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SUMMARY

The purpose of the research described in this report was to
investigate methods for formally specifying and verifying the
correctness of mathematical software (software which uses
floating point numbers and arithmetic). The research carried out
consisted primarily of the following activities:

1. Reviewing previous attempts at modelling floating point
arithmetic and formally specifying/verifying mathematicalsoftware.

2. Formulating a new model of floating point arithmetic,
called "the asymptotic paradigm", a language in which

properties defined in the model such as "asymptotically
close" can be expressed, and a formal logical system to
reason about this model. Our present choice of language
and logic primitves is tentative. Further experimental
verifications need to be explored.

3. Investigating how the classical "Verification Condition
Generation Approach" to program verification could be
adapted to use the model.

4. Performing a preliminary investigation of how the more
innovative "Programming Logic Approach" to program
verification could be adapted.

5. Applying the model to verifying several programs under both
approaches; the programs chosen were simplified versions of
actual mathematical software.

Our new model of floating point computation is both intuitively
clear and useful in verifying the programs we have looked at.
Actual errors in floating point programs have been discovered.
Interestingly, a logical error in an IMSL library routine
uncovered by our techniques appears to be corrected by the
FORTRAN compiler; running an interpreted BASIC transcription of

the program does give bad test results. The building of
verifying compilers which correct the logic of programs has
always been a goal of program verification but in the present
case the compiler s correction (the guard of a loop is changed
from an incorrect to a correct form) probably arose from
optimization considerations. The relationships between our model
of correctness and optimization remains to be investigated. Our
model also has proved useful in uncovering new algorithms.
Progress has been made towards integrating the new model into
automatic verification systems.

The research described in this report has direct relevance to
aerospace applications in which correctness of software over the
floating point reals is critical.
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TABLE OF SYMBOLS

x <ffiy x is less than or equal to y

x >= y x is greater than or equal to y

x = Y x is not equal to y

x*y x times y

x/y x divided by y
A

x y x to the y power

Ixl absolute value of x

SQRT(x) the square root of x

the real numbers

N the natural numbers {O,i,2,. }ee

{p} S {q} if p is true and S is executed and S
terminates, then q is true

P & q p and q

P not p

P -> q p implies q

p iff q p if and only if q

P <-> q p if and only if q (same as p iff q)

all x:s [p(x)] for all x of sort s, p(x) is true

some x:s [p(x)] there exists x of sort s such that p(x)
is true

•I ]= F F is true in interpretationI

Th(I) the set of all sentences true in
interpretation I

Mod(F) the class of all interpretations in which
F is true

Cn(S) the set of all sentences which are true "
in all models of S

CR The cropping function

M- the negative overflow threshhold
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<ri> and an integer j and gives rj





Chapter 1

Overview

The aim of formal verification is to mathematically prove

programs are correct. Logical techniques for carrying out such

proofs are first informally developed and then emboddied in

automatic verification systems. The latter provide machine

support for the often tedious proofs. They keep track of the

status of the verification (what has been and what remains to be

proved) and aid in the deductions through the use of automatic

formula simplification and logical decision procedures for parts

of mathematics. For those parts of proofs which can not be

machine supplied the verification system acts as a stern,

humorous proof checker thus guaranteeing that no step has been

omitted from the human supplied proof through negligence.

A prerequisite to proving programs correct is agreement as to

how correctness should be expressed. Although we discuss an

alternative approach ("The Programming Logic Approach") later we

will focus on the classical Pre and Post Condition form of

specification. This takes the form of Hoare sentences of the

form
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[p} s

where S is a section of code and p, q are formulas in a

mathematical language (as contrasted with a programming

language). An example of such a language is first-order logic

which uses the quantifiers "all" and "some" in addition to the

Boolean connectives. The formulas p and q contain the variables

which occur in S. The meaning of Hoare sentence is

If the initial values of the variables satisfy p and
S terminates then the final values of the variables
satisfy q.

Since q may also need to refer to the initial values of the

t
variables they are allowed to occur in q as 'x, y, etc. For

example, if the specification of S is that 'it places the

exponential of x and y in z and that it not change x or y, where

x, y, and z are integer variables, then the correctness condition

takes the form

{y >= O} S {z = 'x ^ 'y & x = 'x & y = 'y}.

Here we use _ for exponentiation and have added the Pre Condition

that y be non-negative since we have decided that the program

need only be correct on those values. Alternatively we could

change the specification by replacing p by "true" (this means we

are assuming nothing about the Jnitlal'values) and replaced "z =

'x A 'y" in the Post Condition by

r

'y >= 0 -> z = 'x " 'y.
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The two specifications express the same correctness condition but

the former is to be preferred since its Pre Condition •would be

available during the course of the proof of correctness.

In order for the above example to be meaningful one assumes

that the programming language does not contain an exponential

operator, the program S computes A using a loop. This

illustrates the need for the mathematical language to have more

operators than the programming language. Quantifiers are also

useful as in the following Post Condition which says that final

value of y is the first prime after the input 'x

Prime(y) & 'x < y & -some z ( 'x < z & Prime(z) & z < y)

where -
is the negation symbol and Prime(y) itself needs

quantifiers

y > 1 & all u, v (y = u * v -> u = y or v = y).

The formal verification of mathematical software (software

which uses floating point arithmetic) poses special problems not

encountered in classical program verifications such as those

mentioned above in which only discrete data types such as

integers are considered. These problems arise from the

differences between the physical representations used in machines

and the ideal, mathematical entities they are based on.

When verifying integer arithmetic programs one pretends that

the machine integers are exactly the same as the ideal integers.
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This pretense is, strictl_ speaking, not valid, since there are

only finitely many machine integers while there are infinitely

many ideal integers. The pretense is acceptable, however, for

two basic reasons:

I. The machine integer operations are the same as the

corresponding ideal operations as long as neither the

arguments nor the result are too large. Thus, as long as

overflow does not occur, the behavior of a program which

uses only integer arithmetic is the same as if it were

using ideal integers.

2. The verification of programs which use only integer

arithmetic is thought of as applying only when the program

runs to termination without an overflow occurring. This

often includes most of the uses of the program that the

programmer is interested in. Thus by considering overflow

as a form of non-termination one can identify the logic of

the program with the logic of mathematics.

Because of the first point we are free to use the same symbol

in the progamming and mathematical languages for the arithmetical

operations so that

{true} z := x * y {z = x * y}

is a valid lloare sentence. Even if the program overflows it is

still a valid Hoare sentence because the latter only specifies
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what happens if termination occurs. On the other hand even

without overflow the above Hoare sentence is not true if x, y,

and z were floating point variables. While it is true that

treating integer overflow as non-termination is a kludge it is

interesting to note that Ada with its user supplied exception

handlers has reopened the question of how to properly write the

Post Conditions of integer programs so that all possibilities are

specified.

Thus "pretending" that floating point arithmetic is the same as

ideal real arithmetic is not acceptable. Floating point

operations deviate from ideal real number operations through

roundoff and underflow as well as overflow. It is true that

floating point operations are the same as the ideal real

operations when roundoff, underflow and overflow do not occur,

but such situations are infrequent. Thus if we verify

mathematical software by "pretending" that the floating point

operations are exact, and adopt the convention that the

verification does not apply to runs in which roundoff, underflow

or overflow occur, then the verification will not apply to most

of the runs we are interested in.

For these reasons, we would prefer to verify mathematical

software on the basis of a model of floating point operations

which is closer to what is actually done in machines. Several
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such models have been presented ([i], [2], [3]), along with lists

of axioms which they satisfy. Unfortunately, these axioms

systems are either too complex, in which case they are difficult

to use, or they are simple but too weak to do adequate analysis

of software. In addition, verification using these axiom systems

usually requires the verifier to formulate and prove elaborate

statements about the nature and magnitude of various sources of

numerical error thus confusing a logical problem with a numerical

analysis problem. While numerical analysis is important we feel

that correctness is a separate issue as we will show. Even the

above mentioned systems with simple axioms often involve proving

theorems which are quite complicated.

The first major problem is how to express the specifications.

As we pointed out above z = x * y is not a proper Post Condition

for the program fragment z := x*y when x, y, and z are floating

point variables. This problem becomes aggravated further when we

attempt to use the Verification Condition (VC) approach to

program verification on mathematical software. One of the

!. Mansfield, R., _ Complete Axiomatization of Computer
Arithmetic ! to appear in the Journal of Mathematics and
Computation

2. Holm, John, Floatin 8 Point Arithmetic and Program Correctness
Proofs, Ph.D. thesis, Department of Computer Science, Cornell
University, August 1980

3. Brown, W. S., _ _ but Realistic Model of Floating-Point
Computations, Computing Science Techinical Report No. 83, Bell
Laboratories, April 1981
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difficulties encountered, in using the VC approach on integer

programs is that the VCs generated for even simple programs are

logically complex. Th_s makes it difficult to prove (or even

understand) the VCs. What is perhaps even more important, it is

difficult to determine what is wrong with a program when a VC is

found to be false. This problem becomes even worse when

complicated axiom systems like those formulated for floating

point arithmetic are used. In addition, just as it is difficult

to formulate appropriate specifications for mathematical

software, it is also difficult to formulate the appropriate

embedded assertions and loop invariants for such software

required by the VC approach.

This report addresses the above the above problems in two ways:

i. A new paradigm for modelling and axiomatizing floating

point arithmetic, which we will call the asymptotic

paradigm, is presented. This paradigm yields a simple,

intuitive axiom system which is strong enough to do

non-trivial analysis of mathematical software.

2. This paradigm is applied in the context of two different

approaches to program verification. One is the VC approach

and the other is an alternative approach, called the

Programming Logic approach, which is designed to avoid some

of the problems which have arisen from the VC approach.

Our discussion of the VC approach is more definitive,
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reflecting the matur.ity of the technique; the discussion of

the Programming Logic Approach is more tentative.
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Chapter 2

The Denotational Semantics of the Asymptotic Paradigm

2.1 Modelling Floating Point Arithmetic: The Cropping Function

Our starting assumption is that the machine implemented

floating point operations can be represented as the ideal real

number operations followed by rounding. The operation of

rounding is modelled by a cropping function, CR, from the real

numbers (denoted by R) to R. The range of CR represents the

machine real numbers, sometimes called the model numbers. This

was the approach taken in the Mansfield and Holmes work cited

previously and is consistent with the proposed IEEE standard for

floating point arithmetic [I]

We will assume CR satisfies the following axioms, hereinafter

referred to as "the cropping function axioms":

- Axiom I: The range of CR is finite.

I. A Proposed Standard for Binar_ Floating Point Artihmetic.,
Draft lO.0 of IEEE Task P754, Dec. 1982
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- Axiom 2: CR(CR(x)) =.CR(x)

- Axiom 3: CR(0) = 0

- Axiom 4: [x <= y <= z & CR(x) = CR(z)] -> CR(x) = CR(y)

The first axiom expresses the fact that there are only finitely

many machine real numbers. The second axiom says that the result

of a rounding operation (i.e. a machine real number) is

unaffected by further rounding. Note that the second axiom

implies that the range of CR and the set of fixed points of CR

are the same. The third axiom says that 0 is a fixed point of

CR, i.e. that 0 is a machine real number. The fourth axiom says

that if x and z round to the same number and y is between x and z

then y rounds to the same number as x and z.

One axiom which was included by Mansfield and Holmes which we

do not include is that CR is an odd function, that is, that

CR(-x) = -CR(x). We do not want to require that CR be odd, since

thislwould rule out rounding towards plus infinity and rounding

towards minus infinity, two rounding modes which the proposed

IEEE Standard would require to be supported.

Note that cropping function axioms 2 through 4 are expressed in

first order logic, whereas the first is expressed in English.

This is because the concept of "finite" cannot be expressed in

first order logic witbout adding concepts from set theory. In

order to perform truly formal program verification, we must
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eventually express the first axiom more precisely. This will be

dealt with later. As usual when stating axioms in first order

logic there are implicit universal quantifiers in front of the

formulas displayed as Axioms 2 through 4.

The cropping function axiomsare consistent with the four

rounding modes which the proposed IEEE Standard would require to

be supported, namely rounding to the nearest machine real number,

rounding towards O, rounding towards plus infinity and rounding

towards minus infinity. They are also consistent with rounding

away from zero, a mode which is not mentioned in the proposed

IEEE Standard.

At this point we can derive some useful consequences of the

above axioms:

- Theorem I: CR _s monotone, i.e. x <= y -> CR(x) <= CR(y)

- Theorem 2: There is no machine real between x and CR(x).

The proofs of these statements are in Appendix A. They do not use

Axiom 1 and the only facts about the reals which are needed is

that <= is a linear order.

Note that the second statement does not imply that there is no

machine real that is closer to x than CR(x). Again, we do not

wish to require this because the proposed IEEE Standard would

require other rounding modes than rounding to the nearest machine

real.
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The above cropping function axioms capture certain qualitative

properties of CR. Other, quantative properties are captured by

the error axioms, which are given below. These axioms are

expressed in terms of five additional constants, M-, m-, m+, M+

and e. M+ and M- are the positive and negative overflow

threshholds respectively; m+ and m- are the positive and negative

underflow threshholds respectively, e is the relative error

bound.

- Axiom 5: M- <= m- < 0 < m+ <= M+

- Axiom 6: [x < 0 & CR(x) = x] -> M- <= x <= m-

- Axiom 7: [x > 0 & CR(x) = x] -> m+ <= x <= M+

- Axiom 8: 0 <= e < 1

- Axiom 9: [M- <= x <= m- or m+ <= x <= M+] -> ICR(x) - x•l<=

e*Ix I

- Axiom i0: x is an integer & [M- <= x <= m- or m+ <= x <= M+]

-> CR(x)= x

The first error axiom just states the signs and the order of

the thresholds. The second and third error axioms say that the

negative machine reals are bounded by M- and m- and the positive

machine reals by m+ and M+. The fourth error axiom gives bounds

on e, and the fifth says that e is a bound on the relative error

in the cropping function for numbers between the threshholds.
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The reason for having separate overflow and underflow threshholds

for positive numbers and negative numbers is that it makes it

easier to model rounding towards plus infinity and rounding

towards minus infinity. These two rounding modes are not

symmetric with respect to zero, and so we need to be able to

treat the behavior on either side of 0 separately. The last

axiom guarantees that integers in range round to themselves. We

discovered the need for this axiom only after we began proving

programs which had integer literals in the text.

In terms of CR we make the following definitions:

- Definition I: MR(x) iff CR(x) = x, i.e. x is a machine

real.

- Definition 2: x ++ y = CR(x + y).

- Definition 3: x ** y = CR(x * y).

- Definition 4: x -- y = CR(x - y).

- Definition 5: x // y = CR(x / y).

- Definition 6: x _A Y = CR(x ^ y).

We assume that ++, **, etc. applied to machine reals model the

machine operations. Previous axiom systems for floating point

arithmetic were stated in terms of ++, **, etc. Unfortunately,

these operations satisfy peculiar properties (e.g., ++ is

commutative but not associative) so that verification in terms of
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them becomes complicated.. In particular, the approach through

the logic of ++, **, etc. forces the verifier to state and prove

complicated error statements. For example, while the Hoare
?

statement

{true} z := x * y {z = 'x ** 'y}

is true where x, y, and z are floating point variables it would

take a close analysis of errors to show that

[true} S {z = x_^n}

is true where z and x are floating point variables, i and n are

integer variables, and S is

i := O;
z := 1.0;

DO WHILE(i < n);
Z := Z # X;
i := i + i;
END;.

The point is" when does

CR(x• x • ...._x)= [CR(x)_ OR(x)]... _ CR(x)

where the products on both sides are n-fold? Our use of "*" in

the program t_ext for machine multiplication follows normal

convention; to be precise we should really use ** (although the

use of + between the integer variables is not objectionable)

which from now on we will.

Actually are we really interested in Post Conditions which
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_A

contain the machine operations ++, **, , etc.? These

operations are implementation details and should not enter into

formal specifications for Higher Order Language (HOL) programs.

But then, what kinds of statements do we want to prove about

mathematical software, i.e. what are the appropriate

specifications?

In the next section, we begin discussing our solution to this

problem. We center our discussion on the asymptotic behavior of

a program, that is, the behavior as the precision of the floating

point arithmetic used increases. We will be able to show that

the above program correctly implements "xAn '' because as precision

increases the output tends to x^n in the limit. Our logic will

enable us to prove th_s without having to actually carry out the

limiting constructions. The latter are in the meta-theory which

justify our axioms and need not be understood by the prover

(human or machine) although such understanding would often

facilitate the finding of proofs.

2.2 Appropriate Specifications for Mathematical Software

- 2.2.1A Motivating Example

Suppose we wanted to wrRte a program whose informal

specification was "Add up the entries in a one-dimensional array

A of machine reals with length 3". We might produce something
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like the following:

I := l;
SUM := 0.0;

DO WHILE(I <= 3);
SUM := SUM ++ A(1);
I := I + I;
END;.

Note that we have adopted the convention of using ++, **, etc.

in the program text for the floating point opperations. Suppose

we now wanted to formally verify that the program was correct.

The first thing we would have to do is translate the above

informal specification into a formal statement of what should be

true when the program terminates. Since the addition in the

third assignment statement is machine addition, we cannot expect
to have

SUM = A(1) + A(2) + A(3) (I)

on termination. We could instead say that we want

SUM = [A(1) .+ A(2)] ++ A(3) (2)

at termination. Although this statement is true when the program

in question terminates, it is not the correct formalization of

Lhe informal specification. To see why, imagine that we had

written the program so that it added up the entries of A in the -

opposite order. Such a program would meet the informal spec as

much as the above program does, but it would not necessarily meet

(2). We could do an error analysis of the program to obtain some

kind of specification ]ike
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ISUM - (A(1)+A(2)+A(3))I <= eps*(A(1)+A(2)+A(3)) (3)

where eps is some expression which depends on error constants

associated with the machine'
s rounding. This has the same

problem as the previous proposal: a different program might not

meet the same error analysis yet still meet the informal

specification. Furthermore, both (2) and (3) are examples of

basing the spec on the program rather than vice versa. We need a

specification which is independent of the program.

2.2.2 The Asymptotic Concept

Actually, the first of the three answers above is the closest:

we wanted the program to give us the sum of the entries of A. We

didn't really expect it to give us the exact sum, however, but

rather something "close" to the exact sum. What do we mean by

"close"? We don't really mean "as close as the machine can get",

i.e. we don't mean that SUM should be the closest machine real

to the actual sum. Nor should we expect SUM to be CR[A(1) + A(2)

+ A(3)]. What we really need is some formalization of the concept

of "close" and a logic to reason about this concept.

We could take (3) as our definition of "close", but with a

pre-determined eps rather than one derived from the program.

There are two problems with this:

1. The above program, running on a given machine, might not
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meet the condition we set for the eps we chose because the

machine's arithmetic is not sufficiently precise. This is

a problem with the machine, not the program, and the

program really should not be called incorrect.

2. A program might have errors in it and still meet this kind

of spee because the magnitude of the errori on the

particular machine being used was much smaller than the eps

we chose. Such an error might suddenly show up if a

smaller eps was used.

In the first case, the program fails to meet the spec but would

if the machine were more precise. In the second case, the

program meets the spec but would fail if the spec were more

demanding. What we really want is that for any "degree of

precision" in the Post Condition, there is a "sufficiently

precise machine" such that the result of running the program on

that machine meets the required degree of precision.

Another way of saying th_s Js to say that as the precision of

the machine increases, the precision of the result of running the

program on that machine increases. It is our point of view that

whereas numerical analysis of the program shows ho___wthe precision

of the result increases as that of the machine increases, a

logical analysis of the program can determine that there is such

an increase and this is what we shall mean by correctness.

We formulate this concept by considering the asymptotic
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behavior of the program over a series of machines of increasing

precision. We will require that "
correctness" be a limiting

concept even though we only intend to execute the program on a

single machine with fixed precision. We make these remarks

precise by introducing new machines which are the "limits" of

sequences of machines of increased precision. These limit

machines don't operate over the ideal reals but over non-standard

models of the reals. These models contain all the ideal reals

together with other numbers which are "infinitesimally" close to

the standard, ideal reals. What do these new numbers correspond

to? Essentially to a particular sequence of machine

approximations of increasing precision. A different sequence

converging to the same ideal number would give rise to a

different non-standard number. A fixed program P can be run with

any of these inputs. Consider such a program P and a

mathematical function f from R to R. If _t's the case that

whenever x and y are infinitesmally close to the standard z we

get that P(x) and P(y) are infinitesmally close to f(z) then we

can say that P correctly implements f. The Post Condition will

have the form {result == f(x)} where • == is our symbol for

"infinites_mally close".

2.3 Non-Standard Analysis

This section is a brief exposition of the relevant mathematical
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notions for understanding.non-standard analysis. We assume that

the reader is familiar with the terminology of set theory. We

begin by reviewing the language and interpretations of
m

many-sorted first order logic.

2.3.1 Many-sorted First Order Logic

A language L of many-sorted first order logic consists of the

following:

- A set of sort or type symbols, Sort.

- A set of constant symbols, Con. Each constant symbol c in

Con has a sort.

- A set of function symbols, Fun. Each function symbol f in

Fun has a signature <sl,.., sn> of sort symbols.

- A set of relation symbols, Rel. Each relation symbol R in

Rel has a signature <sl, .., sn> Of sort symbols

- A symbol for the identity relation: =.

- For each sort s there is an infinite list of variables of

that sort.

- The symbols for the Boolean connectives: &, or, ->, iff, -

and the Boolean constants "true" and "false".

- The symbols for the quantifiers: all, some.
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- Punctuation marks: " " "(" " "t , , ) , etc.

Using this datum one can define the terms and formulas. Each

term has a sort. Both syntactic sets are defined recursively.

A variable or a constant is a term of the appropriate sort. If

f is a function symbol of signature <sl, .. , sn> and tl, ..,

tn-I are terms, ti of sort si, then f(tl, .., tn-l) is a term of

sort sn.

If tl and t2 are terms of the same sort then (tl = t2) is an

atomic formula. If R is a relation symbol of signature <sl, ..,

sn> and tl, .., tn are terms, ti of sort si, then R(tl, .., tn)

is an atomic formula. The Boolean constants are atomic

formulas. If F and G are formulas then so are (F & G), (F or G),

(F -> G), (F iff G), (-F). If F is a formula and x is a variable

then

some x F

all x F

are formulas. For convenience the above is frequently

abbreviated and condensed. For example we won't assign sorts to

variables but write

some x :s F

where s is a sort symbol and x is an unsorted variable.
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The scope of a quantifier is the smallest formula containing

it. An oceurence of a variable is called bound if it is within

the scope of a quantifier on the same variable. Otherwise the

occurrence is called free. A formula F without any free

occurrences of variables is called a sentence.

An interpretation of I the language consists of a non-empty set

I(s) for each sort symbol s; an object I(c) in I(s) for each

constant c of sort s; a function I(f) from I(sl) x ... x I(sn-1)

to I(sn) for each function symbol f of signature <sl, .., sn>; a

relation I(R) which is a subset of I(sl) x .. x i(sn) for each

relation symbol R of signature <sl, .., sn>.

Given a sentence F and an interpretation I it is either true or

false that F holds under I. We write I I= F if F is true in I.

For each interpretation I we define its theory Th(I) to be

CF:I l--F}

] and for every sentence F we define its model class, Mod(F), to

be

{I: I I= F}.

] More generally, if K is a class of interpretations of L then

Th(K) is the _ntersection of all the Th(I) such that I is in K,

and if S is a set of sentences then Mod(S) is the intersection of

all Mod(F) such that F is in S. Th(K) is the set of all sentence

true in all structures in K and Mod(S) is the set of all
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structures whcih satisfy every sentence in S (i.e., they are the

models of S). In terms of these we can define the logical

consequence operation, Cn(S),

Cn(S) = Th(Mod(S)).

Cn(S) is the set of all sentences true in all models of S.

Although our definitions are completely semantic and seem to

require a great deal of set theory this is not the way +

mathematicians actually construct Cn(S). If S is the set of

axioms for Euclideon geometry one doesn't search through all

models to determine whether the Pythagoreantheorem is an actual

theorem. Instead one proves the latter from the former set of

axioms. Fortunately, first-order logic has a complete set of

proof rules which can be mechanized. If a machine can be

constructed to automatically enumerate the set S then another can

be constructed to automatically enumerate Cn(S). Unfortunately,

this theoretical result is not often as useful as _t sounds since

Cn(S) may be listed in no particularly significant order. To get

good results one needs interactive theorem provers to guide the

generation of Cn(S).

In certain cases, Cn(S) is not only enumerable it is decidable;

that is there is a program which when supplied with a sentence F

determines in a finite amount of time whether F is in Cn(S). This

is true for the theory of real closed fields described below.

Two interpretations, II and I2, are called elementary
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equlvalent if Th(ll) = Th(12). This means they are

indistinguishible as far as the expressive power of the language

L. If F is a formula then there is no meaning to I I= F (e.g. if

F is

x < = y

as opposed to something like

all x(some y (x <= y))

or

all x (all y (x <= y))

then it doesn't mean anything to say F is true or false in say

the standard structure over the reals although in this case the

first sentence above is true and the second false. On the other

hand if F has free variables xl, .. , xn and al, .., an are

objects from the underlying set given by I (we are assuming for

simplicity a single sort) then

I ]= V[al, .., an]

does make sense. For example if I and F are structure and

formula mentioned previously then

I [= F[5,6]

is true while
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I I= F[6,5]

- is false.

II is called a subinterpretation of 12 if ll(s) is a subset of

12(s) for each sort symbol, ll(c) = 12(c) for each constant

symbol, ll(f) and II(R) and the restrictions of 12(f) and I2(R)

for each function and relation symbol. FOr example, one usually

things of the integers with +, *, O, I, and <= as a

subinterpretation of the reals with the same operations (this is

the basis of the standard overloading of arithmetic symbols.) A

stronger relation between II and 12 is that of "elementary

subsystem" where in addition to being a sub_nterpretation we have

Ii I= F[al, .., an] iff 12 I= F[al, .., an]

] for all formulas F with free variables xl, .., xn and all al,

.., an from the sort sets of II. This relation implies that Ii

and 12 are elementary equivalent but is much stronger.

The basic language which talks about the reals includes the

constant symbols O and I, the function symbols +, *, and the

relation symbols like <=. One should distinguish these syntactic

objects from the actual operations given in an interpretation.

Although _n practise one tends not to since to do so would

require a complicated meta-language. The standard model for this

language is the usual interpretation. This language is referred

to below as the language of real closed fields. Real closed
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fields are special kinds of fields defined in algebra in a purely

algebraic way. They state that O, I, +, *, <= form an ordered

field in which every positive number has a square root and every

odd degree polynomial has a zero. It is a classic result of

logic that the exact same sentences are true in the standard

model as are true in any real closed field, that is all real

closed fields are elementary equivalent. Furthermore, the set of

first order consequences of the theory of real closed fields is

decidable. Real closed fields is an example of a single sorted

theory. Adding a predicate N(x) to the language which singles

out the integers destroys the decidability of the theory.

2.3.2 Introduction to Non-Standard Analysis

Calculus was developed in the eighteenth century based on the

notion of infinitesmals. These were positive entities dx smaller

than any actual postive real but not O. Furthermore, they obeyed

the laws of ordinary real arithmetic so that one could carry out

ordinary algebraic manipulations like

y = x^2

y + dy = (x + dx)^2

(x + dx)^2 = x_2 + 2 * x * dx + (dx)^2

dy = 2 *x * dx + (dx)^2

dy/dx = 2 * x + dx.

In particular the deriviative, dy/dx, was the actual quotient of
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two infinitesmals. In terms of our previous discussion we would

. say that these extended reals formed a real closed field.

- Attempts in the nineteenth century to justify working with

these extended reals were not successful and a different approach

and proof technique in terms of limits was adopted instead (the

so-called epsilon/delta method.)

In the early 60's logicians showed how to justify working with

actual infinitesmals. This accomplishment consisted of two

parts. First, models were constructed of domains containing

_nfinitesmals. The proof of the existence of these models

requires non-constructive techniques (the axiom of choice) and as

a result although they are conceivable the models are not quite

visible. This contrasts with the standard model of the reals

which is always identified with the visible continuum. Owing to

twentieth-century advancements in basic physics, tangibility and

visiblity of models is no longer considered a necessity although

it does make a subject less accessible to the non-initiated.

In addition to making models, various axiom systems reflecting

how the infinitesmals in these models behave were constructed.

The models prove that the axioms are consistent but all proofs

using infinitesmals can be carried out completely from the axioms

without any concern for the models. Again this is similar to the

method used in modern physics. Students are taught how to

manipulate the formalisms of quantum mechanics before they learn
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(if they ever do) how to construct the underlying Hilbert spaces

which justify the formalism. In the case of calculus, freshman

textbooks have appeared using these axioms [2]. Freshman do not

know enough mathematics (in particular, modern algebra: groups,

rings, and fields) to follow the actual existence proof of the

models. They just learn how to use the axioms. The axioms are

accepted because the notion of infinitesmal is very intuitive (it

is used in many older, "non-rigorous" engineering texts) and the

student sees that the axioms presented do capture some properties

of his intuitive understanding of the Infinitesmally small.

Furthermore, they rely on their teacher' s word that the axioms

will be justified in advanced courses.

Our proofs of programs can also rely on such axioms without the

need to go through the construction of the models. On the hand,

to understand why non-standard analysis is relevant to machine

arithmetic one needs to _ be able to understand these

constructions. After the justification is made and accepted one

can just work formally using the axioms.

A first approach to building a real closed field with

Infin_tesmals is to consider the set U of all sequences <ai> of

reals. If ai is a for all i then <ai> can be identified with a

and represents a standard real. Perhaps sequences <ai> of

2. Keisler, J., Foundations of Infinitesmal Calculus,
Prindle-Weber-Schmidt, 1976 m
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postive reals converging, to zero can play the role of

infinitesmals? It is not difficult to interpret the constants 0

and 1 and the function symbols + and * in this set. For example,

<ai> + <bi> = <ai + hi>

<ai> * <bi> = <ai * bi>.

The resulting structure is a ring but not a field. We use the

term "ring" to mean a commutative ring with a 1 distinct from O.

To see why U is not a field consider the elements defined by

ai = if i is even then 0 else 1/i

bi = if i is even I/i else 0

then <ai> -= 0 and <bi> -= 0 but <ai> * <bi> = 0 which can not

happen in any field. In fact <ai> and <bi> are infinitesmals in

our structure, call them dy and dx and it is thus impossible to

form the quotient dy/dx.

In the above example one would like it if either <ai> or <bi>

were to be considered O. But if all sequences converging to 0

were to be considered 0 there would be no infinitesmals! What

does it mean that some <ci> in U other than 0 is to be considered

O? One way to make this precise is to find an equivalence

relation E on U in which <ci> and 0 are equivalent and to replace

U by the collection U/E of equivalence classes. Such

constructions are common in algebra. If the equivalence relation

E satisfies the congruence axiom (sometimes called the
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"substitution Axiom")

xEy&zEw-Yx+z=y+w&x*z=y,w

then one can define . and * on the equivalence classes and still

have a ring. It is shown in algebra that congruence relations on

a ring are in one-to-one correspondence with the ideals of the

ring: if E is such a congruence then J(E) = {c : c E O} is the

corresponding ideal and if J is an ideal then E(j) = { (x, y) : x

- y in J} is the corresponding congruence relation.

•The question thus becomes: find an ideal of U containing dx =

<ai> but not containing dy = <bi> (or vice versa). Now U is a

collection of real sequences that is functions from the set N of

natural numbers to the set R of reals. 0 in U is that function

which is always O. Suppose we relax this condition somewhat and

let J be the set of <ai> such that ai is eventually O. J is an

ideal but unfortunately this ideal doesn't solve our paroblem

since the dx, dy defined previously are not in our ideal. On the

other hand J does suggest an approach namely what makes J an

ideal? We can state the definition of J in the following way:

Let F be the collection of all cofinite subsets of N (i.e. A is

in F iff N - A is finite.) Then J is the set of all <ai> such

that {i : ai = O} is in F.

More generally, let F be a collection of subsets of N and

define J(F) to be the set of <ai> such that {i : ai = O} is in F.

What properties must F have to ensure that J(F) is an ideal?
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Recall that a non-emptys_bset J of a ring is an ideal if

II: a in J .> a * b in J, where b is any ring element

12: a, b in J -> a + b in J.

Suppose a is in J(F) so that Z(a) = {i : ai in J} is in F. For

any b in U, Z(a * b) is a superset of Z(a) so that if F has the

property

FI: A in F and A subset B -> B in F

then II is true. Now suppose a and b are in J so that Z(a) and

Z(b) are in F. Now Z(a + b) is a superset of [Z(a) intersect

Z(b)] so if the non, empty F has the property

F2: A and B in F-> (A intersect B) in F

then FI and F2 imply J(F) is an ideal. We must watch out for one

case however. The ideal consisting of the whole ring will

collapse everything to O. An ideal not equal to the whole ring is

called proper. The improper ideal is the only ideal containing

I. It is is given by an F containing all the subsets of N. By F1

F contains all the subsets just when it contains the empty set.

Thus we add the condition

F3: F does not contain the empty set.

Non-empty F satisfying F1 and F2 are called filters, If in

addition F3 is satisfied the filter is called proper.
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We have actually proved.the following theorem.

Theorem: Suppose <V, +, *, O, I> is any ring and M is any set.

Let U be all functions from M to V. Interpret 0 in U to be the

constantly 0 function and i to be the constantly i function.

Define + and * in U pointwise, i.e. f + g is that function h

such that h(m) = f(m) + g(m). The resulting structure is a

ring. Suppose F is a filter on M (i.e. F is a collection of

subsets of M satisfying F1 and F2.) If J(F) is defined by

{f : Z(f) is in F}

where Z(f)is

{m : f(m) = O}

then J(F) is an ideal in the ring U. J(F) is a proper ideal if F

is a proper filter.

Now when do we get a field? It is a classic theorem of ring

theory that a quotient ring is a field exactly when the ideal J

is maximal. J is maximal means that it _s not contained in any

larger proper ideal. There is a corresponding notion for

filters: F is maximal if it is not contained in any larger proper

filter. If F is a maximal filter will J(F) be a maximal - ideal?

The problem is J(F) may be contained in some ideal J' not of the

form J(F') for some filter F'. (One can easily show that the

mapping F --> J(F) from filters to ideals is one-to-one and

preserves inclusions; the problem isis it sufficiently onto so
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as to preserve maximal Objects?) If the original V is a field

then the mapping will preserve maximal objects.

Theorem: Suppose <V, +, _, O, 1> is a field in the above

theorem and F is a maximal filter. Then J(F) is a maximal

ideal.

Proof: We will use the notation of the previous theorem. What

we will first show is:

Lemma: If J' is any proper ideal of U (and V is a field) then

there is a proper filter F' such that J' is contained in J(F')i

Proof of Lemma: Let J' be a proper ideal of U. We will assume

that V is not of characteristic 2 (i.e., 1 + 1 -= 0). The Lemma

and Theorem are still true in this case but require a separate

proof and we are really only interested in the case where V is _.

Let F' be the set of Z(a) for a in J'. F' will be the required

proper filter. Suppose B is a superset of some Z(a). Let b be

defined by

b(m) = if m in B then 0 else I.

Since J' is an ideal II shows that a • b is in J' but it is easy

to see that Z(a • b) is B. This proves FI. Now suppose a and b

are in J'. We want to show that (Z(a) intersect Z(c)) is in F' to

prove F2. What we need is a c with Z(c) equal to (Z(a) intersect

Z(b)). Since V is a field we can define
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a'(i) = if a(i) = 0 then 0 else I/a(i)

b'(i) = if b(i) = 0 then 0 else i/b(i).

Since J' is an _deal a'' = a * a' and b'' = b * b' are in J'. But

a'' _s 0 on Z(a) and 1 elsewhere and similarly with b''. Let c =

a'' + b''. Since I + 1 -= 0 we have that Z(c) is the

intersection of Z(a) and Z(b). So F' is a filter. Why is it

proper? If the empty set were in F' then it would be Z(a) for

some a in J'. Defining a' and a'' = a * a' as before shows that I

is in J' contradicting the fact that it is a proper ideal. Now

we know that J(F') is a proper ideal. But from the definition of

F' and J(F') it is easy to see that J(F') contains J'. QED.

Now let us return to the Theorem. Suppose F is s maximal filter

and suppose J' is a proper filter containing J(F). Construct F'

as inthe Lemma. S_nce J' extends J(F) we have that F is

contained in F' (this follows from the definition of J(F) and

F'). But F was maximal so F = F'. But by the lemma J(F') = J(F)

extends J' which shows that J' = J(F) and J(F) has no proper
.o

extension among the proper ideals, i.e. it is maximal. QED.

Thus we see that maximal filters allow us to define extensions

of the reals which are fields. What about the order relation

which plays such a crucial role in analysis? If we define <= on

the ring U which is a product of R's by

<ai> <= <bi> iff {i : ai <= bi] in F
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then the congruence relation, E(F), defined by the proper

filterF (thisis E(J(F))usingour previousnotation) satisfies
the substitution axiom

a E(F) b & c E(F) d & a <= c -> b <= d.

Thus one can define <= on the quotient ring. Will it linearly

order this ring? Not necessarily. It is easy to show that <= on

U is a partial order. The problem is dichotomy. Fortunately,

everything goes right if F is a maximal filter. To see why we

quote without proof the following theorem on filters.

Theorem: Let M be a set and F a proper filter of subsets of M.

Then the following are equivalent:

I. F is a maximal proper filter;

2. For all subsets A of M either A or M - A is in F;

3. If (A union B) is in F then either A or B is in F.

In any of these case F is called an ultrafilter.

To apply this theorem given a and b in the quotinet ring (which

is a field) let

A = {i : ai <= bi}

B = {i: bi <= ai}.

Now A union B is all of M so it is in F. Since F is an

ultrafilter either A is in F or B is; this means either a <= b or
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b <= a. In a similar way one shows all the other axioms for

linear order. In fact more is true. The quotient structure is a

real closed field! To explain why we consider the general

ultraproduct construction.

2.3.3 Filters and Ultrafilters

To make our discussion self contained we repeat some of our

previous definitions and theorems.

Given a set I, a proper .filter ove___/_r_ is a non-empty set F of

subsets of I which satisfies the followin E axioms:

i. If S is an element of F, T is a subset of I and S is a

subset of T, then T is an element of F.

2. If S and T are elements of F, then S intersect T is an

element of F.

3. The empty set is not an element of F.

Informally, a filter is a collection of "large" subsets of I.

If F is the improper filter then all subsets are "large".

An ultrafilter is a proper filter that is not a proper subset

_f another proper filter, i.e. a maximal filter. Ultrafilters

_an be characterized axiomatically by adding to the abov@ axioms

the axiom

If S is a subset of I, then either
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S is an element qf F or I- S is an element of F

By an argument which uses the axiom of choice in the form of

Zorn's Lemma, every proper filter is a subset of some

ultrafilter.

A non-empty collection G of subsets of I is said to have the

finite intersection property iff

For every finite subset {SI, S2, ... , Sn} of G,

intersection(Sl, $2, ... , Sn) is non-empty

G can be extended to a proper fi]ter iff G has the finite

intersection property.

For any i an element of I,

{ S : S is a subset of I and i is an element of S ]

is an ultrafilter. Such ultrafilters are called .principal

ultrafilters. Every ultrafilter over a finite set I is

principal. If I is infinite, then

( S : S is a subset of I and I - S is finite ]

_s a proper filter. It is called the filter of cofinlte sets.
\

Any ultrafJlter containing it must be non-principal. Further, if

J is an infinite subset of I, then

{ S : S is a subset of I and I - S is infinite ] U [J]
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has the finite intersection property . Thus, it is a subset of

some proper filter, which is a subset of some ultrafilter, and

this ultrafilter must be non-principal. Thus, any infinite

subset of I is an element of some non-principal ultrafilter.

2.3.4 Ultraproducts and Ultrapowers

Fix a first-order language L which for convenience we assume is

single sorted and an index set I. Suppose we have a structure Mi

for L for each i in I and a filter F over I. The filtered product

of the Mi over F is a structure U for L defined as follows:

I. The universe of U is the set of equivalence classes of

elements of the cartesian product of the universes of the

Mi's. If <ai> and <bi> are two elements of the cartesian

product, they are equivalent iff { i in I : ai = bi } is an

element of F. The fact that this is an equivalence relation

follows from the fact the F is a filter.

2. If k is a constant symbol of L, and ki is its

interpretation in Mi, then the interpretation of k in U is

[<ki>] where the square brackets indicate the equivalence

class.

3. If f is an n-ary function symbol of L, and fi is its

interpretation in Mi, then the interpretation of f in U is

a function g such that
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g([<ali>],.,.,[<ani>]) = [<f(ali,...,ani)>]

This can be shown to be well-defined. Well defined means:

[<all>] = [<bli>] & ... & [<ani>] = [<bni>]

->

[<f(ali,...,ani)>] = [<f(bli,...,bni)>]

4. If p is an n-ary predicate symbol of L, and pi is its

interpretation in Mi, then the interpretation of p in U is

a predicate q such that

q([<ali>,...,[<ani>]) iff

( i in I : pi(ali,...,ani) } is an element of F

Again, this is well-defined.

The M_ from which U is constructed are called the components of

U. If F is an ultrafilter then U is called an ultraproduct. An

ultrapower is simply an ultraproduct in which each Mi is the same

structure.

2.3.5 Properties of Ultraproducts

If the universe of each Mi is a fixed set S, then we can define

a one-one function inj from S into the universe of U by

inj(x) = [<x>]

(i.e. inj(x) is the equivalence class of the I - tuple
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<x,x,...>). The function inj is one-one. If each Hi is the same

structure, then inj is a homomorphism of structures, and the

elements in the image of inj are .called the standard elements of

the ultrapower. If F is principal, then inj will be an

isomorphism. Otherwise, inS will not be onto, and non-standard

elements will exist.

We are now ready to state a very remarkable theorem which is

far from obvious.

Fundamental Theorem of Ultraproducts: If A is a sentenceof L,

A will be true in U iff

{ i in I : A is true in Mi }

is an element of F. If U is an ultrapower then inj is an

elementary embedding, that is the image of M under inj is an

elementary subsystem of the ultrapower U.

Clearly, Jf extra constant, function or predicate symbols are

added to L, and an interpretation of the symbols Js given in Mi

for each j in I, these will induce a corresponding interpretation

Jn U.

The above notions and constructions generalize in a completely

straightforward way to many-sorted logics. In addition to being

able to add extra constants, functions and predicates, extra
4

sorts can be added at will, and an interpretation of each new

sort in each Mi will induce a corresponding new sort in U.
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2.4 Formalizin E the Asymptotic Concept

We formalize the asymptotic paradigm using a certain class of

ultraproducts. LO is a language with the following sorts,

constants, functions and predicates:

- Four sorts:

i. RR, whose standard interpretation will be the real

numbers;

2. NN, whose standard interpretation will be the natural

numbers (regarded as disjoint from the real numbers

rather than as a subset of the reals);

3. NNseq, whose standard interpretation will be the

functions from the natursl numbers to the natural

numbers;

4. RRseq, whose standard interpretation will be the

functions from the natural numbers into the real

numbers;

- The constants, functions and predicates of the language of

real closed fields, applied to the sort RR and any other

symbols for real objects which we might need;
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- The constants, functions and predicates of the language of

integer arithmetic, applied to the sort NN and any other

integer objects we might need;

- Nev, a binary function of signature <NNSeq, NN, NN> (this

represents the function which takes a sequence <ni> and an

integer j and returns nj);

- Rev, s binary function of signature <RRSeq, NN, RR> (this "

represents the function which takes a sequence <ri> and an

integer j and returns rj);

- CR, a unary function of signature <RR, RR>;

- M-, m-, m+, M+ and e, constants of sort RR.

We will uniformly abbreviate Nev(s,i) as s(i) and Rev(t,j) as

t(j).

Let I be the set of natural numbers. The Mi are obtained as

follows: fix sequence <CRi> of functions from _ to R, and

sequences <MJ->, <mi->, <m_+>, <Mi+> and <el> of real numbers

such that each CRi, M_-, mi-, mi+, Mi+ and ei satisfy the

cropping function and error axioms, and

I. <mi+> and <mi-> both converge to O;

2. <Mi-> goes to minus infinity and <Mi+> goes to plus

infinity;
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3. <el> goes to O.

(i.e., CRi "convergesto perfect precision". The fact that the

various sequences satisfy the cropping function and error axioms

implies that

CRi(x) goes to x uniformly on bounded closed intervals)

Mi is the structure for LO in which

I. RR is interpreted as R;

2. NN is interpreted as N;

3. NNseq is interpreted as_the set of all sequences of natural

numbers;

4. RRseq _s interpreted as the set of all sequences of real

numbers;

5. The real closed f_eld symbols and any additional real

objects are given their standard interpretations in R;

6. The integer arithmetic symbols are given their standard

interpretations in N;

7. Nev and Rev are interpreted as indicated above;

8. CR is _nterpreted as CRY;

9. M-, m-, m+, M+ and e are interpreted as Mi-, mi-, mi+, M_+

and ei respectively.
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Let F be a non-principal ultrafilter over I. The resulting

ultraproduct U is a combination of non-standard model of the

theory of _, a non-standard model of the integers N, a set of

"hypersequences" of non-standard integers (i.e., sequences <hi>

where i ranges over both standard and non-standard integers) and

a set of hypersequences of non-standard real numbers. Call the

class of all such ultraproducts obtained by the above

construction NSM.

2.4.1 Further Symbols

In this section we define an extension of the language LO.

First, as before one can define MR(x), ++, **, --, and // in

terms of CR. We also extend the language by adding a unary

predicate symbol "std" of signature <RR>. For each U in NSM,

interpret std in U as the standard elements of U, that is those x

in U of the form inj(y) for y in R. By an abuse of notation, std

will be used for the standard elements of any of the sorts. In

addition, add the following defined symbols"

I. fln(x) iff some y:RR [std(y) & Ixl <= y] ("x is finite")

2. inf(x) iff -fin(x) ("x is infinite")

3. diff(x) iff all y:RR [std(y) & y > 0 -> ix l < y] ("x is

infinitesimal")

4. x == y iff diff(x - y) ("x is infinitely close to y")
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We call the resultinglanguageL. For certain reasons which

will become apparent later, we wish to distinguish symbols and

formulas which have an interpretation in each Mi (i.e. symbols

and formulas of LO) from those which only have an interpretation

in the U's (i.e., std and any symbol defined in terms of std).

The former symbols and formulas we refer to as internal, and the

latter as external.

2.4.2 Axioms

Let NSA be the set of all formulas of L which are valid for

every model in NSM. These are what we wish to consider the

"asymptotically true formulas". Any sentences which we adopt as

axioms for the paradigm must be in NSA. The choice of what axioms

to include is largely experimental; we ezamine what is needed in

proofs. The following statements in English summarize the axioms

which we have been using to date in verifying floating point

programs. This list is somewhat overexhaustive, and will be cut

down as much as possible as future experience in using the

asymptotic paradigm indicates which are vital and which can be

ddspensed w_th.

I. The axioms of real closed fields for RR plus any axiom

needed for any additional symbol for a real object (e.g. if

we consider the function symbol exp of signature <RR, RR>

in the language then we add axioms like
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all x, y:RR(exp(x+ y) = exp(x)* exp(y)

exp(O)= 1

2. Axioms for integer arithmetic over N.

3. If A(x) is any formula of L with x a variable of type R,

the axiom which says that if S = { x in R : std(x) & A(x) ]

is non-empty and bounded above by a standard real, then S

has a least upper bound.

4. The definitions l_nking defined symbols to the more

primitive symbols (e.g. x == y <-> diff(x - y)).

5. The cropping function and error axioms.

6. diff(m-) and diff(m+).

7. inf(M-) and inf(M+).

8. diff(e).

9. fin(x) -> CR(x) == x.

i0. Ax£oms which guarantee the closure of RRSeq, and NNSeq

under explicit and recursive definitions.

ii. The fact that std in each sort forms an elementary

subsystem can be given by an axiom scheme.
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Why is fin(x) -> CR(x) == x in NSA? Here is a proof. Fix an

ultrafilter F and a sequence <CRi> as above. Pick an element x =

[<xi>] from U such that fin(x). This implies that there exists b
in R such that

Ixl < inj(b)

which means

J = { i in I : ]x_[ < b } is in F

which implies that J is infinite. Therefore, every term of the

sequence

<xi : i in J>

is in [-b, b]. Since CRi(x) --> x uniformly on [-b, b], the

sequence

<CRi(xi) - xi : i in J>

goes to zero, i.e. for any positive c in _ , there exists n such

that

i in J and i > n -> ]CRi(xi) - xi I < c

or

{ i in I : ]CRi(xi) - xi[ < c } contains

J intersect {n + l, n + 2, ...}
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J and [n + i, n + 2, ...}.are both in F, so their intersection is

in F, so any set containing their intersection is in F, so

' { i in I : [CR(xi) - xi I < c } "

is in F. Therefore,

ICR(x) - x I < inj(c)

in U. Since this was true for all positive c in R,

diff(CR(x) - x)

or

CR(x) == x QED.

At this point, we can give a precise statement of the first

cropping function axiom. Any linearly ordered set is infinite if

and only if there is neither a strictly ascending sequence nor a

strictly descending sequence. This is a consequence of Ramsey's

theorem. We have found in our proofs that an adequate axiom on

MR is:

all s:RRseq [all n:NN [MR(s(n)) & s(n + l)<=s(n)]

-> some n:NN [all m:NN [n<m -> s(n)=s(m)]]]

Since this sentence holds in every Mi, it holds in U. The

corresponding statement for ascending sequences also holds in U.
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We will formal_ze the first cropping function axiom by the these

two statements.

The following is a list of useful theorems which can be deduced

from the above axioms.

I. Every standard real is finite.

2. If x is finite, there exists a standard y such that y ==

X.

3. The finite elements of RR form a convex [3] proper subring
of U.

4. fin(x'y) -> fin(x) or fin(y)

5. The inverses of non-zero infinitesimals are infinite.

6. The inverses of infinite numbers are infinitesimal.

7. The infinitesimal elements form an ideal in the finite

elements.

8. diff(x*y) -> diff(x) or diff(y)

9. The infinitesimal elements are convex.

I0. == is an equivalence relation.

3. Given a set S with a partial ordering <= on it, a subset T of
S is convex iff all x,y,z (x in T and z in T and x <= y <= z -> yin T)
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II. fln(x) -> fin(CR(x))

2.4.3 Rationale

What's "asymptotic" about the above? Suppose we fix a program

P which takes a floating point number as input and returns a

floating point number as output, and suppose this program always

terminates. Denote the function so computed by P. A given CR

over R determines which numbers can be inputs to P (namely the

fixed points of CR), and also determines what P(a) is for a given

input (obtained by executing P on a with floating point

operations being the precise operations followed by applying CR).

Thus, given a sequence <CRi> as above, we get a sequence <Pi> of

functions, with each Pi defined on the fixed points of CRi in

range. This sequence of functions induces a single function

(call it P) defined on the fixed points of CR in the

ultraproduct. This function will have the

first-order-expressible properties possessed by "almost all"

(i.e. all but finitely many) of the PJ's.

Suppose P was intended to compute the square root of its

input. How would we express the specification for a square root

program mentioned above? One way to express it might be

a >= 0 & MR(a) & fin(a) -> P(a)*P(a) == a

Suppose we could prove the above statement about P from axioms
"<

in NSA. Now, suppose there was some sequence <CRi> going to
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perfect precision, some.positive(standard)real b, and some

sequence of (standard) reals <ai> such that each ai is in the

interval [-b, b], CRi(ai) = ai, and the sequence <Pi(ai)*Pi(ai) -

ai> does not converge to zero (in other words, as the precision

increases, we can choose machine representable numbers in a fixed

bounded interval such that the result of running Pi on ai doesn't

get closer and closer to the square root of ai). There exists a

positive real number c such that for all i, there exists j > i

such that

]Pj(aj)*Pj(aj) - ajl > c

Thus, the set

J = {J : IPj(aj)*Pj(aj)- ajI > c}

is infinite. Let F be a non-principal ultrafilter containing J.

In the following statements, [<a_>] is denoted by a, inj(b) is

denoted (by an admitted abuse of notation) by b, and inj(-b) =

-inj(b) by -b. Similarly, inj(c) is denoted by c.

Since

{ i _n I : CRi(ai) = ai } = I

which is in F,

CR(a) = a

in the ultraproduct. Since
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[ i in I : -b <= ai <= b } = I

which is in F,

-b <= a <= b

or

lal < b

in the ultraproduct. Since std(b), this implies fin(a).

By choice of F,

[ i in I : IPi(ai)*Pi(ai) _ ai[ > c }

is in F, so

[P(a)*P(a) - a[ > c

in the ultraproduct. Since std(c) and c > O,

diff(P(a)*P(a) - a)

or

-(P(a)*P(a) == a)

This contradicts our original supposition that we were able to

prove P(a)*P(a) == a for all non-negative, finite fixed points of

CR. Thus, if we could prove the proposed postcondition for P in

our system, it would imply that for any <CRi>, any b and any <ai>

as above, P_(ai)*Pi(ai) - ai --> O. This is in some sense what we
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mean by saying "P .computes the square root function

asymptotically". Thus the above formalization allows to express

specifications of the asymptotic behavior of programs easily and

naturally. It also provides us with a natural formalization of

the concepts of "large" (i.e. infinite), "small" (i.e.

infinitesimal) and "close" (i.e. infinitely close).

2.4.4 Induction and Recursion in Non-Standard Models

We will need to do proofs by induction on N in the course of

proving programs, and thus we need to investigate how this is

done in a non-standard setting.

The set-theoretic statement of the induction principle ("Every

subset of the integers containing 0 and closed under successor is

the set of all integers") does not hold for non-standard models

of arithmetic (the proper subset consisting of the standard

integers violates the principle). The first-order formula

statement of the induction principle ("For every first-order

formula A(i) where i is a free variable i of sort NN,

A(O) & all i:NN [A(i) -> A(i+l)] -> all i:NN [A(i)]")

also does not hold for an arbitrary formula of L. For example, it

does not hold for A = "std(i)". It does, however, hold if A is an

internal formula. Why is this restriction sufficient?

If A is internal, then every symbol occurring in A has an
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interpretation in each Mi. In each Mi, NN is interpreted as the

standard non-negative integers, and so the above formula stating

the induction principle for A is true in Mi. Since it is true in

every Mi, it is true in U. The preceding argument obviously would

not go through if A contained an occurrence of a symbol which has

no interpretation in the Mi.

If A(i) is not a formula of LO, the following more limited

statement holds:

A(O) & all i:NN [A(i) -> A(i+l)] ->

all j:NN [std(j) -> A(j)]

that is, if A holds for O, and A(i) implies A(i+l), then A holds

for all standard integers. This is true because the set of all

standard integers which satisfy A is a subset of the standard

integers which contains 0 and is c]osed under the operation of

adding 1. By the principle of set induction, which holds for the

standard integers, the set of all standard integers satisfying A

must contain all standard integers.

The same general principle also holds for definitions of

hypersequences by recursion. That is, a definition which

involves some external symbols will only define the hypersequence

on the standard integers.

To summarize:
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1. Proofs by induction.in the non-standard case work just as

in the standard case for statements expressible in LO.

Proofs by _nduction of statements not expressible in LO are

more limited.

2. Definitions of hypersequences in the non-standard case,

whether by formula or by recursion, work just as in the

standard case, but only for definitions expressible in LO.
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Chapter 3

The Asymptotlc Paradigm and the Verification Condltlon Approach

3.1 Verification Condition Generation

The classical method of proving programs correct entails the

use of two languages: a programming language and an assertion

language. The latter is usually an extension of the Boolean

expression portion of the former. The basic datum for the

Verification Condition Generation (VCG) approach is an asserted

program, i.e. a Hoare sentence {p} p {q} with Pre Condtion p and

Post Condition q togethr with embedded assertions attached to

some of the executable statements in P. The only requirement is

that there be an attached assertion within each loop. The basic

theorem of Floyd shows how to construct mathematical statements

SI, .., Sn with the property that if all the SI are true then so

is the starting Hoare sentence. The generation of the

verification conditions (VCs) SI, .., Sn is formal and schematic,

that is they only contain the symbols found in the statements of

P and don't depend on the meaning of the symbols. Thus one can

speak of proving the Hoare sentence for programs which really
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can't be executed, such as programs over our non-standard

structures in NSM. What one really proves is the Verification

Conditions $I, .., Sn from the chosen axioms of NSA. This is a

formal exercise. As we have illustrated, the truth of the Hoare

sentences over the structures U in NSM implies increasing

precision over the really executable domains of actual machine

reals.

How do we apply the asymptotic paradigm in the context of the

VC method? We simply th_nk of the floating point variables if

the program to be verified as ranging over the

machine-representable elements of some model in NSM. Since there

are certain features of most programming languages which involve

interaction between floating point and integer variables (such as

rounding a real off to an integer, we should also think of the

integer variables as ranging over a non-standard model of the

integers. Pre- and postconditions and internal assertions for

programs can then be written using external symbols, and the

asymptotic axioms can be used to prove VCs.

The above approach can be used to do non-trivial asymptotic

analysis of programs. There is a problem with it however.

Consider the following asserted program:
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{TRUE}

X := 1;
DO WHILE (X//2 < X);

{ 0 < X <= I & -diff(X) & MR(X)}

X := X//2;
END;

END;

{FALSE}

X is a float2ng point variable.

For any finite machine real input XO this program halts. Since

that is the case the Hoare sentence {TRUE} P {FALSE} is not

true. On the other hand, the VCs in the non-standard case are

provable! We can prove that the loop invariant is true when the

loop _s entered, that it is an invariant of the loop, and that

the Post-Condition follows from the negation of the loop guard

and the invariant. Here are the VCs.

VC 1

TRUE

IMPLIES

0 < 1 <= 1 & -diff(1) & MR(l)

VC 2

0 < X <= i & -diff(X) & X//2 < X & MR(X)
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IMPLIES

0 < X//2 <= l & -dill(X//2) & MR(X // 2)

VC 3

-(X //2 < X) & 0 < X <= i & -diff(X) & MR(X)

IMPLIES

FALSE
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The first VC is easily proved, since 1 > 0 is an axiom of

ordered fields, <= is reflexive and 1 is standard and thus not

infinitesimal. We also see that we need MR(l). Our cropping

axioms do not imply this and this is an oversight which we

discovered through experimentation. That MR(l) holds follows

from our final cropping axiom Axiom 10.

To prove the second VC, assume the hypothesis. First, we will

prove -diff(X//2). Suppose diff(X//2); then X//2 == 0. 0 < X <= 1

implies 0 < X/2 <= 1/2. Therefore, X/2 is finite, so

X/2 == CR(X/2) = X//2 == 0

so X/2 == O. But multiplying both sides by 2 (a finite number)

gives us X == O, i.e. diff(X), a contradiction. Therefore,

-diff(X//2).

Next, we want to prove 0 < X//2 <= i. By the hypothesis, X//2 <

X <= 1, so X//2 <= 1. 0 < X implies that 0 < X/2, so by

monotonicity of CR,

0 = CR(O) <= CR(X/2) = X//2

If X//2 = O, then diff(X//2) which we have already disproved.

Therefore, 0 < X//2. Finally one has MR(X // 2) since the X // 2

is CR(X / 2). This finishs the second VC.

To show the third VC we show that the hypthosis
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~(X //2 < X) & O < X <= i & -diff(X) & HR(X)

is always false (so that it implies FALSE). In fact the loop

guard (X // 2 < X) will always be true when 0 < X and -diff(X).

How could X // 2 = CR(X / 2) be >= X? Since X > 0 we have 0 < X/2

< X. Applying CR we get

CR(O) = O <= X//2 <= CR(X).

If X // 2 >= X then

x <= x // 2 <= CR(X)

so that applying CR we would get

CR(X) <= X //2 <= CR(X)

which shows that X // 2 is CR(X). But MR(X) so X // 2 is X. But X

// 2 == X/2 so X == X/2. Multiplying both sides by 2 and then

subtracting X gives X == 0, a contradiction.

What went wrong? The Hoare sentence is proved, yet it is not

true in the finite cases. What the proof of VC3 actually shows

is that in non-standard models the program does not terminate.

But since it doesn't terminate it must be that the sequence of

values of X for the successive iterations of the loop form an

infinite, strictly descending sequence of machine reals, which

violates the first cropping function axiom.

Consider a finite case with a fixed CR over R. By the
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monotonicity of CR, we can prove that the sequence of values of X

is non-increasing. By the first cropping function axiom, this

sequence must eventually reach a fixed point, at which point the

loop terminates. This only happens, however, because of rounding

error or underflow. At some point, X becomes so small that

either a division by 2 causes it to underflow to 0, which is then

the fixed point, or X//2 is rounded up to X, in which case that

value of X becomes the fixed point. If we take a sequence of

cropping functions <CRi> going to perfect precision, we find that

it takes more and more iterations of the loop before this

happens. Let Ni be the number of iterations it takes for the

loop to terminate with cropping function CRi. The corresponding

integer [<Ni>] in the ultraproduct is non-standard because Ni

goes to infinity. Thus, the loop terminates when executing over

the non-standard domain, but only in a non-standard number of

steps. Nothing in our naive application of the asymptotic

paradigm made allowance for a program to execute for a

non-standard number of steps.

We can, however, incorporate the idea of a program executing

for a non-standard number of steps into the VC approach. Given a

sequence <CRi>, we can imagine running a program P with cropping

function CRi for each i. Suppose P contains a floating point

variable X. As P runs with CRi, X takes on various machine real

values for various numbers of execution steps. This defines a

sequence of machine real values, one sequence for each floating
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point variable. Likewise we get a sequence of integers for each

integer variable, and a sequence of "control points" which define

how control passes through P as execution progresses. We get one

such collection of sequences for each CRi. These sequences can be

combined into a collection of hypersequences in the corresponding

ultraproduct. We get a hypersequence of non-standard reals for

each floating point variable, a hypersequence of integers

(possibly non-standard) for each integer variable, and a

hypersequence of control points in P. These hypersequences define

the execution of P over the non-standard domain for non-standard

numbers of steps.

How does this idea of hypersequences actually enter _nto the

verification of a program in the VC approach? Actually, the

impact _s relatively minimal. The same verification conditions

are generated, and they are proved in the same way as before.

There is only one major difference, which occurs in the proof of

loop invariants. The proof of a loop invariant is essentially a

proof by induction on the number of iterations of the loop. In

other words, we are essentially proving
\

all n:N [ the loop invariant is true after n iterations ]

by induction on n. However, recall that when performing

_nduction over the non-standard dntegers, if the statement we are

proving is external, the proof only holds for standard integers.

This means that if a loop invariant is an external statement, the
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usual VC method proof only proves that the loop invariant is true

for a standard number of interations. Thus, if we need to use an

external invariant, we must also prove that if the loop ever

terminates, it terminates in a standard number of steps.

Otherwise, the loop may run for a non-standard number of steps

and then terminate with the loop invariant false. Notice that

this is exactly what happens in the example above: the loop

_navriant contains the external symbol "= " and so the invariant

is only true for a standard number of iterations. As shown

above, the loop does terminate after a non-standard number of

steps with the loop invariant false.

The need to prove termination in a standard number of steps for

external loop invariants is the only real change that must be

made in the VC method in order to apply the asymptotic paradigm.

For internal loop invariants, the method works exactly as

before. We present an example of an external invariant and a

proof of termination in a standard number of steps, in the

section 4. In general we will wish to avoid using external loop

invariants wherever possible, since our experience in examining

programs executing over non-standard domains suggests that such

programs rarely execute in a standard number of steps. In some

cases we can replace an external invar_ant by an internal

invariant which implies the original invariant. For example, we

will often need to show that for every iteration of a loop,

certain quantities are finite. We cannot prove this by making it

3 - 9



part of the loop invariant, since "fin" is an external symbol.

What we generally do in such cases is to prove the appropriate

quantities finite by showing that their values are bounded by

certain fixed numbers which are finite. Saying that a number is

between two other numbers is an internal statement, and if the
i

bounds are fixed finite numbers, then the quantity they bound is

finite by the convexity of the finite numbers.

3.2 Solution of a Differential Equation by Euler's Method ;

We wish to write and verify a program to compute an

approximation for y where

dy
-- = Y, y(O) = 1
dx

by the Euler method. Consider the following asserted program:
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[ X > 0 & fin(X) & N _ 0 & fin(N) }

Y := i;
POS := O;
I := O;
DO WHILE(POS < X);

{ POS == (I*X)/N & Y == (i + (X/N))^I & I <= N ]

Y :=Y**(z++ (X//N));
POS := POS ++ (X//N);
I := I + i;
END;

END;

[ Y == (i + (X/N))^N)
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X is the x for which y(x) is being computed. N is the number of

steps to be performed in applying the Euler method. Y is the

output of the program. POS is the current value of x in the

Euler method. I is the number of times the loop has been

executed, and is in the program primarily to be used in the iQop
4

invariant and in the proof of correctness. Note that we are

implicitly assuming that whenever a floating point operation is

performed using an integer variable, the value of the integer

variable _s converted to the corresponding element of R.

Let us first examine the pre- and postconditions. The

postcondition simply states that the ouput value should be

infinitely close to the exact value given by the Euler method.

What this says in terms of asymptotic behavior is that as the

precision of the cropping function _ncreases, the output value

should converge to the exact Euler method value.

The precondition requires that both X and N be positive and

finite. What does the finiteness requirement mean? Recall that

"finite"
essentially means "bounded by a fixed number as the

precision increases." Suppose we increased X without bound as

the precision increased. As X becomes larger and larger, the

magnitude of the error in computations like X//N also becomes

larger. If we _ncreased X fast enough, this might offset the

increasing precision of CR, and so the output might not converge

to the exact answer. Suppose, on the other hand, we increased N

without bound as the precision _ncreased. As N becomes larger
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and larger, the number of.times the loop iterates increases, and

so the cumulative error in the entire computation increases.

Again, if N increased fast enough, this could offset the

increasing precision of CR. In fact, if we left out these

restrictions on X and N we wouldnot be able to prove the
program.

The loop invariant says that the current value of POS is

infinitely close to I times the step size, and Y is infinitely

close to the exact Euler method value after I iterations, and

that I is <= the total number of steps to be performed in the

Euler method. The first thing to notice about this invariant is

that it is not an internal formula because it contains the symbol

== which is defined using std. Thus, the standard VC methods

will only prove that the loop invariant ho]ds for a standard

number of iterations of the loop. We will have to show that the

loop terminates in a standard number of steps.

Let us now examine the VCs for this program. There are three

of them. The first one says that if the precondition is met, the

locp invariant is true when the loop is initially entered. The

second says that if the loop invariant _s true at the top of the

- loop and the loop guard is true, then the loop invariant will be

true after the loop body is executed. The third VC says that if

the loop invariant is true at the top of the loop and the loop

guard is false, then the postcondition is true when the program

terminates.
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VC 1

X > 0 & fin(X) & N > 0 & fin(N)

IMPLIES

0 == (O*X)/N & I == (i + (X/N))^O & 0 <= N

VC 2

POS == (I*X)/N & Y == (I + (X/N))_I & I <= N & POS < X

IMPLIES

POS++(X//N)== ((I+I)*X)/N

& Y**(I++(X//N)) == (I+(X/N))^(.I+I) & I+l <= N

vc 3

POS == (I*X)/N & Y == (I + (X/N))^I & I <= N & -(POS < X)

IMPLIES

Y == (I + (X/N))^N
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The proof of VC 1 is simple,sincethe conclusion of the

implication simplifies to

0 -= 0 & 1 == I & 0 <= N

The first two conjunctions are true because == is an equivalence

relation. The last is true afortiori, since 0 < N.

Next, examine VC 3. The proof breaks into two cases, the case

when X is infinitesimal and the case when it is not.

If X is infinitesimal, then X == 0. N is finite and so is a

standard integer. Therefore, I/N is a standard, non-zero

rational number and so we can multiply both sides of X == O to

get

X/N == 0

From this we get

1 + X/N == 1

We now use the fact that for any standard integer J,

(I + X/N)_J == i (I)

The proof of this is in Appendix A.

From the hypothesis of VC 3, we have I <= N, and N is standard,
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so I is standard. By applying (i) with J = I and J = N, we get

Y == (I + (X/N))^I == 1 == (I + (X/N))^N

This proves VC 3 in the case where X is infinitesimal.

Now, suppose X is not infinitesimal. We have

I <= N & Y == (I + (X/N))^I

If we can prove that in fact I = N, then the conclusion of VC 3

will be proved.

Suppose I < N. Then (I*X)/N < X. Thus we have that POS >= X but

POS is infinitely close to something less than X. This implies

that POS == X, and so (I*X)/N == X by the transitivity of ==. We

can now multiply both sides of (I*X)/N == X by N/X (note that

this is finite because N Is finite and X is not infinitesimal) to

ge t I == N. But we assumed I < N, and I and N are both integers,

so the difference between them must be at least I and so cannot

be infinitesimal, a contradiction. Therefore I must be equal to

N and VC 3 is proved.

Now examine VC 2. First we prove

POS ++ (X//N) == ((I + I)*X)/N

from the hypothesis of the VC. First we prove that all the

qua,,tities we need to deal with are finite. I is a positive
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integer, I <= N and N is finite, so I is finite. X is finite and

N is a positive integer, so X/N is finite. Therefore,

X//N = CR(X/N)== X/N

and so X//N is finite. I f_nite and X/N finite implies (I*X)/N

_s finite. POS is infinitely close to (I*X)/N, so POS is
finite.

By adding POS to both sides of X//N == X/N, we get

POS + (X//N)== POS + (X/N)

The left side is a sum of two finite numbers and so is finite.
Therefore,

POS++ (XI/N)= CR(P0S+ (X//N))

== POS + (X//N)

==POS+ (XlN)

== ((I*X)IN) + (XIN)

= ((I+ I)*X)/N

Next, we prove

Y**(1 ++ (X//N)) == (1 + (X/N))_(I + 1)

X/N and X//N are finite, so 1 + (X/N) and i + (X//N) are finite.

From this we get
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1 ++ (XIIN)- CR(I+ (XlIN))

==1 + (XIIN)

== i + (XlN)

We now use the fact that if Z is a finite floating point number

and J is a finite integer, ZAJ is finite. The proof is in

Appendix A. By this, (I + (X/N))AI is finite, and Y is infinitely

close to it, so Y is finite. Therefore, Y_(I ++ (X//N))is
finite, and so

Y**(I ++ (X//N)) = CR(Y*(1 ++ (X//N))

== Y*(I ++ (XIIN))

== Y*(1 +(XIN))

== (1 + (XIN))'I * (1 + (X/N))

= (I + (XIN))'(I + I)

Finally, we wish to prove that I + 1 <= N, i.e. that I < N.

Suppose not, R.e. suppose I >= N. We have I <= N, so I = N. By

substituting into the other conjuncts of the hypothesis, we get

POS == X and Y == (I+(X/N))^N. We also have POS < X. Is this a

contradiction? The answer is no. It is possible to have POS < X

and at the same time POS == X, as long as POS is only less than X

by an infin_teslmal amount, Does th_s mean that the program has

an error in it, or do we just need to change our loop invarlant

to one that will give us provable VCs?
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Consider the situationin which I = N, POS == X and POS < X.

This occurs when the loop has executed N times, POS has been

incremented by X/N each time, but due to rounding errors, POS

turns out to be slightly less (i.e. infinitesimally less) than X.

In this case, the loop will execute at least once more, which

will result in a value for Y that is too large. Thus we see that

this program is actually incorrect. The basic problem is that

the loop guard cannot be trusted to terminate the loop correctly

due to roundoff error in incrementing POS. The easiest way to fix

the program is to change the guard to I < N. Having done this, we

have no need of the variable POS, since it is not used anywhere

but in the loop guard, so we can change the program to

{ X > 0 & fin(X) & N > 0 & fin(N) }
Y := I;
I := O;

DO WHILE(I < N);

{ Y == (I + (X/N))*I & I <= N }
Y := Y**(1 ++ (X//N));
I := I + I;
END;

END;

{ Y == (I + (X/N))AN }

The proofs of the three VCs generated for this program are

proved by arguments similar to those above (in fact, the proofs

are even easier). Note that for this program, there is no

difficulty in proving that the loop terminates after N

iterations, since we have I <= N from the invariant and I >= N

from the negation of the loop guard.

The loop invariant for the fixed program is still an external
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formula, so the proof of the second VC only implies that the loop

invariant holds for a standard number of iterations of the loop.

We must therefore show that the loop terminates in a standard

number of steps. This is easy though. The quantity N - I is an

integer which decreases by 1 every time the loop body is

executed. Therefore the loop cannot iterate more than N times,

and N is standard.

3.3 Finding a Zero of a Continuous Function by Bisection

The second example is also carried out in the VC approach.

Suppose we have a continuous function fO from R to R, and two

numbers A and B such that f0(A) and f0(B) are of opposite sign.

_e know from the Intermediate Value Theorem that fO must have a

zero between A and B. We wish to write and verify a program which

finds an approximation to that zero. Before we present a

handidate program, let us examine the problem to see how we might

brite such a program and what its pre- and postconditions should

be.

First of all, to use non-standard analysis on a function we

must make a non-standard extension of it. Given a non-standard

model U from NSM, we can get a non-standard extension of fO by

addlng a unary function symbol, say F, to L, and interpreting it

as fO in each component of U. These interpretations will induce
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an interpretationof F in U which we will call f. For any x in

R__,

f(inj(x)) = f([<x,x,...>])

= [<fO(x),f0(x),...>]
= inj(fO(x))

That is, f is identical with fO on the standard elements. Thus,

in particular, f takes standard elements to standard elements.

Next, note that in general, we will not really be able to

compute f, but rather some approximation to f given by a

program. Suppose we have a program which computes a function g
such that

all x:RR [fin(x) -> MR(g(x)) & g(x) == f(x)]

In other words, g is a "machine version" of f on the finite

reals. We will assume that the A and B we have are machine

reals, and that g is a sufficiently good approximation to f at A

and B that g(A) and g(B) are also of opposite sign (if these two

assumptions do not hold we can hardly expect to be able to

compute an approximate zero for fO).

How would we go about f_nding a zero of fO? The usual method

is to use some algorithm which generates a number C between A and

B which is a "guess" at the zero (we w_ll use bisection). If

g(C) = O, the process terminates. If g(C) is not O, then it is
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either opposite in sign tp g(A) or g(B). Whichever of the "old"

endpoints has opposite sign, it and C form the endpoints of a

new, smaller interval, and the process is repeated with the new

endpoints. This process is iterated until either a zero of g is

found or the endpoints become "close". In the latter case, either

one of the endpoints can be taken as the approximation to the

zero.

We can formulate the specifications for the program as the

following pre- and postconditions. AO and BO are the initial

values of the endpoints; to simplify writing, OPP(x,y) will be

used as an abbreviation for "x < 0 < y or y < 0 < x".

PRE: fin(AO) & fin(BO) & OPP(g(AO),g(BO))

POST: fin(A) & fin (B) & fin(C)

& [g(C) = O or (OPP(g(A),g(B)) & A == B)]

As usual, the finiteness restrictions on the values of AO and BO

simply signify that we do not expect the program to give us

better and better approximations as the precision increases, if

it is given larger and larger inputs also. The postcondition

simply states that we have either found a zero of g or when the

program terminates, the values of g at the endpoints are still of

opposite sign and the endpoints are "close" (i.e. infinitely

close).

Why does the above postcondition ensure that we have found a
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number infinitely close .to a zero Of the original function fO?

To show this, we will make use of the following fact, which is

proved in Appendix A:

all x:RR [fin(x) ->

some y:RR [std(y) & y == x & fO(y) == g(x)]

In other words, for any finite real x, there is a standard real y

infinitely close to x such that fO(y) is infinitely close to

g(x).

Suppose the program terminates with g(C) = O. By the above

fact, there is a standard D such that D == C and fO(D) == g(C) =

O. But fO(D) is standard, and the only standard infinitesimal

number is O, therefore fO(D) = O. Thus C is infinitely close to a

zero of fO.

Suppose the program terminates w_th A == B and OPP(g(A),g(B)).

Again, applying the above fact we get standard reals D1 and D2

such that D1 == A, D2 == B, fO(Dl) == g(A) and fO(D2) == g(B).

Since A == B, by transitivity D1 == D2. Since D1 and D2 are

standard, D1 = D2. Therefore fO(D1) = fO(D2) == g(B). Thus

fO(D1) is a standard real which is infinitely close to two

numbers of opposite sign (g(A) and g(B)), and so it must be

infinitely close to O. Since it is standard, it must be O, and so

both A and B are infinitely close to a zero of fO.

flow can we code the process described above as a program so
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that it will stop if it f_nds a zero or continue until A and B

are infinitely close? We cannot s_mply test to see if two

numbers are infinitely close, because "infinitely close" is an

asymptotic property which is not true or false for a given

machine or precision. Thus, we must find another way to ensure

that if no zero is found, the program will terminate with A and B

infinitely close.

Consider the following asserted program. PRE and POST stand

for the conditions g_ven above. We have added AO <= BO to the

precondition just to simplify the formulas slightly:

{ PRE & AO <= BO }

A := AO;
B := BO;

C := (A ++ B)//2;
DO WIIILE(g(C) <> 0 & A < C < B);

{ AO <= A <= BO & AO <= B <= BO

& OPP(g(A),g(B)) & C = (A ++ B)//2 }

IF OPP(g(A),g(C))
THEN B := C;
ELSE A := C;

C := (A ++ B)//2;
END;

END;

{POST}

Note that the loop invariant is an internal statement, and so it

need not be proved that the loop terminates in a standard number

of steps.

One thing about the above program needs explanation, namely,
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why do we have the second.conjunct in the loop guard? Since C is

always set to the average of A and B, isn't C always between A

and B? The answer is no, because roundoff error in computing the

average may result in a value for C that is not strictly netween

A and B. Of course, such roundoff error will only happen when A

and B are very close together. We will show below that since A

and B get closer and closer as the loop continues to execute,

such a roundoff error eventually must happen. This is the way we

ensure that if no zero is found the program will terminate with A

Let us first examine the VCs for this program. There are four

of them. The f_rst one says that if the precondition is true

initially then the loop invariant w_ll be true when the loop is

first entered. The second says that the loop invariant is

preserved by the execution of the loop in the case when the THEN

branch of the IF THEN ELSE is followed, and the third VC says the

same in the case where the ELSE branch is taken. The fourth VC

says that if the loop terminates with the loop invariant true

then the POST is true.
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vc I

PRE & AO <= BO

IMPLIES

AO <= AO <= BO & AO <= BO <= BO

& OPP(g(AO),g(BO)) & (A ++ B)//2 = (A ++ B)//2

VC 2

AO <= A <= BO & AO <= B <= BO

& OPP(g(A),g(B)) & C = (A ++ B)//2

& g(C) <> o & A < C < B

& OPP(g(A),g(C))

IMPLIES

^o <= ^ <= _o & AO <= C <= BO

& OPP(g(A),g(C)) & (A ++ C)//2 = (A ++ C)//2
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VC 3

AO <= h <= BO & AO <= B <= BO

& OPP(g(A),g(B)) & C = (A ++ B)//2

& g(C) <> 0 & A < C < B
w

& OPP(g(A), g(C))

IMPLIES

AO <= C <= BO & AO <= B <= BO

& OPP(g(C),g(B)) & (C ++ B)//2 = (C ++ B)//2

vc 4

AO <= A <= BO & AO <= B <= BO

& OPP(g(A),g(B)) & C = (A ++ B)//2

& (g(C) = 0 or C <= A or B <= C)

IMPLIES

POST
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The proof of the first VC is trivial. The only thing which

needs to be proved for the second VC is that if A and B are both

between AO and BO and C is strictly between A and B, then C is

between AO and BO. This is also trivial.

For the third VC, we need to prove that if g(A) and g(B) are of

• opposite sign and g(A) and g(C) are not of opposite sign, then

g(C) and g(B) are of opposite sign. This is also trivial.

Now examine the forth VC. Assume the hypothesis. We will first

prove that A, B and C are finite. AO and BO are finite and A and

B are both between AO and BO. Since the finite elements are

convex, A and B must be finite. Therefore, A + B is finite, so A

++ B = CR(A + B) is finite. This implies that (A ++ B)/2 is

finite, and so C = (A ++ B)//2 = CR((A ++ B)/2) is finite.

If g(C) = O, the proof is done. Otherwise, we must prove that

g(A) and g(B) have opposite sign and A == B. The first is true by

hypothesis. Suppose A is not infinitely close to B. By the

finiteness statements proved above,

C = CA ++ B)//2

= CR((A ++ B)/2)

== (A ++ B)/2

= CR(A + B)/2

== (A + B)/2
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Since g(A) and g(B) are.of opposite sign, A is not equal to B.

Therefore, (A + B)/2 is strictly between A and B. By hypothesis,

C is either <= A or >= B. If C <= A, then C <= A <= (A + B)/2 and

C == (A + B)/2, so A == (A + B)/2. Simplifying, we get A == B.

The proof is similar in the case where B <= C. This completes the

proof of the fourth VC.
e

How can we be sure this program terminates? Suppose it didn't

terminate. Then C Js always strictly between A and B when

control reaches the top of the loop. At each iteration, either A

is set to C, in which case the value of A increases, or B is set

to C, in which case the value of B decreases. If the loop never

terminates, then either A must increase infinitely often or B

must decrease infinitely often (notice that "infinite" here does

not mean hyperfinite, but actually hyperinfinite). If A

increases infinitely often, then we can define an infinite

ascending sequence of machine reals, which contradicts the first

cropping function axiom. If B decreases infinitely often, then

we can define an infinite descending sequence of machine reals,

again a contradiction. Thus the program must terminate.

Notice that this way of ensuring termination is unlike the

method usually used for programs of this type. Usually the

program terminates when A and B come within a certain fixed (or

sometimes user-supplied) distance of each other. When such a

fixed distance is used, we cannot expect the results of the

program to be closer than that distance to the actual zero. In
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the above program, however, the program terminates only when the

distance between A and B is very small compared to the precision

of the machine's arithmetic. In fact, it only terminates when

further iterations would move C further away from the zero. Not

only does the above program tend to use all of the precision

available on a given machine, the same program run on more and

more precise machines will give more and more precise answers.

Thus, the asymptotic paradigm is not only a way of analyzing

programs, it _s also useful for designing programs.

Published versions of the above algorithm actually contain an

error! Consider again our program

{ PRE & AO <= BO }

A := AO;
B := BO;
c := (A ++ m)//2;
DO WHILE(g(C) <> 0 & A < C < B);

{ AO <= A <= BO & AO <= B <= BO
& OPP(g(A),g(B)) & C = (A ++ B)//2 }

IF OPP(g(A),g(C))
THEN B := C;
ELSE A := C;

C := (A ++ B)//2;
END;

END;

{POST}

and the form similar to how it appears _n IMSL
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A := AO;
B := BO;
c := (A ++ B)ll2;
DO WHILE(g(C) <> 0 & A < C < B);

IF g(A) ** g(C) < 0
THEN B := C; ..

C := (A ++ 2;
END;

END;

The program is incorrect since while g(A) * g(C) may be < 0 the

machine product may round up to O so that g(A) ** g(B) < O should

not be used in place of OPP(g(A), g(B)). Of course, this program

will give a correct answer for many inputs so that testing might

not uncover the error. To show the power of our method let us

consider whether {PRE} P {POST} is a true Hoare sentence in

non-standard universes where P is the above program and we use

the same Pre and Post-Conditions as before namely

PRE: fin(AO) & fin(BO)$ OPP(g(AO),g(BO))

POST: fin(A) & fin (B) & fin(C)

& [g(C) = 0 or (OPP(g(A),g(B)) & A == B)]

where OPP(x, y) is

x < 0 < y or y < 0 < x.

Let f(x) = x and g(x) = CR(x) be the function which approximates

it. Let AO and BO be non-infinitesmal, finite negative and
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positive numbers respectively with E(AO) = AO and E(BO) = BO such

that (AO ++ BO) I/ 2 = cO is a positive infinitesmal (note: g(CO)

= CO) with AO ** CO = O. It is possible to get explicit examples

of this by choosing the CRi, ei, m+i, m-i, etc. appropriately.

Then after the first iteration of the loop we have that A = g(A),

B = g(B), and C = g(C) are all positive. Furthermore after each

bisection the right hand half is chosen since A #_ C >= O.

Furthermore since BO was non-infinitesmal we always have A < C <

B so that the loop never terminates. By the same argument we

gave for the original program the loop does terminate in a

non-standard number of steps. The Hoare sentence is then false.
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Chapter 4

Appl_ th_ Asymptotic Paradism: The Programming Loglc Approach

The VerifY. cation Condition approach has been used since the-

late 6O's to prove programs. It has generated much criticism

since verification environments based on this approach generally

lead to low productivity. One of the identified problems is the

use of two languages; the programming and the assertional,

mathematical. When an unprovable VC in the mathematical language

is uncovered the corresponding error in the asserted program must

be found. This error is either an error in the logic of the

program or an inappropriate embedded assertion. It sometimes

difficult todiscern which of these alternatives is the case. If

the error is in the program's logic the place where that error

occurs may not correlate simply to the place where the false VC

was generated. When the error is corrected the new asserted

program is resubmitted to the VCG and the regenerated VCs must be

proved. Slight changes in the program might change the form of

several of the formerly provable VCs and these must all be

reproved even if the change is slight.

Several approachs alternative to Verification Condition
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Generation have been propQsed. These attempt to narrow the gap

between program and proof in order to avoid the above loop. In

this chapter we describe some very tentative work we performed in

trying to adopt one of these newer approachs, the programming

logic approach, to the asymptotic paradigm.

4.1 The Programming Logic Idea

The underlying philosophy of the programming logic approach is

that reasoning and correct programming are the same process.

Traditionally these two activities have had their separate

languages: reasoning "has been done in classical first-order

logic, and descriptions of algorithms in the plethora of

programming languages. The ultimate goal of the programming

logic approach is to find a single formal language which

facilitates both logical reasoning and algorithmic description as

a single activity. A programming logic is a single language to

meet both demands.

Prior to the twentieth century there was less of a distinction

between programming and proving since only constructive methods

were allowable in proofs. The distinction between constructive

and non-constructive proofs is that in the former when one claims

that some exists one must actually exhibit it whereas in the

latter existence can be shown through indirect means such as
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reductio ad absurdum. Let us illustrate this point using the

following non-constructive proof.

Theorem: There are two irrational numbers a and b such that a

raised to the power of b is rational.

Proof: Consider SQRT(2). We know that SQRT(2) is irrational.

Now let x=SQRT(2)^SQRT(2). Is z rational? If it is, then the

theorem is proved by letting a = b = SQRT(2). Otherwise, consider

x A SQRT(2) = SQRT(2) ^ 2 = 2. That is certainly rational, so in

this case the theorem is proved by letting a = x and b = SQRT(2).

This finishes the proof. In either case we have found a and b

satisfying the theorem. QED.

Using contemporary standards of correctness this is a valid

proof. But the naive student usually says: Where's the Beef?

Where are the a and b that you promised me? In fact, the really

hard question is which of the two alternatives in the proof is

true (it's the second; a very deep theorem in number theory shows

that a^b _s transcendental when a and b are algebraic and b is

not a rational.)

The above proof is not acceptible from a constructive point of

view; indeed it can not even be made in a formal constructive

logic. In such constructive logics one can extract from a proof
of

all x (some y R(x, y))
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a function f given by a term in the language such that

all x R(x, fx)

is also provable. Constructive logics are actually rather close

to programming languages. The programming logic approach to

verification is to formulate a constructive logic whose terms can

be evaluated by an interpreter. The scenario is then the

following: If one is required to program a function f with the

specification

all x R(x, fx)

one proves the mathematical theorem

all x (some y R(x, y))

in the constructive logic. Since the logic is constructive the

proof checker will extract automatically from the proof an

algorithm for computing y from x and the interpreter will

calculate this algorithm on any input supplied. We thus have a

program and a proof of correctness in the same text. The

algortihm extracted from the proof can be compiled and stored in

a library for future use. On the other hand, the extracted

algorithm may not be intelligible to humans. Programming logic

enthusiasts hold the tenet that the proof from which the

algorithm was extracted is the print form of the algortihm. To

ask to look at anything else is like asking to look at binary

code. Thus we see that in this approach programming is proving.
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ML (which stands for Meta _anguage) is a programming language

designed specifically for the purpose of developing formal

systems and formal logics. It _s described in the next section.

ML will be the language in which we develop the ideas of a

programming logic. Th_s is done for three reasons. First, ML is

designed for the very activity of developing logics. Second,

fixing a particular programming language allows the discussion to

present concrete examples. Finally, ML is a language which has

more than a few similarities with a programming logic.

After the introduction to ML, the programming log_c approach

will be presented in four stages:

I. A simple fragment of constructive propositional logic is

developed _n ML. This _s primarily to illustrate how logics

are represented in ML.

2. A programming logic for integer arithmetic is described in

ML.

3. An interpreter for this logic is developed which defines

its semantics as a programming language.

4. Preliminary work towards incorporating the asymptotic

paradigm into the programming logic approach is presented.
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4.2 The Prosrammin 8 LanBuage ML

) The programming language ML was originally designed by Robin

Milner for use as the meta-language in the LCF verification

system. The book [1] contains a detailed presentation of one

variant of ML. Besides its use in LCF the language is interesting

in its own right and is versatile enough to compete with other

non-imparative languages like LISP and PROI,OG. Although similar

to LISP it contains features lacking in the former which are felt

by many to be important in a modern programming language; for

example, it _s strongly typed and has a readable syntax. Since

it is primarily a research tool, ML has not been standarized.

Here we follow the syntax of the UNIX version of ML written by

Luca Cardelli at Bell Laboratories.

The distinguishing characteristics of ML are

- interactive d_a]og;

- strong type system;

- functional style;

- exception-trap mechanism;

1. Gordon, Milner and Wadsworth, Edinburgh LCF, Lecture Notes in
Computer Science 78, (Springer-Verlag: Berlin, 1979).

4 - 6



- abstract data type defining mechanism;

- separately compiled modules.

Like LISP, ML is an interactive programming lanugage. An ML

session consists of a dialog between the user and the system.

The user enters expressions terminated by a semicolon. Typing a

carriage return sends the line to the interpreter which keeps

accepting input lines until a complete expression is found. The

value of the expression and its type is returned by the ML

system. ML prompts the user to input an expression with " "- , and

responds on the following line which begins with ">". Here are

some examples:

- (3 + 5) • 2;
> 16 : int.

- "this is a string";
> "this is a string" : string
- 3,4,5;
> 3,4,5 : Int * int * int
- if 1=2 then 3 else 4;
> 4 : int

- [3,true;5,false]; hd [I;2;3;4];
> [(3,true);(5,false)] : (int * bool) list

1 : int

These examples give some idea how integer, boolean and string

constants are used in simple expressions. The last two

expressions were typed in to the ML system on the same line.

Notice that elements of a list are of the same type, are

separated by semicolonS, and are enclosed in square brackets.

The empty list is "[]". If "t" is the type of the elements then

"t list" is the type of the list. What then is the type of "[]"?
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It is " 'a list" where 'a is a type variable. This illustrates

ML's polymorphlsm discussed in more detail later. Another

example of a polymorphic object is "hd" used above for the head

of a list. Its type is " 'a list -> 'a".

Elements of tuples like "I, 2, true" are separated by commas.

They needn't be enclosed in parantheses. The type of a tuple is

the cartesian product of the types of the elements. The

cartesian product type operator is "*" in ML so that the former

tuple has type int * int * bool. "(I, 2), true" would have type

(int * int) * bool which is different.

Next we illustrate how variables are bound to values. At the

top level this is done using the keyword "val". but there are

various ways of making local bindings as well.

- val a = 3; { Bind the value 3 to a }> val a = 3 : int

- val a = 4 and b = 27,true; { Make two bindings ]
> val a = 4 : int

I val b = 27,true : int * bool
- val a,b = 4,(27,true);
> val a = 4 : int
I val b = 27,true : int * true

- a + 6 where val a = 5 end; a; { N.B. there will
be no global change in a }

> 11 : _nt
4 : int

- let val a = 5 _n a+6 end;
> II : int

The "let" and "where" constructs accomplish the same

purpose--abbreviating a local value. Such a local binding has no

effect on the global value of the variable. Notice that comments

4 - 8



are enclosed in curly braces.

ML is a functional programming language. Functions in ML are

created using the keyword "fun". (LISP uses "LAMBDA" for the same

purpose.) Functions are first class objects; they can be

arguments to other functions and can be returned as values of

functions. Functions can be bound to variables at the top level

just like any other value: "val f = (fun x. b). Here b is some

expression usually contain x. This way of defining the function

f is given an alternate syntax keeping with the customary way of

writing definitions: "val f(x) = b". This is completely

equivalent, it only binds f using x as means of expressing the

return value as a function of the input.
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- val f (n) = n + i; f(2_;
> val f : Int -> int

3 : _nt

- val g (x,y) = (x+y) div 2; g(f(7),2+2);
> val g : (int * int) -> int

6 : ±nt

- val rec fact (n) = if n=O then I else n'fact(n-l);
> val fact : int -> int

- val f (n: int) = g (fun x.n) where val g (h) (n) = h(n) end;
> val f : int -> (Int -> int)
- f(2)(3);
> 2:_nt

- val g (x, y) = f(x)(y);
> val g :int * int -> int
- g(2, 3);
> 2:int
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The alert reader will notice that the ML interpreter not only

evaluates expressions but assigns types as well. It does this

usin an internal pattern matching algorithm. Consider the

definition of fact given above. ML decides on the basis of the

right hand expression that fact is of type int -> int (note that

the variable n is not declared to be of type int in this

definition of fact. The user can give type restrictions as _n

the binding of f where n is declared to be of type Int. Note

that ML will figure out that g in the local binding on this line

is of type (int -> int) -> (int -> int). If one had written

- val f (n) = g (fun x.n) where val g (h) (n) = h(n) end;

then ML would return

> val f : 'a -> ('b -> 'a)

'b are type variables Such type polymorphism is awhere 'a,

unique feature of ML. Where the type of an argument does not

matter, it need not be specified. Hence one need not define an

identity function exclusively for integers and one for string.

One identity function will do--one for any type.

- val f (x) = x;
> val f : 'a -> 'a
- val swap (x,y) = (y,x);

> val swap : ('a * 'b) -> ('b * 'a)
- val comp (f,g) (x) = f (g (x));

> val comp : (('a -> 'b) * ('c -> 'a))-> ('c -> 'b)

Type variables always begin with a single quote in ML.
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Expressions in ML can raise exceptibns and then trap them.

This is similar to the catch and throw mechanism in LISP. A

function, instead of returning a value, may signal some abnormal

condition. For example, the built-in division function signals

division by zero whenever the divisor is zero. Further execution

halts and ML prints a message to the user at the top level.

- i div O;
> Exception: div

- val f (n) = if n<O then escape "Nag arg" else fact (n);
> val f : int -> int
- f(3); f(-3);
> 6 : int

Exception: "Nag arg"

Exceptions can be trapped before they reach the top level. This

permits the computation of an alternate value for an expression

_hould it raise an exception. The syntax of the trapping

mechanism calls for a question mark after the expression that may

signal an exception and before the alternate expression to be

evaluated in the event an exception is signaled.

(I div 0) ? 45;
> 45 : int

- val g (n) = f(n) ? f(-n); [ this uses definition of f above }5 val g : int -> int
- g(3); g(-3);
> 6 : int

6 : int

ML has the capability to define new types. Th_s can be done In

two ways. The f,nctlons that construct the elements of a new

type can be specified. This is a concrete type. An abstract

type is defined by giving the constructors as well, but then all
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the functions that will eyer make use of the constructors must be

defined on the spot and explicitly exported out of the type

definition. The constructors are not available outside the scope

of the type definition. This ensures controlled access to the

type. We first give examples of a concrete types.

- type Color = Red I Blue I Yellow;
> con Red : Color

I con Blue : Colorcon Yellow : Color

- type rec Tree = Leaf of int I Node of Int * Tree * Tree;
> con Leaf : int -> Tree

I con Node : (int * Tree * Tree) -> Tree

Tree is an example of a concrete recursively defined type. Th_s

concept encapsulates the use of pointers which are not otherwise

availble to the user. The functions "Leaf" and "Node" are

constructors of type "Tree", since through them elements of type

"Tree" are created. The tree consisting of a single leaf is

created by the function "Leaf". This is the only way to create a

tree without having already made other trees "Red" "Blue" and• p

"Yellow" are constructors as well; they require no arguments.

The type "Color" would be cslled an enumerated type _n Pascal.

An important part of the ML language is pattern matching. Th_s

is often used in conjunction with the case statement to break

apart the structure of a type. An element of a type is taken

apart in the case statement. It is matched against the pattern

consisting of variables and constructors in each branch of the

case statement. This is how destructuring is accomplished and
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explains the lack of "destructors" or "selectors" in the

language. We give several examples of this using the definition

of the type "Tree" above.

- val f (t: Tree): int = { A silly example. }
case t of

Leaf n . n [ { A leaf }
Node (n, Leaf _, Leaf _). n { A tree with two leaves }
Node (n, Node _, Leaf _). n { A skewed tree }
Node (n, _, _). n; { Everything else ]

> f : Tree -> int

- val rec EqTree (t: Tree, s: Tree): bool =
case (t,s) of

(Leaf n, Leaf m) . n=m [
(Node (n,tl,t2), Node (m,sl,s2).

if n=m

then if EqTree (tl,s2) then EqTree (t2,s2) else false
else false [

(_,_) . false;
> val EqTree : Tree * Tree -> bool

The principle features to notice about pattern matching are that

variables are bound and that "_" is the wildcard pattern matching

any pattern.

The next example is an abstract type definition of a tree. The

constructors "Leaf" and "Node" will not be available outside the

scope of the abstract type definition.

- abstype rec Tree = Leaf of int [ Node of int * Tree * Tree
with val MakeLeaf (n) = Leaf n;
val MakeNode (n,tl,t2) = Node (n,tl,t2);
val l,abel (t) =

case t of

Leaf n. n [
Node (n,tl,t2). n;

val RightSubTree (t) =
case t of

Leaf n. escape "Leaf" [
Node (n,tl,t2). t2
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end;
> abstype Tree

I val MakeLeaf : int -> Tree

I al MakeNode : (int * Tree * Tree) -> Tree
val Label : Tree -> int
val RightSubTree : Tree -> Tree

The scope of the abstract type definition extends from the ML

keyword "with" to the closing keyword "end". W_thin this scope

the constructors "Leaf" and "Node" are available and have been

used to define other functions to make elements of type "Tree"

and, with the help of the case statement, to take apart elements

of type "Tree".

Defining a type abstractly and exporting only certain functions

of the constructors is useful when one is interested in certain

subtypes. For example consider balanced trees:

- abstype rec BalTree = Empty [ Leaf of int I
Node of int * BalTree * BalTree

with

val Null = Empty;
val MakeLeaf = Leaf;

val MakeNode (n, tl, t2) = if height tl = height t2 then
Node (n, tl, t2) else escape "Not Balanced"

where val rec height(t)
case t of

Empty.O I
neaf(_).l [

Node(_, tl, t2). max(height(tl), height(t2);end;
end;

The NuJ1, MakeLeaf, and MakeNode functions which are exported

from this abstract type definition will only permit the user to

construct balanced trees. Note that MakeNode will allow the user

to make an unblanced tree from tl and t2 if either one of these
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were already unbalanced (s_nce only their heights are checked not

their individual symmetry) but that means the user could make an

unbalanced tree if he already had an unbalanced tree. Since Null

and MakeLeaf give only balanced trees we see that it is true that

the user can make only balanced trees.

4.3 Representin 8 a Logic in ML

The following ML program implements a portion of propositional

logic. We assume the type Proposition has already been defined

in ML. One way to do this is to introduce Proposition as an ML

type using a constructor which turns identifiers into

propositions:

-type Proposition = PropCon of string;
> type Proposition = PropCon of string
I con PropCon : string -> Proposition

We f_rst define what the formulas shall be. Formulas are a

data type _n MI,, and their definition follows the usual one _n

mathematical logic: Every proposition is an atomic formula, and a

pair of formulas can be made into another formula using the

implication connective. Of course, we might be interested in

other connectives or at least in a formula to represent

falsehood, but implication shall suffice for this example

(although the resulting logic is not complete).
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- type rec Formula =

AtomicFormula of PropOsition I
Imply of Formula * Formula;

{ A Proposition is a Formula; out of 2 formulas, make implication.]
> type Formula =

I con AtomicFormula': Proposition -> Formulacon Imply : (Formula * Formula) -> Formula

Next we need some functions to manipulate formulas: to extract

the hypothesis and conclusion subformulas from an implication and

a function to test for syntactic equality.

- val Hypothesis (f) = { Get hypothesis of implication. }case f of

AtomicFormula escape "Not implication" I
Implication (fT, f2)[ fl;

> Hypothesis : Formula -> Formula

- val Conclusion (f) = { Get conclusion of implication }case f of

AtomicFormula escape "Not implication" I
Implication (fT, f2)[ f2;

> Conclusion : Formula -> Formula

- val rec EqFormula (fl, f2) = { Syntactic equality of formulas }case (fl,f2) of

AtomicFormula a, AtomicFormula b a=b I
Implication (hl,cl), Implication ih2,c2) .

if EqFormula (hl,h2) then EqFormula (ci,c2) else false I(_,_) . false;

> EqFormula : (Formula * Formula) -> bool
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Finally we define the calculus of propositional logic by

defining an abstract type representing proofs. An element of

type theorem can be constructed only as an instance of one of the

two axioms or as a result of modus ponens applied to theorems.

The two axiom schemes (written using conventional notation are

K:p -> (p -> q)

S:(p -> (q -> r)) ->((p -> q) -> (p -> r))

vhere p, q, and r are any formulas. Modus ponens yields q when

applied to p -> q and p.

In order to actually give the ML definition of the abstract

data type representing proofs, a useful auxiliary function must

defined along the way. This function "'ProofOf'' takes an

element of type theorem and returns the formula of which the

theorem is a proof.
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- abstype rec Thm =

AK of Formula * Formula I { K axiom is represented. }
AS of Formula * Formula * Formula I { S axiom is represented. }

' MP of Thm * Thm [ modus ponens is represented ]with

val AxiomK(p,q)=AK(p,q); val AxiomS(p,q,r)=AS(p,q,r);val rec ProofOf thm =
case thm of

AK(p,q). Imply (p, Imply (q,p)) IAS(p,q,r).

Imply(Imply(p,Imply (q,r)), Imply(Imply(p,q), Imply(p,r)))l
MP(tl,t2). Conclusion (ProofOf tl);

val ModusPonens (tl,t2) =

if EqFormula (Hypothsis (ProofOf tl) ProofOf t2)
then MP(tl,t2) else escape "Fail" '

end;

> abstype Thm

val AxiomK : (Formula * Formula) -> Thm
val Axioms : (Formula * Formula * Formula) -> Thm
val ProofOf : Thm -> Formula
val ModusPonens : (Thm * Thm) -> Thm

This completes a formalization of a fragment of propositional

logic. An element of the ML data type ''Formula'' represents a

formula in propositional logic. An element of "'Thm'' actually

represents a proof--a bonafide proof. By virtue of the fact that

ML certifies 'an element is of type "'Thm'', the element

represents a proof in the propositional calculus, because the

only way such an element can be produced is to use one of the

three constructors. Each constructor represents a valid step

proof in the propositional logic. An element of type_''Thm'' can

be created no other way. A study of the above example will show

that one is relying on the ML type encapsulating mechanism with

its control of exported constructors to simplify the construction

of the logic. For example, the only objects prex of type Thm
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which the user can constructreally are proofs of ProofOf (prex)

because of the exception raised when ModusPonens is applied to

arguments not of the appropriate form.

Using the data type definition given in the previous paragraph,

we can now prove that a proposition P implies itself. We can be

sure that it is a theorem of the propositional calculus because

it is an element of the ML type "'Thm''.

I

The usual way P implies P is proved from these axioms is by the

following informal proof

I. [p -> [(p ->p) -> p]] _> [[p _> (p _> p)] _> (p _> p)] Axiom S
2. p -> [(p ->p) -> p] Axiom K
3. [[P -> (P -> P)] -> (p -> p)] Modus ponens I. and 2.
4. p -> p Modus Ponens 3. and 2.

Formally we make the following bindings in ML.

- val prexl = AxiomK (P,Imply(P, P));
{ P->[(P->P)->P]}

> - : Thm

- val prex2 = AxiomS (P, Imply(P,P), P);
{[P -> [(P ->P) -> P]] -> [[P -> (P -> P)] -> (P -> P)])

> - : Thm

- val prex3 = ModusPonens (prex2, prexl); [ [P->(P->p)]->(p_>p) }> - : Thm

- val prex4 = ModusPonens (prex3, prexl); [ P->P ]
> - : Thm

Now typing ProofOf (prex4) to the interpreter will yield the ML

representation of the formula P->P as a response. Notice that

this proof is for a particular element of ML type Proposition

(which we have been denoting P). For this element of type

Proposition we could use the ML object PropCon ("P"), or Imply
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(PropCon ("Q"), PropCon. ("R")), or any one of a number of

others. The proof works for any element of type Proposition..

Furthermore, if we replace all occurrences of that particular

proposition p by an ML variable, say x, of type Proposition in

theproof, we get a parameterized proof, call it prex4'. Then I

= (fun x. prex4') is a function which maps any Proposition into

a proof that it implies itself. The function I is a derived rule

of inference. Th_s illustrates how ML acts as a useful
meta-language.

4.4 The Programming Losi c for Arithmetic

Now we describe a formal system for reasoning and programming

over the _ntegers. Our formalism will include the reals but we

will give no axioms for this sort _n this section. We describe

its syntax in a manner s_milar to what was done above for the

fragment of the propositional logic. Its rules are taken

directly from constructive predicate calculus and Peano

arithmetic together with a finite type hierarchy.

First the sorts are defined as a recursive data type, Sort. NN,

RR and Prop are basic sorts and Arrow(sl, s2), Cross(sl, s2) are

sorts when sl and s2 are. Arrow(sl, s2) is the sort of functions

from sort sl to sort s2. Thus our former sort NNSeq is Arrow(NN,

NN) and RRSeq is Arrow(NN, RR). We could have used a full simple
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type theory in our previoBs discussion but we didn't find it

necessary. It is simple to do it here since ML's recursive type

constructor facility strongly suggests it. Cross(sl, s2) is the

Cartesian product of sorts sl and s2.

- type rec Sort = NN I RR I Prop I
Arrow of Sort _ Sort I
Cross of Sort • Sort;

Terms are defined as an abstract recursive type. The context

sensitive part of the definition which corresponds to sort

checking needn't be considered when declaring the basic type

constructors; this semantic information is captured by having the

exported functions raise an exception when their inputs are not

of the right sorts. This kind of failure is detected by using

the SortOf function which is defined recursively over the terms.

Informally, variables of a fixed sort are terms; if tl is a

term of sort Arrow(sl, s2) and t2 is a term of sort sl then

Application(tl, t2) is a term of sort s2, it is the result of

applying the function tl to its argument t2; if t is a term of

sort sl and x is a variable of sort s2 then Abstraction(x, t) is

a term of sort Arrow(s2, sl), it is the lambda abstraction which

yields a function which assigns t[t'/x] to objects t' of sort s2

where t[t'/x] is the result of replacing x in t by t' ; if tl and

t2 are terms of sort sl, s2 then Pair(tl, t2) is a term of sort

Cross(sl, s2); if t is a term of sort Cross(sl, s2) then First(t)

is a term of sort s] and Second(t) is a term of sort s2; Zero is
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a term of sort NN; SuccFu_c is a term of sort' Arrow(NN, NN); FF

is a term of sort Prop; Imply, Or, and And are terms of sort

Arrow(Cross(Prop, Prop), Prop); if x is a variable and t is a

term of sort Prop then Some(x, t) and All(x, t) are terms of sort

Prop; if tl and t2 are two terms of the same sort then Eq(tl, t2)

is a term of sort Prop; if tl is a term of sort Prop and t2, t3

are terms of the same sort s then If(tl, t2, t3) is a term of

sort s; if tl is a term of sort s and t2 is a term of sort

Arrow(Cross(NN, s), s) then Rec(tl, t2) is a term of sort

Arrow(NN, s). We leave out all constants, functions and

relations over RR. They will play no role in this section; when

they do come _n later sections, they will be treated informally.

Using these basics we can intro4uce definitions using ML.
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- val Succ (x) = if SortOf(x)=NN then

Application(SuccFunc, x) else escape
"Not Natural Number";

- val One = Succ(Zero);

- val Imp(x, y) = if SortOf(x)=Prop and
SortOf(y)=Prop then
Application(Imply, x, y)
else escape "Not Props";

- val TT = Imp(FF, FF);

- val Neg(x:Term) = Imp(x, FF);

The recursion operat,or, Rec, is used to introduce functions by

recursion. If tl Js of sort sl and t2 is of sort Arrow(Cross(NN,

sl), sl)) then Rec(tl, t2) is the function g of sort Arrow(Nat,

sl) given by

g(0)= tz

g(n + l) = t2(n, g(n)).

Suppose one wants to define plus using a the Rec recursive

operator. The basic equations are

Plus(a, O) = a

Plus(a, n + i) = Plus(a,. n) + I.

Suppose x and y are variables of sort Cross(NN, NN). Then

Abstraction(x, Rec(First(x), Abstraction(y,

Succ(Second(y)))))

is a term of sort Arrow(Cross(NN, NN), NN) which defines the term

Plus.

t
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Formulas are terms of sort Prop. We now want to define a

constructive calculus with which we can derive true facts about

arithmetic. Our calculus is a natural-deduction style calculus

w_th _ntroduction and elimination rules. The simplest rules are

the introduction and elimination rules for "FF". Written out in

standard natural deduction style, they look like this:

FFIntro: A & neg A I-FFFFE]im: FF A

If you have a proof of the formula before the "]-" then an!

application of the rule yields a proof of the formula after the

"I-" The formulas (there can be more than one, even no formulas

at all) befre the "I-" are called the hypotheses of the rule, and

the formula (there must be exactly one) after the "]-" is the

conclusion. A rule with no hypothesis is call an axiom.

These natural deduction rules (like modus ponens in the

propositional calculus example) are represented in ML as

constructors of type "Thm". Elements of type "Thm" are called

proof expression. The "FFIntro" constructor represents the

false-_ntroduction rule. It takes an argument which must be a

proof of a contradiction and the result is a proof expression

proving false. Surprisingly "FFEIim" needs two arguments.

Besides the proof Of fa]se, "FFEl_m" needs the formula A as an

argument to indicate what the proof expression proves. Thus

"FFElim (prex: FF,A)" is a proof expression proving A (where by

prex: FF we mean prex _s a proof expression proving FF). The
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constructors "AndIntro", "AndElimR".and "AndElimL" represent the

following rules of the calculus:

Andlntro: A, B I- A & B

AndElimR: A & B IZ AAndElJmL: A & B B

These constructors will fail (like modus ponens in the

propositional calculus example), if the arguments are not in the

form that the rule prescribes. "AndIntro" is a constructor that

takes two arguments, proof expressions, and forms a proof

expression of the conjunction of the arguments. "AndElimR" is a

constructor that takes one argument, a proof expression proving a

conjunction, and is a proof expression of the left conjunct. The

constructor "AndElimL" is similar. For disjunction there are two

introduction rules and one elimination rule. The introduction

rules "OrlntroR" and "OrIntroL" look like:

OrIntroR: AA I- A or ABOrIntroL: or

The constructor "OrlntroR" has two arguments: a proof expression

which proves A and a formula B. Together these supply all the

information necessary to form a proof expression of the

disjunction.

The "OrElim" Js slightly more complicated and takes three

arguments. The first must be a proof expression of a

disjunction; the other two arguments must be proofs of

implications with special forms.
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OrElim: A or B, A -> C, B -> C I- C

The proof of an implication in a natural deduction style

calculus requires assuming A, then proving B, and discharging the

assumption A to conclude A -> B. In our calculus we do this using

the "Assume"
construct and the "Implntro" rule as follows:

- val hyp = Assume ("hyp", A); { Assume A. }

&{
- v prexl = ... hyp ... ; { Derive a proof of, say, B. }
- val prex2 = Implntro (hyp, prexl); { A proof of A-> B. }

The assumption (hyp in the example above) Is said to be

discharged in the proof. Finally, there is the corresponding

ellmJnation rule "ImpEllm" which is just the familiar rule of

modus ponens.

ImpElim: A -> B, A I- B

With the rules governing the basic connectives out of the way,

we have primarily rules for the quantifiers and arithmetic left

over. We list here the rules and axioms that are most

self-evident.

Truth - True
PeanoPostulate7 succ (n) =succ (m) - n=m
PeanoPostulate8 - succ (n) = 0

- Alllntro P(xO) - All x . P(x)
AIIEI_m All x . P(x) - P(t)

The all-introduction rule has the usual constraint that the

variable x is not free in any undischarged assumptions.
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Bear in mind that although these rules and axioms are presented

in their familiar mathematical form, we take them as definitions

of constructors in the representation of the logic in ML. These

rules all have straightforward representations in ML.

Three rules are more complicated: "some" introduction, "some"

elimination, and induction. First we summarize their basic

form.

Somelntro P(t) I- Some x . P(x)

SomeElim Some x P(x), P(xO) -> Q [ QInduction P(O), Pin) -> P(Succ (n)) All x . P(x)

The "SomeIntro"
proof expression constructor actually requires

three arguments. The first argument is a "some" formula. This

provides the formula to be proved, since determining it from

P(xO) is not trivial. Also the formula indicates the name of the

bound variable which may be convenient for renaming variables.

The second argument is a proof expression. It must prove the

scope of the "some" formula P for a particular term. The third

argument must be the particular term xO for which one showed in

the second argument that P(xO). Put together the use of the

"SomeIntro" constructor looks like this:

Somelntro (Some(x,P), prex:P(xO), xO)

"SomeE]im" also has three arguments: the proof expression of

some existentially quantified formula, the variable used to refer

to the term postulated, and the proof of an implication with the
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appropriate hypothesis.

SomeElim (prexl: Some(x,P), xO, prex2:P(xO) -> Q)

The implementation of the "SomeElim" contructor must not overlook

the usual constraint on the use of the rule: namely, xO can't

occur free in any undischarged assumptions of prex2.

"Induction" has four arguments: the "All" formula to prove, the

base case P(O), the induction variable, and a proof of the

implication P(n) -> P(n').

Induction (AII(m,P), prexl: P(O), n, prex2: P(n) -> P(n'))

The variable n must not occur free in sny undischarged

assumptions of prex2.

Now come another set of rules, called the computation rules.

First there is beta-reduction. The proof expression

BetaReductlon (Abstraction (v, b), t)

is a proof expression proving the following formula:

Application (Abstraction (v,b),t) = b[v/t]

where t is free for v _n b. Strictly speaking the formula is:

Eq ( Application (Abstraction (v,b),t) , Subs (b,v,t))
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The remaining rules are for the Rec and If constructs. The proof

expression

BaseCase (Rec(b,i))

is a proof of

Application (Rec(b,i), Zero) = b

and

IndStep (Rec(b,i),x)

is a proof of

i

Application (Rec(b,i), Succ x) =

Appl_ctJon (i, Pair (x, Appl_cation (Rec(b,i)), x))

For the If construct there are two rules. The proof expressions

Truelf (prex: P, If(P,t,s))

False]f (prex: Not (P), If(P,t,s))

are proofs of

If(P,t,s) = t ~

If(P,t,s) = s

respectively.
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Finally, the rules concerning equality should be mentioned.

They are the typical rules one would expect.

Relexvity4inn
Symmetry n=m - m=n

Transitivity n=m, m=p n=p
Congruence f=g, x=y f(x)=g(y)
Substitution x=y, P(x) P(y)
EqualityElim p=Q, Q p

Now that we have the syntax of a sample programming logic, it

is time to given an example of a proof. We give a proof of the

following theorem

All x:NN (x=O or Some y . Succ (y) = x)

It has a very simple proof by induction which is built up as

follows where Variable constructs a variable given a string and a

sort.

- val x,y = Variable ("x" NN),, Variable ("y" NN);
- val SOME (term) = Some (y, Equal (Succ y, term));
- val EQO (term) = Equal (term, Zero);
- val ALL = All (x, Or (EQO (x), SOME (x));

(We have surpressed the MI, response to these lines since it does

not add to the discussion.) This first line declares two

variables for use in the proof. The reminaing lines moke

- abbreviations used to make formulas that will come up in the

proof. The theorem to be proved is expressed as the last of

these formulas, "ALL". The base case of the induction requires

proving the the formula "Or (EQO Zero, SOME (Zero))" which is
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proved easily by reflexivity.

- val base = OrlntroL (Reflexivity Zero, SOME (Zero));

The induction step requires more work. The induction hypothesis

is not required in any material way in the proof of "Or (EQO

(Succ x), SOME (Succ Zero))".

- val indhyp = Assume ("indhyp" ALL)-
- val prexl = Reflexivity (Succ x);

- val prex2 = Somelntro (SOME (Succ x)), prexl, x);- val prex3 = OrIntroR (EQO (Suec x) prex2);
- val indstep = ImpIntro (indhyp, prex3);
- val proof = Induction (ALL, base, x, indstep);

In the last line, the base case and the induction step are

combined to yield a proof expression corresponding to the desired

proof.

4.5 Constructive Mathematics

Thus far nothing should seem very unusual. We have described a

theory with its language and rules. So we know how to make

proofs in the system. In a programming log_c on the other hand,

the goal will require proving a different kind of theorem.

Typically one will want to prove a theorem of the form "for all

x--there exists y". Then by the nature of a programming logic,

the interpreter when suppJied with the proof and a particular x

will produce a y with the desired property. Thus to program the

maximum function, one would just prove a theorem in a programming
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logic. For instance,

All x,y . Some z . (z=x or z=y) & z>=x & z>=y

Suppose the proof of this theorem was called "MaxThm". Then by

using the interpreter to evaluate the expression formed by

applying MaxThm to two integers will result in integer with the

desired property. In order to write this interpreter some care

is needed in formulating the rules of the programming logic.

Fortunately, we can draw on the experience of the constructive

school Of mathematics for help _n devising these rules. Their

criticisms of classical mathematics provide insight to the

problem.

In particular we have avoided certain axioms that are taken fc,r

granted in non-constructive logics. Typically the "law of

excluded m_ddle" or the axiom A & neg A is used freely. By r.ot

including this axiom, many formulas held to be true will not be

provable. For example, let F stand for the statement of Fermat's

last theorem. Some mathematicians hold that F or neg F is a true

formula and they appeal to the law of excluded middle. We have

rejected this ax2om in the programming logic, because of its fact

of constructive content. Consider for the moment the possiblity

- of adding this ax2om. Represent the axiom by a constructor

"ExcludedMiddle" which requires one formula as an argument. Thus

ExcludedMiddle (F) is a proof expression proving that Fermat's

theorem is true or false. Consider what happens when th2s proof

4 - 33



expression is used in conjunction with or-elimination.

OrElim (ExcludedMiddle(F), casel, case2)

Suppose that casel evaluates or reduces to 1 when given a proof

of Fermat's thoerem and case2 reduces to 2 when given a proof of

its negation. In either case the proof expression reduces to a

natural number. But which one? The interpreter can not figure

out which. In a programming logic all expressions which can

reduce to a natural number, do reduce mechanically to a number in

canonical form (like 45 or 17). (The interpreter or the evaluator

which performs the reductions is the subject of the next

section.)

For the rules as we formulated them it is easy to see how we

can justify the claim that evaluation will be mechanical. Since

an "or" formula can be proved only by "OrIntroL" or "OrIntroR"

and thus the case is explicitly tagged, there will never be any

problem deciding which case is true. It should also be apparent

how a particular value can be computed, a "some" formula can be

proved only by "SomeIntro" and this requires a particular term to

be supplied. This value will be used by the interpreter.

4.6 An Interpreter for Arithmetic

As in the programming language ML and LISP, the interpreter for
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our arithmetical calculus will take an expression (a proof

exPression) and return a value. In our case the value returned

iS a simplified proof expression. Church's lambda calculus

provides the rules by which LISP expressions are evaluated. The

most important of these rules is beta reduction. Since we have

lambda terms in our arithmetical calculus we expect to find at

least the beta reduction rule. In fact there are many such

reduction rules in our arithmetical calculus, and we will go

through these reduction rules now. Later we will see exactly

what expressions we actually have to enter to our system in order

• to evaluate programs like the maximum function or the

substraction function.

,The rules for pairs are particularly simple.

-_ First (Pair (t,s)) --> t
Second (Pair (t,s)) --> s

The rules dealing with conjunction are similar.

: AndE].imR (AndIntro (prexl, prex2)) --> prexl
AndElimL (AndIntro (prexl, prex2)) --> prex2

Here is the reduction rule for beta reduction.

Application (Abstract (x, b), t) --> b[x/t]

The notation b[x/t] means that the term t is substituted for the

variable x in the term b. If any free variable of t is captured

the result is an error message. There is a rule for "AllElim"
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proof expression.

AllElim (Alllntro (x, prex),t) --> prex[x/t]

The rule for "ImpElim" is similar.

ImpElim (Implntro (hyp, prexl), prex2) --> prexl[hyp/prex2]

This is an important reduction since it comes up as a part in the

remaining rules. It Js worth considering this reduction a little

more closely. The "Implntro" constructor enforces that the proof

expression "hyp" is in the form "Assume (name, A)" where A is

some formula. The "ImpElim" constructor enforces that whatever

proof expression its first argument is, it is a proof of A->B.

This much follows from the definltion of the proof expression

constructors. Clearly, the proof expression "ImpIntro (hyp,

prex])" is one such proof expression proving A->B for some

formula B. But there are others, including some which are not

necessarily implication-introduction expressions. The proof

expression could be, for instance, a some-elimination or an

or-elimination proof expression and still be a proof of A->B. One

could say that the type of the first argument must A->B. Of

course, if the evaluation is to continue these expressions of

type A->B must evaluate to on implication-introduction expression

so that the impl_cation-elimination reduction rule can be

applied.

The reduction rules for "or", "some" and induction complete the

list of reduction rules.
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OrElim (OrIntroR (A, prexl), prex2, prex3)
--> ImpElim (prex2, prexl)

OrElim (OrIntroL (A, prexl), prex2, prex3)
--> ImpElim (prex3, prexl)

SomeElim (SomeIntro (S.,prexl, t), y0, prex2)
--> ImpElim (prex2[yO/t], prexl)

AllElim (Induction (A, prexl, n, prex2), Zero)
--> prexl

AllElim (Induction (A, prexl, n, prex2), Succ x)
--> ImpElim (prex2, AllElim (induc, x)[n/x])

The proof expression "induc" in the last line is just the

orig£nal induction expression:

Induction (A, prexl, n, prex2)

The role of the interpreter is to apply any of these reduction

rules until none of them are applicable. We call this process

normalization, simplification or reduction.

With the basic normalizing procedure in mind, consider again

the substraction example. There we had a proof expression of the

basic form

Induction (All (x, P), base, x, indstep)

Normalization will produce no change in this proof expression.

It is already in normal form. Most often this will be the case

unless by oversight a proof with needless steps was done. A

reasonable implementation of normalization can, however, provide

one most important service, it can guaranteethat there are no

free variables or undischarged assumptions in the proof. So even
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if a proof expression .does not simplify it is certified to

represent a proof in our system.

The interpreter is not limited to the role of proof checker.

Consider the following proof expression still using the

substraction example.

AllElim (Induction (All x, P), base, x, indstep), Zero)

The result of evaluating this proof expression is simply base or

OrlntroL (Reflexivity Zero, SOME (Zero))

When we apply the proof by induction to "One" we get the

following chain of proof expressions.

--> ImpElim (indstep, Al]Elim (Induction (...), Zero))[x/Zero]
--> ImpEllm (indstep[x/Zero], OrlntroL (...))
--> ImpElim (Implntro (indhyp[x/Zero], prex3[x/Zero]),

OrlntroL (...))
--> prex3[x/Zero] [indhyp/OrlntroL (...)]
--> prex3[x/Zero]

--> OrlntroR (EQO (Succ Zero), prex)

where prex is the proof expression:

Somelntro (SOME (Succ Zero), Reflexivity (Succ Zero), Zero)

Applying the induction proof to "Two" yields a similar

or-introduction proof expression; this time, however, prex is the

proof expression:
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Somelntro (SOME (Suc¢ One), Reflexivity(Succ One), One)

Thus, we have written a primitive program to subtract one from

any natural number and have run the program on the first three

natural numbers. Notice that all the _nformation about the

results of the subtraction are still around. We see that if

subtraction does not apply (that is, subtracting one from zero),

then the resulting proof expression was an or-introduction-left

proof expression. If the substraction worked, the result was an

or-indroduction-right proof expression. The result of

subtracting one from the given quantity can be found buried in

the some-introduction rule. It is the term given as a witness

that there is number whose successor is the given value.

There are two parts to the some-introduction proof expression:

the witness, and the proof that the witness has some property.

We see from the above example that we may want to throw out the

proof part as being unimportant and actually pick out the

witness. Suppose we had in our language a function "Witness"

that evaluated as follows:

Witness (Somelntro (S, prex, t)) --> t

The function "Witness" could be used to ignore the proof part of

a some-_ntroduct_on proof expression. Finally we have all the

mechanisms necessary to extract a function from a proof of the

form "for all--there exists". (Actually "Witness" is definable
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from the existing constructors, but for as far as we are

concerned here, it can be taken as primitive.)

The substraction theorem is an interesting case, because it is

an example of a partial function. The value of the function at

zero is avoided. Compare the formulation of the theorem as was

given originally

All x . (x=O or Some y . succ (y) = x)

with the alternate formulation:

All x . Some y . -(x=O) -> succ (y) = x)

This alternate formulation can be prove by induction, but the

proof Js slightly more difficult. But suppose we have a proof of

it, call Jt "SubThm". The base case is vacuously true, but must

be proved by some-introduction which requires a witness

nevertheless. Say the base case wasproved with 34 as the

witness (any number will do, of course). Now consider the result

of evaluating some proof expressions containing "SubThm".

Witness (AllElim (SubThm, Zero)) --> ThirtyFour
Witness (AllElim (SubThm, One)) --> Zero
Witness (AllElim (SubThm, Two)) --> One

The dicussion above should have given some idea as to how a

programming logic is a programming language. One could easily

make an interpreter that interacts with the user just like the ML
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interpreter. There would be similar sort of dialog with the user

typing in an expression and the interpreter returning the

simplified form of the expression. For example, a dialog

concerning "SubThm" might look like:

- Witness (AllElim (SubThm, Zero));
> ThirtyFour : Nat

- Witness (AllElim (SubThm, One));
> Zero : Nat

- Witness (AllElim (SubThm, Two));
> One : Nat

Thus we have seen that the interpreter in a programming logic

is both a theorem checker (or, equivalently a program verifier)

and a functional programming language evaluator.

4.7 Incorporating the Asymptotic Paradigm

In this section we raise some of the _ssues that arise when

programming logic is extended to non-standard analysis. Our

discussion _s quit:e tentative. What we are aiming at is an

extension of our previous constructive arithmetic calculus to

some form of NSA. Our target system is best illustrated by the

example g_ven in the next section.

We have already encountered one technical problem in using

non-standard numbers: induction. The induction rule of

arithmetic must be modified to exclude the proof of external

formulas (those containing the std predicate).
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But there are other difficulties as well. The form of the

axioms in the programming logic for the real numbers remains to

be worked out. Much mathematical research has been done in the

area of constructive analysis ([2], [3], [4]). This work guides

the attempts to formalize the reasoning concerning real numbers.

The difficulty lies in that some of the ordinary axioms for real

numbers do not have constructive content. So they have problems

similar to the law of excluded middle discussed in Section 4.5.

One such axiom for real numbers is dichotomy; another is that odd

degree polynomials have a root. The first axiom asserts one of

two th_ngs happen and the second asserts the existence of some

quantity. Axioms in these two forms pose the difficulty.

Consider for a moment dichotomy. We certainly want that x<=y

or x>y for all real numbers. But if we take this as an axiom,

then the interpreter will have to be able to decide for any real

numbers which case holds. This is difficult for arbitrary real

numbers. For instance, how is the interpreter to know if

f(x)+2.3 is greater than g(x+y)/x? For example, consider the

following proof expression:

2. A. S Troelstra, Metamathematical Investigation of
Intuitionistic Arithmetic and Analysis, (Springer-Verlag: Berlin,
1973).

3. Arend Heyting, Intuitionism: An Introduction, (North-Holland:
Amsterdam, 1971).

4. Errett Bishop, Foundations i__nn Constructive Analysis,
(McGraw-Hill: New York, 1967).
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OrElim (Dichotomy (x,y), prexl, prex2)

where "Dichotomy(x,y)" _s proof expression proving x<=y or x>y.

The interpreter will _n general be unable to figure out which

branch to take. It is unclear at this point if this causes in

problem in practice.

One solution is to restrict the use of the axiom to values the

interpreter can actually test. For given two floating-point

numbers stored in the computer the interpreter can test them to

find which is the larger. The reduction rule would then look

something like this:

if x<=y then

OrE]im (Dichotomy(x,y), prexl, prex2)
--> ImplElim (prexl, FACTl:x<=y)

otherwise

OrElim (Dichotomy(x,y), prexl, prex2)
--> ImplElim (prex2, FACT2:x>y)

FACT1 and FACT2 are proof expressions proving that the

appropriate relationship holds between x and y. These are axioms

in a sense, but cannot be invoked by the user.

Arbitrary arithmetic is also the problem with

some-introduction. It may prove useful to identify a certain

class of terms _n NSA, call them the computable terms. This set

of terms includes all the variables and constants, and is closed

under the machine operations, ++, --, **, and //. Also in the

list of operations which produce computable terms are Skolem
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functions for existential axioms (we will encounter these

shortly) and other functions defined with the Rec and If

constructs as long they contain only computable terms. One can

check syntactically if a term is computable.

Since some-_ntroduct_on requires the interpreter to actually

compute the value of the witness, some restriction on the witness

ds to be expected. The natural candiates for witnesses are the

computable terms. The same restriction must apply to

all-elimination.

Now we examine constructive content of another axiom of NSA.

One of the basic axioms of NSA was that the range of the cropping

function is finite. One possible way of formalizing this in the

language is as follows.

FINI: Some i . f(i+l) >= f(i)

FIN2: Some i . f(i+l) <= f(i)

We will choose a slightly more convenient form of these axioms by

naming a Skolem function which computes the desired point in the

sequence.

FINI: f(FINl(f)+]) >= f(FINl(f))

FIN2: f(FIN2(f)+1) <= f(FIN2(f))

These axioms can be instantiated with any function "f" of the

right type. We require that "f" be a computable operator.
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IIow does this capture the fact that the range of the cropping

function is finite? For one, it _s a necessary condition. If

the range of the cropping function is finite, then the set of

machine representable numbers is finite, and thus the set of

values the interpreter can return by evaluating variable-free

machine terms is even smaller. On the other hand, the axioms

appear sufficient for practical purposes. The axioms permit

arguments of the sort that there are no infinite descending (or

ascending) sequences of machine values.

If these axioms are to be understood by an interpreter, their

constructive content must be understood. This is especially

critical for these existential axioms, since such existential

statements must actually produce the values they claim exist.

Fortunately, this poses no problem here since we know no sequence

of machine representable numbers can keep increasing (or

decreasing) forever. We can find the place where the sequence

stops increasing (or decreasing) by just examining the values in

the sequence one by one. This may not be efficient, but it is

guaranteed to work since the range of machine representable

numbers is finite. The interpreter can compute the values of the

sequence until one with the r_ght property as found. Th_s value

c_n then be used for FINl(f) or FIN2(f). Eventually the

algorithmic part of the axioms can be compiled into simple while

loops. Here is the while loop for the FIN1 axiom given f.
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i ,: O;
while f(i+l) > f(i) do i := i+l end;
return (i);

T

There is a gray area in NSA where the desire for constructive

_ontent of the axioms competes with the need for expressing

idealized computations. This mixture of constructive and

non-constructive rules does not in and of itself cause the

interpreter any problem. What the interpreter does not

understand can not be simplified. This leads to the following

problem. A theorem (using non-constructive constructs) of the

form "for all real numbers x-there exists a real number y" can be

verified as a correct theorem in the theory, but when applied to

a particular value x the proof expression may not simplify to the

real number y in normal form. We can take normal form for real

numbers to mean a variable-free computable term. This diminishes

the usefulness of the verification. For the number-theory

programmlng logic presented previously it is conceivable to prove

a meta-theorem that all proof expressions representing natural

numbers can be reduced to a series of successor functions applied

to zero. Such a meta-theorem is highly desirable for NSA. Most

likely it will be easier to define a subset of NSA that can be

mechanically recognized which can be shown to be normalizable.

4.8 Finding Square Roots by Newton's Method

]Jet us now turn to an example of a floating-point program

4 - 46



proved correct in a programming logic version of NSA. As

mentioned previously we view the example as a test case for

building such a logic. The programming logic sketched in the

previous section, while tentative, is adequate for carrying out

the following proof which is a program. Since the logic was

constructed so that all the axioms and rules of inference have

constructive content, the proof can be executed by the

interpreter.

The example we shall use is Newton's method for computing the

square root of any real number.

Square Root Theorem. All x:rea] . Some r:real . x>l => r*r==x

A proof of this formula will be a function that can take any

machine representable number and if it _s greater than one, this

function will produce another machine representable real number

whose square is infinitesimallyclose to the original number.

The remainder of this section is devoted to showing what is

involved in formalizing the proof of the Square Root Theorem.

The proof of the theorem will certainly require many of the

ordinary fact about the ideal real numbers. We will use the

f_eld axioms and the order axioms without much comment. Note

that we do not expect any part of the proof dealing with ideal

real numbers ever to effect the evaluation of a proof

expression.
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To prove that the square root exists we will first define a

sequence o£ machine representable numbers that get closer and =

closer to.. the square root of x. Here is the recursive definition

of the sequence written in ML.

val "F (-i:iNat):Real
if' iJ0" then x

else .let _al Next = (F(i-l)++(x//F(i-l)))//2 in
;if Next > F(i-l) then F(i-l) else Next
ehd;'

It _s clear that we could have defined F using the Rec and If

constructs, but such a definition would not be perspicuous.
,, .p.

Notice "that'we can prove that F(i) J.s a machine representable for

all i, since all the compuational steps (including ++, // and >),.

are _11 perfectly understandable by the interpreter.

The computation rules permit the following conclusions about

the recursively defined function F:

v(o) = x
F(i) = if Next > F(i-l) then F(i-l) else Next

where Next = (F(iO)++(x//F(iO)))//2

The computation rules for the If construct give rise to two more

rules which can be used in the proof.

Next > F(i-l) -(Next > F(i-l)) -

F(i) = F(i-l) F(i) = Next
7

Using these rules is the only means of proving properties about

recursive definitions. We will need these particular rules to
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continue the proof of the.Square Root Theorem.

We can prove by induction that this sequence F has the

property:

Property i. All n:Nat . F(n) >= F(n+l)

Notice that this proof requires no reasoning about floating-point

calculations whatsoever. The proof relies solely on the

definition of F. Another property of the sequence F provable by

induction is:

Property 2. All n: Nat . x >= F(n) >= 1

That x>=F(n) holds, follows from Property I about F. That F(n)>=l

holds, requires knowing something about floating-point

computations. In particular, we need to know that y>=z implies

y//z>=l, and that y>=l and z>=l imply (y++z)//2>=l. These facts

follow from the monotonicity of the cropping function. We will

g_ve a more detailed proof of Property 2 later.

Now we give a sketch of the proof of the Square Root Theorem.

By the finiteness axioms we know that there is some iO for which

F(iO+I)>=F(JO). This combined with the fact (Property I) that

F(n)>=F(n+l) implies that F(i0+l)=F(i0). What does this mean? If

" F(i0+l) equals (F(iO)++(x//F(iO)))//2, then we have what we would

expect s_nce ideally
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F(i)=(F(i)+(x_F(1))/2 implies F(i)_F(i)=x

Let us set Next equal to the quantity (F(iO)++(x//F(IO)))//2. Now

suppose F(iO+l) = Next, then we must show F(iO)*F(iO)==x. First

we must know that Next is infinitesimally close to its ideal

counterpart: (F(iO)+(x/F(iO)))/2. (This result is proved in Lemma

I below.) Hence (F(iO)+(x/F(iO)))/2 == F(iO). From this follows

(Lemma 2) the desired result. The proof is remotely similar to

the ideal mathematical case, but there are many details to

check. The floating-point computations do have the needed

properties like their ideal counterparts do, but to verify this

requires more effort and we put this off for the moment.

The proof is not yet finished. It need not be the case that

F(iO+1) = Next. Recall the definition of the function F. If Next

> F(iO) then F(J0+I)=F(iO). This would be the case when cropping

errors in the computation of the next value in the sequence did

not result in a value that was less than or equal to the previous

value. But nevertheless we have F(iO)*F(iO)==x, since Next is

really very close to F(_O). In fact we can prove that Next >

F(iO) implies that (F(iO)+(x/F(iO)))/2 == F(iO). This is the

content of Lemma 3. We defer this proof as well. F(iO)*F(iO) ==

x follows again from Lemma 2.

All that is needed to complete the proof is to put the two

cases, Next <= F(iO) and Next > F(iO), together. The cases are

exhaustive (by dichotomy) and in each case we have the desired
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conclusion. This suggestes the or-elimination rule.

OrElim (Dichotomy(Next,F(iO)), casel, case2)

T

Finally, we pick as the square root F(iO). The proof expression

for the whole proof takes on the following form.

Alllntro (x, Somelntro (S, OrElim (...), F(iO))

We have just seen an overview of the proof of the Square Root

Theorem. It is time now to go back and fill in the details.

First we prove Property 2. The proof proceeds by induction.

For n=O we must show that x>=F(O)>=l. Since F(O)=x and we

assumed x>=l, this is trivial. So now we assume the induction

hypothesis x>=F(n)>=l and prove that x>=F(n+l)>=l. Set Next to

be (F(n)++(x//F(n)))//2. If Next>F(n) then F(n+l)=F(n) and we are

finished. Otherwise Next<=F(n) and F(n+l)=Next. Since x>=F(n),

x>=F(n+l). Now comes the hard part: showing F(n+l)=Next>=l. We

must analyse the floating-point operations in

Next=(F(n)++(x//F(n)))//2. Since x>=F(n) and -(F(n)=O), we expect

that x//F(n)>=l. This is in fact the case. Since F(n)>=l, we

expect that F(n)++(x//F(n))>=2. Finally dividing by 2 we get

Next>=l, the desired conclusion.

The properties of the floating-point operations used above doT

follow from the axioms of NSA. Let us examine one of these facts

in greater detail. From y>=z it follows that y//z. Expanding
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the definition of y//z we get "(z=O) & w=CR(y/z) & w<=l.

Assuming that -(z=O) we get that y/z>=l by the axioms of ideal

arithmetic. By the monotoniclty of CR we have CR(x/y)<=CR(1)=I.

Hence w<=l.

For Lemmas I, 2 and 3 we set Next equal to

(F(iO)++(x//F(iO)))//2 and IdealNext equal to

(F(iO)+(x/F(iO)))/2.

Lemma 1 states that Next == IdealNext. The proof proceeds as

follows.

x//F(iO) == x/F(iO)
F(_O)++(x//F(iO)) == F(iO)+(x/F(iO))

(F(iO)++(x//F(iO)))//2 == (F(iO)+(x/F(iO)))/2

Each one of these steps depends on a similar argument about

floating-point calculations which makes use of the fact the

fin(x) implies CR(x)==x. So, each step reduces to showing that

the appropriate quantity is finite. In the first step, for

example, we must show that x/F(iO) is finite. But that follows

from the fact that x/F(iO)<=l<2 and that 2 is standard.

Lemma 2 states that IdealNext == F(_O) _mplies F(iO)*F(iO) ==

x. The proof proceeds as follows.

(F(iO)+(x/F(iO)))/2== F(iO)
F(iO)+(x/F(iO))== 2*F(iO)
x/F(iO) == F(iO)
x == F(iO)*F(iO)

Each step follows from a simlar argument about floating-point
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computations. The essence of the first step "IS y/2==z implies

y==2*z. Expanded this yields inf(y/2 - z) implies inf(y - 2*z).

This follows from the fact that for all epsilon

IY/2 - zI < epsilon/2 implies IY- 2*zl < epsilon

Recall that inf(x) is defined to be

All epsilon . (std(epsilon) & epsilon > O) -> Ixl < y

Lemma 3 states that Next > F(iO) implies IdealNext == F(iO). By

the laws of ideal arithmetic we have that IdealNext < F(iO).

Hence IdealNext < F(iO) < Next. From Lemma I we have that Next ==

IdealNext. Clearly IdealNext == F(i0).
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Chapter 5

Technical Feasibility

This report, although incomplete in places, shows the

feasibility of our apprach to the formal specification and

verification of mathematical software. Our basic concept, the

use of non-standard analysis to represent the asymptotic behavior

of programs, is new; there does not appear to be anything

comparable to it in the literature. Further experimentation with

approaches is necessary before an appropriate verification system

can bedesigned. We believe such experimentation is best carried

out using rapid prototyping. An experimental VCG can be built

without an accompanying theorem prover and used to examine the

forms of the VCs generated; simplification rewrite rules over the

non-standard reals can be devised in order to simplify the print

form of the VCs; our ML prototype should be completed in several

different ways and experimented with.

Our final vision is a system in which a mathematically

_ sophisticated programmer/mathematician could interactively verify

libraries of floating-point routines or critical sections of

large systems which use the floating point data type. These
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verified programs might.then be transfered to other machines

following the Host/Target scenario familiar in embedded systems.

The reason for such configurations is that environments useful

for program development (including formal specification/

verification) are not necessarily optimal for run-time

requirements like advanced floating point precision and

efficiency. The portable programs produced by our Verification

environment can then be used with far greater assurance of their

reliability. Indeed, our asymptotic approach to verification is

consistent w_th and supports the use of verified programs on a

variety of machines.

Our greatest departure from mainstream efforts in program

verification is in using non-standard analysis. This is at once

the most risky and the most innovative aspect. In the past 20

years the logical basis of non-standard analysis has been worked

out but mainly by mathematical logicians as opposed to computer

scientists. Thus tasks of building formal languages with their

accompanying grammars and parsers which express these concepts

and automated proof environments which manipulate the constructs

are open research areas. The only applicable work in automated

theorem proving which we are aware of is [1].

While very little precedent for our apporach is available we do

I. Ba]lantyne and B]edsoe, "Automat£c Proofs of Theorems in
Analysis Using Nonstandard Techniques," JACM, 24 (July 1977),
pp. 353-374.
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feel that based on our experience so far, such an approach

appears to be conceptually simpler than conventional techniques

which rely on bounding machine operations on floating-point

numbers to within an "epsilon" of the actual result. The proofs

using such rules are difficult and unenlightening. However,

statements about the asymptotic precision of programs, like

statements about the asymptotic complexity of programs, make

meaningful assertions about programs and at the same time permit

an intuitive theory to be developed. This is the advantage of

using non-standard analysis as the theoretical underpinnings of

verification.

Using non-standard analysis as the theoretical basis, we have

discussed building a verification system using two different

approaches with proven feasibilty. There are several well-known

verifying systems based on the VC approach. There are, for

example, the Stanford Pascal Verifier [2], the Gypsy Verification

Environment [3], and the not yet completed Euclid Verification

System [4]. None of these systems support either fixed or

floating point reals. The success of the VCG approach depends on

constructing a "good" theorem prover. Such a theorem prover

2. W. Polak, Compiler Specification and Verification, Lecture
Notes in Computer Science, 124, Springer-Verlag, 1981.

3. Donald Good, et al, Usin_ the _ Methodolos_ , University of
Texas, Austin, 1981

4. D. Craigen, Ottawa Euclid and EVES:A Status Report, Proc. 1984
Symp. on Security and Privacy, IEEE Computer Society
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should prove trivial theorems and simplify non-theorems

automatically while supporting a user-machine interaction to

prove more difficult theorems. Finding the right mix between
o

automatic and proof checker mode is the subject of much current

research. Using non-standard analysis as the underlying theory

causes no additional burden, since it Can be adequately

axiomatized in first-order logic.

The second approach to verification using non-standard analysis

that we have proposed using is the programming logic approach. A

system based on this approach is presented in [5]. This is a

programming logic adapted to a variant of the PL/I language

(without real data types). The PRL (for Program Refinement

Logic) project at Cornell University [6] is a continuing NSF

sponsored reseach effort along these lines. While it is not yet

clear if the formalization of non-standard analysis in this

framework is flexible enough, the benefits of success would,

However, be great. First of all, all verified programs

terminate. The system proves total correctness and not just

partial correctness. All of the VCG environments mentioned

previously consider only partial correctness. Second, rapid

prototyping and experimentation with the logic is possible using

5. Constable, R., et al, An Introduction to the PL/CV2
Programming _Lq_ic, Lecture N--otes in Compute-'? S'_nce 135
Spring-Verlag,----I-_2

6. Constable and Bates, "The Nearly Ultimate Pearl" Cornell
University Technical Report, January 1984.
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the programming language ML. Third, meta-reasoning or more

abstract reasoning would be possible as in the PRL project.

Finally, decision procedures can easily be incorporated to prove

the trivial details. The drawback of the programming logic

approach is that it does not produce programs in the imperative

form that programers are used to. This leads to a possible

acceptance problem. If previously compiled library routines need

only be linked and used and not modified then there is no

difficulty. But if verified programs need to be modified the

programming logic route would entail training in new language.

The VCG approach also leads to modifications difficulties since

the verification is nullified when changes are made. It is

difficult to verify a program that one hasn't written and also

difficult to reverify a program which one has written but which

has been modified by someone else. On the other hand, VCG based

environments can be designed using data base capablities which

minimize the reverification effort. If modification and

non-verification expert readability is a concern then the VCG

approach should be tailored to known languages like FORTRAN,

HAL/S, or Ada even though they are not as well structured from a

verification point of view as is Euclid or Gypsy.
s
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Appendix A

Proofs

This Appendix contains the proofs of several theorems which

were used in the course of proving VCs for examples in Section 4.

THEOREM i: CR is monotone

Suppose not, i.e. suppose that there exist x and y such that x

<= y but CR(y) < CR(x).

Case I: CR(y) <= x

In this case, CR(y) <= x <= y, and CR(CR(y)) = CR(y) by the

second cropping function axiom. Therefore, by the fourth

cropping function axiom, CR(x) = CR(y), a contradiction.

Case 2: x < CR(y)

In this case, x < CR(y) < CR(x), and CR(CR(x)) = CR(x), so by the

fourth cropping function axiom, CR(x) = CR(CR(y)) = CR(y), a
r-

contradiction.

THEOREM 2: There is no machine real strictly between x

and CR(x)
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Suppose not, i.e. that there exists x and y such that y is

strictly between x and CR(x) and CR(y) = y. CR(CR(x)) = CR(x),

so by the fourth cropping function axiom, CR(y) = CR(x), a

contradiction.

THEOREM 3: If (I + X/N) == 1 and J is a standard

integer, then (i + X/N)AJ == 1

The proof is by induction on J. Note that the statement we are

trying to prove is external, so induction will only prove it for

standard J, but this is all we want.

For J = 0 the formula is trivially true. Now suppose (1 +

(X/N))AJ == I. (i + (X/N)) == I, so (I + (X/N)) is finite and we

can multiply both sides of the inductive hypothesis to get

(i + (X/N))'(j + 1) == (i + (X/N)) == 1

and so the theorem is proved for all standard J.

THEOREM 4: If Z is a finite real and J is a finite

integer, then Z_J is a f£nite real.

The proof is by induction on J. Again, induction will only prove

the statement for J standard. Since all finite integers are

standard, this will prove the theorem.

If J = O, ZAJ = I, a finite real. Now assume Z'J is finite.

Z_(J+l) = Z'J * Z. Z^J and Z are both finite, so their product is
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finite. This finishes the induction.

THEOREM 5: If fO is a continuous function from R

to R, f the non-standard extension of fO, and g(x) == f(x)

for all finite x, then for any finite x, there exists a standard

y such that y == x and fO(y) == g(x)

First of all, the non-standard analysis statement of "fO is

continuous" is

all x,y : R [std(x) & x == y -> f(x) == f(y)]

Since x is finite, there is a standard real y infinitely close

to x. By the above statement of the continuity of fO, f(y) ==

f(x). y standard implies that f(y) = fO(y). Therefore fO(y) ==

f(x). x finite implies that f(x) == g(x). The theorem follows

by transitivity of ==.

r
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