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Prefage

This final report covers work performed under NASA grant NCC 2-67
during 1981, 1982, and the first half of 1983. This research on control

and modeling of CEL3S continues under NASA grant NCC 2-~257, ‘

The report is divided into three major areas: uncertain and poorly
defined systems, resource allocation, and control of systems with delay
and closure, The motivation for dividing the research into these three
areas is covered in the Summary, The technical background, a summary of
our findings thus far, and & listing of future work, or research tasks,

is presented for each of these areas.
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Summary

This project is concerned with research topics that arise from the
conceptualization of control for closed life support systems, that is,
life support systems in which all or most of the mass is recycled (these
are abbreviated CELSS for controlled ecological life support system)., The ‘
topies that we have emphasized are modeling and control of uncertain and ‘

poorly defined systems, resource allocation in closed life support systems,

and control structures for systems with delay and elosure.
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This choice of topies is based on studies done to-date for the

purpose of identifying unique dynamic control problems associated with
closed life support systems, These are a combination of generiec problems
that, while very important to CELSS control, have not received wide attention
from the control community, and specific problems that arise from the

gtructure and performance constraints of the CELS3 itself.

0f these topies, the first, modeling and control of uncertain und

poorly defined systems, has received the most attention so far, It consists
wf several generic areas that will be critical to control of a CELSS,
ineluding parameter identification and sensitivity analysis for models of

) biological systems, design of feedback control systems for systems with
uncertainty, and design of nonlinear controllers, Because of the complexity ’

v and inclusion of biologlcal elements (including humans) in a CELSS, any
global or detail level control must be able to deal effectively with poorly
defined and nonlinear systems. The major mechanism used to approach both

the complexity and the uncertalnty in an efficient manner is the use of
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performance oriteria expreased as binary variables. This approach has
proven to be particularly effective for bioclogical systems as well as

providing an effeotive basis for the design «f engineered systems,

The work in resource allocation centers on two challenging problems.
The first is unique to CELSS: the definition of survival as the performance
oriterion for system design and supervisory control, The second, high
dimensionality and widely spaced time scales, while not a problem only in
CELSS systems, must be always be handled in an ad hoc fashion by talloring
the solution methodology to the problem's specific structure. Resource
allocation is classically formulated as a dynamic programming problem. We
have developed a dynamic programming formulation with probability of
survival as its performance criterion, and will use that to attack problems

of time-secale, model uncertainty, and dimenslonality.

A parallel and complementary approach that we are using to specify
the nature of a CELSS supervisory control syétem is to examine abstractions
of the CELSS structure to determine the nature of control problems that
arise and the types of control structures that can deal effectively with
them. The primary structural problems we have isolated so far have their
basis in the presence of time delay, nonlinearities, and closure. These
lead to extremely difficult to control dynamic behaviors, including chaotic

behavior which is a seemingly randem response that arises from purely

deterministic sources.
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Introduction

Control of a closed life support system involves a series of control
levels, each with its own performance criteria and unique control problems.
At the highest level, the overall goal of the control system is survival,
which makes this control problem distinetly different from virtually all
systems to which control theory has been applied. In conventional
applications of control theory, the goal at the highest level is almost
always assoclated with some kind of economle measure, often profitability.
Another unique factor, which is common to several CELSS control levels,
is that the system not only ineludes biological elements, but the humans
who constitute part of the biological component also operate the control

systent,

We have approached the CELSS control problem from both a specific a
and a generiec point of view, In the geheric sense, we have attempted to
identify problem areas that are important to CELSS systems but need further
research work before they car be considered for use in a CELSS control

system.
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The generic studies we have been interested in have centered on

T T T

questions of uncertainty and poorly~defined systems., Because of the
complexity of a CELSS, and because of the heavy component of biological
elements, we believe that no modeling effort, no matter how elaborate, 1

Wwill ever be able to predict the behavior of a CELSS sufficiently well for
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a straightforward deterministic control to be applied, To this end, we
are assuming that the system to be controlled will have to be desecribed
in a probabilistiec form of some sort, so we have concentrated on a means
of parameter fitting for models that can be applied in such situastions and
control system design methods that can be used with systems that are
nonlinear as well as uncertain, Numerical/#tatisbical methods are notoriously
high in éheir computational requirements, To alleviate that problem as
much as possible, we are working with methods in which performance criteria
can be expressed in binary form. These methods have proved particulaiyly
successful with biologlcal systems, because, it appears, these systems
have extremely well dei'ined behaviors even though substantial individual
parameter variation must be tolerated.

We began looking at CELSS-specific control problema by construecting
a simplé computer model of a CELSS and performing a variety of simulation
experiments with it, By using several randomly applied pertubations (such
as a temporary malfunction in a system component) we noted that system
behaviors could be generated in which the failure did not oceur until long
after the pertubation had been removed. This suggested that the long time
delay of plant growth might be a dominant dynamic factor. Because of the
closed nature of the system, and the presence of many nonlinearities, the
possibility of producing very complex dynamic behaviors was suggested by
these results., These behaviors, if actually present in a real CELSS, would
mean that appiication of simple, "intuitive" control rules might not lead
to satisfactory control. We are now abstracting this component of a CELSS
behavior into a series of even simpler models to look at control methodologles

that appear to have some hope of success in dealing with such systems.
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Yet another view of CELSS control 1s as a respurce allocation
problem., This resocurce allocation problem differs from traditional
optimization problems in twe ways: first, the performance criterion is
survival, for which we must find a suitable analytical formulation, and,
secondly, there is no obvious "cost" assoclated with the use of any
particular resource, as there is in a traditional industrial allocation
problem. Our approach to this is, initially, through variants on the
techniques of dynamie pregramming. Dynamic¢ programming's major limitation
18 that the, computational load goes up prohibitively as the complexity of
the system increases, As with the statistically based modeling and control
efforts desceribed above, much of our work must go into means for reducing

the computational load.

Uncertainty and Poorly Defined Systems

Much of the work that we have carried out has been concerned with
questions of uncertainty in the modeling and control of poorly defined
systems, The general approach has been largely based on the ideas first
described in Spear and Hornberger (1980, 1981) and Hornberger and Spear
(1980). These papers describe a sensitivity analysis procedure which
focuses on a region of system parameter space rather than a single point.
Since the regional sensitivity idea is central to much of our subsequent

work it is important to describe the central concepts in some detail,

For clarity of exposition, we restrict our attention to a specific



class of models and introduce nomenclature which will be required
subsequently, Assume the processes are to be modeled by a set of first

order differential equations. (Differen'. mathematioal structures can be

i
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dealt with in an analogous way). Let these equations be given in the form:
(d/dt)x(t) = x'(t) = rlx(t),P,z(t)]

where x(t) is the state vector and z(t) is a set of time variable functions

which ineclude input or forcing functions. The vector P {8 a set of constant

parameters deseribed more fuliy below, Thus, for P, z(%) and x(0) specified,

%x(t) is the solution of the system of equations and is a deterministic or

a stochastic function of time as determined by the nature of z(t)., For

simplicity of exposition, z(t) will be treated hereafter as a deterministic

function of ¢,

~ Each element of the vector P is defined as a randem variable the
distribution of which is a measure of our uncertainty in the "real" but
unknown value of the parameter, These parameter distributions are formed
from data available from the literature and from experience with similar
structures. For example, the literature suggests that the maximum growth

rate of Chlorella vulgaris is almost certainly -between 1.5 and 2.5 per day

at water temperatures near 25 degrees C. Interpreting these limits as the

range of a rectangularly distributed random vuriable, and forming similar -
a2 priori estimates for the other elements of P result in the definition

of an ensemble of models., Some of these models will, we hope, mimic the

real system with respect to the behavior of. interest.

'Turning now to the question of behavior, recall that every sample

value of P, drawn from the a pricri distribution, results in a unique state
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trajectory, x{(t}, Following the ususl practice, we assume that there are

a set of observed variables y(t), oalculable from the state veotor, which

are important to the problem at hand., So, for each randomly chosen parameter

set P*, there corresponds a unique observation veotui y*(t). Since the
elements of y(t) are observed (that is we assume they are measured in the
real system), it is sensible to define behavior in terms of y(t). For
example, suppose yi is the concentration of phytoplankton in a body of
water and the problem in question concerns unwanted algal blooms due to
nutrient enrichment. Then, there is some value of yi atove which a bloom

13 defined to have ocourred sud the behavior is defined by this critical

value,

In general, a number of behavior categories can be used, Without
loss of generslity, however, we can consider the case for which behavior
is defined in a binary sense, i.e., it elther ocgurs or does not ocour for
a given scenario and set of parameters P. It follows that a rule must be
specified for determining the ocourrence or non-occurrence of the behavior
on the basis of the pattern of y(t). It is also possible that the behavior
might depend on the veotor z(t). For example, suppose one element of z(t)
was water temperature. We might be interested only in extreme values of
y(t) when adjusted or controlled for temperature variations. In any event,
the detailed definition of behavior iz problem-dependent and, for present
purposes, it is sufficient to keep in mind that a set of numerical values
of P leads to a unique time function y(t) which, in turn, determines the

occurrence or non-ocourrence of the behavior conditioned, perhaps, by z(t},



We have now presented fh2 class of models to be studied snd deseribed

how we propose to deal with parametric uncertainty. For a given behavior
and set of parameter distributions P, it is posasible to explore the
properties of the ensemble via computer simulation studies, In partiocular,
a random choice of the parameter vector P from the predefined distributions
leads to a state trajectory x(t), an oboervation veotor y(t) and, via the
behavior-defining algorithm, to a determination of the oocourrence or
non-occurrence of the behavior, A repetition of the process for many sets
of randomly chosen parameters results in a set of sample parameter vectors
for which the behavior was observed and a set for which the behavior was
not observed. The key idea ia then to attempt to identify the subset of
physically, chemically or biologiocally meaningful parameters which appear

to account for the cecurrence or non-occurrence of the behavior.

Ranking the elemants of P in order of importance in the behavioral
context is aceomplished through an analysis of the Monte-Carle results,
The essential onncept can best be illustrated by considering a single
element, Pk, of the vector P and its a priori ocumulative distribution, as
shown In Figure 1, Recall that the procedure is to draw a random sample
from this parent distribution (a similar procedure is followed for all
other elements of P), run the simulation with this value and reword the
observed behavior and the total vector P therewith associated. A repetition
of this procedure results in two sets of valuesg for Pk, one associated
with the occurrence of the behavior B, and the other without the behavios,
B', That is, we have split the distribution F(Pk) into two parts as
indicated in the figure. This particular example would suggest that Pk

was important to the behavior since F(PK) is clearly divided by the
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Cumulative distelbulion

Figure 1: Cumulative distribution functions for parameter Pk.
F(Pk) = parent, a priori distribution, F{Pk!B) = distribution

of Pk in the behaviour category, F(PkIB'} = Distributicn of PK
in the non-behaviour category.
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behavioral classification., Alternatively, if the sample values under B
and B! appearcd both to Le from the original distribution F(Pk), then we

would conclude that Pk was not important.

For the case where z(t) is a deterministic function of time, the
parameter space is cleanly divided by the behavioral mapping; that is,
there 13 no ambiguity regarding whether a given parameter vector results
in B or B', The¢ analysis then focuses on the determination of which
parameters or combinations of parameters are most important in distinguishing
between B and B!, We will restrict tne discussion to the case for which
the parameter vector mean is zero and the parameter covariance matrix is
the identity matrix., (A suitable transformation can always be found to
convert the general problem to this case). The problem of ldentifying how
the behavioral mapping separates the parent parameter space can then be

approached by examining induced mean shifts and induced covariance structure,

For example, wo cen base a sensitivity ranking on a direct measure
of the separation of the cumulative distribution functions, F(Pk|B) and
F(PkiB')., In particular, we often utilize the statistice:

d{m,n) = sup } Sn(x) = Sm(x) |
where Sn and Sm are sample distribution functions corresponding to F(Pk)B)
and F(Pk|B') for n behaviors and m non-behaviors, The statistic &(m.n)
is that used in the Kolmogorov-Smirnov two sample test and both its
agymptotic and small sample distributions are known for any continuous
gimulative distribution function F(Pk|B) and F(Pk|B'). Since Sn and Sm

are estimates of F(Pki{B) and F(Pk|B'), we see that d(m,n) is the maximum

B g
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vertical distance between these two curves and the statistio {s, therefore,
sensitive not only to differences in central tendency but to any difference
in the distribution functions, Thus, large values of d{m,n) indicate that
the parameter is important for simulating the behavior and, at least in
some cases where induced covariance is small, the converse is true for

small values of that statistic,

In general, however, ranking on the basis of the separation in the
distribution function along the original axes of the parameter space (the
individual parameter values) is not sufficient. It is possible, for
example, that the first and second moments for a simple parameter might
exhibit no separation wund yet this parameter could be crucial to a successful
simulation by virtue of a strong correlation with other parameters under
the behavior, For example, Figire 2 depicts a two-~dimensional space for
which the ocumulative distribution would not separate under the behavioral
classification. Nevertheless, both parameters are important in determining
whether the behavior occurs, Clearly, it is the interaction between
parameters which is crucial, and information on the covariance between the
two parameters may give insight into the degree of sensitivity in a case

such as this,

As disocussed below, however, interaction between parameters seem
seldem to be of the sort revealed by correlation technigues or principal
components analyses, 1{ appears that such interactions are often nonlinear
and a major element of this proposal is to investigate means of more
reliably detecting and understanding parametrie interactions as determinants

of eystem behavior,
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Figure 2: Schematic diagram of a two parameter case for which
separation under the behavioural classification is total but for
which discrimination by univariate tests is not possible.
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Since the original development and application of the foregoing
ideas in the context of the Peel Inlet, eutrophication studies in Western
Australia (Spear and Hornberger, 1980) several investigators have applied
these concepts in the analysis of diverse problems. Spear and Hornberger
(1981) studied energy trade-off questions related to the Solar Power
Satellite (SPS). Fedra applied the technique, more or less intact, to
various water pollution problems in Austria (Fedra, 1980, 1982). Auslandep
(1982) successfully applied these ideas to the elucidation of spatial E
effects on the stability of a food-limited moth population, the model in
this case being given by partial differential equations., Whitehead and
Hornberger (1983) used the regional sensitivity approach as the first stage
of a parameter estimation scheme, the second stage of which utilized the
Extended Kalman Filter (EKF)., 1In this study an initial attempt to use the i
EKF alonebfailed when the zlgorithm did not converge, A reduction of' the
parameter set uzing the sensitivity analysis led to convergence of the EKF

when applied to the reduced parameter vector. é

A second and closely related line of research has been foecused on
the application of these same concepts to the control of parametrically
poorly defined systems. It is here that the major applications to CELSS
problems are foreseen and much of this work has been supported by the CELSS
program under NASA Cooperative agreement NCC-2-67. The initial work along
this line was carried out by John Stahr in his analysis of a CELSS-like
model (Stahr, Auslander, Spear, and Young, 1981)., The importance of this

work was its demonstration that CELSS may well be susceptible to long-term
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dynamic failure modes and that the design of control systems to deal with

such phenomena will be orucial to mission suaccess.

In Stahr's work and in subsequent control studies the behavioral .
definition of the sensitivity analysis is replaced by a binary performance
eriterion, adequate or inadequate system performance, The process parameters
are usually assumed poorly known and the issue is to find a fixed set of
controller parameters that will yield a high probability of adequate
performance in spite of the process uncertainty. The Birength of the
Monte-Carlo approach in this application is that the mapping from the
parameter space to the performance outcome can tolerate nonlinearities in
the controlled process and can be used to design nonlinear controllers as
will be discussed below. Another major advantage ig that the effect of
process parameters on system performarice is also revealed in the analysis
which can be used tec specify those sub-processes which should be made the
object of estimation experiments or be investigated for the possibility

of redesign to allow more favorable dynamic performance,

The first rasults of this aspect of the research were published
in 1982 (Auslander, Spear, and Young, 1982), This paper applied the
simulation~-based approach to some simple systems that could also be analyzed -
to a greater or lesser degree by conventional methods. The object was to
contrast the information developed during the analysls and the results
obbained, The conclusions were favorable to the simulation approach since
the results were direct and easily interpretable in practieal termS and,
of course, conventional methods cannot easily handle the process parameter

uncertainty.
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A second effort was carried out along similar lines by Spear and
Hornberger (1983). The investigation ooncerned the effect of process
parameter uncertainty on the control of dissolved oxygen in a river. This
problem was interesting in the CELSS ocontext since the process models had
biological elements which were subject to some uncertainty and, also, it
was a problem to which several sophisticated control schemes had been
applied in the past. It was found that the most straightforward and
practical of these previous system designs was significantly influenced
by modest levels of parametric uncertainty (+/- 25%). Moreover, the
gimulation-hased approach revealed a particularly simple control design
which deiivered a reasonably hizh probability of adequate performance under

the process uncertainty.

A significant development of the rather straightforward extension
of the sensitivity ideas to control mentioned above was carried out under
NASA support by G.E. Young (1982). The thrust of Young's work was to
apply the foregoing ideas to discrete time nonlinear controllers for both
perfeétly known and poorly known processes. In general, Young found the
simulation-based approach to be quite practical and workable when applied
to fairly simple process models (up to order four). He also found that
nonlinear controllers gave better performance than linear designs although
his process models generally included saturation phenomena which made them
nonlinear from the outéet. Young has provided some guidance for reducing
the sample size required to arrive at acceptable designs in the case of

process parameter uncertainty. However, more complex models will be

e
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required to explore more thoroughly some of these strategles for sample
size containment, Nevertheless, the methodology proposed by Young for

nonlinear controller design would sppear to merit further investigation,

It is a common feature of both the control and sensitivity versions
of the simulation-based procedure that most of the useful information is
gained from the univariate statisties. That is, it is unusual to detect
correlations between parameters under the behavior that exceed 0,3 with
or withosut coordinate rotation and the situations s depicted in Figure 2
above seem not to occur in practice., It is beginning to become clear that
this is not because of a lack of interesting and informative interactions
between parameters, but probably because these interactions are not

susceptible to linear multivariate¢ methods., This will be addressed below.
RESEARCH TASKS

1) In the context of both the sensitivity analysis and nonlinear control,
we propose to apply new statistical methods to investigate the interaction
between parameters inder the binary mappin assoclated with the behavioral

criterion and the adeguate performance eriterion respectively,

Recall that, in the sensitivity context, the issue is to determine
which elements of the parameter vector, P, either singly or in interaction
with other elements, are important in causing the occurrence of the behavior,
B. As noted above, with regard to our past work, interactions beﬁween two
or more parameters seldom seemed important on its own, We have concluded

that this is not because less obviocus interactions do not exist, but because
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they are seldom raevealed by standard statistical methods based on
sorrelation~like analyses with or without coordinate transformations

(Hornberger and Spear, 1981).

It transpires that this seme issue i3 currently of some intersst
in statistical research, In particular, at Stanford, Friedman and Stugstzle
have developed a novel approach to the analysis of multivariate poins
clouds based on computer graphics (Appendix I). The general concep. 18
termed "projection pursuit" and has both regression and clssificatien
variants., The literature on these methods is sparse (Friedman and Stuetzle,
1981; Friedman and Stuetzle, 1982a) but includes various internal reports
from the Stanford Linear Accelerator and the Department of Statisties.
Nevertheless, it i3 clear that their approach is almost uniquely suited
for our purposes and it is very much in the spirit of our approach to the
problems of uncertainty in systems design. One of us has visited the
Stanford group and determined that there are several computer codes for
batch processing versions of their methods that can be implemented on our
VAX, Of these, the most highly developed is & regression program, but a

classification program will be available shortly.

The key to the approach is ¢o find "interesting" projections of
the point cloud onto 2 or 3 dimensional subspaces. In the batch mode,
this involves definition of what is interesting in terms of a figure of
merit and, subsequently, maximizing this figure by directed searching
procedures (a simplified Rosenbrock method is apparently the usual method

used by the Stanford group). Once structure ia found, it is removed and

, o3
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further structure i{s sought, At present, considerable art seems to be
involved in choosing the smoothing algorithm applied to the projections
(Friedman and Stuetzle, 1982b), However, we propose to apply these methods

to CELSS control problems and we expect that they will result in a significant
increase in our insight into the sensitivity problem and in our ability

to design controllers, The specific tasks to be accomplished are:

a) Obtain projection pursuit software from Stanford and adapt it for our
VAX,

b) Apply the pursuit algorithms to simple sensitivity problems selected
for their analytical tractabllity.

o) Apply the pursuit algorithms to a complex hydro-chemical model under
investigation by Hornberger.

d) Apply the pursuit algorithms to a CELSS model,

2) We propose to continue the attack developed by Young on nonlinear
controller design and on the control of nonlinear systems containing
parameter uncertainty. There are no general methods for the design of
nonlinear controllers despite the fact that there is ample reason to suspect
that better performance can be expected in many cases. Young has shown

that variations of the sensitivity methodology have considerable promise

in dealing with this design issue, His work dealt with rather sinple plant

models and it is of interest to extend his approach to more realisitic

models of CELSS components.

A second aspect of this task is to extend Young's work on the

control of processes with parametric uncertainty. This problem was also

e ot gt
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addressed by others in our group (Spear and Hornberger, 1983) and it seems
likely that a marriage of the two approaches might pay dividends, Spear

and Hornberger asked how great was the influence of process parametric
uncertainty on the behavior of a particular controlled system containing
biological components. The influence was found to be considerable and

they proceeded to develop a robust controller design., This involved
attempting to locate a point in i{he controller parameter subspace which
would assure a reasonably high probability of adequate performance in spite
of process parmeier uncertainty. we proppose to apply the projectio pursuit
concept to this problem, perhaps via logistic regression, as a stage of
analyses prior to Young's procedure which is a type of search algorithm
directed at refining the "design." That is, Young is also seeking a set

of control parameters that maximizes the probability of adequate performance,

but he requires a starting point from which fo conduect a directed search.

The specific tasks to be accomplished are:

a) Select several CELSS component models of limited complexity.

b) Apply Young's approach for known process parameters and determine the
effect of increasing model complexity.

¢) Select CELSS models of medium complexity.

d) Apply Spear-Hornberger approach to find initial design point,

e) Apply Young's second method to obtaining refined controller design.
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Resource Allocation lg CELSS

In order to design a controlier for any system, we need precise
mathematical desceriptions of the system behavior, the available control
inputs and the goals the control system must meet. For a CELSS, control
can be exerted by manipulating various processing rates, such as, recycler
and dehumidifier operation rates, and by deciding how much of each "resource"
(water, food, etec.) to allocate to each "activity" in each time period,

This suggests that CELSS control can be viewed as a resource allocation

problem,

Since the resource allocations can only he made at fixed time
intervals, application of analytically~-based techniques requires a
discrete-time model for the dynamics of a CELSS, For our preliminary
analysis, the state of the system is assumed to consist of two types of
variables -~ supplies of the various resources and deficits that acoumulate
when demands for resources aren't met. More realistic models may have

additional state variables, such as plant biomaass.

Deficit dynamics are inherently &iscrete time and obey relationships
of the form:

D(k+1} = D(k) ~ F(k)S(k) + B(k)
where (for a single resource}:

D(k) is the deficit at the kth time step
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S(k) is the available supply

F(k)} is the fractional allocation of supply to make up the deficit
and B(k) is a random baseline demand,
For models with several resources, the functional form of the deficit
dynemics is unchanged, but D, S, and B become vectors while F becomes a

matrix,

Supply dynamics can be related to chemical kinetics, If we consider
a single chemical reaction:

A w=wd B
we can define a reaction coordinate, %, such that z = 1 means that one
mole of A has been converted to one mole of B. The reaction kinetiocs can
be gompletely deseribed in terms of z and follow the equation:

dz/dt = f{z,t)
where f is, in general, a nonlinear funokicn., The supply of A at the
(k+1)th time step is then:

ACk+1) = ACk) = [z(k+1) - z(k)]
where the bracketed term iz obtained by integrating the kinetlc equation.

This integration will usually have to be performed numerically.

Note that the supply of B is uniquely determined by mass conservation:
‘A(k) + B(k) = constant
When there are several chemical reactions, the reaction coordinate,. z,
becomes a veotor. We also need to account for changes in the supplies
resulting directly from allocation decisionsi this is illustrated in an

example below,
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To complete the problem speoification, we need a performance
eriterion for the control system to meet. The goal of a CELSS is survival,
Therefore, the appropriate performance index for a stochastic CELSS model
is the probability of survival, Let Pi be the conditional probability of
survival at the (1 + 1)th time step given survival at the ith time step.
Once the probability distributions of the baseline demands and any other
uncertain parameters of the model are specified, these hransition
probabilities can be expressed a* {unctions only of the atate, control
input and time, Thus we can wriva:

PL = g{x(1),u(i),i) = g(1)
where the notation x is used for the state vector and u for the contral

vector in order to conform te conventional control systems notstion.

Since faillure to survive at one time step implies failure to survive
at all future time steps, the overall probability of survival is the product
of the transition probabilities, That is, the probability of survival at
time N given survival at cvime k is given by:

Jk = glk)glk+1)euus g{N=1)

Using this expression for the "cost-to-go' the resource allocation problem
can be solved by means of dynamic programming. Application of the principle
of optimality (Bellman, 1957) results in the recursion formula for the
optimal cost and control;

I¥(x(k)) = max {g(k)I*(x(k+1)))
where the maximization 1s over all admissible values of u(k); that ia,
over all controls that satisfy mass conservation and constraints on operation

rates of recyclers, dehumidifiers and other processing elements. The

e i g
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optimal control, u*{x(k),k) is that control which produces the optimal
cost, J*(x(k))., This optimal control need not be unique; if it is not,

additional oriteria must be applied to seleoct which control to use,

If the CELSS is assumed to survive at time N then J¥(x(N))= 1 for
all x(N) and the optimal control can be found for any state at time N-1,
Thus the functional equation for the optimal cost and control can be solved
backwards from a {ixed final time by quantizing the state space and searching
over all admissible controls fer each state and time. The major limitation ;
to the application of this method is the state-space quantization, which |

leads to a prohibitively high computational load for high-order systems, !

The utility of this approach for CELSS control can be demonstrated i
by considering the simple systen shown schematically in Figure 3., Water
is allocated to humans and plants, supplies of ggter internal to plants ﬁ
and humans are converted to atmospheric water vapour with reaction coordinates i
z1 and z2 respectively and a dehumidifier converts atmospherie water vapour %
to liquid water with reaction coordinate z3. If the humans receive
ins.’ficlent water, a deficit mocumulates. The baseline demand for water
by humans 1is assumed to be:

B(k)= [1 + G(SQRT{(H/Wt})]Ba
where: B(k) is baseline demand &b kth time step

H is atmospheric water vapour

Wt is total water

Ba is average baseline demand for water by humans

and G is a zero mean Gaussisn random variable. ii

Since G is Gaussian, B(k) and, hence, the human water deficit, D(k), are !

P——
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PLANTS

dzl/dt = Kp Vp

internal
water supnly

Wo

Fp

N
ATM. H2O HUMANS
H < internal <
dz,/dt = water supolyr
Kh Wh Wh
& Fa

~] dehumidifier

FIGURE 3 STIVPLE CZLSS

5O

WATER
‘l'v

dzB/dt = Fd Rdm

MODEL YWITH ONE RESOURCE
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also Gaussian; therefore, the deficit can be completely described by its
mean and variance., If the mean and variance are used as state variables
and the differential equations for the reaction coordinates are integrated,
we obtain the state equations given in Figure 4a, The numerical values

are shown in Figure ib,

To complete the model, two survival criteria are imposed. The
Bupply‘of water internal to the plants must remain above a specified
minimum$ that is!

Wp(k) > Wmin
Since the random parameter, G, affects only the deficit and not the supplies,
this i5 a deterministic requirement, The second survival requirement is
that the human water defiecit ba acceptably small, i.e.

bB(k) < Dmax
The probability of this occurring is given by:

Prob{D(k) < Dmax} = PHIL(Dmax - M)/SQRT(V)]
where M is the mean deficit, V is the variance of the deficit and PHI is
the Gaussian distibution funection, A flow chart for determining the
transition probabilities given the state and control vectors is given in

Figure 5.

The three countrol inputs are the alloecations of water to plants
and humans respectively, expressed as fractions of the water storage, and
the dehumidifier operation rate, expressed as a fraction of the maximuin
possible operation rate. One possible (non-optimal) control scheme is to

allocate the average baseline demand for water to the humans and to use
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Wp(k+l) = exp(~Kp DT)(Wn(k)} + Fo(k)7(k))

W(k+L) = exp(-Kh DT)(Wh(k) + Fh(k)W(k))

H{k+1) = H(k) + (1 = exp{~Kn D2)(Wh(k) + Fh(k)W(k)) + (1 ~
| exp(-Ep DP)(Wp(k) + Fn(k)¥(k)) ~ ¥d Rdm DT
M(k+L) = M(k) = Fh(k)w(k) + Ba

V(k4l) = V(k) + vo Ba® H(k)/ut

with W(k) = Wb ~ HE(Qe) - wp(k) - wh(lk)

(a) STATE EQUATIONS FOR SIMPLE CELSS MODEL

Variable Definition Value
Wp plant water nonconstant

supnly
Wh humen water

sunplyr nonconstant
el atm, HbO nonconstant
M mean defdcit nomeonstant:

variance of

deficit nonconstant
w water supnly nonconsivant
Wt ' total wabter 7000 moles
o time step 3 hours
Kn reaction rate ~8316/hour
Kp reaction rate «005/hour
Rdm- max,dehumidifier

rate 67 moles/hour
Ba baseline water

demand 12,5 moles
v variance of

activity parameter} (.4

(see text) - ‘
Dmax max., deficit 40 moles
Wmin minimm Wp © 1200 moles
(b) NUMERICAL VALUES

FIGURE 4
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proportional control to determine the water allocation to plants and the

dehumidifier operation rate. The specific control considered here is:

Fp = 0.01823Wp / W
Fh=Ba /W
Fd = 0.25 + 1.,43E-U4 H

with saturation limits (0,1) for the fractional water allocation to plants,
Fp, and the dehumidifier operétion rate, Fd, and (0,1-Fp) for the fractional
water allocation to humans, Fh, Note that the deficit does not affect the

control inputs in this scheme.

The optimal control can be calculated explicitly for this example,
The result is:

Fp

(203.1 - Wp) / W

Fnh = (M + Ba) / ¥

u

Fd > (H + 0.9175 Wh + 0.9175 ¥ + 14,52)/Rdm
where Rdm is the maximum possible dehumidifier operation rate, The
saturation limits are the same as sbove. Note the nonuniqueness of the
optimal dehumidifier operation rate. The optimal control computes Fd in
such a way that the atmospherioc humidity and, hence, the inerease in the
variance of the human water deficit will be minimized, Suppose some value
of Fd less than 1 can reduce the atmospheric humidity to zero: call this
value Fderit. Clearly any value of Fd between Fderit and 1 inclusive will
also reduce the humidity to zero and will, therefore, also be optimal.
This nonuniqueness is not really a problem, since all optimal values for
Fd result in the same probability of survival, Indeed, in this case, they

also result in a unique state at the next time step.

Mk R
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Each of the controllers was studied by simulating system performance
for 250 time steps (31.25 days). In the absence of perturbetions, both
controllers converge to steady states with guaranteeg survival, i.e.
probahility of survival = 1, However, the nonoptimal control converges
more slowly and the steady state obtained using 1t results in a higher
variance of deficit and a larger supply of water internal to the plants.
These results are shown in Figure 6 with solid lines for the optimal control

and dashed lines for the nonoptimal,

The effects of a dehumidifier failure from time steps 24 to 32
were then considered. With the optimal control, survival is still guaranteed
and a new steady state is reached one time step after the dehumidifier
resumes operation., The nonoptimal control cannot ensure survival in this
case. Thirty time steps after the disturbance iz removed (i.e. after the
dehumidifier is restored) a new steady state is reached but the probability
of survival associated with that steady state is only 0.9. Figure 7 shows
that the decreased survival probability comes about because of the higher

variance of deficit associated with the nonoptimal control,

A more serious problem is the effect of an error in the baseline
demand for water by humans. The actual average baseline demand is 12.5:
implementation of the nonoptimal contrel with an assumed baseline demand
of 12,3 results in a survival probability that decreases continually and
reaches 0,3 by the end of 250 time sieps, as shown in Figure 8, Because
the deficit is not fed back, the controller is unaware of the graduzal

increase in mean deficit which is ultimately responsible for the failure.

Iy
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The maximum tolerable error in the baseline demand depends strongly on the
number of time steps, N, that we require the system to survive for, Figure
9 shows the tolerable error to guarantee success as a solid line and the
minimum error for which failure is guaranteed as a dashed line for various
values of N, In general, we would like to make N arbitrarily large; these
results imply that to do so requires essentially perfect knowledge of the
baseline demand if survival is to be guaranteed using the nonoptimal

contitrol,

The optimal control, however, is capable of handling a much larger
error in the average baseline demand while still guaranteeing survival.
For example, the results of assuming a baseline demand of 2.0 (an 8A%
arror) are shown in Figure 10, Even with such a large error, a steady
state with ensured survival is reached rapidly. 1Indeed the system can
still survive the additional disturbance of a dehumidifier failure identical
to that deseribed above as shown in Figure 11. HNote also that the optimal
control keeps the mean deficit at a constant value equal to the error in
the baseline demand as long as doing so is consistent with the control
saturation limits: this has the effect of making the tolerable error

practically independent of the number of time steps for which survival is

required. Consequently, N can be made arbltrarily lerge without a prohibitive

increase in system sensitivity,

RESEARCH TASKS

Investigation of resource allocation for CELSS control can be

divided into CELSS~specific problems and generic problems associated with

Forn
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multiple time scales and the dynamic programming formulation. Theae two
arcas are not completely independent and most problems to be studied involve

a combination of thenm,

The CELSS model presented in the example above featured only one
resource and interactions on only one time scale, In general we cannot
exert controls on all dynamic scales; for example we cannot wanipulate how
much air is inhaled by humans with each breath, While we can control the
atmospheric composition by adjusting plant biomass and recycler operation
rates, these two controls act on slower time soales than breathing does,
Since survival depends on oxygen congsumption, which varies on the faster
time soale, we must investigaste whether or not control on the slower time

scale will be gdequate to ensure survival,

Another practical problem arises from the dynamie programming
formulation, The solution gives the optimal controls as functions of the
state vector, requiring the entire state to be known at each time step.
However, the model formulation includes defiecits {or statistical properties
of deficits) and internal supplies of resources ags state variables, none
of which can be measured directly. Therefore, estimatora must be designed

to provide epproximations of the values of the unmeasurable states.

Because of uncertainties in the model, it is desirable to update
parameter values as new information on the system behavior becomes available.
If we have a better model, we can presumably obtain a better control,

Development of adaptive control schemes may be difficult within the resource

o I e et A e e e L amens e . e  — . Eie e m ame
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allocation framework because dynamic programming computes the control from

a (i'ixed) final time. If it is necessary to continually reocalculate the
contrcl sequence starting from final time, the computational load iay

become prohibitive. Therefore, methods of incorporationg adaptation without

significantly inereasing the computational load should be studied.

The high canﬁutational load is also an important issue in obtaining
controls for high order systems. The "ourse of dimensionality" (Bellman
and Dreyfus 1962) comes about because of the state-space gquantization
required to apply dynamic programming. Means of inereasing the quantization
step (i,e. reducing the number of points in state~space used) should be
studied; nonlinear quantization may be useful. Sensitivity analysis can
be helpful to determine discretization steps for nonlinear quantization,
with the smallest steps being in the reglions of state-space where the
eptimal control and cost change the most, Another possibility is
approximation in policy space rather than state-space; this would require
extending the technique developed by Howard (1960) to the case of time-varying

transition probabilities,
The specific research tasks to be accomplished are:

a)Select Specific CELSS models with several resources and multiple time
Scales,

b)Investigate effect of control on slow time scales with performance indicea
dependent on fast time scale dynamies.

c)Identify available measurements and design estimators to approximate

unobtainable states,



3¢

d)Investigate methods of including adaptation in the controller and estimator
designs.
e)Determine best state-space discretization to reduce computational load.

f)Investigate approximations in poliey space with time-varying transition
probabilities. %

Control of Systems with Delay and Closure

Tt is possivle to gain insight into the dynamic behavior of a CEL3S
through *he use of simple abstract models of its fundamental components.
Here, we present two such models to demonstrate the complex system behavior
that ecan arise from simple models whose primary characteristic is a time
delay. The first abstract model iz one representing the basic features
of plant growth, The second model i3 based on the ideas of mass closure |

and a finite ability to store resources,

A CELSS that contains plant growth will have a component that is
characterized by a long delay. This delay represents the time between f
planting and harvest., During this time the plant growth rate, and therefore |
the harvest yield, is affected by the local enviromment. Local influences
can arise from the temperauure, carbon dioxide level, nutrient level, water
available fur transpiration, ete. (Averner, 1981). We will lump all »f
these disturbances, both positive and negative, into a single random term
which contains the plant growth uncertainty. Therefore, the abstract model

of plant growth containg = simple time delay and a gain that has a random

component.,

%\:.}.\._.__,_W__.,;.__,_.ﬁg. i
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This model permits investigations inte the dynamic consequences
of a system that contains the essence of the complex transition from seed
to harvest. Further, the model permits the investigation into the
consequences of various schemes that can be used to increase the rgliability
of the harvest. Two such schemes, contrel and storsge use, are presented

below,

A second abstract model 1s constructed to examine the effects of
mass closure with finite storage in a system with a long delay. The choices
of what to do with a resource are limited by the mass closure, At no time
are we permitted to discard excess material. The minimization of siorage
tank size 18 necessary for the CELSS to be cost effective for a mission
(Gustan and Vinopal, i1982). Therefore, it is possible that a situation
will ocour when a resource has been processed but its storage tank is full,
In this case, the resource will have to be put in an undesirable place.

This introduces a multi-~-valued nonlinearity into the system: having more
of a resource is better only up to a pointj then it becomes detrimental

to the system,

Qur second abstract model permits investigations into the consequences
of overloading a storage tank in the proces;ing loop. This model contains
a time delay that reprisents the processing time associated with various
components in the CELSS, A nonlinear gain is also included to model the
peaalty assoeiated with a filled storage tank. Although this model usesll
deterministic inputs, the combination of the delay and nonlinear term lead

to cyelic and apparently randem behavior. It is of particular interest
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to the CELSS problem that a simple, deterministic system, characterized

only by a time delay and storage limitations, can generate complex behavior.
AN ABSTRACT MODEL OF PLANT GROWTH

Consider an abstract model of plant growth where there iz a delay
of T units {constant) between planting and harvest, The growth during
this time is random:

GROWTH = 1 +/- 20%
This modellis shown schematiéally in Figure 12. The units for harvest and
seeds planted are normalized so that one unit of seeds corresponds to one
unit harvested, on the average. The random growth term represents the

uncertain effects of the environment on the plant growth.

A deficit will be defined here as the accumulation of:
FOOD NEEDED ~ HARVEST when: FOOD NEEDED > HARVEST. A value

of 10 units will be used for the FOOD NEEDED in this model.

Figure 13a shows the harvest (output) of such a system where enough
seeds are planted to insure that the harvest equals the food needed when
the average growth rate is in effect. The associated deficit is shown in

Figure 13b. This is referred to as an uncontrolled or open-loop system,

If it is8 desirable to reduce the fluctuations of the harvest, and
therefore the accumulation of the deficit, either storage, control, or

excessive planting must be added to the system. Extra planting is not
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Abstract Model of Plant Growth
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wise because of the burden on system rescurces and the required increase
in system volume. Therefore, we will investigate the potential benefits

of control and storage on the system behavior,

A control could be applied to the system to gain greater reliability

and lower total deficit, First, consider a heuristic control where the
current amount of seeds planted depends on the current harvest., This
suheme, which closes the loop through feedback of the system output, is
snown in Figure 14, The harvest is compared with the food needed. The
correction, or adjustment, to the seeds planted is determined by the user
set sensitivity to the comparison between the harvest and food needed,

As an example of the difficulties that can arise in dynamiec systems, our
first example of control will use a sensitivity value of 1. Although this
value seems like a reasonable first guess (see example in Figure 14), the
results shown inh Figures 15a and 15b show that the system behavior has
deteriorated, Further, the noise band of the harvest has inereased from

w/= 20% to +/- 80%.

Clearly this control does not improve the system performance, which
is not surprising when the transfer function of the system in Figure 1H
is examined:

Y(2)/R(z) = [ G(K + 1) 1 / [z + GK]
where: Y(z) = transform of the harvest

R(z) = transform of the set point (food needed)

G = growth rate of plants

K = control gain (sensitivity)

n
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The stzbiiity oriteria for this system iss

K < 1/G
Therefore, the use of a sensitivity (K) of 1 {s unstable when the plant
growth 13 greater than 1. The instability is reflected in the increasing
fluctuations of the harvest Iin Figure 15a. Stability would be maintained
with values of K less than (1 / 0.8),

The output control of Figure 14 achieved its best results with a
sénsitivity of 0.1, However, the accumulated deficit with this control
was no lower than the case with nc control. Other variations of output
control are possible. The control presented in Figure 14 is a proportional
or P control. The adjustment to the number of seeds planted is proportional
to the error between the harvest and the food needed, An accumulation of
these errors could be used to determine the seed planting adjustment.
This control, integral or I control, also did not improve the overall
system behavior, Finally, a combination of the P and I control was applied,
The results with this PI control are shkown in Figures 16a and 16b, It can
be seen that the use of thils cutput control also does not improve the

system reliability or reduce the accumulated deficit.

A controller which uses information during the delay period is
needed to improve the system performance. State variable feedback control
adjusts the system input based on observations taken during the delay,
Such a system is shown in Figure 17. Figures 18a and 18b show the harvest
and deficit for a system with a controller that uses information from 10

obsarvations during the time the plant is growing. State feedback improves
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the system performance and reliability over the uncontrolled situation,

We now consider the use of a food storage tank as a possible means
of improving the system behavior. An adequately large storage tank can
insure that for a statically balanced system, the uncontrolled system never
hos a defieilt (Figure 19). This storage tank does have a penalty associlated
with it: extra mass, volume, ete. The use of storage does not always

insure that there is no deficit, as shown below.

If the plant growth is poorly estimated, or there is a low frequency
random disturbance present, then the growth rate mey actually be (as an
example):

GROWTH = 0.8 +/~ 20%
while the system operation is based on the assumed growth:
GROWTH = 1. +/- 20%
In this case the uncontrolled system will quickly empty the storage tank
and large deficits will accumulate (Figures 20a and 20b),
o

It is possible for a controlled system to maintain low deficits
in this poorly estimated system without the use of a storage tank. System
performance is improved with the use of a PI output controller. This
result, shown in Figures 21a and 21b, is achieved without the use of a

storage tank.

A further improvement in the system behavior can be obtained for
the case of a poorly estimated growth rate by using a state feedback control

(Figures 22a and 22b). 1In this example also, no storage tank was used,

)T

e b o g e S s o

PRSI ——




A o AR A

56
20
FOOD
{5 CONSUMPTION
HAR/VES'I‘
[...-
Z 1ol
= \AY
o
A &
< < <& o0 o <
¢ © <
o o o, O~ STORAGE
& Oy < 0% LEVEL
<
<%¢:°<> O O
2 ¢ | | ! |
%) 18 28 38 48 58
TIME

Note: Since the Food Consumption = Food Needed, the Deficit is
always equal to O,

Figure 19: Harvest, Storage Level, and Food Consumption of
Uncontrolled System

i —— e e




AN

LN LA

OUTPUT

57
20
15—
FOOD
NEEDED

) W\M\/\/\/\/\’\/\f\/\

51— HARVEST and

Lo CONSUMPTION
STORAGE
i;VEL
<
(%] 18 2 38 49 50

TIME

Note: Harvest always equals consumption while storage is 0.

Figure 20a: Harvest and Storage Level for Uncontrolled System
with Poorly Estimated Plant Growth

[T



Ayl e tway s EORTE SRR R T
L 3 R S

58

jea

68—

DEFICIT

20—

Figure 20b: Accumulated Deficit of Uncontrolled System with
Foorly Estimated Plant Growth

58

e e

E B i Sl

B

o e




oLt e

:
59
20
{5—
: /\/\f\/\/\/\ /\f\/\/\ A
o
= ‘9\/ U »\/ \/ A |
: i
(] i
Sl—
i
I
5 | 1 1 | I
%] ip 20 3P 42 58
TIME 8
Figure 2la: System with PI Qutput Feedback Control
and Poorly Estimated Plant Growth

e @



60

120 ‘ .

60—

DEFICIT

40—

20—

Figure 21b: Accumulated Deficit of System with PI Output
Feedback Control and Poorly Estimated Plant Growth




w DA

CUTPUT

61
20
{5
v W\f\
Sl
B 185 28 30 40 58

Figure 22a: System with State Feedback Control and Poorly Estimated
Plant Growth

[
PRI

[P



S —

T A R T T T e

iee

62

80—~

28—

Figure 22b: Accumulated Deficit of System with State Feedback

and Poorly Estimated Plant Growth

5@

o e



R e

AR AR N T R S e

!
|
!
|
|

63

Systems with delay, even ones as simple as deseribed here, are
diffioult to control, Heuristic control sohemes often can oreate disastrous
results (Figures 15a and 15b), The use of a storage tank improves the
system performance when only a high frequency disturbance exists, The
storage tank alone i3 not enough to insure reliability when low frequency
disturbances are present, Systems with delay can be controlled with schemes
that use observations of bthe system state during the delay period, These
state feedback controllers are effective for a wide frequency range of
disturbances and reduce the need for a storage tenk, The storage tank is
useful, however, for smoothing out the remaining high frequency fluctuations

in the harvest,

In this discussion we have only examined a linear system with a
simple stochastic component, The use of a state variable feedback controller
has been demonstrated, but the techniques of acquiring the many states
needed by this control have not been addressed, More sophisticated
controllers will be required to deal with the problems of optimization,

nonlinearity, and parameter uncertainty.

AN ASTRACT MODEL WITH FINITE STORAGE

Consider an abstract model of a system with mass closure and finite
storage. This model could represent one of the many loops that resources
follow in a CEL3S. 1In this abstraction we will only be concerned with the

effect of this moment's resource level on the next harvest's resource
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level, Therefore, this model will otintein a delay term that represents

the time it takes for the resource to propagate through the loop,

We will hypothesize a relationship between harvest resource levels

x(t+1) = x(b) expl {1 - x(t)) ]
where: x{(t) = current resource level
x(t+1) = resource level at next time step

r = Tunctional relationship between harvests

t

integer time that increases in steps of T units

This relationship for various values of r 18 shown in Figure 23.

The relationship between successive resource levels {s characteristic
of a system that is resource limited and has a penalty associated with
excessive accumulations of a resource, The behavior of this abstract model
depends on the value selected for r. When r is less than 2 the system is
locally attracting to the point x = 1. As r is increased past 2 the system
shows periodic limit cycles of increasing complexity and period, ¥When r
is greater than 2.71 the period of the oscillations goes to infinity and
the system behavior becomes chaotic (May and Oster, 1975). This transition

aof behavior i3 shown in Figures 24 through 27.

Chaotic behavior is particularly interesting from the viewpoint
of system control. A very simple system with only a time delay and a
nonlinear gein is8 able to generate apparently random behavior even though
the system is purely deterministic., We will first examine some of the

necessary conditions for this behavior and then will disouss its relationship
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to the CELSS.

The chaotic behavior of the system is due to the time delay and
the nonlinear gain, However, not all nonlinear gains will generate chaotic
behavior (see Figure 24), Also, the functional shape used in Figure 23
is not required for chaotic results, Figure 28 shows a two-piece linear

funotion that generates chaotic behavior (see Figure 29),

A key feature of the chaotic generating functiens is that they
have both a rising and falling portion. The turning point between these
two regions is at x(t) ¢ x(t+1). Therefore, the rising slope is greater
than 1, This insures that the origin is not an equilibrium point. An
examination of the function that generated the curves in Figure 23 shows
that there is an'equilibrium at x = 1. For values of r less than 2 this
point is locally attracting (Figure 24), As r increases past 2 this point
becomes the center for a two step limit eycle (Figure 25), In other words,
the equilibrium point has bifurcated., The bifurcation continues as r is
increased until at r > 2.71 there iz an infinity of resulting points, It
should be noted that as r ihcreases, the qualitative shape of the function
(Figure 23) gets paller and steeper. It is this steepness that causes the

chaotic behavior (as is demonstrated in Figures 28 and 29).

While it is interesting that such a simple dynamic system could
generate such complex behavior, the connection between this abstract model
and the CELSS needs to be established, The mass closure of the CELSS

forces all resources to be either used or stored. However, it is necessary
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to minimize the storage areas for the system to be cost effective for space
missions. Eventuélly a situation will arise where a storage tank is full
but there are still resources walting to be stored, Since all resources
must be stored or used, some resources will have to be placed wﬁere they
are detrimental to the system performance, This situation appears more
likely when th¢ wide range of processing times of the various CELSS
components is taken into account. In fact, it becomes highly probable

that the system will enter a chaotic regime if there i3 a component fallure

and the storage areas are sufficiently limited,

There are two potential solutions to avoiding getting stuck in the
chaotic regime, First, all storage tanks could be increased in =ize so
that it will be very unlikely that there would be a time when they are
filled to capacity. Second, controllers could be developed to recognize
situations leading into the chaotic regime and to move the system safely
and quickly out of it, The second method is preferable to the first,

Since there may be many other ways of entering into chaotic behaviosr besides
the overflowing storage problem, a properly designed controller could still
return the system to a more normal regime, Precise models of plant growth
as a function of its environment have not been developed. This, coupled
with our limited ability to monitor this growth, can easily create situations
where an excessive amount of a resource is used on the plants and cyclic

or chaotic behavior is initiated,

Work is needed to determine how a CELSS might move into a chaotic
regime. Also, techniques need to be developed that cah deal with the

chaotic behavior and return the system to a better behaved regime, For
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use in a CELSS, this control must be able to perform its task in an
environment where the system parameters are uncertain and and there is

already a substantial random component to the system behavior,
RESEARCH TASKS

The -investigation of control of systems with delay and closure can
be divided into two parts: dynamic systems and controls, The two field
are interrelated, Control design is motivated by the undesirable aspects
of the system model's behavior. Conversely, the motivation for modelling
a system is to mimic its behavior so that controllers can be designed to
improve the system performance. For colarity, we will discuss each separately.

the following discussion will artificially separate them for clarity.

Work in dynamic systems revolves around -the investigation of
abstract models that contain delay terms. In particular, models which
give nonintuitive behavior are candidates for examination. As shown above,
the inclusion of nonlinear terms and mass closure in these simple models
generates highly erratic behavior from very simple inputs. While there
exists some discussion of the underlying mathematics of these systems in
the literature, no connection has been made to a CELSS. An isolation of
the specific aspeots of the CELSS structure that generate these nonintuitive

behaviors would be of use to future system design work.,

Another point of interest is the examination of how a CELSS could

migrate into these difficult to control regions. Unusual system behavior
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may be limited to a start-up procedui'e, component failure, ete., or it may

be more ingrained into the basic structure of the system itaelf,

Finally, as a preparation to controller design, the separability
of the effects of the delay terms, nonlinear terms, and mass closure should

be investigated, If they do separate easily then the control design problem
is somewhat simplified.

In investigating controllers we attempt fo reduce the undesirable
effects noted in the abstract models, It has been shown that state variable
feaedback is effective in controlling a system which is characterized by a
delay. In the case of a system with mass closure, nonlinear and delay
terms, the control design is not as simple. The controller must be able
to operate effectively in the chaotic regime and move the system efficiently
out of it, It is advantageous for the controller to also be able to
anticipate uan impending transition into the chaotic regime and act
accordingly. Throughout this processa, the controller should be insensitive

to system parameter uncertainty.

A benefit of these studies of systems with delay is the specification
of measurements required for adequate control. Control which uses
observations during the delay period is able to reduce many of the undesirable
effects caused by the delay. These state variable feedback controllers,
by requiring state information during the delay, increase the number of
measurement devices needed in the system. When state measurements are
difficult or impossible to obtain, an estimation of the state must be made,

The requirements of both the estimator and the controller will then specify
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the remaining system measurementa needed for feedbaok control, However,
the design of a reliable state observer in a nonlinear system with uncertain

parameters i3 not a trivial task.

If CELSS component fallure can lead the system into a chaotie
regime, then measurement device failure or estimation error i8 also likely
to cause nonintuitive system behsvior, Therefore, the nheed for component
and/or estimator redundancy must also be evaluated, The overall controlled
system reliability will be due to a combination of the controller's
insensitivity to uncertain parameters, the ability to estimate and/or

measure the system's state, aond the ability to cope with component failure,

The research tasks to be accomplished are:
a) Formulate abatract CELSS models that contain delay and nonlinear terms
and mass closure.
b) Investigate the separability of the effects of these terms and the mass
closure,
@) Identify aspects of CELSS structure which generate these behaviors.
d) Specify scenarios that lead a CELSS into these nonintuitive behaviors,
e) Examine the underlying mathematics of the system to aid in control
design,
) Design controllers that can operate in the chaotic regime and reliably
move the system out of it,
g) Specify instrumentation and astimator requirements for the various
control schemes,

h) Examine system reliability with various levels of component redundancy
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