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Preface

This final report covers work performed under NASA grant NCC 2-67

during 1981, 1982, and the first half of 1983. This research on control

and modeling of CELSS continues under NASA grant NCC 2-257.

The report is divided into three major areas: uncertain and poorly

defined systems, resource alloontion, and control of systems with delay

and closure. The motivation for dividing the research into these three
I

areas is covered in the Summary. The technical background, a summary of

^	 t
our findings thus far, and a listing of future work, or research tasks,

Iis presented for each of these areas. 	 ,
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Summary

This project is concerned with research topics that arise from the	 i

conceptualization of control for closed life support systems, that is,

life support systems in which all or most of the mass is recycled (these	 rl

are abbreviated CELSS for controlled ecological life support system). The	 t

topics that we have emphasized are modeling and control of uncertain and

poorly defined systems, resource allocation in closed life support systems, 	

^!
and control structures for systems with delay and closure.

4Y	 ^

This choice of topics is based on studies done to—date for the

purpose of identifying unique dynamic control problems associated with
i

closed life support systems. These are a combination of generic problems

that, while very important to CUSS control, have not received wide attention

from the control community, and specific problems that arise from the

structure and performance constraints of the CUSS itself.

Of these topics, the first, modeling and control of uncertain and

poorly defined systems, has received the most attention so far. It consists

of several generic areas that will be critical to control of a CUSS,

including parameter identification and sensitivity analysis for models of

biological systems, design of feedback control systems for systems with

uncertainty, and design of nonlinear controllers. Because of the complexity

and inclusion of biological elements (including humans) in a CUSS, any

global or detail level control must be able to deal effectively with poorly

defined and nonlinear systems. The major mechanism used to approach both

the complexity and the uncertainty in an efficient manner is the use of
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performance criteria expressed as binary variables. This approach has

proven to be particularly effective for biological systems as well as

providing an effective basis for the design rrf engineered systems.

The work in resource allocation centers on two challenging problems.

The first is unique to CELSS: the definition of survival as the performance

criterion for system design and supervisory control. The second, high

dimensionality and widely spaced time scales, while not a problem only in

CELSS systems, must be always be handled in an ad hoe fashion by tailoring

the solution methodology to the problem's specific structure. Resource

allocation is classically formulated as a dynamic programming problem. We

have developed a dynamic programming formulation with probability of

survival as its performance criterion, and will use that to attack problems

of time—scale, model uncertainty, and dimensionality.

A parallel and complementary approach that we are using to specify

the nature of a CELSS supervisory control system is to examine abstractions

of the CELSS structure to determine the nature of control problems that

arise and the types of control structures that can deal effectively with

them. The primary structural problems we have isolated so far have their

basis in the presence of time delay, nonlinearities, and closure. These

lead to extremely difficult to control dynamic behaviors, including chaotic

behavior which is a seemingly random response that arises from purely

deterministic sources.

d
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Introduction

Control of a closed life support system involves a series of control
i

I	 levels, each with its own performance criteria and unique control problems.

At the highest level, the overall goal of the control system is survival,

which makes this control problem distinctly different from virtually all 	 ^}

systems to which control theory has been applied. In conventional.

applications of control theory, the goal at the highest level is almost

4

always associated with some kind of economic measure, often profitability.
i

Another unique factor, which is common to several CUSS control levels,

is that the system not only includes biological elements, but the humans

who constitute part of the biological component also operate the control

system.

We have approached the CUSS control problem from both a specific

and a generic point of view. In the generic sense, we have attempted to

identify problem areas that are important to CUSS systems but need further

research work before they can be considered for use in a CUSS control

system.

The generic studies we have been interested in have centered on

V
questions of uncertainty and poorly—defined systems. Because of the

complexity of a CELSS, and because of the heavy component of biological

elements, we believe that no modeling effort, no matter how elaborate,

will ever be able to predict the behavior of a CUSS sufficiently well for
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a straightforward deterministic control to be applied.	 To this end, we

are assuming that the system to be controlled will have to be described

in a probabilistic form of some sort, 	 so we have, concentrated on a means

of parameter fitting for models that can be applied in such situations and

control system design methods that can be used with systems that are

nonlinear as well as uncertain. 	 Numerical/statistical methods are notoriously

high in their computational requirements.	 To alleviate that problem as

much as possible, we are working with methods in which performance criteria

can be expressed in binary form. 	 These methods have proved particularly
i

Y

successful with biological systems, because, it appears, these systems t

have extremely well defined behaviors even though substantial individual j

parameter variation must be tolerated.

We began looking at CELSS—specific control problems by constructing i

a simple computer model of a CELSS and performing a variety of simulation h

experiments with it.	 By using several randomly applied pertubations (such

n

L

as a temporary malfunction in a system component) we noted that system

behaviors could be generated in which the failure did not occur until long
i

after the pertubation had been removed. 	 This suggested that the long time

delay of plant growth might be a dominant dynamic factor. 	 Because of the

closed nature of the system, and the presence of many nonlinearities, the .

possibility of producing very complex dynamic behaviors was suggested by
I

these results.	 These behaviors, if actually present in a real CELSS, would
I	 1•

mean that application of simple, "intuitive" control rules might not lead

to satisfactory control. We are now abstracting this component of a CELSS

behavior into a series of even simpler models to look at control methodologies

i
that appear to have some hope of success in dealing with such systems,

I!
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Yet another view of CELSS control is as a resource allocation

problem. This resource allocation problem differs from traditional

optimization problems in two !days: first, the performance criterion is

survival, for which we must find a suitable analytical formulation, and,

secondly, there is no obvious "cost" associated with the use of any
v

particular resource, as there is in a traditional industrial allocation

problem. Our approach to this is, initially, through variants on the 	 I

techniques of dynamic programming. Dynamic programming's major limitation 	 k

is that the,computational load goes up prohibitively as the complexity of
i

the system increases. As with the statistically based modeling and control

efforts described above, much of our work must go into means for reducing

the computational load.

Uncertain and Poorl y Defined Systemstems

Much of the work that we have carried out has been concerned with

questions of uncertainty in the modeling and control of poorly defined

systems. The general approach has been largely based on the ideas first

described in Spear and Hornberger (1980, 1981) and Hornberger and Spear

(1980). These papers describe a sensitivity analysis procedure which

focuses on a region of system parameter space rather than a single point.

Since the regional sensitivity idea is central to much of our subsequent
1,4	

iwork it is important to describe the central concepts in some detail.

For clarity of exposition, we restrict our attention to a specific
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class of models and introduce nomenclature which will be required

subsequently. Assume the processes are to be modeled by a set of first

order differential equations. (Different,, mathematical structures can be

dealt with in an analogous way). Let these equations be given in the form;

(d/dt)x(t) = x 1 (t) = f[x(t),P,z(t)7

where x(t) is the state vector and z(t) is a set of time variable functions

which include input or forcing functions. The vector P is a set of constant

parameters described more fully below. Thus, for P, z(t) and x(0) specified,

x(t) is the solution of the system of equations and is a deterministic or

a stochastic function of time as determined by the nature of z(t). For

simplicity of exposition, z(t) will be treated hereafter as a deterministic

function of t.

Each element of the vector P is defined as a random variable the

distribution of which is a measure of our uncertainty in the "real" but

unknown value of the parameter. These parameter distributions are formed

from data available from the literature and from experience with similar

structures. For example, the literature suggests that the maximum growth

rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 per day

at water temperatures near 25 degrees C. Interpreting these limits as the

range of a rectangularly distributed random variable, and forming similar

a rp iori estimates for the other elements of P result in the definition

of an ensemble of models. Some of these models will, we hope, mimic the

real system with respect to the behavior of.interest.

Turning now to the question of behavior, recall that every sample

value of P, drawn from the a priori distribution, results in a unique state
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trajectory, x(t). Following the usual practice, we assume thnt there are

a set of observed variables y(t), calculable from the state vector, which

are important to the problem at hand. So, for each randomly chosen parameter

set P", there corresponds a unique observation veotur y*(t). Since the

elements of y(t) are observed ( that is we assume they are measured in the

real system), it is sensible to define behavior in terms of y(t). For

example, suppose yi is the concentration of phytoplankton in a body of

water and the problem in question concerns unwanted algal blooms due to

nutrient enrichment. Then, there is some value of yi ahove which a bloom

is defined to have occurred vO the behavior is defined by this critical

value.

In general, a number of behavior categories can be used. Without

loss of generncity, however, we can consider the case for which behavior
i

is defined in n binary sense, i.e., it either occurs or does not occur for

a given scenario and set of parameters P. It follows that a rule must be

specified for determining the occurrence or non -occurrence of the behavior

on the basis of the pattern of y(t). It is also possible that the behavior

might depend on the vector z(t). For example, suppose one element of z(t)

was water temperature. We might be interested only in extreme values of

y(t) when adjusted or controlled for temperature variations. In any event,

the detailed definition of behavior is problem -dependent and, for present

v
purposes, it is sufficient to keep in mind that a set of numerical values

of P leads to a unique time function y(t) which, in turn, determines the

occurrence or non-occurrence of the behavior conditioned, perhaps, by z(t).
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We have now presented t1se class of models to be studied and described

how we propose to deal with parametric uncertainty. For a given behavior

and set of parameter distributions P, it is possible to explore the

properties of the ensemble via computer simulation studies. In particular,

a random choice of the parameter vector P from the predefined distributions

leads to a state trajectory x(t), an ob s ervation vector y(t) and, via the

behavior-defining algorithm, to a determination of the occurrence or

non-occurrence of the behavior. A repetition of the process for many nets

of randomly chosen parameters results in a set of sample parameter vectors

for which the behavior was observed and a set for which the behavior was

not observed. The key idea is then to attempt to identify the subset of

physically, chemically or biologically meaningful parameters which appear

to account for the occurrence or non-occurrence of the behavior.

Ranking the elements of P in order of importance in the behavioral

context is accomplished through an analysis of the Monte-Carlo results.

The essential concept can best be illustrated by considering a single

element, Pk, of the vector P and its a rp iori cumulative distribution, as

shown in Figure 1. Recall that the procedure is to draw a random sample

from this parent distribution (a similar procedure is followed for all

other elements of P), run the simulation with this value and record the

observed behavior and the total vector P therewith associated. A repetition

of this procedure results in two sets of values for Pk, one associated

with the occurrence of the behavior B, and the other without the behavior',

B 1 . That is, we have split the distribution F(Pk) into two parts as

indicated in the figure. This particular example would suggest that Pk

was important to the behavior since F(Pk) is clearly divided by the

I

i

7
i

^' C

j

J
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Figure 1: Cumulative distribution functions for parameter Pk.
F(Pk) = parent, a priori distribution, F(Pk1B) = distribution

of Pk in the behaviour category, F(Pk1B') = Distribution of Pk

in the non-behaviour category.

U
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behavioral classification. Alternatively, if the sample values under B

and B I appeared both to be from the original distribution F(Pk), then we

A
	

would conclude that Pk was not important.

For the case where z(t) is a deterministic function of time, the

parameter space is cleanly divided by the behavioral mapping; that is,

there is no ambiguity regarding whether a given parameter vector results

in B or B'. The analysis then focuses on the determination of which

parameters or combinations of parameters are most important in distinguishing

between B and B 1 . We will restrict the discussion to the case for which

the parameter vector mean is zero and the parameter covariance matrix is

the identity matrix. (A suitable transformation can always be found to

convert the general problem to this case). The problem of identifying how

the behavioral mapping separates the parent parameter space can then be

approached by examining induced mean shifts and induced covariance structure.

For example, we can base a sensitivity ranking on a direct measure

of the separation of the cumulative distribution functions, F(PkIB) and

F(PkIB'). Tn particular, we often utilize the statistic:

d(m,n) = sup I Sn(x) — Sm(x) I

where Sn and Sm are sample distribution functions corresponding to F(PkIB)

and F(PkIB I ) for n behaviors and m non-behaviors. The statistic d(m,n)

is that used in the Kolmogorov-Smirnov two sample test and both its
	 n ^

r

asymptotic and small sample distributions are known for any continuous
	

^9

Cumulative distribution function F(PkIB) and F(PkIB I ). Since Sn and Sm

are estimates of F(PkIB) and F(PkIB I ), we see that d(m,n) is the maximum
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vertical distance between these two curves and the statistic is, therefore,

sensitive not only to differences in central tendency but to any difference

in the distribution functions. Thus, large values of d(m,n) indicate that

the parameter is important for simulating the behavior and, at least in

some cases where induced covariance is small, the converse is true for

small values of that statistic.

In general, however, ranking on the basis of the separation in the

distribution function along the original axes of the parameter space (the
k

individual parameter values) is not sufficient. It is possible, for

example, that the first and second moments for a simple parameter might

exhibit no separation and yet this parameter could be crucial to a successful

simulation by virtue of a strong correlation with other parameters under

the behavior. For example, Figure 2 depicts a two-dimensional space for

which the cumulative distribution would not separate under the behavioral

classification. Nevertheless, both parameters are important in determining

whether the behavior occurs. Clearly, it is the interaction between

parameters which is crucial, and information on the covariance between the

two parameters may give insight into the degree of sensitivity in a case

such as this.

As discussed below, however, interaction between parameters seem

seldan to be of the sort revealed by correlation techniques or principal

components analyses. It appears that such interactions are often nonlinear
.y

and a major element of this proposal is to investigate means of more

reliably detecting and understanding parametric interactions as determinants

of system behavior.
i
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Figure 2: Schematic diagram of a two parameter case for which

separation under the behavioural classification is total but for
which discrimination by univariate tests is not possible.

.i
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Since the original development and application of the foregoing

ideas in the context of the Peel Inlet, eutrophication studies in Western

Australia (Spear and Hornberger, 1980) several investigators have applied

these concepts in the analysis of diverse problems. Spear and Hornberger

(1981) studied energy trade-off questions related to the Solar Power	 4

Satellite ( SPS). Fedra applied the technique, more or less intact, to

various water pollution problems in Austria (Fedra, 1980, 1982). Auslander 	 3
h	 P

(1982) successfully applied these ideas to the elucidation of spatial

i'
effects on the stability of a food-limited moth population, the model in

i

this case being given by partial differential equations. Whitehead and

Hornberger ( 1983) used the regional sensitivity approach as the first stage

of a parameter estimation scheme, the second stage of which utilized the

Extended Kalman Filter ( EKF). In this study an initial attempt to use the

EKF alone failed when the algorithm did not converge, A reduction of the

parameter set using the sensitivity analysis led to convergence of the EKF
}

when applied to the reduced parameter vector.
1

A second and closely related line of research has been focused on

the application of these same concepts to the control of parametrically

poorly defined systems. It is here that the major applications to CELSS

problems are foreseen and much of this work has been supported by the CELSS

program under NASA Cooperative agreement NCC-2 - 67. The initial work along

this line was carried out by John Stahr in his analysis of a CELSS-like

model (Stahr, Auslander, Spear, and Young, 1981). The im portance of this

work was its demonstration that CELSS may well be susceptible to long-term
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dynamic failure modes and that the design of control systems to deal with

such phenomena will be crucial to mission saecess.

In Stahr's work and in subsequent control studies the behavioral

definition of the sensitivity analysis is replaced by a binary performance

criterion, adequate or inadequate system performance. The process parameters

are usually assumed poorly known and the issue is to find a fixed set of

controller parameters that will yield a high probability of adequate

performance in spite of the process uncertainty. The strength of the

Monte-Carlo approach in this application is that the mapping from the

parameter space to the performance outcome can tolerate nonlinearities in

i=
the controlled process and can be used to design nonlinear controllers as

will be discussed below. Another major advantage is that the effect of

process parameters on system performance is also revealed in the analysis

which can be used to specify those sub-processes which should be made the
II

object of estimation experiments or be investigated for the possibility

of redesign to allow more favorable dynamic performance.

The first results of this aspect of the,research were published
I

in 1982 (Auslander, Spear, and Young, 1982). This paper applied the

simulation-based approach to some simple systems that could also be analyzed

to a greater or lesser degree by conventional methods. The object was to

contrast the information developed during the analysis and the results

obtained. The conclusions were favorable to the simulation approach since

the results were direct and easily interpretable in practical terms and,

of course, conventional methods cannot easily handle the process parameter

uncertainty.
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A second effort was carried out along similar lines by Spear and

Hornberger (1983). The investigation concerned the effect of process

parameter uncertainty on the control of dissolved oxygen in a river. This

problem was interesting in the CELSS context since the process models had

biological elements which were subject to some uncertainty and, also, it

was a problem to which several sophisticated control schemes had been

applied in the past. It was found that the most straightforward and

practical of these previous system designs was significantly influenced

by modest levels of parametric uncertainty (+/— 25%). Moreover, the

simulation--based approach revealed a particularly simple control design

which d"ivered a reasonably high probability of adequate performance under

the process uncertainty.

A significant development of the rather , straightforward extension

of the sensitivity ideas to control mentioned above was carried out under

NASA support by G.E. Young (1982). The thrust of Young's work was to

apply the foregoing ideas to discrete time nonlinear controllers for both

perfectly known and poorly known processes. In general, Young found the

simulation—based approach to be quite practical and workable when applied

to fairly simple process models (up to order four). He also found that

nonlinear controllers gave better performance than linear designs although

his process models generally included saturation phenomena which made them

nonlinear from the outset. Young has provided some guidance for reducing

the sample size required to arrive at acceptable designs in the case of

process parameter uncertainty. However, more complex models will be
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required to explore more thoroughly some of these strategies for sample

size containment. Nevertheless, the methodology proposed by Young for

nonlinear controller design would appear to merit further investigation.

It is a common feature of both the control and sensitivity versions

of the simulation-based procedure that most of the useful information is

gained from the univariate statistics. That is, it is unusual to detect
9

correlations between parameters under the behavior that exceed 0.3 with 	 f

or withcut coordinate rotation and the situations ivs depicted in Figure 2

above seem not to occur in practice. It is beginning to become clear that

this is not because of a lack of interesting and informative interactions

between parameters, but probably because these interactions are not

susceptible to linear multivariate methods. This will be addressed below.

RESEARCH TASKS	 ^}

1) In the context of both the sensitivity analysis and nonlinear control, 	
r"

we propose to apply new statistical methods to investigate the interaction

between parameters inder the binary mappin associated with the behavioral

criterion and the adequate performance criterion respectively. 	 1

Recall that, in the sensitivity context, the issue is to determine
n

which elements of the parameter vector, P, either singly or in interaction

with other elements, are important in causing the occurrence of the behavior,	 i

B. As noted above, with regard to our past work, interactions between two 	 i
i

or more parameters seldom seemed important on its own, We have concluded

that this is not because less obvious interactions do not exist, but because

w.sP
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they are seldom revealed by standard statistical methods based on

correlation-like analyses with or without coordinate transformations

(Hornberger and Spear, 1981).

It transpires that this same issue is currently of some interest

in statistical research. In particular, at Stanford, Friedman and Stue.14zle

have developed a novel approach to the analysis of multivariate point

clouds based on computer graphics (Appendix I), The general eoncep,, iy

termed Oprojeetion pursuit' s and has both regression and clssifieation

variants. The literature on these methods is sparse (Friedman and Stuetzle,

1981; Friedman and Stuetzle, 1982a) but includes various internal reports

from the Stanford Linear Accelerator and the Department of Statistics.

Nevertheless, it is clear that their approach is almost uniquely suited

for our purposes and it is very much in the spirit of our approach to the

problems of uncertainty in systems design. One of us has visited the

Stanford group and determined that there are several computer codes for

batch processing versions of their methods that can be implemented on our

VAX. Of these, the most highly developed is a regression program, but a

classification program will be available shortly.

The key to the approach is to find "interesting" projections of

the point cloud onto 2 or 3 dimensional subspaces. In the batch mode,

this involves definition of what is interesting in terms of a figure of

merit and, subsequently, maximizing this figure by directed searching

procedures (a simplified 8osenbrock method is apparently the usual method

used by the Stanford group). Once structure is found, it is removed and



I

further structure is sought. At present, considerable art seems to be

involved in choosing the smoothing algorithm applied to the projections

(Friedman and Stuetzle, 1982b). However, we propose to apply these methods

i
to CELSS control problems and we expect that they will result in a significant

increase in our insight into the sensitivity problem and in our ability

to design controllers. The specific tasks to be accomplished are: 	 I

a) Obtain projection pursuit software from Stanford and adapt it for our

VAX.

b) Apply the pursuit algorithms to simple sensitivity problems selected

for their analytical tractability.

e) Apply the pursuit algorithms to a complex hydro-ohemieal model under

investigation by Hornberger.

d) Apply the pursuit algorithms to a CELSS model.

2) We propose to continue the attack developed by Young on nonlinear

controller design and on the control of nonlinear systems containing

parameter uncertainty. There are no general methods for the design of

nonlinear controllers despite the fact that there is ample reason to suspect

that better performance can be expected in many eases. Young has shown

that variations of the sensitivity methodology have considerable promise

I I
in dealing with this design issue. His work dealt with rather sinple plant

r.'r
models and it is of interest to extend his approach to more realisitic

models of CUSS components.

A second aspect of this task is to extend Young's work on the

control of processes with parametric uncertainty. This problem was also
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addressed by others in our group (Spear and Hornberger, 1983) and it seems

likely that a marriage of the two approaches might pay dividends. Spear

and Hornberger asked how great was the influence of process parametric

uncertainty on the behavior of a particular controlled system containing

biological components. The influence was found to be considerable and

they proceeded to develop a robust controller design. This involved

attempting to locate a point in the controller parameter subspace which

would assure a reasonably high probability of adequate performance in spite

of process parmeter uncertainty. we proppose to apply the projectio pursuit

concept to this problem, perhaps via logistic regression, as a stage of

analyses prior to Young ' s procedure which is a type of search algorithm

directed at refining the "design." That is, Young is also seeking a set

of control parameters that maximizes the probability of adequate performance,	 q
c

but he requires a starting point from which to conduct a directed search.

The specific tasks to be accomplished are: 	 I!

^

ii
a) Select several CELSS component models of limited complexity.

b) Apply Young ' s approach for known process parameters and determine the

effect of increasing model complexity.

c) Select CELSS models of medium complexity.

d) Apply Spear—Hornberger approach to find initial design point.

e) Apply Young ' s second method to obtaining refined controller design.

1
i
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Resource Allocation in CUSS	 +

"

	

	 In order to design a controller for any system, we need precise

mathematical descriptions of the system behavior, the available control

inputs and the goals the control system must meet. For a CUSS, control

can be exerted by manipulating various processing rates, such as, reeyoler
i

and dehumidifier operation rates, and by deciding how much of each "resource"	 1

(water, food, etc.) to allocate to each "activity" in each time period.

This suggests that CUSS control can be viewed as a resource allocation
I	 {

problem,	 'I

Since the resource allocations can only be made at fixed time

intervals, application of analytically—based techniques requires a

discrete—time model for the dynamics of a CUSS. For our preliminary

analysis, the state of the system is assumed to consist of two types of

variables -- supplies of the various resources and deficits that accumulate

when demands for resources aren't met. More realistic models may have

additional state variables, such as plant biomass.

Deficit dynamics are inherently discrete time and obey relationships

of the form:

D(k+1) = D(k) — F(k)S(k) + B(k)

where ( for a single resource):

D(k) is the deficit at the kth time step

p	 y
•	 _.. .. r. ;_... 

_3<d }wG':"Yb^^ Al^ 	 ^	 .ill)	 v ,
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S(k) is the available supply

NO is the fractional allocation of supply to make up the deficit

and	 B(k) is a random baseline demand.

For models with several resources, the functional form of the deficit

dynamics is unchanged, but D, S, and B become vectors while F becomes a

matrix.

Supply dynamics can be related to chemical kinetics. If we consider

a single chemical reaction:

i
A ---> B	 w

we can define a reaction coordinate, z, such that z = 1 Beans that one

mole of A has been converted to one mole of B. The reaction kinetics can

be completely described in terms of z and follow the equation:

dz/dt = f(z,t)
i

where f is, in general, a nonlinear function. The supply of A at the 	 9
i

(k+1)th time step is then: 	 y

A(k+1) = A(k) — (z(k+1) — z(k)]

where the bracketed term is obtained by integrating the kinetic equation.

This integration will usually have to be performed numerically.

Note that the supply of B is uniquely determined by mass conservation:

,A(k) + B(k) = constant

When there are several chemical reactions, the reaction eoordinate,•z,

becomes a vector, lie also need to account for changes in the supplies

	

	 {
t

resulting directly from allocation decisions; this is illustrated in an
i

example below.
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To complete the problem specification, we need a performance

criterion for the control system to meet. The goal of a CELSS is survival,

Therefore, the appropriate performance index for a stochastic CELSS model

is the probability of survival. Let Pi be the conditional probability of

survival at the (i + 1)th time step given survival at the ith time step.

Once the probability distributions of the baseline demands and any other

uncertain parameters of the model are specified, these transition

probabilities can be expressed s^ functions only of the state, control

input and time. Thus we can write:

Pi = g(x(i),u(i),i) = g(i)

where the notation x is used for the state vector and u for the control

vector in order to conform to conventional control systems notation.

Since failure to survive at one time step implies failure to survive

at all future time steps, the overall probability of survival is the product

of the transition probabilities. That is, the probability of survival at

time N given survival at time k is given by:

Jk = g (k)g(k+1) ..... g(N-1)

Using this expression for the "cost—to—go" the resource allocation problem

can be solved by means of dynamic programming. Application of the principle

of optimality (Bellman, 1957) results in the recursion formula for the

optimal cost and control:

J*(x(k)) = max (g(k)J*(x(k+1)))

where the maximization is over all admissible values of u(k); that is,

over all controls that satisfy mass conservation and constraints on operation

rates of recyclers, dehumidifiers and other processing elements. The
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optimal control, uN (x(k),k) is that control which produces the optimal

cost, J N (x(k)). This optimal control need not be unique; if it is not,

additional oriteris must be applied to select which control to use.

If the CELSS is assumed to survive at time N then J N (x(N))= 1 for

all x(N) and the optimal control can be found for any state at time N-1.

Thus the functional equation for the optimal cost and control can be solved

backwards from a fixed final time by quantizing the state space and searching

over all admissible controls for each state and time. The major limitation

to the application of this method is the state-spaoe quantization, which

leads to a prohibitively high computational load for high-order systems.

The utility of this approach for CUSS control can be demonstrated

by considering the simple system shown schematically in Figure 3. Water

is allocated to humans and plants, supplies of water internal to plants

and humans are converted to atmospheric water vapour with reaction coordinates

z1 and z2 respectively and a dehumidifier converts atmospheric water vapour

to liquid water with reaction coordinate z3. If the humans receive

$,ns.+_fioient water, a deficit accumulates. The baseline demand for water

by humans is assumed to be:

B(k)= 11 + G(SQRT(H/Wt))]Ba

where: B(k) is baseline demand ub kth time step

H is atmospheric water vapour

Wt is total water

Ba is average baseline demand for water by humans

and	 G is a zero mean Gaussian random variable.

Since G is Gaussian, B(k) and, hence, the human water deficit, D(k), are



jl

}

.1d

24

FIGURE 3 SPML9 CEZSS P70DEL 'KITH  ONE RESOURCE



?5

also Gaussian; therefore, the deficit can be completely described by its

mean and variance. If the mean and variance are used as state variables

and the differential equations for the reaction coordinates are integrated,

we obtain the state equations given in Figure 4a. The numerical values

are shown in Figure 4b.

To complete the model, two survival criteria are imposed. The

supply of water internal to the plants must remain above a specified

minimum; that is:

Wp(k) > Wmin

Since the random parameter, G, affects only the deficit and not the supplies,

this is a deterministic requirement. The second survival requirement is

that the human water deficit bi acceptably small, i.e.

D(k) < Dmax

The probability of this occurring is given by:

Prob(D(k) < Dmax) a PHIC(Dmax - M)/SQRT(V)]

where M is the mean deficit, V is the variance of the deficit and PHI is

the Gaussian distibution function. A flow chart for determining the

transition probabilities given the state and control vectors is given in

Figure 5.

The three control inputs are the allocations of water to plants

and humans respectively, expressed as fractions of the water storage, and

the dehumidifier operation rate, expressed as a fraction of the maximum

possible operation rate. One possible (non-optimal) control scheme is to

allocate the average baseline demand for water to the humans and to use

.	 .	 .+
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Wp(k+l) = exp(-Kp DT)(Wp (lc) + Pp(k)'7(k))

Vlh(k +1) = ox'p( -Kh DT) ( Wh(k) + Fh (k)W(k))

lr(k+l) = H(k) + (1 - exp( -Kh DT•)(!Vh (k) + Fh(k)W(lc)) + (l -

exp(-Kp DT)(Wp(k) + Pn ( k)'.V(k)) - Fd Rdm DT

M(k+l) = M (k) - Fh(k) W (k) + Ba

V(k+l) = V (k) + v2 Bat H(k)/Wt

with W (k) = Wt - H(Is) -- VJp(1c) - Wh(k)

(a) STATE EQUATIONS FOR SIMPLE CELSS MODEL

Variable	 I Definitxom Value

VIP plant water nonconstant
supply*

Wh human water
supply+ nonconstant

H atm. H"2 0 nonconstant

M mean deficit nonconstant•

V variance of
deficit nonconstant

W water supnlyr nonconstant

Wt total water 7000 moles

IT time step 3 hours

Kh reaction rate .8316/hour-

X-C reaction rate „005/hour

Rdm- max . dehumidifier
rate 67 moles/hour

Ba baseline water
demand 12 . 5 moles

V, variance of
activity parameter %4
(see text)

Dmax max. deficit 40 moles

Wmiirn minimum Wp 200 moles

(b) NUMERICAL VALUE'S
FIGURE 4

,f

1

^h
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proportional control to determine the water allocation to plants and the

dehumidifier operation rate. The specific control considered here is:

Fp = 0.01523 Wp / W

Fh=Be/W

Fd = 0.25 + 1.43E-4 H

with saturation limits (0,1) for the fractional water allocation to plants,

I

Fp, and the dehumidifier operation rate, Fd, and (0,1—Fp) for the fractional

water allocation to humans, Fh. Note that the deficit does not affect the
t

control inputs in this scheme.

The optimal control can be calculated explicitly for this example.

The result is:

Fp = (203.1 — WP) / W
I

Fh = (M + Ba) / W

Fd > (H + 0.9175 Wh + 0.9175 M + 14.52)/Rdm 	 h

where Rdm is the maximum possible dehumidifier operation rate. The
I

saturation limits are the same as above. Note the nonuniqueness of the 	 I
f

optimal dehumidifier operation rate. The optimal control computes Fd in
{

such a way that the atmospheric humidity and, hence, the increase in the

variance of the human water deficit will be minimized. Suppose some value

of Fd less than 1 can reduce the atmospheric humidity to zero; call this

value Fdcrit. Clearly any value of Fd between Fdcrit and 1 inclusive will

also reduce the humidity to zero and will, therefore, also be optimal.

This nonuniqueness is not really a problem, since all optimal values for i

Fd result in the same probability of survival. Indeed, in this case, they
r

also result in a unique state at the next time step. 	 j
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Each of the controllers was studied by simulating system performance

for 250 time steps (31.25 days). In the absence of perturbations, both

controllers converge to steady states with guaranteed survival, i.e.

probability of survival = 1. However, the nonoptimal control converges

i
more slowly and the steady state obtained using it results in a higher

variance of deficit and a larger supply of water internal to the plants.

These results are shown in Figure 6 with solid lines for the optimal control

and dashed lines for the nonoptimal.

The effects of a dehumidifier failure from time steps 24 to 32

were then considered. With the optimal control, survival is still guaranteed

and a new steady state is reached one time step after the dehumidifier

resumes operation. The nonoptimal control cannot ensure survival in this

case. Thirty time steps after the disturbance is removed (i.e. after the

dehumidifier is restored) a new steady state is reached but the probability

of survival associated with that steady state is only 0.9. Figure 7 shows

that the decreased survival probability comes about because of the higher

variance of deficit associated with the nonoptimal control.

A more serious problem is the effect of an error in the baseline

demand for water by humans. The actual average baseline demand is 12.5;

implementation of the nonoptimal control with an assumed baseline demand

of 12.3 results in a survival probability that decreases continually and

reaches 0.3 by the end of 250 time steps, as shown in Figure 8. Because

the deficit is not fed back, the controller is unaware of the gradual

increase in mean deficit which is ultimately responsible for the failure.
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The maximum tolerable error in the baseline demand depends strongly on the

number of time steps, No that we require the system to survive for. Figure

9 shows the tolerable error to guarantee success as a solid line and the

minimum error for which failure is guaranteed as a dashed line for various

values of N. In general, , we would like to make N arbitrarily large; these

results imply that to do so requires essentially perfect knowledge of the

baseline demand if survival is to be guaranteed using the nonoptimal

control.
t

The optimal control, however, is capable of handling a much larger

error in the average baseline demand while still guaranteeing survival.

For example, the results of assuming a baseline demand of 2.0 (an 84%

error) are shown in Figure 10. Even with such a large error, a steady

state with ensured survival is reached rapidly. Indeed the system can

still survive the additional disturbance of a dehumidifier failure identical

to that described above as shown in Figure 11. Note also that the optimal

control keeps the mean deficit at a constant value equal to the error in

the baseline demand as long as doing so is consistent with the control

saturation limits; this has the effect of making the tolerable error

practically independent of the number of time steps for which survival is

required. Consequently, N can be made arbitrarily large without a prohibitive

increase in system sensitivity.

RESEARCH TASKS

Investigation of resource allocation for CELSS control can be

divided into CELSS—specific problems and generic problems associated with

r;	 -	 14
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4

multiple time scales and the dynamic programming formulation. These two

areas are not completely independent and most problems to be studied involve

a combination of them.

The CELSS model presented in the example above featured only one

resource and .Interactions on only one time scale. In general we cannot

exert controls on all dynamic scales; for example we cannot manipulate how
i

much air is inhaled by humans with each breath.	 While we can control the

atmospheric composition by adjusting plant biomass and reeycler operation
;.	 1

rates, these two controls act on slower time scales then breathing does.

Since survival depends on oxygen consumption, which varies on the faster

time scale, we must investigate whether or not control on the slower time
4	 4

scale will be adequate to ensure survival.

^II^

Another practical problem arises from the dynamic programming 4

formulation.	 The solution gives the optimal controls as functions of the
i(

state vector, requiring the entire state to be known at each time step.
i

}

However, the model formulation includes deficits (or statistical properties

of deficits) and internal supplies of resources as state variables, none

of which can be measured directly. 	 Therefore, estimators must be designed

to provide approximations of the values of the unmeasurable states.

Because of uncertainties in the model, it is desirable to update

parameter values as new information on the system behavior becomes available. y

If we have a better model, we can presumably obtain a better control.

Development of adaptive control schemes may be difficult within the resource

I^

 1	 Y K^ V^	 ^l 	 _ _^`	
_.	 ^.^..	 ^`^s"'n.'^cCe^'Cnrpyp
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allocation framework because dynamic programming computes the control from

a (fixed) final time. If it is necessary to continually recalculate the

control sequence starting from final time, the computational load way

become prohibitive. Therefore, methods of incorporationg adaptation without

significantly increasing the computational load should be studied.

The high computational load is also an important issue in obtaining

controls for high order systems. The "curse of dimensionality" (Hellman

and Dreyfus 1962) comes about because of the state-space quantization

required to apply dynamic programming. Means of increasing the quantization

step (i.e. reducing the number of points in state-space used) should be

studied; nonlinear quantization may be useful. Sensitivity analysis can

be helpful to determine diseretization steps for nonlinear quantization,

with the smallest steps being in the regions of state-space where the

optimal control and cost change the most. Another possibility is

approximation in policy space rather than state-space; this would require

extending the technique developed by Howard (1960) to the case of time-varying

transition probabilities.

The specific research tasks to be accomplished are:

a)Select specific CELSS models with several resources and multiple time

scales.

b)Investigate effect of control on slow time scales with performance indices

dependent on fast time scale dynamics.

c)Identify available measurements and design estimators to approximate

unobtainable states.
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d)Investigate methods of including adaptation in the controller and estimator

designs,

e)Determine best state-space disoretization to reduce computational load,

f)Investigate approximations in policy space with time-varying transition
r

probabilities.

Control of Systems with Delay and Closure

d

Tt is possiule to gain insight into the dynamic behavior of a CELSS

through hbe use of simple abstract models of its fundamental components.

Here, we present two such models to demonstrate the complex system behavior

that can arise from simple models whose primary characteristic is a time	 i

delay. The first abstract model is one representing the basic features

of plant grov:th. The second model is based on the ideas of mass closure

I
and a finite ability to store resources.

A CUSS that contains plant growth will have a component that is

characterized by a long delay. This delay represents the time between

planting and harvest. During this time the plant growth rate, and therefore

the harvest yield, is affected by the local environment. Local influences

can arise from the temperature, carbon dioxide level, nutrient level, water

available for transpiration, etc. (Averner.i 1981). We will lump all of

these disturbances, both positive and negative, into a single random tens

which contains the plant growth uncertainty. Therefore, the abstract model

of plant growth contains i simple time delay and a gain that has a random

component,
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This model permits investigations into the dynamic consequences

of a system that contains the essence of the complex transition from seed

to harvest. Further, the model permits the investigation into the

consequences of various schemes that can be used to increase the reliability

of the harvest. Two such schemes, control and storage use, are presented

below.

A second abstract model is constructed to examine the effects of

mass closure with finite storage in a system with a long delay. The choices

of what to do with a resource are limited by the mass closure. At no time

are we permitted to discard excess material. The minimization of storage

tank size is necessary for the CELSS to be cost effective for a mission

(Gustav and Vinopal, 1982). Therefore, it is possible that a situation

will occur when a resource has been processed but its storage tank is full.

In this case, the resource will have to be put in an undesirable place.

This introduces a multi—valued nonlinearity into the system: having more

of a resource is better only up to a point; then it becomes detrimental

to the system.

Our second abstract model permits investigations into the consequences

Y

of overloading a storage tank in the processing loop. This model contains

a time delay that represents the processing time associated with various

components in the CELSS. A nonlinear gain is also included to model the

penalty associated with a filled storage tank. Although this model uses

deterministic inputs, the combination of the delay and nonlinear term lead

to cyclic and apparently random behavior. It is of particular interest
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to the CUSS problem that a simple, deterministic system, characterized

only by a time delay and storage limitations, can generate complex behavior.

AN ABSTRACT MODEL OF PLANT GROWTH

Consider an abstract model of plant growth where there is a delay

of T units ( constant) between planting and harvest. The growth during

this time is random:

GROWTH e 1 +/- 20%

This model is shown schematically in Figure 12. The units for harvest and

seeds planted are normalized so that one unit of seeds corresponds to one

unit harvested, on the average. The random growth term represents the

uncertain effects of the environment on the plant growth.

A deficit will be defined here as the accumulation of:

FOOD NEEDED - HARVEST when: FOOD NEEDED > HARVEST. A value

of 10 units will be used for the FOOD NEEDED in this model.

Figure 13a shows the harvest ( output) of such a system where enough

seeds are planted to insure that the harvest equals the food needed when

the average growth rate is in effect. The associated deficit is shown in

Figure 13b. This is referred to as an uncontrolled or open-loop system.

If it is desirable to reduce the fluctuations of the harvest, and

therefore the accumulation of the deficit, either storage, control, or

excessive planting must be added to the system. Extra planting is not

i

r
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SEEDS	 GROW	 HARVEST
PLANTED

Figure 12: Abstract Model of Plant Growth
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Figure 13a: Harvest of Uncontrolled System

(Food Needed = 10)
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Figure 13b: Accumulated Deficit of Uncontrolled System
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wise because of the burden on system resources and the required increase

in system volume. Therefore, we will investigate the potential benefits

of control and storage on the system behavior.

A control could be applied to the system to gain greater reliability

and lower total deficit. First, consider a heuristic control where the

current amount of seeds planted depends on the current harvest. This

scheme, which closes the loop through feedback of the system output, is

shown in Figure 14. The harvest is compared with the food needed. The

correction, or adjustment, to the seeds planted is determined by the user

set sensitivity to the comparison between the harvest and food needed.

As an example of the difficulties that can arise in dynamic systems, our

first example of control will use a sensitivity value of 1. Although this

value seems like a reasonable first guess (see example in Figure 14), the

results shown in Figures 15a and 15b show that the system behavior has

deteriorated. Further, the noise band of the harvest has increased from

+/— 20% to +/— 80%.

Clearly this control does not improve the system performance, which

is not surprising when the transfer function of the system in Figure 14

is examined:

Y(z)/R(z) _ [ G(K + 1) 1 / [z + GK1

where: Y(z) = transform of the harvest

R(z) = transform of the set point (food needed)

G = growth rate of plants

K = control gain (sensitivity)
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Example:
Food Needed = 10

Harvest = S	
Seed Planting Correction = 2

Sensitivity = I	
Seeds Planted = 12

Figure 14: Heuristic Control Using Output Feedback



47

TIME

Figure 15a: Harvest of System with Output Feedback Control
(Sensitivity = 1)
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Figure 15b: Accumulated Deficit of System with Output Feedback
Control
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The stsbiiity criteria for this system is:

K<1/G

Therefore, the use of a sensitivity (K) of 1 is unstable when the plant

growth is greater than 1.	 The instability is reflected in the increasing

fluctuations of the harvest in Figure 15a. 	 Stability would be maintained

with values of K less than (1 / 0.8).
}

.1
s

The output control of Figure 14 achieved its best results with a

sensitivity of 0.1.	 However, the accumulated deficit with this control i

was no lower than the case with no control. 	 Other variations of output

control are possible.	 The control presented in Figure 14 is a proportional

or P control.	 The adjustment to the number of seeds planted is proportional

to the error between the harvest and the food needed. 	 An accumulation of

these errors could be used to determine the seed planting adjustment.

This control, integral or I control, also did not improve the overall

system behavior.	 Finally, a combination of the P and I control was applied.
i

The results with this PI control are shown in Figures 16a and 16b.	 It can

be seen that the use of this output control also does not improve the

system reliability or reduce the accumulated deficit.
i

•
A controller which uses information during the delay period is

I

I

needed to improve the system performance. 	 State variable feedback control
f

adjusts the system input based on observations taken during the delay.

Such a system is shown in Figure 17. 	 Figures 18a and 18b show the harvest,

and deficit for a system with a controller that uses information from 10

i
observations during the time the plant is growing. 	 State feedback improves i.
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Figure 18a: Harvest of System with State Feedback Control
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the system performance and reliability over the uncontrolled situation.

We now consider the use of a food storage tank as a possible means

of improving the system behavior. An adequately large storage tank can

insure that for a statically balanced system, the uncontrolled system never

h:c a deficit (Figure 19). This storage tank does have a penalty associated

with it: extra mass, volume, etc. The use of storage does not always

insure that there is no deficit, as shown below.

If the plant growth is poorly estimated, or there is a low frequency

random disturbance present, then the growth rate may actually be (as an

example):

GROWTH = 0.8 +/— 20%

while the system operation is based on the assumed growth:

GROWTH = 1. +/— 20%

In this case the uncontrolled system will quickly empty the storage tank

and large deficits will accumulate (Figures 20a and 20b).

u

It is possible for a controlled system to maintain low deficits

in this poorly estimated system without the use of a storage tank. System

performance is improved with the use of a PI output controller. This

result, shown in Figures 21a and 21b, is achieved without the use of a

storage tank.

A further improvement in the system behavior can be obtained for

the case of a poorly estimated growth rate by using a state feedback control

(Figures 22a and 22b). In this example also, no storage tank was used.

i
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Figure 20a: Harvest and Storage Level for Uncontrolled System
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.	 Systems with delay, even ones as simple as described here, are

difficult to control. Heuristic control schemes often can create disastrous

results (Figures 15a and 15b). The use of a storage tank improves the

system performance when only a high frequency disturbance exists. The

storage tank alone is not enough to insure reliability when low frequency

disturbances are present. Systems with delay can be controlled with schemes

that use observations of the system state during the delay period. These

state feedback controllers are effective for a wide frequency range of

disturbances and reduce the need for a storage tank. The storage tank is

useful, however, for smoothing out the remaining high frequency fluctuations

in the harvest.

In this discussion we have only examined a linear system with a

simple stochastic component. The use of a state variable feedback controller

has been demonstrated, but the techniques of acquiring the many states

needed by this control have not been addressed. More sophisticated

controllers will be required to deal with the problems of optimization,

nonlinearity, and parameter uncertainty.

AN ASTRACT MODEL WITH FUIiE STORAGE

Consider an abstract model of ,a system with mass closure and finite

storage. This model could represent one of the many loops that resources

follow in a CUSS. In this abstraction we will only be concerned with the

effect of this moment's resource level on the next harvest's resource
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level. Therefore, this model will contain a delay term that represents

the time it takes for the resource to propagate through the loop.

We will hypothesize a relationship between harvest resource levels

as:

.

x(t+1) = x(t) exp[ r(1

where: x(t) = current resource level

x(t+1) : resource level at next

r = functional relationship bet,

t = integer time that increases

This relationship for various values of

x(t)) 7

time step

teen harvests

in steps of T units

r is shown in Figure 23.

The relationship between successive resource levels is characteristic

of a system that is resource limited and has a penalty associated with

excessive accumulations of a resource. The behavior of this abstract model

depends on the value selected for r. When r is less than 2 the system is

locally attracting to the point x = 1. As r is increased past 2 the system

shows periodic limit cycles of increasing complexity and period. When r

is greater than 2.71 the period of the oscillations goes to infinity and

the system behavior becomes chaotic (May and Oster, 1975). This transition

of behavior is shown in Figures 24 through 27.

Chaotic behavior is particularly interesting from the viewpoint

of system control. A very simple system with only a time delay and a

nonlinear gpin is able to generate apparently random behavior even though

the system is purely deterministic. We will first examine some of the

necessary conditions for this behavior and then will discuss its relationship

*1
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to the CELSS.

The chaotic behavior of the system is due to the time delay and

the nonlinear gain. However, not all nonlinear gains will generate chaotic

behavior (see Figure 24). Also, the functional shape used in Figure 23

is not required for chaotic results. Figure 28 shows a two-piece linear

function that generates chaotic behavior (see Figure 29).

A key feature of the chaotic generating functions is that they

have both a rising and falling portion. The turning point between these

two regions is at x(t) < x(t+1). .Therefore, the rising slope is greater

than 1. This insures that the origin is not an equilibrium point. An

examination of the function that generated the curves in Figure 23 shows

that there is an equilibrium at x = 1. For values of r less than 2 this

point is locally attracting (Figure 24). As r increases past 2 this point

becomes the center for a two step limit cycle (Figure 25). In other words,

the equilibrium point has bifurcated. The bifurcation continues as r is

increased until at r > 2.71 there is an infinity of resulting points. It

should be noted that as r increases, the qualitative shape of the function

(Figure 23) gets taller and steeper. It is this steepness that causes the

chaotic behavior (as is demonstrated in Figures 28 and 29).

While it is interesting that such a simple dynamic system could

generate such complex behavior, the connection between this abstract model

and the CELSS needs to be established. The mass closure of the CELSS

forces all resources to be either used or stored. However, it is necessary
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to minimize the storage areas for the system to be cost effective for space

missions. Eventually a situation will arise where a storage tank is full

but there are still resources waiting to be stored. Since all resources

must be stored or used, some resources will have to be placed where they

are detrimental to the system performance. This situation appears more

likely when tEc wide range of processing times of the various CELSS

components is taken into account. In fact, it becomes highly probable

that the system will enter a chaotic regime if there is a component failure

and the storage areas are sufficiently limited.

1

i
There are two potential solutions to avoiding getting stuck in the

chaotic regime. First, all storage tanks could be increased in size so
I
a

that it will be very unlikely that there would be a time when they are
t

filled to capacity. Second, controllers could be developed to recognize	
G

situations leading into the chaotic regime and to move the system safely 	 I{

and quickly out of it. The second method is preferable to the first.	 ^{

Since there may be many other ways of entering into chaotic behavior besides	 l t
"I

the overflowing storage problem, a properly designed controller could still

return the system to a more normal regime. Precise models of plant growth

as a function of its environment have not been developed. This, coupled

with our limited ability to monitor this growth, can easily create situations

where an excessive amount of a resource is used on the plants and cyclic

or chaotic behavior is initiated.
I

Work is needed to determine how a CUSS might move into a chaotic

regime. Also, techniques need to be developed that can deal with the

chaotic behavior and return the system to a better behaved regime. For

•	 ^	 ^	 ^	 Wit. ^p^	 i.	 s. -..
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use in a CELSS, this control must be able to perform its task in an

environment where the system parameters are uncertain and and there is

already a substantial random component to the system behavior.

RESEARCH TASKS

The-investigation of control of systems with delay and closure can

be divided into two parts: dynamic systems and controls. The two field

are interrelated. Control design is motivated by the undesirable aspects

of the system model's behavior. Conversely, the motivation for modelling

a system is to mimic its behavior so that controllers can be designed to

improve the system performance. For clarity, we will discuss each separately.

the following discussion will artificially separate them for clarity.

Work in dynamic systems revolves around the investigation of

abstract models that contain delay terms. In particular, models which

give nonintuitive behavior are candidates for examination. As shown above,

the inclusion of nonlinear terms and mass closure in these simple models

generates highly erratic behavior from very simple inputs. While there

exists some discussion of the underlying mathematics of these systems in

the literature, no connection has been made to a CELSS. An isolation of

the specific aspects of the CELSS structure that generate these nonintuitive

behaviors would be of use to future system design work.

Another point of interest is the examination of how a CELSS could

migrate into these difficult to control regions. Unusual system behavior

kl
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may be limited to a start—up proeeduve, component failure, eto., or it may

be more ingrained into the basic structure of the system itself.

Finally, as a preparation to controller design, the separability

of the effects of the delay terms, nonlinear terms, and mass closure should

be investigated. If they do separate easily then the control design problem

is somewhat simplified.

In investigating controllers we attempt to reduce the undesirable

effects noted in the abstract models. It has been shown that state variable

feedback is effective in controlling a system which is characterized by a

delay. In the case of a system with mass closure, nonlinear and delay

terms, the control design is not as simple. The controller must be able

to operate effectively in the chaotic regime and move the system efficiently

out of it. It is advantageous for the controller to also be able to

anticipate an impending transition into the chaotic regime and act

accordingly. Throughout this process, the controller should be insensitive

to system parameter uncertainty.

A benefit of these studies of systems with delay is the specification

of measurements required for adequate control. Control which uses

observations during the delay period is able to reduce many of the undesirable

effects caused by the delay. These state variable feedback controllers,

by requiring state information during the delay, increase the number of

measurement devices needed in the system. When state measurements are

difficult or impossible to obtain, an estimation of the state must be made.

The requirements of both the estimator and the controller will then specify

K
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the remaining system measurements needed for feedback control. However,

the design of a reliable state observer in a nonlinear system with uncertain

parameters is not a trivial task.

If CELSS component failure can lead the system into a chaotic

regime, then measurement device failure or estimation error is also likely

to cause nonintuitive system behavior. Therefore, the need for component

and/or estimator redundancy must also be evaluated. The overall controlled

system reliability will be due to a combination of the controller's

insensitivity to uncertain parameters, the ability to estimate and/or

measure the system's state, and the ability to cope with component failure.

The research tasks to be accomplished are:

a) Formulate abstract CELSS models that contain delay and nonlinear terms

and mass closure.

b) Investigate the separability of the effects of these terms and the mass

closure.

c) Identify aspects of CELSS structure which generate these behaviors.

d) Specify scenarios that lead a CELSS into these nonintuitive behaviors.

e) Examine the underlying mathematics of the system to aid it control

design.

f) Design controllers that can operate in the chaotic regimo and reliably

move the system out of it.

g) Specify instrumentation and ristimator requirements for the various

control schemes.

h) Examine system reliability with various levels of component redundancy
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