General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CONTRACTOR REPORT 166601

Ames RATFOR User's Guide _ §

Ieland C. Helmle

(NASA-CR-166601) RATFOR UsS

: } ER'S G :

gERSION 2«0 (Informatics General Eggg) NE516490
1p HC AOU/NF 201 CSCL 09B

Unclas
G361 13243 \\ ..

Y L

il
i
I
i
!
i
|
]
1
i
i
i

CONTRACT NAS2— 11555
. January 1985

NASA

s

ot

NASA CONTRACTOR REPORT 166601

Ames RATFOR User's Guide

Leland C. Helmle

Informatics General Corporation
1121 San Antonio Road

Palo Alto, CA 94303

Prepared for
Ames Research Center
. under Contract NAS2-11555

NNASA

National Aeronautics and
Space Administration

Ames Research Center
Moflett Field, California 94035

Ames RATFOR User’s Guide
Version 2.0

by

Leoland C., Helmle
Informatics General Corporation

July 16, 1983

Prepared under Contract NAS2-11555, Task 101

wed e .

TR S

u)

2.1
2.1.1
2.1.2
2.1.3
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
a7
3.8

4.1
4.2
4.3
4.4

Table of Contents

Introduetion

Stylistic Features of RATFOR

The RATFOR Statement .
Block Structure
Tokens . +» &+ ¢ » » & &
Keywords
Source Code Format . . .
Additional Stylistic Features
Basic Control Structures .
The IF-ELSE Statement .
The ELSE IF Construction

The WHILE Statement . .
The FOR Statement . . .
The DO Statement . . .
The REPEAT - UNTIL Loop
The BREAK Statement .

&

The NEXT Statement
Additional RATFOR Statements

The DEFINE Statement .
The MACRO Statement .
The INCLUDE Statement

The STRING Sfatement .

-

Appendix A
A RATFOR onthe Ames Cray X-MP & & 4 4 ¢ 4 o s s « 2 o v« 30
Al Usage « = v o o s s 5 p e e s s s s 2000 a0 005 80
A1 JOLfora Typical RATFOR Job « 4 « & & ¢« ¢ ¢ « » ¢ 2 o s « 30
A.1.2 Execution-time Parameter Sequences . . +» « « « v ¢ ¢« = « «» » 31
A.1l3S Using RATFORWIthUPDATE . . . - &+ 2 4 ¢ + « « ¢ » =« » 32
A2 Preprocersor Oplions .+ . o ¢ v ¢ ¢ & ¢ s 4 s 4 4 s 0 sre o B2
A.21 JOLKeyword Parameters « o « o = ¢ o ¢ ¢« o s ¢ ¢« + =« = o« «» 33
A.2.2 Preprocessor Directives « + o o ¢ » o = = + 2 s ¢ e v 2 0 0 M
A.2.8 TheDefault RATFOR Command .« « « « « 2 s a o = s « » « 35
A.3 Additional Notes onthe Cray Version « « « v . « « « 88
A3.1 Character Sets . . &« « s o o « o« o » « s s 2 2 2 2 5 s » « 36
AS.2 RATFORListings « « = 2 ¢ ¢ ¢ o« o ¢ & 2 ¢« 2 ¢ 2 s s ¢ s « 37
A.3.3 Preprocessor Efficiency « ¢ c 4 ¢ ot s 0 v s s s e . %0
A.3.4 Fatal Errors and Program Limitations « « + « = « ¢ ¢ « ¢« ¢« » « 40
AS5 Known Berious BUE « + & ¢ o ¢ ¢ o o ¢« o o 4 ¢ v 2 3 ¢ » « 42
A.3.6 Other Undesirable Features . . « « o ¢« ¢ o ¢ 2 ¢ o« = « s o « 42
A.3.7T Differences from Standard RATFOR « ¢ « = ¢ « . 48

ST AT e e Al e e B TR

L

L]

1. Introduction

This document describes an extension to FORTRAN' known as RATFOR [1],
an acronym for RATional FORTRAN. The RATFOR preprocessor translates
source code written according to the syntax rules described here to FORTRAN code
that can then be compiled by a FORTRAN compiler. RATFOR syntax gives the
user access to the block-structured control flow features of modern programming
languages while allowing the user to exploit the advantages to be gained from using
FORTRAN in a scientific or engineering computational environment (popularity,
portability, ...}. RATFOR does not, however, make any attempt to implement
the more sophisticated data structures of languages such as PASCAL; the user is
limited to those of the underlying FORTRAN compiler.

This document is intended to serve two purposes; that of providing the poten-
tial RATFOR user (who need not be familiar with the language) with a quick
reference to the basic language constricts and that of giving the user who already
knows RATFOR (of a similar FORTRAN preprocessor) enough inforrr.ation to
write and run RATFOR programs on large-scale batch computer systems., Some
documents of this type (see, for example, [2]or [3]) are designed to give a brief
overview of RATFOR, but in the context of a specific implementation on a specific
machine, This User's Guide, on the other hand, first presents, as does Comer|[4], a
description of RATFOR as a language. Separate appendices describe implementa-
tions of RATFOR in use on specific systems.

This decument assumes that the reader knows at least some FORTRAN and
that she has gained (through formal training, brilliant insight or sad experience) an
appreciation of the benefits of structured programming. Although our purpose is
not; specifically to sell the reader on structured programming, the RATFOR user
will find that the control structures offered by RATFOR allow her to write well-
structured programs in a natural manner. Thus, the use of structured program-
ming concepts and the use of RATF'OR are inextricably linked. The user wishing
more information on the topic of structured programming should consult the book
Software Tools[5].

There are now a large number of versions of the RATFOR preprocessor avail-
abls. The implementations of the preprocessor described in the appendices of

t Although this document is produced with FORTRAN 66 ir mind, FORTRAN 177 com-
pllers will also accept the output from RATFOR.

this document are based on a RATFOR dialect called MOUSE4[6]. This version
of RATFOR was chosen for the work described here because the program was
specifically designed to operate efficiently in a batch environment and because its
design appeared to be more flexible than that of the progran released in 1975 and
described by Kernighan [1]. The Comer version has proven to be both efficient and
easy to modify. MOUSE4 processes code five to ten times faster than an earlier
release of RATFOR on the CDC 7600, even though eahanced listing capabilities
were added. It should be noted that the name RATFOR was chosen for this release
to avoid confusion in the user community; one extra “language” is enough for most
people,

The reader not already familiar with RATFOR should continue with the sec-
tions described briefly here, while a user who ‘wants to use RATFOR on a particular
machine could probably skip immediately to the appropriate appendix. This intro-
ductory séction is followed by a description of the basic features of the RATFOR
languzge and its usage. These features distinguish the appearance of RATFOR
source code from that of FORTRAN and other languages and preprocessors. A
quick reference to the basic RATFOR control structurest with examples of their
usage is then included. A final section describes features of RATFOR that allow
the user added flexibility in designing programs,

The appendices explein the enhancements and the machine-specific features
for the Aries RATFOR implemeniations. The features which were added to make
the preprocessor more useful in a batch environment include enhanced source
listing capabilities, better error location and reporting, embedded preprocessor
directives and options accessible through the operating system command which
invokes RATF'OR.

Unpublished installation instructions supplied by D. Comer of Purdue
University are available in Ames Document 362 in the Computer Information Center
at Ames Research Center.

t Still more extensive descriptions are available in Software Tools[5}.

2, Stylistic Features of RATFOR

A major advantage of RATFOR over standard FORTRAN is that users write
programs which look better and are easier to read and modify. Using RATFOR
assists a programmer in writing well-atructured and readable programs, However,
program structure is obviously a function of program design and badly designed
programs are not likely to be rescued by RATFOR.

A programmer can develop a formal style of displaying what a routine actually
does if lees effort is needed to avoid certain annoying FORTRAN *features”. For
example, even when FORTRAN code is properly indented and well-structured,
statement labels are an integral part of the control structures, As a result, a person
reading FORTRAN code will find his concentration broken frequently because he
must constantly shift his eyes from the statement at hand to the statement label
in the first six columns.

A more important drawback than statement labels becomes apparent when a
section of code must be added or moved. To accomplish this, the programmer musk
check all new statement labels rather than just variable names for conflicts, What's
more, it the logic of a routine is at all complex, the large number of labels needed
may make the code incomprehensible.

Consider the example below. Suppose you have inherited a progran containing
the following code segment. The specifications say in black and white that the vari-
able A(I) can never be equal to 0.0 and your predecessor assumed the specifications
were correct, However, you have before you clear evidence that such is not the case:
your program bombed because of a very strange value in one element of the array
F. You have finally traced the problem to this section of code and you see that
F(I) is not updated if AC(X) = 0.0. You must add a block of code to recognize and
correctly handle this case.

C *SHOW AN EXANPLE WHICH DEMONSTRATES THE ABOVE.

100 IF (A(I) .GE. 0.0) GO TO 200
F(I) = A(X) + B(D)
" ~(D-E) /A
GO TG 300
c
200 IF (A(I) .LE. 0.0) GO TO 300
F(I) = A(I) + B(D)
* + (D-E) /A
c
300 CALL PUTVAL (F(I))

Aren’t you tempted just a little to rewrite the whole routine when you find that
statement 200 can also be reached from three other locations in the routine?
RATFOR avoids problems of this type as will be shown in Section 2.1.1.

The purpose of the following sections is to describe RATFFOR's way of treating
stylistic aspects of programming, Note that RATFOR may vary in certain details
from one implementation to ancther, mostly in the area of the stylistic features
discussed here. Also, and more important, an experienced FORTRAN programmer
should treat RATFOR as a totally new language. Correct usage of RATFOR
control structures will be attained more easily if the programmer avoids simply
“translating” his or her FORTRAN code to RATFOR.

2.1. The RATFOR Statement

Even though much of a typical RATFOR program looks like FORTRAN,
there are some fundamental differences, which are summarized here. The basic
differences involve the nature of the RATFOR staternent, the way statements are
analyzed and the names of the control structures themselves.

2.1.1. Block Structure

An important part of RATFOR's attack on the problems mentioned in the
introduction to this section is embodied in the concept of bloek structure. A block

e en e ___ _
T I

of code is defined here as a sequence of statements from which and into which
control can neyer be passed. Execution begins at the top of the block and proceeds
directly to the bottom (with the exception of loops and excursions into external
subprograms). Such a block can be treated as a unit with a single entry and a
single exit and its execsition is controlled by a single RATFOR control statement,

A RATFOR statement may be 1) a single FORTRAN statement or 2) a
RATFOR control statement and its associated block of code, 'The various RATFOR
control statements will be discussed in a later section, A block of code consists of
zero or more RATFOR statements that may be executed conditionally or executed
more than once as part of a RATIFOR loop control structure.

The astute reader may be wondering how these blocks of code are recognized
by the preprocessor. There are two conventions: a RATFOR control statement
will control 1) the next single statement or 2) a sequence of RATFOR statements
bracketed by a pair of brace characters, “{” and “}". Where the brace characters
are not available or not preferred, a number of synonyms may be used. The square
bracket characters “[" and “]" or the diphthong combination “$(" and “$)" are
also normally available and can serve the same purpose. Ames RATFOR has been
extended to include pairs of angle bracket characters “<<” and “»»" as still another
alternative,

The RATFOR statement is designed to be executed from top to bottom except
when jumping back to the top of a loop or to an external subprogram. Thus,
no statement labels are needed within the structure, offering the programmer no
temptation to use a GOTO statement to branch into a structure. When a programmer
finds a situation in which a GDTD appears necessary, it is recommended that the
segment of code containing the GOTO, and possibly the whole routine, be rewritten.

Let’s return now to the example mentioned in the introduction to this section.
Suppose now that you inherited the same problem as before except that the segment
was coded in RATF'OR as below. Note that, even though you may never have seen
any RATFOR code before, the logic used is much clearer and, if a correction can
be specified for A(I) = 0.0, it can be made by replacing two lines of code (and it
is almost certain to work as expected).

THIS CODE DEMONSTRATES A BETTER SOLUTION.

IF (A(I) < 0.0)

{
F(I) = A(I) » B(I) -
=(D=-E) /A(D)
}
ELSE IF (A(I) » 0,0)
{
F(I) = A(I) + B(I) -
+ (D~-E) / A(D
}
ELSE # A = 0,0, UNSPECIFIED CASE.
{
CALL MESSAGE ("ERROR: A = 0.0*)
STOP
}

CALL PUTVAL (F(I))

The reader may think this is an unfair example, Still, wouldn't you admit that
you've seen things like the FORTRAN example in other programmers’ work and
that you kave seen so-called “impossible” cases come back to haunt even you a few
times?

The RATFOR example above shows that this programmer realized that if A(I)
ever happened to be 0.0, the program should do something dramatic to flag the case
that was not covered in the specifications. ile or she programmed “defensively,”
covering the illegal case should it ever arise, not leaving it to execute incorrectly
until the bug happened to cause the program to crash or to give obviously bad
results, Notice that there is no need even to check for other possible paths to any
point in the shove code — there can be only one.

Suppose that you want to reorder the cases considered in the above example or
in a more comfplex one. In RATFOR this is essentially a mechanical problem: the
blocks of code are simply moved (with some care to be sure that the syntax is left
valid). Similar changes in FORTRAN are sometimes simply avoided as “dangerous”
unless absolutely necessary,

2.1.2. Tokens

A RATFOR source statement i3 analyzed by the preprocessor in terms of
tokens. For this discussion, a token is deflned as an alphanumerle string, a string of
digits, a quoted string or a single non-blank special character, Tokens of more than
one character are delimited by any special character or a blank, Most blanks are
removed from the code, since they are not significant to FORTRAN. For example,
the statement

1000 ERROR = *TRUE®"

would be separated inte the following four tokens, each of which would be treated
seporately: the label 1000, the alphanumoric string ERROR, the special character
= and the quoted string *TRUE®. The important-thing to remember here is that
it you type I F (A)", RATFOR will not recognize this as the beginning of an
IF statement. That is, embedded blanks are not allowed in RATFOR keywords,
in contrast to the case of FORTRAN. In the example above, if ERROR had been
typed ER ROR, RATFOR would have processed two separate tokens, but would have
generated the same FFORTRAN code.

2,.1.3. Keywords

The term keyword, mentioned in the previous paragraph, can be defined as
those symbols which are recognized as meaningful by RATFOR. That is, RATFOR
keywords are a special set of tokens for each of which the preprocessor must take a
very specific action, such as generating a certain type of FORTRAN statemeit. In
RATFOR the keywcids are also reserved words; they must not be used except as
keywords. Thus, variables cannot be named DO or KEXT without hopelessly confusing
the preprocessor. The following symbols are designated RATFOR keywords:

STANDARD RATFOR KEYWORDS

Saection 8 Sectlon 4

(Control Btructures) (Additional Statemonty)
IF DEFINE
ELSE INCLUDE
WHILE STRING
FOR MACRQ
) 1]
REPEAT
UNTIL
BREAK
NEXT

2.2. Source Code Format

RATFOR, unlike FORTRAN, does not impose on the user any statement
formatting requirements, RATFOR source code is free-format: statements may
begin anywhere on a line without regard to column number. Columns one to five
are not reserved for statement labels nor iz column six reserved for statement con-
tinuation characters as in FORTRAN. Thus, the user is able to format his code to
demonstrate its logical structure in a natural way without visual interference from
statement labels and continuation characters. No attempt is made by RATFOR
to indent the user’s code, under the assumption that this is a personal style con-
gideration,

RATFOR does not prevent a programmer from using statement labels, but
they are necessary only with FORMAT statements, Statement labels may appear
anywhere on a line of RATFOR source. How the need for statement labels is
eltininated is discussed further in later sections. For now it is worth noting that,
partly because of the lack of statement labels in RATFOR code, well-written
RATFOR programs are much easier to read and modify than equally well-written
FORTRAN programs.

Line continuation is normally indicated in RATFOR hy an “_" (underscore)
character at the end of the line to be continued. This character is not passed to
the FORTRAN code being generated by RATFOR. Lines ¢nding in a normally

occurring comma (e.g., separating CALL arguments) or semicolon (¢.g., in a FOR
loop, as described in the next section) will also be continued,

RATFOR line continuation conventions have been troublesome in several cases,
Ameg RATFOR has been modified to allow the continuation character at the end
of any line containing an incompiete statement, In other implementations the
continuation character may be required in some cases, not allowed in others and
allowed but not required in still others.

RATFOR also does not, by design, restrict the user to seventy-two columns of
source code as does FORTRAN, However, there is always a practical limit to the
length of input records on any given system. In some cases, the source may contain
card sequencing information beginning at some point in the line, This part of the
input to RATI'OR must not be processed as source code. The way in which this
is handled may vary from site to site, For example, the RATFOR preprocessors
described in the appendices allow the user to invoke RATFOR with a puararaeter
specifying the length of the RATFOR source code lines.

The comment character in RATFOR is the “#" (sharp or pound sign), denoting
information which is not to be processed by RATFOR. The characters between “#"
and the end of the line are ignored by the processor. Comments may be inserted
at any point in a source line, a feature of many computing languages other than
FORTRAN., A “C" in column 1 is not recognized as a comment character and will
generally confuse RATFOR.

A blank line is ignored by the processor and thus serves as a useful formatting
device for breaking up sections of source code. A blank line between continued
lines of a statement will terminate the statement, cancelling the continuation. The
user may, however, use 2 line containing only a continuation character for such
formatting purposes.

A final note concerns the use of lower case letters, RATFOR is designed to
accept any ASCII character, including lower case letters, as input, RATFOR then
translates all lower case letters to upper case to be recognized by FORTRAN as
standard characters. Although this document shows examples in upper case only,
the Ames RATFOR preprocessor accepts lower case as well. Note, however, that
some equipment operates on a restricted (64 character) character set, converting all
letters to upper case, regardless of what the user types. In such an environment,
maintaining mixed cases is very inconvenient.

2.3. Additional 8tylistic Features

Soveral other miscellaneous features of RATFOR must still be described,
Quoted strings are delimited by either the “*" (double quote), or the **" (single
quote or apostroph¢), RATFOR translates the strings into H format Hollerith
strings, treating blanks ags significant characters, String delimiters must be matched
(i.e., a string begun with “*" must be ended with “*"), This provides a (not quite
fool-proof) mechanism for using quote characters in strings: simply bracket the
string with the other quote character.

Hollerith strings defined hy H or such nonstandard FORTRAN delimiters as
L, R, or “»" (asterisk) will not be recognized by RATFOR as string daclarations.
The use of such strings may result in RATFOR preprocessor errors or FORTRAN
errors because embedded blanks will be compressed out of the string.

In case & nonstandard RATFOR statement is really needed, the line can be
passed through RATFOR without change to the FORTRAN compiler by using a
“%" (percent sign) in column 1. Such a statement iz processed by removing the
“%" and shifting each remaining character on the line one place to the left. (The
user must be sure to allow for this if the line is to contain a FORTRAN continuation
character in column 6, for example.) This mechanism is useful for the nonstandard
string delimiters such as L and R and other cases which arise from time to time.
The user wishing to pass large sections of code or whole routines through RATFOR
is directed to the Appendices for the discussion of the FORTRAN pass-through
preprocessor directive implemented in those versions of RATFOR.

The relational operators of FORTRAN, such as .LE. and .EQ, and the logi-
cal operators such as .BOT. and .0R. can all be represented in RATFOR by a
convenient shorthand as shown in the table on the following page.

10

RELATIONAL OPERATORS

.Eﬂ.]
HE. -=
.LT. <
.LE. <=
.GT. »
.GE, =

LOGICAL OPERATORS

.OR. |
LAND. &
JIGT. -

The original operators are also valid if the user is more comfortable with them. The
“==" ig used for logical equality, as distinct from “=" which represents replacement.
The “=" (logical not), and the “|” (vertical bar) are nonstandard characters on
many systems and keyboards and may be unavailable (e.g., the CDC 7600 uses a
restricted character set of 64 characters which contains neither of these). The “-"
is not even part of most standard ASCII tables, “~" or tilde, being the nearest
equivalent.

WARNING

Although most implementations of RATI'OR have been
modified to include various “common"” equivalents to the non-
standard — and [, using them will very likely make your zode
less portable.

11

3. Basic Conti'ol Structures

RATFOR control flow structures are described in this section, giving the user
enough information to understand the general nature of each structure. Examples,
drawn from scientific applications environments, are given for each structure. More
detail can be found in Section 1.8 of [5].

The examples which follow assume strong typing: each variable in a routine
mush appear explicitly in a TYPE statement. If a variable is named BLANK and
it is used as an INTEGER, the reader can assume that it has been typed INTEGER
previously. The syntax of each structure is demonstrated by means of a “model”
in which upper case letters must be supplied by the user in exactly the form given
and lower case letters represent generic information which will be replaced by the
user. The following definitions will also be assumed for the discussion which follows:

statement any legal FORTRAN or RATFOR statement, or one or
more of these statements enclosed in compound statement
delimiters,

condition any legal RATFOR conditional phrase.

A RATFOR conditional phrase is a valid FORTRAN conditional phrase using any
combination of the standard FORTRAN operators and the operators recognized by
RATFOR as described in the previous section.

3.1. The IF-ELSE Statement

IF (condition)
statement 1

ELSE
gtatemant 2

This is performed in the following way: if condition is true, only statement
1 is executed; otherwise only statement 2 is executed. The ELSE part is optional.
The IF-ELSE construct is frequently implemented in FORTRAN with the following
code:

12

IF (condition) GO TO 10
statoment 2
G0 TO 20

10 statoment 1

20 CONTINUE

RATFOR, however, translates the construct in a way which maintains the original
structure slightly better:

IF (.NOT. (comdition)) GO ¥0 i0
atatement 1
GO0 TO 20

10 gtatoment 2

20 CONTINUE

In the following example of an I¥-ELSE sonstruction, subroutine INVERT is
called if ¥ is greater than 0; otherwise, the error exit is taken. In either case,
processing resumes at the next statemcent after the right brace which signals the
end of the ELSE clause. Note that braces are not needed for the single-statement
IF branch. The two-line block of codn in the ELSE branch, however, must be
surrounded by compound statement cdelimiters; without them only the call to
MESSAGE would be controlled by the ELSE while the call to ABEFD would be executed
regardless of the value of N.

IF (X>0) CALL IEVERT (£, ¥, &, ¥)
ELSE

{
CALL MSSSAGE { 'ERROR: INVEAT REQUIRES N > 0')

CALL ABEND
}

13

3.2. The ELSE IF Construction

IF (condition 1)
statement, 1
ELSE IF (condition 2)
statoment 2

ELSE IF (condition n-1)
statement n-1
ELSE
statoment n

This construction is nothing more than a nested IF-ELSE statement, in which
each ELSE branch is another IF-ELSE statement. This construction is designed for
situations in which one and only one of several blocks of code is to be executed, in
the manner of the CASE statement of languages such as PASCAL.

The final ELSE, if present, serves as a perfect trap for that “impossible” case
as demonstrated in the example of Section 2. This author has never regretted

expending the effort of adding an extra three or four lines of code needed to print

a message and exit “just in case”.

3.3. The WHILE Statement

WHILE (condition)
gtatement

This statement is performed in the following manner: Test “condition”, If
“eondition” is true, perform “statement” once and test again. If “condition” is
ever false (including the first time), control is passed to the first statement after the
body of the WHILE.

14

~uiid, TR W

-...__._N._A m_..,._..«..“ Av._“:,.‘u_
. C e e

This control statement corrects one of the major flaws of the FORTRAN &¢
statement: the WHILE condition is tested before performing the loop body for the
flrst time, Thus, the loop behaves properly when the loop body may or may not be
performed on the first pass. A FORTRAN (before FORTRAN 77) D0 loop would
require a separate explicit test and branch around the loop to work the same way.

Note the following:

WHILE (INLINE(I) == BLANK) I=I+1

The above statement can be used to skip any elements of the array INLINE which are
equal to BLANK. That is, the “pointer” I will be advanced from its current position
to point to the next non-blank character of the array INLINE, If X is pointing to such
an element initially, the loop body is not executed and the value of I is not changed.
Note that the free format feature of RATFOR allows the one-line statement seen
here.

3.4, The FOR statement

FOR (initialize ; condition ; reinitialize)
gtatomoent

The “initialize” and “reinitialize” parts represent single, executable
FORTRAN statements. A preprocessor does not have all the syntax-checking
capabilities of a compiler; using statements other than simple assignments in FOR
statements may cause RATFOR to produce incorrect results or even abort. Note
the “;" (semicolon) separating the parts of the FOR statements. A common error has
been to substitute commas for the semicolons. The Ames RATFOR preprocessor
has been improved to recognize and report this error. Other versions may not do
S0.

Except in one situation (see the section on the NEXT statement), the FOR loop

15

is performed in the following manner:

inltialize
YHILE (condition)
{
gtatonent
roinitialize
}

Note that the above expansion can still be carried out even if auy one or more of
the four parts are missing. A “;" (semicolon) may be used to indicate a missing
statoment section (see the example below). A missing “condition” section is
treated as always true and an infinite loop results. For a way out of the inflnite
loop, read the section on the BREAK statement below.

The following example of a FOR statement is equivalent to one which every
FORTRAN programmer has used; the simple, standard D0 loop.

FOR (I=1;I<=N;I=I+41)
{
F(I)
G(I)

SIN(C X(I))
- COS(X(I))

}

The programmer can read this as: “for each I from 1 to X, set ,,..” Note that there
are N iterations of the loop.

The FOR loop, however, i3 much more powerful. Let us suppose the function
GETLIN picks up a record from the file FD, saving the input record in the buffer
LINE and returning the length of the record in characters as the function value,
The function value is set to -1 on an “end-of-file” condition. The FOR loop in the
example below could be used to count the lines and characters in a file, starting

16

T —

e e e e

from the current position.

NLINE

=0
NCHAR = 0
FOR (J = GETLIN(FD, LINE) ; J >=0 ;
J = GETLIN(FD, LINE))
{

NLINE = NLINE + 1
NCHAR = NCHAR + J
}

Another exotic FOR loop (which performs the same operation as the WHILE loop
example in the previous section) is the following:

FOR (; INLINE(I) == BLANK ; I =I +1) :

In this case I is incremented while IELINE(X) has the value BLANK, leaving I pointing
at the first non-BLABK value (we are assuming, obviously, that I has been defined
previously). The body of the loop is a “null” statement; all the work is done by the
test and the reinitialization statement which increments I.

3.5. The DO Statement

D0 limits
statement

This structure is translated into a standard FORTRAN D0 loop. The “limits” are
any legal DO loop limits written in the standard form and subject to the limitations
of the local FORTRAN compiler (e.g., I = 1, H). The “statement” is performed
as a block, so no statement labels are needed. Any FORTRAN programmer will

17

be comfortable with this example from the section above on the FOR statement:

DO ‘ I=
{

F(1) = sIM(X(I))
G(1) = - cos(X(I))
)

=

To the reader who is thinking “This is much easier to read and shorter to type
than the FOR loop,” consider the following: what happens if ¥ = 07 Experienced
FORTRAN programmers may remember that this question is left up to the compiler
writers who, before FORTRAN 77, usually specified that the body of the loop would
be executed at least once, no matter what the upper limit might be. That is, the
test for exiting the loop is performed at the end of the loop. The N = 0 case is
another of those “impossible” situations that pop up all too often in programming.
Where there are not compelling reasons to the contrary, the FOR loop is preferred
over the DO loop.

Having made the above point, there are still some situations in which the
DO loop is appropriate, Most FORTRAN compilers are constructed to optimize
a standard D0 loop much better than the IF loops generated by RATFOR for
the other loop control structures. In particular, the Cray cannot recognize an IF
loop for vectorization purposes, Since the test in FORTRAN 77 DO loops is done
before the body of the loop is executed, some users will no longer have to worry
about “zero-pass” loops. Also, but with more ¢aution, it is recognized that in many
computational programs the b3 construction is exactly what is needed. Calculations
may be done a set number of times, there may be no need for unusual index control
and there may be no question about whether or not the loop will be done the first
time.

The following approach can be recommended. First, design your program
carefully, The most dramatic gains in efficiency are almost always found at the
algorithmic level. Second, write your code using a language like RATFOR which
encourages a well-structured and modular program, parts of which can later be
changed if they ¢urn out to be inefficient. Third, once the program works, then
(and only then) use a timing facility to find out where, in fact, the program is
spending its time. Usually about twenty percent of the code is consuming a large
part of the execution time, Fourth, work hard at improving those sections found to
be inefficient, doing such things as replacing FOR loops with DO loops and replacing
modules for which a more efficieni procedure can be obtained.

18

g b2 e i
b e S e

3.6, The REPEAT - UNTIL Loop

REPEAT
statoment
UNTIL (coadition)

In this case “statement” is simply repeated until “condition” is satisfied. The
test is performed after cach completion of “statement” much as in the case of the
DO loop. The UNTIL may be omitted to make an “infinite” loop which must be
terminated by some other method (see the section on the BREAK statement, below),

One situation in which the REPEAT-UNTIL loop structure is the most natural
way of expressing what is being done arises when an unknown number of records
must be read from a flle, The example below skips to the “end-of-file" (EOF), starting
at the current record.

REPEAT

{
CALL READER (FILE, EOFVAL, BUFFER)

} UNTIL (EOFVAL == *TRUE")

Note that in the above example, at least one record must be read to enable the
system to recognize the EOF condition. We can now treat the problem of exiting a
loop early as must be done in the case of an infinite REPEAT loop.

3.7. The BREAK Staterment

BREAEK

This statement causes control to pass to the next statement after the body of the
current loop (which may be any of the WHILE, FOR, DO or REPEAT loops). Only one

19

level of loop structure is “broken™ at a time; the current loop is terminated and the
next outer one takes over,

The example from the previous section can be modifled slightly to perform
a different function. The loop is now “infinite" to allow the program to process
an arbitrary number of records; when an EUF Is encountered, the BREAK statement
causes control to jump to the CALL REPORT statement without calling subroutine
CALC.

REPEAT

{
CALL CLEAR (BUFFER)

CALL READER (FILE, EOFVAL, BUFFER)
IF (EOFVAL == "TRUE®) BREAK

CALL CALG (BUFFER)
}

CALL REPORT

In the above example, the calls to CLEAR and CALC represent any type of processing;
the purpose is tc show how clearly a RATFOR user can indicate the separation
of work to be done avery time from work to be done after valid input, The NEXT
statement can be used if the situation calls for skipping only part of a loop.

3.8. The NEXT Statement

This statement immediately initiates the next iteration of the current inside loop,
skipping the rest of the body of that loop. Control jumps to the condition section
of a WHILE, REPEAT-UNTIL or DO statement; to ths top of an infinite REPEAT loop, or
to the “reinitialize” portion of a FOK loop. This is the case which was mentioned
earlier in which a FOR loop cannot be ezpanded in terms of a WHILE statement. It

20

should be noted that the NEXT statement is not essential for the logical completeness
of RATFOR. The block of code to be skipped could be performed conditionally
(with an IF statément) instead.

Ezpanding again on the previous exemple, we might find the tollowing:

REPEAT

{
CALL CLEAR { BUFFER)

CALL READER (FILE, EOFVAL, BAD, BUFFER)
IF (EOFVAL == *TRUE*) BREAK

IF { BAD == “TRUE") NEXT

CALL CALC (BUFFER)
}

CALL REPORT

In this case, the added statement allows the computation to be done only when the
input data satisfies some unspecified validity criterion. As mentioned in the previous
paragraph, the NEXT could have been replaced by the slightly more involved:

IF (BAD -= *TRUE")
CALL CALC (BUFFER)

This completes our synopsis of the basic control flow structures of the
RATFOR language. The interested reader may want to consult Software
Tools [5] for more detailed information. The next section describes features of the
RATFOR preprocessor which truly extend the capabilities of FORTRAN.

21

4. Additional RATFOR Statements

The four RATFOR statements described in this section offer the user
capabilities which do not exist in FORTRAN. RATFOR can replace a programmer-
defined symbol with various types of information. The DEFINE statement allows
RATFOR to save a “symbol” and its “definition”, later substituting the definition
string for each occurrence of the symbol in the code. The DEFINE statement has been
extended in some cases to allow the user to perform simple arithmetic computations
in the deflnitions, allowing the user to define some program parameters in terms of
other, more basic, parameters. The MACRD statement allows parameters to be passed
to the deflnition represented by a deflned symbol. This, in effect, allows tne user to
ereate new types of statements, The INCLUDE statement allows RATFOR to replace
a symbol with an image of a complete external file, The STRING statement found in
some versions of RATFOR provides the user with a way of defining a simple data
structure, character strings, not available in most versions of FORTRAN.

4.1. The DEFINE Stalement

DEFINE(symbol,detinition)

DEFINE provides a string replacement capability af compilation time, im-
plementing the concept of a “symbolic constant” (|5}, page 9). The idea is to use
a gymbol to represent something which might, for some reason, confuse the reader
or obscure the meaning of the code. I'or example, a programmer might use the

23

would be even clearer if we could write:

DEFINE(XYSZ, <XSZ#YSZ>) # DIMENSION OF HORZ SLICE
DEFINE(XZSZ, <XSZ#ZSZ>) # DIMENSION OF VERT SLICE

This extension allows for simple integer arithmetic computations (», /, + and =),
evaluated in a strict left-to-right fashion with no precedence of operations defined.
The < ...> indicates the part of the deflnition to be evaluated rather than saved as

a string.

Another extension of the DEFINE statement has been implemented in the
preprocessors described in the appendices. When tiing RATFOR in environments
supporting only upper case letters (the 7600, for example) a “DEFINEFLAG" character
is useful for distinguishing between defined symbols and normal variables. The
character chosen for this purpose is the “@" (at sign). These preprocessors also
recognize the standard unflagged defined symbols (although a programmer might
not).

A fairly common extension is that of allowing the alternate syntax:

DEFINE (symbol = definition)

This syntax is allowed by the versions of RATFOR described in the appendices, The
blanks in this model are also allowed by most RATFOR preprocessors, including
those described here.

The use of the DEFINE statement need not be restricted to the cases described
here. The following items might be helpful when using this feature.

o The symbol may be longer than a standard FORTRAN
variable name, It can be as long as the input line length
currently in effect, but it cannot be continued from one
line to another.

o Embedded blanks and special characters are not allowed

in the symbol but may be in the definition. Some
versions are touchier than others in this regard.

e The DEFINE syntax is very strict in some versions of
RATFOR: blanks are not allowed even between certain
tokens of the statement. These “bugs” should not be a
problem in the versions described in the appendices.

o There are installation-dependent limits on the number of
definitions and the total length of all definitions processed.

¢ Only one deflnition of 'a symbol is needed for a given
RATFOCR job. The latest one remains in effect if a DEFINE
is repeated. In other words, there is no need to include
the DEFINE macros in each routine.

¢ Where upper and lower case letters are supported, case

is significant, so be very careful to avoid confusing the

- distinct versions of a defined symbol (e.g., EOF, eof and
Eof are treated as distinet symbols).

The definition is, itself, processed by RATFOR and may contain one or more
sysbols which sre in turn replaced. This can lead to recursive definitions which
will cause RATFOR to abort. Don’t, for instance, use a statement such as:

DEFINE(FALSE, .FALSE.)

In this case “FALSE” will be replaced by “.FALSE.” which gets processed further.
RATFOR doesn’t do anything with the “." but then finds the string “FALSE" and
replaces it with “,FALSE.” again and so on, producing a long string of
and then aborting.

Y NI e :
-’-K.,.T:‘ i et . B -

WARNING

A definitilon is available only to those routines compiled in
a single execution of RATFOR. If a given definition is being
changed, the user must be sure to recompile all routines needing
that definition. Routines making use of the old definition
may show subtle (or unsubtle) changes in behavior!

4,2, The MACRO Statement

MACRO (symbol.,, replacement)
DEFINE(symbol, replacement)

This statement is another extension of the DEFINE statement. The two names may
or may not be synonyms, depending on the implementation, The replacement
string may contain dummy arguments, strings of the form §n {(where n is an integer
between, for example, 1 and 9). The MACRD is invoked later in the program by typing
symbol with real arguments which are inserted by RATFOR for the corresponding
dummy arguments in the replacement string. The macro expansion is, itself,
processed by RATFOR.

A simple example of this usage is the following:

MACRD (BUMP, $1 = $1 + 1)

RATFOR then translates the source code BUMP(J) into J = J + 1, Another pos-
sibility is the following error reporting macro which would be egpanded into two

27

subroutice calis.

MACRO (ERRFATAL, CALL FATAL ($1, $2)
CALL ABEED)

This macro might be invoked as follows:

IF (X > MIAX)
{ ERRFATAL (ERROUT, *NWMAX oxcéeded®) }

RATFOR would then expand this into the following code which would be further
processed as any other RATFOR source code:

IF (¥ > NMAXY)
{ CALL FATAL (ERROUT, *NMAX oxceeded®)
CALL ABEND)}

4.3. The INCLUDE Statement

INCLUDE file

Another macro built into the RATFOR preprocessor is IKCLUDE, “file” is a
(system-dependent) specification for a file external to the process. Most installations
use this capability to allow the maintenance of only a single copy of information
which is shared by more than one routine or program. When the information
changes, a change to the single copy is known immediately through the whole
system of routines or programs.

28

4.4. The STRING Btatement

STRING name “*string*
STRING name(length) °®string®

Another type of FORTRAN extension in some versions of RATFOR, including
those considered in this document, is the STRIRG statement. The rame becomes the
name of an array, each element of which contains a single character, The array is
dimensioned to be large enough for the string and a trailing “E0S" (end of string)
character. Some versions (not including those described in the appendices) allow
the user to allocate a length for the array, larger than that required by the string.

The characters in etring are converted to the decimal equivalent of the ASCII
code associated with each character. The corresponding ASCI! code is stored one
- ¢haracter per word. Thus the string *A+B% is stored as the numbers 65, 43, 66
and “E0S” in a four-word array. This feature can be used to enhance portability
in programs which routinely make use of such a data structure {the RATFOR
preprocessor is an example),

The STRING statement supported by Ames RATFOR may not appear useful
in many scientific applications. FORTRAN compilers which do not support a
CHARACTER data type essentially force the user to choose between inefficient storage
{one character per word) and inefficient execution (extraction of a single byte from
a word through bit manipulations). Furthermore, where ASCII is not the native
character set, some type of conversion must be done internally.

29

it KA

Appendix A

A. RATFOR on the Ames Cray X-MP

A version of the RATFOR preprocessor deseribed in the hody of this document
has been installed on a Cray X-M¥ computer. Although the implementation of
RATFOR described in this appendix was called MOUSE4 by its author, Douglas
Comer, of Purdue University |6], that program has been enhanced and released at
Ames under the name RATFOR. The name RATI'OR was chosen for the released
program fo avoid confusion — the program translates the RATFOR syntax — and
to be consistent with the previous usags of RATFOR on the Ames CDC 7600.

The major features of this version are ts speed {the program is between three
and ten times as fast as the original RATFOR program[1], depending on the
RATFOR source being processed), its impzoved listing format and a number of
new options allowed. The speed of the MOUSE4 program received from Purdue
has not been seriously impaired by the modiflcations made here at Ames, (Based
on preliminary usage of the Cray version, haowever, the speed can still be improved
substantially,) The listing has been reformoatted, with breaks at program unit
boundaries and with line number information printed as a debugging aid. Options
which have been added to the preprocessor include control of the production of list
output, page size of the listing, the width of the RATFOR source line, and the
capability of “passing through” a complete FORTRAN routine without change.

A.l. Usage

This section provides the user with ensugh information to compile and run a
basic RATFOR program on thé Cray X-MP.

A.L1. JCL for a Typical RATFOR Job

The following example shows how the RATFOR preprocessor would be ac-
cessed in a typical situation in which the user wishes to compile and execute a

]

program stored in UPDATE program library (PL) format.

TESTJOB,MICR.

USER,

JOB, JA=TESTJOB,
ACCOUNT,....

L

*

UPDATE,
ACCESS,DN=RATFOR, PDN=RATFOR, ID=LIBRARY.
RATFOR, 1=$CPL, F=FTRAN,L=$0UT,PS=45.

. RELEASE, DN=$CPL: $PL:RATFOR.

CFT,I=FTRAN,OR=CX,O0FF=S,....
RELEASE, DN=FTRAN,
LDR, MAP:=PART, SET=INDEF .

In the above example, the input to RATFOR (source code) is produced by UPDATE
on the flle $CPL, the generated Cray FORTRAN (CFT) code is written on the file
FTRAN, and the listing is written on the file $0UT. The RATFOR listing will be
printed on 45-line pages (P5=45), the generated FORTRAN code will not be listed
by CFT {0FF=8), and a full cross reference map (0N=CX) will be produced by CFT.
(A discussion of the preprocessor options will be found in Section A.2 below.)

A.1.4. Execution-time Parameter Sequences

The RATFOR file attached in the example above is a core image file, a compiled
and linked module which can be referenced by name, loaded and executed. When
this is done, no load map will be produced. In effect, the “RATFOR loader call”
JCL statement serves as a user-defined Cray Operating System (COS) command.
In what follows, the RATFOR loader call statement will be referred to as the RATFOR
command.

The operation of the RATFOR command can be modified by means of a set of
Ykeyword” parameters, as can most other COS commands, These parameters take

31

the form of keyword=vaiue and may come in any order. Each parameter may or
may not have a default value — a value that will be assumed unless overridden by
the user, The Cray RATFOR keyword parameters are described in the section on
Preprocessor QOptions.

A.1.3. Using RATFOR with UPDATE

The UPDATE source file maintenz.nce uttlity provided by COS will affect Cray
RATFOR users in one important way. The COMDECK feature of UPDATE is more
powerful than the RATFOR IRCLUDE statement (see Section 4.3), The reason for
this is that changing a COMDECK automatically causes all routines accessing that
information to be recompiled. Because of this, only a limited form of the INCLUDE
statement has been provided in this version of RATFOR.

WARNING

Changing a DEFINE statement does not force the recompila-
tion of routines that use the defined symbol. The user must
insure that all routines making use of a given definition are
recompiled if the definition is changed.

A.2.. Preprocessor Cptions

The default operation of the RATFOR preprocessor ¢an be altered by means
of JCL keyword parameters and preprocessor directives which are embedded in the
user’'s RATFOR source program.

T —

A.2.1. JCL Keyword Parameters

The keyword parameters control options which can be specified for an entire
RATFOR compilation. They are invoked as keywords on the RATFOR command
in much the same way that options are specified on other COS commands. The
keywords may come in any order in the RATFOR command. The options currently

available are:

I=1dename

F=fdsname

L=ldenamo

PS=nlines

BC=ncal

Sl=slist

Defines the “input dataset” where 1dsname is the dataset name
by which the RATFOR source file is known to the current job.
This dataset corresponds to the RATFOR “standard input”
dataset. X I is listed, 1dsnamo is required. The default value is
$1IN.

Defines the “FORTRAN output dataset” where fdsname is the
dataset name by which the generated FORTRAN file will be
known to the current job. This dataset corresponds to the
RATFOR “standard output" dataset. If F is listed, fdename is
required. The default value is FTRAN,

Deflnes the “listing output dataset” where ldsname is the
dataset name by which the listing file will be known to the
current job, This dataset receives both RATFOR source listing
and error output. If L is listed, 1dsnamea is required. The default
value is $0UT.

Defines the “page size” where nlines is the integer number of
lines to be printed per page, including the page header. nlines
must be ten or greater. Standard values are PS=60 for 11-inch
pages and PS=45 for 8,5-inch pages. Using PS5 alone corresponds
to PS=45. The default page size is PS=60,

Defines the number of “RATFOR source columns,” where ncol
is the number of columas (beginning in column 1) that will be
processed as RATFOR source code. Anything beyond column
ncol (e.g.,, UPDATE sequence identifiers) will not be regarded
as part of the RATFOR source line. The RC position is denoted
on the output page header by a “/” (slash). If RC is listed, neol
is required. ncol must be in the range 1 to 110, inclusive. The
default line length is RC=T2.

Controls the production of a source listing. If SL=0 (zero) the
RATFOR source listing will be suppressed, overriding the list-
control directives (L+ and L~-) described in the following section.

Onmitting the 5L parameter, C.nitting 118t or supplying a value
other than rero effectively enables the preprocessor list-control
directives, The default value is 5L=1,

A.2.2. Preprocessor Directives

RATFOR preprocessor directives are a special form of the RATFOR comment

statement:

#$bXcbXch, . .

where the symbols are defined as follows:

RATFOR comment character
preprocessor directive flag

gero or more blanks

any legal directive character

sign: + for “ON" and - for “OFF"

n M o % =

The following directives are currently available:

L

Controls the production of the RATFOR source listing. SL=0 dis-
ables this directive. The initial value is 0N and the switch value
reverts to NN afier each END statement. L+ and L~ cause the
corresponding FORTRAN list-control directives CDIR$ LIST and
CDIR$ NOLIST, respectively, to be generated in the FORTRAN out-
put file.

Controls “FORTRAN pass-through”. In pass-through mode, source
code card images are copied from the input file ($1X by default) to
the FORTRAN output file (FTRAN by default) without alteration,
until either an F~ directive or an EXD statement is encountered. This
allows entire FORTRAN routines to be “passed through” RATFOR
without translation. The initial value is OFF and the switch value
reverts to OFF after each END statement.

Causes an immediate page eject or top-of-form in the RATFOR
listing. The defauit is OFF and the value reverts to OFF immediately

e b o

after the page eject. If the list-control switch is OFF (i.e., L~), this
directive has no effect.

An example of the usage of these directives is:

#8 L- ¥+

which haz the effect of enabling FORTRAN pass-through and disabling the source
listing. The current line will not be listed (L~ is in effect) and the translation of
RATFOR to FORTRAN is disabled. This z~de will be in effect until changed in
another directive line or until the end of the program unit. When an EED statement
is encountered, the mode automatically reverts to L+ ¥~, regardless of the previous
mode,

Unrecognized directives will be reported as RATFOR syntax errors and the
rest of the line will be ignored, Such errors should have no effect on the preprocessor,

A.2.3. The Defavit RATFOR Command

Using the information supplied in the above sections allows us to specify what
will happen if the default values of all parameters are assumed. Egxecuting the
RATFOR command as follows:

ACCESS ,DN=RATFOR, PDN=RATFOR, ID=LIBRARY.
RATFOR.

is equivalent to:

ACCESS,DR=RATFOR, PDN=RATFOR, ID=LIBRARY.
BATFDR,I=$I¥,F=FTBAH.L=$DUT.PS=60.RC=T2.SL=1.

That is, RATFOR source is read from $IN, the FORTRAN output is written on
FTRAN and the listing (including any error messages) is written on $0UT. The list

35

control directives (L+ and L~) will be in effect because SL is not 0 (rero) and the
listing will be written at 60 lines per page. The RATFOR source is assumed to be
limited to 72 columns, & value consisient with CFT and allowing UPDATE sequence
identifiers to be printed to the right of the listing.

»
*

A.3. Additional Notes on the Cray Version

This section is meant to cover a number of loosely related topics relevant
to the Cray RATFOR user, primarily in the areas of system and implementatfon
dependencies.

A.S5.1. Character Sets

RATFOR utilizes the 7-bit (128 character) ASCII code internally, primarily to
increase portability. The same 7-bit ASCII codet is also supported by the Cray,
esch character being represented by the low order 7 bits of an 8-bit byte. However,
the Cray's Cyber front end operates on the input and output characters in such a
way as to compress the 128 characters into a 83 character subset. Some inconvenient
translations are necessary to allow the user access to the special characters required
by RATFOR, a situation which should improve when a Cray front end machine
supporting the full ASCII character set is available. The following list summarizes
these problems. All character names and symbols are standard ASCII characters.

BRACE There are three alternatives to the RATFOR compound state-
ment delimiters: “{...}" The user may select square brackets
“I...]1" or either of the “diphthong” combinations “<¢..,>>"
or “4(...0)".

NOT The “-" (logical negation) symbol used in the book Soféware
Tools[5] does not appear in many ASCII tables. The “~"
(tilde) has bezn taken as the nearest equivalent in the Ames en-
vironment, but this character is currently unavailable because
of the Cyber front end. The only character which works con-
sistently is the “1” (exclamation point or “bang”).

t See the FORTRAN (CFT) Reference Manual, Appendix A, for details.

P N

iy i

OR The “|" (logical or) symbol is currently unavailable because
of the Cyber front end, The upper case equivalent is the “\"
(backslash) which s consistently avallable.

The problem is not one of simple availability. Some of these special characters
are, for various reasons, translated incorrectly (from the standpoint of RATFOR)
when submitted to the Cray through Remote Job Entry (RJE) terminals; also, some
machines translate them differently, Thus, it is recommended that the RATFOR
programmer use only the two standard FORTRAN operators .0R, and .M0T. rather
than the synonyms provided by RATFOR, to avoid portability problems,

A.3.5, RATFOR Listings

A large part of the effort of implementing this version of RATFOR has gone
into producing a source listing which is both useful and msthetically pleasing, This
work has been done on the preprocessor for several reasons. A complete and
correctly paginated program listing is useful during the global editing of large
program segments (i.e.,, several thousand lines). In addition, a flexible listing
capability has proven essential during debugging in a batch environment. Producing
the listing concurrently with the translated FORTRAN code allows the preprocessor
to report information which aids the user in finding problems without resorting to
listing the intermediate FORTRAN code,

The listing is paginated according to the PS parameter on the RATFOR com-
mand, Each page printed includes a header with identifying information for the
preprocessor as well as for the routine being processed and a “column template” for
the RATFOR source line, The template aids the user in reading program structures
which run over more than a single page,

Adding the capability of breaking the listing output at program unit boun-
daries required that RATFOR recognize a number of new keywords. These
keywords are: PROGRAM, SUBROUTINE, FUNCTION, BLOCKDATA, BLOCK, DATA and END,
When an END statement, is encountered, RATFOR expects to find one of the
progtam unit statements (PROGRAM, SUBROUTINE, FUNCTION, BLOCKDATA or BLOCK
DATA) to follow shortly. Xf any of these keywords or a DEFINE statement is found
in the next few lines (5 lines in the current implementation), a new page header
{s assembled from the information in the program unit statement. Otherwise, a
default “UNSANMED SEGMENT” header is saved. The page header is then available if
and when any listing is requested before the next EXD statement. RATFOR con-
tinues gearching for a valid program unit statement until one is found, making a
corrected page header available if and when another page is printed,

a7

If one or more DEFINE statements are encountered outside a FORTRAN
program unit (i.e., between an EXD statement and the next program unit statement
or before the first program unit statement), the page header will include “RATFOR
DEFINES", To allow normal pagination for the next routine, an END statement
should follow the last DEFINE statement. This END statement will not be included
in the FORTRAN source gencrated by RATFOR.

WARNING

If a program unit statement is misspelled (e.g.,, SBROUTIXE),
omitted or unrecognized, the remainder of the program unit
will be labelled “unnamed segment”. The END statement will
then disappear as it does afier a DEFINE segment, and this code
segment will not compile correctly.

Another major enhancement of this version of RATFOR is the inclusion on
the RATFOR source listing of the atatement number of the generated FORTRAN
statements and the generated statement labels, These numbers, printed to the left
of the RATFOR source statements, when used in conjunction with the FORTRAN
cross-reference map (0N=CX}, provide a powerful tool for tracing program aborts and
should eliminate the need for the source listing produced by CFT. It is suggested
that CF'T be invoked with DFF=8.

Associated with the RATFOR source lines are the following types of informa-~
tion. These items are printed at given intervals in the source listing or as available.

1. RATFOR source line numbers, counted from the beginning of each recog-
nized program unit. Every fifth source line (divisible by 5) is numbered
along with the first line of each program unit.

2. FORTRAN statement numbers, counting the FORTRAN statements
generated as they are written on the output file, FTRAN. These numbers
correspond to the statement numbers given in the CFT cross-reference
map.,

8. FORTRAN statement labels generated by the RATFOR preprccessor are
printed as available. For eficiency reasons, this feature obtaing the last
statement labe] generated by a given source statement, and should be
taken as only approximate when used to locate, for example, the loop i in
which a run aborted,

A3, Preprocessor Efficiency

With one very important exception, the FORTRAN code generated by
RATFOR is nearly as efficient on the Cray as is code written in FORTRAN. The
exception is that the RATFOR FOR loop (which is translated into a FORTRAN IF
loop) cannot be recognized as a candidate for vectorization. This can have grave
effects on program efficiency, but in only a small percentage of all cases, There
are at least two factors to be considered in deciding which way to write a segment
of code: Is the loop really time-critical? and Is the code likely to be run or other
machines which do not support FORTRAN 77!

The flyst question can be answered by obtaining some timing data for the
entire program. A very simple first step is to compile the program with the CPT
“0R=z...F..." (flowtrace) option and perform a typical run which is long enough to
exercise all the normal parts of the code. The flowtrace report gives rcsults in terms
of whole routines (not individual loops), but in many cases this will tell the user if
the code in question is reslly worth changing or risoding for more efficiency. Code
executed only once {e.g., initialization code) should be a very low-priority candidate
for additional work.

The second factor is a little more subtle. If the program is likely to be compiled
with a pre-FORTRAN 77 compiler or if the program is to be run on several machines
interchangeably, the user should be very cautious about changing all FOR loops to
DO loops. The DO loop of most FORTRAN compilers, before FORTRAN 77, was
usually implemented in auch a way that at least one pass was made through the
loop body, no matter what the upper limit was. In otlier words, the loop body of
the statement

will be executed once even if X is zero or negative because the rxit test is done at the
end of the loop body. This type of DO loop and the FOR loop ar: not equivalent in this
way; indiscriminately changing FOR loops o DO loops may lead to the introduction
of errors, some of which will be almost unrecognizable.

A reasonably cost-effective approach to this problem when not using a
FORTRAN 77 compiler is to use the FOR loop initially, without regard for efficiency.
When the program has been debugged and a timing profile has been obtained, and
only then, replace those few time-critical FOR loops ot the very lowest level with D0
Yoops if this can be done safely (i.e., there is a reason, such as an explicit test, that

the “0-pass” case cannot arixe). ’f the O-pass case is not prohibited or if nonstandard
increments are required, as:utiv:r approach may be necessary.

A.3.4. Fatal Errors and Program Limitations

The RATFCOR preprocessor is intended as a tool and should be treated as such
and not misused. RATFOR is not as complete or as smart as a compiler — the
user bent on tricking RATFOR can do 30 in a number of ways. Even so, when not
. mistreated, the program is very reliable, RATFOR has performed well for several
" years, 33rving a number of programmers using various styles in a wide variety of
spplicz!ions.

In the rare cases in which RATFOR is pushed past its internal limits and
terminates early, the message _

RATFOR FATAL ERROR. JOB TERMINATED.

should appear in the job's logfile and one of the following messages should be printed
on the listing file:

e END OF INPUT IN A DEFIEE. RATFOR was probably confused by a miss-
ing terminating “)* (right parenthesis) in a DEFINE statement, possibly
many lines earlier.

e END OF INPUT IN A FOR STATEWEAT. Look for invalid FOR loop syntax,
also possibly much earlier.

e INPUT BUFFER OVERFLOW (POSSIBLE RECURSIVE DEFINE). This is caused
by “pushing back" too many deflnitions, each of which is being rescanned
and further expanded. This probably indicates a set of circular definitions
or a recursion {e.g. DEFIKE (FALSE, .FALSE.}).

e MAXTMUM STATEMENT LABEL EXCEEDED. RATFOR generates labels begin-
ning at 23000. A warning is printed after 23999 and this fatal error occurs
at label 99999.

e STACK OVERFLOW IN ?ARSEB. This probably means that you've really con-
fused RATFOR, but it could mean an internal limit (see below) must be
reset. If this is so, you should consider restructuring the current routine.

40

— ——

ST L
R R I I

Cray front end.

o Hollerith strings of the form “BHA B € " will not be recognized as strings
by RATFOR and embedded blanks will be compressed out, causing
serious problems in the following code. Quoted strings must be used for
this situation or the line must be passed through RATFOR by using a
“%" (percent sign) in column 1. Reminder: the “%" causes the rest of

. the line to be shifted one place to the left.

e Users wishing to use the STRING statement must make use of the RATFOR
internal ASCII character definitions,

o The STRING statement must, because of a CF'T restriction, come between
the last specification statement (DIMENSION, COMMON, etc.) and the first
DATA statement in a routine.

@ This version of RATFOR may list error messages near program unit
boundaries with the wrong source line.

A.3.7. Differences from Standard RATFOR

e An extension to the DEFINE syntax allows the use of names which begin
with the “@” (at sign). This allows users to avoid confusing variable names
and DEFINE strings in an environment which supports only upper case
letteys,

o The DEFINE syntax has been extended to allow statements of the type
DEFINE (A =B).

o The original RATFOR and MOUSE4 programs had grave difficulties with
the syntax:

FOR (T =1,I<=N,I=I+1)

{(Note the commas in place of the normal semicolons.) This implementa-
tion correctly recognizes and reports a syntax error for a mistake of this

type.

e This implementatioh has also been extended to handle two problems with
D0 loop processing, If a statement label is suppiied by the user, it will

43

be removed and reported as an error. Also, this release now allows the
“{" (open brace) character to appear on the same line as the DD, a syntax
previously allowed for each of the other RATF'OR control statements.

The errors found in any program unit are reported in the listing output
regardless of the SL (source listing) parameter. Even if §L=0 or L~ {no
listing) is in effect, the errors are reported along with the source line in
which the error was found,

There is no external separation between the listing file and the error
report file. Internally, however, the files are maintained separately and,
with some effort, could be separated for output as well.

A relatively common error in RATFOR occurs when brace delimiters
are not balanced {e.g., 8 missing “{” or “}"). In earlier versions, this
condition would be recognized by RATFOR when it occurred, but could
not be reported until the end of the run, many routines later. This error
is now reported at the END statement of the routine where it first occurs.

A summary of the errors encountered in each program unit is printed in
the logfile. This is done to warn the user of errors which might not have
been noticed in the listing.

¥

{
!
|

!

1.

Referspzes

B.W. Kernighan, “RATIFOR -~ A Preprocessor for s Rational Fortran,”
Software-Practice and Experience, §, No. 4, 395-408 (1975).

D. P. Sykes, “(RSX) RATFOR Dscutnentation, Version 22," (distributed by
DECUS), American Management Systems, Arlington, VA, (1980).

D. Hanson, J. Sventek, D. Scherrer, A, Akln, “HATFOR Primer,” distributed
by the Sofyware Tocls User’s Group, Menlo Fark, CA, (1977).

D. Comer, “RATFOR Languags Speciflications and User's Guide,” Purdue
University, West Lafayette, Indisna, {1977).

B. Kernighan and P. Plauger, Software Tooly, Addison~-Wesley Publishing Co.,
Reading, MA (1976).

D. Comer, “MOUSE4: An Improved Impiementation of the RATFOR
Preprocessor,” Software-Practice and Experience, 8, 35-40 (1978).

1. Peport No, 2. Gevernment Acesssion No, 3, Recipiont’s Comieg No.

NASA CR=166601 '

€, Tithe ond Bubtitie 8. Regort Dete

RATFOR User's Guide | January-1985
Versim 2.0 6. Performing Orpnizstion Code

-7, Author{s) 8. Performing Orgenizetion Meport No,
Ieland C, Belmle 10, Work Unit No,

9. Performing Orgenization Name and Addrem K1707

Informatics General Corp. 11, Contract or Grant W,

1121 San Antonio Road

=-11555

Palo Alto, CA 94303 | %E’nm nd Priod Coversd
12, Spomoring Agancy Name and Address | contractor Report
National Aeronautics & Space Administration 14, Sponsoring Agency Code
Moffatt Fie:].d, CA 94035 99-53-02 (RTOP)

15. Supplsmentary Notss

Point of contact: Technical Monitor, Robert Carlson, MS 233-10
Ames Research Center, Moffett Fileld CA 94035 (415)694~-6627, FTS 464-6627

16. Abatract

This document is a user's guide for RATFOR at Ames Research Center. The
main part of the document is a general description of RATFOR, and the
appendix is devoted to a machine specific implementation for the Cray X-Mp.

The main body discusses the general stylistic features of RATFOR,
including the block structure, keywords, source code, format, and the notion
of tokens. There is a section on the basic control structures (IF-ELSE, ELSE
IF, WHILE, FOR, DO, REPEAT-UNTIL, BREAK, NEXT), and there is a section on the
statements that extend FORTRAN's capabilities (DEFINE, MACRO, INCLUDE, STRING).

The appendix discusses everything needed to 'conpile and nm a basic job,
the preprocessor options, the supported character sets, the generated listings,

fatal errors, and program limitations and the differences fram standard FORTRAN.

17. Ky Worde (Sugossted by Authoris}) ' 18, Distriution Statement

RATFOR, rational FORTRAN, FORTRAN Unclassified ~ Unlimited
preprocessor, block structure, Cray Star Category 61

X-MP, user's quide ' _

19, Security Clawif, (of this report] 20, Sacurity Classit, (of this pags) 21. Na, of Pagn 72, Prica®
Unclassified Unclassified 48

*For sale by the National Tachnical Informetion Serviee, Springfield, Virginia 22181

~ 43

- by

	GeneralDisclaimer.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf

