy require-
ments of the subsystem since the relationship of specific energy with power,
duty cycle, and total water produced is expressed as follows:

Speciffc energy = total power X C_VC.IE time
total water produced per cycle
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It can be seen that the specific energy will decrease if the percentage water
recovery (expressed as total water produced per cycle) decreases. Cycle time
only affects specific epergy if the total water produced per cycle varies.

While the above mentioned parameters may be manipulated to generate a desired
processing cycle time, the question of waste management becomes more critical
as the cycle time decreases. For example, a problem that can occur with the
present solids dump and flush procedure is that the same initial dissolved
solids level may not be reached in the recycle loop after a dump/flush due to
volumetric inefficiencies of the purge process. As a result, solids can
accumulate after each cycle, and each subsequent run must reach a higher final
solids concentration to obtain the same water recovery. However, as the final
solids level increases it becomes increasingly more difficult to flush out the
loop and reach the original initial solids level. In effect, water recovery
will decrease after each processing cycle, With a large remgvable solids
tank, the problem remains, but is jess obvious since a greater amount of time
is required to concentrate the solids. A comparison of the two concentrating
cycles is given in Table 37. It can be seen then, that if no other changes
are made to the component geometries, the same water recovery may be obtained
independently of the number of cycles, provided the final solids concentration
increases as the initial solids level increases.

While the above reasoning says water recovery may be held constant over a
number of cycles, eventually the loop must be totally flushed until a baseline
initial solids level is again reached. This is true whether a large or small
recycle tank is employed, and it is this final flush that defines the overall
cycle efficiency.

A11 flush cycles are dependent on the amount of mixing that can occur between
the high density fluid already in the Toop and the Tow density fluid being
introduced. Component geometries and residence time affect the mixing factor.
Decreasing flow velocities enough to prevent turbulence, and minimizing large
areas where flow stagnation can occur, will both decrease the extent of
mixing. An obvious target is a filter tank where velocitiec may be tow and
multiple flow paths abound. To this end, employing a filter with less surface
area would be appropriate, at the expense of increasing filter change-out
cycles. A Balston type 33 filter assembly was selectd for evaluation. The
volume is approximately 0.3 liters (0.01 tt3), or 24% of the TIMES I filter
tank. The 25 micron filter tube is 6.4 c¢cm (2.5 in) long and is constructed
from Borosilicate glass microfibers with a chemically resistant fluorocarbon
resin binder.

Recycle Pump Motor

The present recycle pump motor is a 28 VDC permanent magnet, brush type. It
drives the Teflon gear pump at a speed of 6800 RPM, and requires approximately
35 watts (0.047 HP) of power. The theoretical power requirement of a pump
that provides 182 kg/h (400 Tb/h) at 138 kPa (20 psi) is 6.8 watts (0.0091 HP).
Thus the present overall pump/motor combination efficiency as defined by:

7):: Pump output = 6.9 = 0,197
Pump motor power input 35
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Table 37
WASTEWATER CONCENTRATING CYCLE COMPARISON
1) Single Cycle
Xy = 2% and Xg = 30% for 95% recovery
if 10:1 dilution upon removal of recycle tank, get %
Xj = 3% for next run |
- 2) Multiple Cycle 10:1 dilution each .ycle
: 1) X3 = 2% X¢ = 30% R = 95%
2) X =3 X¢ = 38 = 95
3) X; = 3.8 Xg = 45 = 95 P
S ]
4) X = 4.5 X¢ = 49 = 95 4
5) Xy = 4.9 X¢ = 51 = 95 %
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If the pump is assumed to operate at an efficiency of 50 percent, then the
motor efficiency is: 0.197 X 100 = 40%

0.50

The relationships for the power required, and the torque generated by a direct
current motor are given by:

P=2 N and T =__EI

2N
Where: T = torque
P = power
E = voltage
I = current (armature)
N = speed

The graphical representation of the presently employed DC motor is given in
Figure 122, and is typical for this type of motor when new. With time, the
efficiency will decrease due to increased frictional losses.

WhiTe the advantages of a DC motor are its small size, speed variability, and
low cost, the disadvantages are:

o The brush-commutator assembly, which contajns Tife 1imiting (although
replaceable) brushes.

o The bearings, which are affected by the brush dust, and which exhibit
accelerated degracdation as the speed and ambient temperature rize.

o Low efficiency, due primarily to the relatively high friction losses
of the brush-commutator assembly.

There are two basic types of motors that are available in the fractional
horsepower levels, which can replace the permanent magnet DC metor, They are
the brushless DC and alternating current, or AC, motors.

Brushless DC motors may be divided into two main classifications. The first
type has an inverter combined with the motor winding driving an AC induction
motor. The second type is a DC motor with an electronic commutator. With the
Tatter, rotor position is sensed, then the excited circuits in the armature
are changed to correspond to the rotor position, similar to the way that an
ordinary commutator-brush DC motor operates. The advantages of both brushless
DC motors are small size, long life, speed variability and control, and high
efficiency. The main disadvantages are the high cost, and Tess than off-the~
shelf availability. Electronically commutated motors have typical performance
characteristics as shown in Figure 123,

AC motors also are classified into several types, but for our application the
inductien motor is of primary interest. In the generally accepted sense, an
induction motor refers to a motor whose stator accepts AC power, and whose
rotor turns at some rate less than that of the stator's field. The stator
rotates at some speed, Ng, as given by:

Ng = F/P
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where F is the input frequency and P is the number of poles. Commonly avail=-
able motors operate at either 60 Hz or 400 Hz. The advantages of an AC motor
are its simple, brushless design, high efficiency, long 1ife, and high reli-
abjlity. The disadvantages, depending on the chosen frequency, can be Targe
size and weight, A typical AC induction motor performance curve is shown in
Figure 124, and would equally apply to an inverter/induction brushless DC

motor,
Manufacturer Survey
A number of manufacturers were contacted regarding the availability and per-
formance capabilities of motors for our appication. The manufacturers are
Tisted in Table 38.
TIMES II Recycle Component Requirements
The proposed TIMES II configuration would employ two rotating pieces of equip-
ment: 1) a gas-l1iquid separator, and 2) the recycle fluid pump. It was
decided to combine the rotational components with & single motor, for this
improves overall reliability.
The proposed TIMES II recycle fluid flow is 272 kg/h (600 1b/h}, and the
pressure rise is 103 kPa (15 ps1d) The theoretical pumping requirement at
processing conditions would be 8.5 W (0.006 HP).
The general conclusions to be drawn from the motor replacement study are:

1) A 400 Hz AC motor will be smaller and lighter than a 60 Hz motor.

2) A 400 Hz motor will be more available and less expensive than a
brushless DC motor.

3) Both 400 Hz and brushless BC exhibit high efficiencies and long Tife.
Based on these results, a preliminary cheice for the separator/recycle pump

combination assembly would be a 400 Hz motor, due to its proven reliability,
availability, and lower cost.
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MOTOR MANUFACTURERS

Major Type

Manufacturer

AC
DC, AC
AC
AC
BDC
DC
BOC
BOC
BOC
BBC
BDC
80C
BDC
BDC
BBC
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Singer Co., Kearfott Division

Glocbe Industries

Western Gear

IMC Magnetics Corp.

Honeywel}l
Reliance

Sierracin/Magnedyne

NuTech Industries
Easter Air Devices
Robbins and Myers

EDO Corp., Elince Divisien

Kollmorgen
Clifton Precision
MPC Products
Aeroflex
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HOLLOW FIBER MEMBRANE EVAPORATOR IMPROVEMENT

Objective

In order to provide a greater degree of maintainability and ease of assembly,
the HFM assembly must be redesigned. The objectives of this task are to study
the means by which these goals may be reached, as wel] as to fabricate, and
implement an improved HFM evaporator design into the TIMES I unit.

Background

The present HFM evaporator must be removed as a unit and partially disassembled
in order to perform maintenance on the 1656 tubes fixtured into 18 bundles.
While testing the TIMES I preprototype at NASA/JSC during 1983-1984, the unit
accumulated 1,650 hours of urine processing. However, problems in the areas

of the membrane bundle headers and steam shell seals occurred that resulted in
subsystem downtime. Disassembly of the HFM evaporator to remedy these problems
was difficult, and often led to additional repairs having tc be made to the
hardware.

It was clear that improvements to the HFM evaporator design in the afore-
mentioned areas would result in improved operation as well as provide more
efficient maintenance. As a result, a spare HFM evaporator for the existing
TIMES I was requested by NASA/JSC. It was decided that a redesigned HFM
evaporator would provide valuable information for the TIMES II application,
and more reliable operation than a duplicate unit while employed for TIMES I.

In striving to miniwmize specific energy for TIMES II by reducing TER power,
the total area of the membranes necessarily must increase. The present TIMES
I design would grow to an unwieldy size in order t9 accommodate this extra
membrane area, so a reconfiguration is necessary. There are two ways to meet
the area requirement, and they are either to increase the length of the tubes,
or to increase the number of bundies.

Results

A redesigned HFM evaporator was fabricated that replaces the existing subsys=-
tem hardware. The major subassemblies are shown in Figure 125, The following
drawings describe the assembly and subassemblfes:

SVSK 108622 Evaporator, Hollow Fiber Membrane
SVSK 108623 Housing, Evaporator

SVSK 108624 Tube, Outlet, Steam

SVSK 108625 Header & Tubes, Upper

SVSK 108626 Cover

SVSK 108627 Support, Membrane

The HFM evaporator assembly envelupe is 22.3 cm (8.8 in) in diameter by
37.6 cm (14.8 in) high. The assembly weighs 9.5 kg (21.0 1b) dry. The HFM
evaporator/subsystem fluid interfaces are 1) two short fluid 1ine sections
that connect (with additional Tine lengths) to the inlet and outlet recycle
fluid ports; and 2) the steam shell that bolts onto the existing subsystem
steam cone. The additional line sec'“ins are the only subsystem hardware
modifications required in erder to interface with the HFM evaporator.
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In order to provide a minimum water production rate of 1.8 kg/h (4.0 1b/h} for
unconcentrated wastewater, the TIMES 1] configuration must contain twice the

i surface area of membrane tubing than is currently employed on TIMES I, The

: membranes would be configured into six bundles, each 2.3 m (7.5 ft) in length.
) It is necessary to build two identical evaporator sections to allow a struc-

~ turally satisfactory arrangement for the proposed TER/HFM evaporator assembly
' design. Al11 the membrane bundle hmaders would be cunnected at one end of the

evaporator, so that removal for sizintenance is facilitated. In addition, only

R —

v 0-ring face seals should be employed to reduce the potential for leakage.
?; Discussion

TIMES [ Evaporator

The TIMES I evaporator employs 18 bundles that are grouped into a number of
parallel and series paths with the use of flow distribution headers. The
arrangement is as shown in Ficure 84. The pressure drop across the evaporator
ke is 21.4 kPa (3.1 psid) and the average tube velocity is 0.23 m/sec (0.75
ft/sec). There is an average of 2.5 bundles/pass connected in 7 passes for a
total series length of 2.6 m (8.8 ft). The disadvantage of this design,
regardless of how the flow is distributed among parallel groupings of membrane
bundles, is that there are 36 bundle headers for a total of 2312 individual
tube connections. The number of tube connections can be decreased if the
number of bundles connected in parallel decreases. However, the length of
N each bundle would have to increase to provide the same total surface area.
v Table 39 gives the results of reducing the number of bundles, keeping surface
; area constant. It is obvious that the AP increases rapidiy as the number of
bundles is decreased at a given flow.
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The preliminary criteria for the replacement HFM evaporator were such that the
unit should: 1) be completely interchangeable with the present unit; 2) in-
corporate improvements to the 0-ring seal areas to reduce the leakage poten-
tial; 3) demonstrate a more maintainable membrane tube section; and 4) reduce
the number of tube bundle headers while maintaining the same membrane area,
which simpiifies assembly and maintenance, and increases the reliability of
the tube bundle assembly. To accomplish the above requirements, the unit was :
redesigned as follows: 3

0=Ring Seals 3

A1l O-ring seals are made compressively between mating flange surfaces, in-
stead of radially between cylindrical sections as in the original design. The
face-type seal is much less subject to leakage due to expansion, contraction
and abnormalities in the mating surfaces. In addition, all mating pieces

are fabricated from one material, titanium, rather than the TIMES I design
which mates a plastic, polysulfone, to titanium. This material discontinuity
resulted in the different rates of expansion and contraction during tempera-
ture transients, contributing to leakage around the radial seal.

Viton O-rings (MIL-R-83248, Type 1, Class 1) are used to seal all mating
surfaces. Viten has demonstrated excellent material compatability with
pretreated urine, and is mechanically suitable for the low pressure steam
environment.,
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Table 39
INCREASED LENGTH MEMBRANE PRESSURXE DROP

92 Tubes/Bundle, 18 Bundles Total

Total Bundle Length == 6.9m (22.5 ft)
40% Solids

67°C (150°F)

# Bundles AP, kPa

L

131.0

(e8]
[p&]
.
~J
» LI 3
R W~ = O a
Wt O W W W - p O
B i M A

s -
L == WO~ M M

[ RV B s TR I o (NS o TRV - 7 I LN
o= NN WS

- = @
[= B B o I o B > B I Sl A N i 1 Y
" = a = 8 L ]

—

101

B T

i

k

Addendum
SVHSER 7236

Revision A

G

o

g

1

:

o

]

|

:

. H

: f

|

| 4’]
(®

’ 4<



-

Y]

Pl TECHNOLOGIES Addendum
e 3 AN ON SVHSER 7236
STANBARD Revision A

o

dembrane Bundle iizader Assembly

The membrane bundle header assembly is located at the top end of the evapor-
ator shell. The tubular membrane bundles are formed into looped sections that
have inlet and outlet headers contained in a single header manifold. This
greatly simplifies assembly and maintenance by allowing the membrane bundle
assembly to be removed as a unit from the evaporator shell. Once removed, the
tube bundles are clearly exposed allowing for complete inspection and repair,
if necessary.

The membrane bundle header assembly consists of three sections:

Cover, SVSK 108626
Membrane Support Structure, SVSK 108627
Header, SVSK 108625

Cover - The cover is fabricated from titanium alloy. It is mated to the
header manifold and provides a uniform flow distribution of recycle fluid
through the membrane bundles. The cover remains intact in the event that the
evaporator needs to be disassembled, thereby minimizing spillage of waste
fluid out of the header manifold and membrane bundles. In addition, the tube
header plug fluid inlet and outlet ports are designed so that tube header plug
retention is positive even during a possible pressure reversal at the steam/
manifold interface.

Membrane Suppport Structure -~ The membrane support structure is fabricated by
welding titanium ailoy tubing into a tree-like structure. The structure is
then welded to the bottom of the header manifold. The Nafion membrane tube
bundles are wound through and around the structure, with the end being fed
through the header manifold for insertion into the header plugs. Tube header=
ing (inlets and outlets) is accomplished from the same end of the evaporator.

Header -~ The header manifold is fabricated from titanium alloy. Fluid inlet
and exit lines are fabricated from titanium tubing and welded to the header.
Fluid ports in the header are aligned with the cover to allow uniform flow
distribution through the membrane tube bundies. Bundie inlet and outlet ports
are isolated from each other as well as from the outside by racetrack O-ring
seals.

Evaporator Shell Assembly
The evaporatc- shell (SVSK 108623) is fabricated from titanium alloy. It is
designed to fit precisely into the allotted space of the presently employed

HFM evaporator, with only stight modifications necessary to the existing
subsystem inlet and outlet recycie fluid Tire connections.
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The bady of the shell is formed by rolling titanium alloy sheet s - “iITA§
cylinder; the mating edges are joined by welding. The top and botto.: - :. ™“X§;
are machined from a titanium alloy billet, and welded to the shell. Sini:
shell is metal, two vacuum service viewing ports made from type 304 stainless
steel with type 7056 glass windows are employed. Through these ports any

significant buildup of Tiquid in the shel] can be observed and drained. =#

Viton gasket completes the seal between the shell and the viewing port {lange.

Tube Bundle Headers

The most significant departure from the present evaporator design is the !
reduction of the number of Viton tube bundle headers from 36 to . This is
accomplished by increasing the Tength of each bundle from 0.38 m {1.25 ft) to
2.29 m (7.50 ft), thereby maintaining the equivalent total membrane tube
length, IR&D supported testing in 1983 of Nafion membrane bundles had demon-
strated that the water transport rate of a 92-tube Nafion bundle increases
prop?rtionally with length. The redesigned evaporator takes advantage of this
finding.

The number of actual tube-to-header connectfons is reduced from 3312 to 552,
significantly increasing the ease of maintenanc2 and overall reljability of

: the assembly. The perforated metal retainers used in TIMES I to prevent the

- tube bundle header from being forced through the header manifold {as a result

i of the operating AP) have been eliminated in the new HFM evaporator design.
This change allows the Viton header plug to form a facial seal (in additivn to
the inherent radial seal) with the header manifold.

Furzhional Checkout

After assembly of the membrane bundles and subsequent installation into the
header mariifold was completed, the cover plate was attached. A hydrostatic
test was conducted using triple distilled water at room temperature and 274
kPa (25 psig). No Teaks were observed after approximately five minutes. A
water flow of 182 kg/h (400 1b/h) at 12.8 kPa (3.8 psig) was then established
through the membrane bundle/header assembly. The membrane bundle assembly was
- gradually backpressured using a needle valve downstream of the unit until a
flow of 145 kg/h (320 1b/h) at 274 kPa (25 psig) was again established. These
conditions were held for two hours with no Teaks observed. Finally, a reduced i
pressure level of 11 kPa (1.60 psia) was established in the steam shell with i
the membranes and header bolited in place., After three hours no vacuum decay ‘
was noted, ‘
|
I
i
i

Following the hydrostatic and vacuum leak check, the membranes were condi-
tioned with pretreated urine {oxone and sulfuric acid). A 182 kg/h (400 1b/h)
flow was established and allowed to circulate for 225 hours. This procedure
reduces the possibility of flooding the evaporator shell with water during
initial subsystem startup, due to the relatively high initial water permea-
bility of the Nafion membrane material.

The urine was then flushed from the assembly and distilled water was again
i circulated for an additional 100 hours. Finally, another hydrostatic check to ‘
. 274 kPa (25 psig) was performed with no indication of leaks. The unit was
’ then drained and prepared for shipment.

- 103



2 h

O

o

3

b g I

% I}T{][EAM]HIL‘T@&‘] ES Adgengumzm
SVHSER 7
STANDARD Revision A

Preliminary Sizing For TIMES II Evaporator

As indicated in the discussion of the combined TER/HFM performance character-
jstics, a corresponding membrane PA of 10 at the design point of 1.93 kg/h
(4.25 Tb/h) (see Figure 126) is required. The present evaporator provides a
PA =5, representing a membrane surface area of 2.5 mé (27 ft2) which must be
doub]ed to 5.0 me (54 ftz) to give a PA = 10. Simultaneously, the number of
membrane bundles should be kept to a minimum to facilitate assembly and main-
tenance. The envelope dimensions and volume of the evaporator shell(s) are
dependent on the area of the thermoelectric elements necessary to provide a
COPTER = 6. Due to proposed design considerations, an optimal number of
membrane bundles was determined to be six (12 headers). To obtain the re-
quired surface area, each of the six bundles would have to be 2.3 m (7.5 ft)
in length. The calculated pressure drop of such an assembly is shown in
Figure 127. To obtain the same average Reynold's number as is presently
employed, 436 kg/h (960 1b/h) would be chosen as the recycle flow, at a pres-
sure drop of 22.4 kg/h {3.25 psid). However, practical considerations such as
recycle pump sizing would dictate a flow of 272 kg/h {600 1b/h), at a 13.8
kg/h (2 psi) pressure differential.

Because of the longer tube length, the bundles would have to be looped several
times and constrained in order to fit into the available evaporator volume.
This is actually no different than the arrangement now utilized in the TIMES I
evaporator, where, in effect, the individual bundles are "looped" into an
equivalently longer bundle through the use of the flow distribution headers.

Evaporator Layout and Package Integration

The goals of the evaporator reconfiguration are:

1) Increase membrane area

2) Facilitate assembly of membrane bundles into evaporator
3) Provide for facilitated maintenance on the evaporator
4) Integrate the evaporator with the TER

There were two approaches considered for a reconfigured evaporator envelope.
The first was similar to the present design where a vertical structure, either
cylindrical or polygonal in shape, would form the evaporator shell. The
second took the form of a flat rectangular box or boxes. In both concepts the
membrane bundies would be headered from only one end of the enclosure, s¢ that
preassembly of the headers and bundles into a header retention plate could be
accomplished independently of the evaporator sheli. In addition, the thermo-
electric elements, wastewater heat exchanger(s), and main condenser(s) would
be integrated with the evaporator shell(s), in contrast to the separate assem~
blies now employed on TIMES I. In this way, heat transfer could be optimized
to condiuct heat into the evaporator shell where the heat could be used to
prevent steam condensation on the walls during processing. Furthermore, the
package insulation would now be fitted directly on the appropriate assemblies,
providing increased thermal efficiency.

104

s 2R T TR el S

e i Yk o1




B T os, W P

Qi UNITED
P L s
STANDARD
7 Y
RECYCLE FLOW = 272 KG/HR
(600 PPH)
SYSTEM VOLTAGE = 28 VDC coP
6 /(‘T/— 6
]
l B
I
5 { ATER
W
/ : pro0UCTLON
4~4’Jﬂ“'4
4 " 4
]
a !
S !
] |
3 }
i
|
|
|
2 r 2
I
| DESIGN
| POINT
i
1 i 1
|
|
|
0 - ! 0
0 4 8 12 16 20
PA (LB/HR-PSID)
1 [l L [ g 1
0 0.25 0.50 0.75 1.00 1,25

PA (KG/HR-kPa}

FIGURE 126
SUBSYSTEM MEMBRANE PERFORMANCE

105

WATER PRODUCTION (LB/HR)

Addendum
SVHSER 7236

Revision A

~3.0

12.5

on
WATER PRODUCTION (KG/HR)




W'—-‘:ﬁ., R A TS
- @t v m man O]

Q- ITED |
% ’ Eﬂ&ﬁ"ﬂﬂll.’ﬁ’@[ﬁ] €S Addendum t
STANDARD SVHSER 7236 }
Revision A
|
|
90 ¢ 200
80}
160
| 70} //’
E
: & =<} .%
3 x 2 120 -
g Wo50F w 150°F
? = E 50% SOLIDS
é
% = 2 | :
: - 80 \ , J
% = g i
! e S0F 2 ;
X = = ‘ :
i , ; %
; ' i
E 10p j
; oL 0 _ : i
: 0 1 2 3 4 .
; AP (PSID)
? L [ i F 3 3
f 0 5 10 15 20 25
AP (kPa)
!
f
I
. FIGURE 127 !
; 7.5 FT MEMBRANE BUNDLE , jﬁ
3 FLOW CHARACTERISTICS ﬁl
= i
EE 106 | |
P i . T s e T = = = 3 S 4




CWEL L LT

CELRRTTTYROE AT o e T
o AR T

(...un. AT YIRS T L
i

|

1

NI TECHNOLOGIES
Ll st ot
B Revision A

After consideration of the two geometries, it became clear that the flat,
rectangular design, assembled into a sandwich arrangement could best satisfy
the design criteria of a TIMES II subsystem, The initial design concept
included a single evaporator sandwiched between two banks of thermoelectric
elements and heat exchangers. The goal here was to thermally isolate the hot
evaporator as much as possible. The main steam condensers would be located on
the outside of the package where heat transfer to ambient surroundings was not
accruable as a loss of efficiency. While the thermodynamic concept was sound,
manufacturing considerations indicated that the design would not be sasily
fabricated, and that the overall package dimensions would be marginally satis-
factory.

The concept was then modified to the selected design, where the main steam
condenser is sandwiched between two banks of thermoelectrics and two evaporator
shells, While this design requires that more insulation panels be utilized to
reduce heat transfer from the exposed evaporator shells, the fabrication and
assembly of the major components will be more straightforward.

TER/HFM Assembly

»

The basic dimensioning of the TER/HFM assembly is dependent on the area re=
quired by the thermoelectric elements. The 9 X 13 array occupies an area of
0.40 m2 (4.34 ft2). The layout of the assembly is shown in Figure 128; ali
titanium construction will be used to minimize weight. Integral to the two
evaporator shells will be the wastewater heat exchangers, each of which will
consist of channels milled into a flat plate. The evaporator shell/heat
exchanger sections will surround a thermoelectric heat pump section consisting
of the two 9 X 13 arrays of thermecelectrics sandwiching a milled-channel main
condenser. The entire sandwich will be clamped together within a framework
suitable for mounting ancillary equipment (see Figure 129).

Evaporator Header Manifolds

The membrane bundle header manifolds will consist of two removable retention
plates, one for each evaporator shell, each bored out to accept six headers,

in an alternating inlet and outlet succession. The retention plate will

mate with a flange on the evaporator shell, and an O-ring face seal will be
employed. A cover plate, also with an O-ring face seal, will compiete the
manifold section. This arrangement allows the entire membrane header manifold
to be removed from the evaporator shell for complete maintenance. In addition,
the face sealing O-rings eliminate the suspected leakage problems encountered
with the radial seals on the present evaporator.
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