
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CONTRACTOR REPORT 166601

Ames RATFOR User's Guide

b

Leland C. Helmle

(NASA—CH-166601) RATFOR USERS GUIDE	 N85-164900 (Informatics General Corp,)
51 p HC A04/mZ A01	 CSCL 09B

Unclas
G3/61 13243

CONTRACT NAS2— 11555
January 1985

v

NASA

NASA CONTRACTOR REPORT 166601

*i

Ames RATF'OR User's Guide

Leland C. Helmle
Informatics General Corporation
1121 San Antonio Road
Palo Alto, CA 94303

i

i
_I

Prepared for
Ames Research Center
under Contract NAS2-11555

i

n ASA
National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035

1

'^ I

I

w

Ames R.A.TFOR User's Guide

Version 2.0

by

Loland C. Helmle

Informatics General Corporation

July 16, 1983

Prepared under Contract NA52-11555, Task 101 	 ^

Table of Contents

v
1

2

2.1

2.1.1

2.1.2

LL3
1	 2.2

2.3
Ij

3

i	 &1

&2

&3

&4

LS

{	 &e

&7

&8

4

4.1

4.2

4.3

4.4

page

Introduction . 1

Stylistic Features of RATFOR 9

The RATFOR Statement 4

Block Structure . 4

Tokens	 7

Keywords . 7

Source Code Format . 8

Additional Stylistic Features 10

Basic Control Structures 12

The IF-ELSE Statement 12

The ELSE IF Construction 14

The WILE Statement 14

The FOR Statement . 15

The DO Statement 	 . 17

The REPEAT - UNTIL Loop 19

The BREAK Statement 	 19

The NEXT Statement 20

Additional RATFOR Statements 22

The DEFINE Statement 22

The MACRO Statement 27

The INCLUDE Statement 	 28

The STRING Statement 29

4

1

page

Appendix A

A	 RATFOR on the Ames Cray S-MP 	 30

A.1 Usage . 30

A.1.1 JCL for a Tjpical RATFOR Job 30

A.1.2 Execution-time Parameter Sequences 31

A.1.3 Using RATFOR with UPDATE 32

A.2	 PreproceASOr Options	 32

A.2.1 JCL Keyword Parameters 33

A.2.2 Preprocessor Directives 34

A.2.3 The Default RATFOR Command 35

A.3	 Additional Notes on the Cray Version 36

AAACharacter Sets . 36

A.3.2 RATFOR Listings . 37

A.3.3 Preprocessor Efficiency 39

A.3.4 Fatal Errors and Program Limitations 40

A.3.5 Known Serious Bugs . 42

A.3.6 Other Undesirable Features 42

A.3.7 Differences from Standard RATFOR 43

J

k

11

v

I
i

I
t

1. Introduction

This document describes an extension to FORTRAN t known as RATFOR N;
an acronym for RATional FORTRAN. The RATFOR preprocessor translates
source code written according to the syntax rules described here to FORTRAN code
that can then be compiled by a FORTRAN compiler. RATFOR syntax gives the
user access to the block-structured control flow features of modern programming

languages while allowing the user to exploit the advantages to be gained from using
FORTRAN in a scientific or engineering computational environment (popularity,
portability, ...). RATFOR does not, however, make any attempt to implement
the more sophisticated data structures of languages such as PASCAL; the user is
limited to those of the underlying FORTRAN compiler.

This document is intended to serve two purposes; that of providing the poten-
tial RATFOR user (who need not be familiar with the language) with a quick
reference to the basic language constructs and that of giving the user who already
knows RATFOR (or a similar FORTRAN preprocessor) enough information to
write and run RATFOR programs on Iarge-scale batch computer systems. Some
documents of this type (see, for example, [2] or [3]) are designed to give a brief
overview of RATFOR, but in the context of a specific implementation on a specific
machine. This User 's Guide, on the other hand, first presents, as does Comer [41, a
description of RATFOR as a language. Separate appendices describe implementa-
tions of RATFOR in use on specific systems.

This document assumes that the reader knows at least some FORTRAN and
that she has gained (through formal training, brilliant insight or sad experience) an
appreciation of the benefits of structured programming. Although our purpose is
not specifically to sell the reader on structured programming, the RATFOR user
will find that the control structures offered by RATFOR allow her to write well—
structured programs in a natural manner. Thus, the use of structured program-
ming concepts and the use of RATFOR are inextricably linked. The user wishing
more information on the topic of structured programming should consult the book
Software Tools [5] .

There are now a large number of versions of the RATFOR preprocessor avail-
41 abla„ The implementations of the preprocessor described in the appendices of

v
t Although this document is produced with FORTRAN 66 in mind, FORTRAN 77 com-
pilers will also accept the output from RATFOR.

i

^I

this document are based on a RATFOR dialect called MOUSE4 [6) . This version
of RATFOR was chosen for the work described here because the program was
specifically designed to operate efficiently in a batch environment and because its
design appeared to be more flexible than that of the prograt:n released in 1975 and
described by Kernighan [I]. The Comer version has proven to be both efficient and
easy to modify. MOUSE4 processes code five to ten times faster than an earlier
release of RATFOR on the CDC 7600, even though enhanced listing capabilities
were added. It should be noted that the name RATFOR was chosen for this release
to avoid confusion in the user community; one extra "language" is enough for most
people.

The reader not already familiar with RATFOR should continue with the sec-
tions described briefly here, while a user who wants to use RATFOR on a particular
machine could probably skip immediately to the appropriate appendix. This intro-
ductory section is followed by a description of the basic features of the RATFOR
language and its usage. These features distinguish the appearance of RATFOR
source code from that of FORTRAN and other languages and preprocessors. A
quick reference to the basic RATFOR control structures f with examples of their
usage is then included. A final section describes features of RATFOR that allow
the user added flexibility in designing programs.

The appendices explain tbP enhancements and the machina specific features
for the Ashes RATFOR implementations. The features which were added to make
the preprocessor more useful in a batch environment include enhanced source
listing capabilities, better error location and reporting, embedded preprocessor
directives and options accessible through the operating system command which
invokes RATFOR.

Unpublished installation instructions supplied by D. Comer of Purdue
University are available in Ames Document 362 in the Computer Information Center
at Ames Research Center.

t Still more extensive descriptions are available in Software Tools[5).

2
;r

}I

2. Stylistic Features of RATFOR

A major advantage of RATFOR over standard FORTRAN is that users write
programs which look better and are easier to read and modify. Using RATFOR
assists a programmer in writing well-structured and readable programs. However,
program structure is obviously a function of program design and badly designed
programs are not likely to be rescued by RATFOR.

A programmer can develop a formal style of displaying what a routine actually
does if lees effort is needed to avoid certain annoying FORTRAN "features". For
example, even when FORTRAN code is properly indented and well-structured,
statement labels are an integral part of the control structures. As a result, a person
reading FORTRAN code will find his concentration broken frequently because he
must constantly shift his eyes from the statement at hand to the statement label
in the first six columns.

A more important drawback than statement labels becomes apparent when a
section of code must be added or moved. To accomplish this, the programmer must
check all new statement labels rather than just variable names for conflicts. What's
more, it the logic of a routine is at all complex, the large number of labels needed
may make the code incomprehensible.

Consider the example below. Suppose you have inherited a program containing
the following code segment. The specifications say in black and white that the vari-
able A(I) can never be equal to 0.0 and your predecessor assumed the specifications
were correct. However, you have before you clear evidence that such is not the case:

fyour program bombed because of a very strange value in one element of the array
F. You have flnally traced the problem to this section of code and you see that

!	 F(I) is not updated if A(I) = 0.0. You must add a block of code to recognize and
correctly handle this case.

3

I !

C 'SHOW Al EXAMPLE WHICH DEHOBSTBATES THE ABOVE.

100	 IF (A(I) .GE. 0.0) 	 GO TO 200
F (I) = A(I) + B (I)

•	 (D -E) /AM
GO TO Boo

C
200	 IF (A(I) .LE. 0.0) 	 GO TO 800

F(I) = A(I) + B(I)

C
Boo	 CALL PUTVAL (F(I))

Aren't you tempted just a little to rewrite the whole routine when you find that
statement 200 can also be reached from three other locations in the routine?
RATFOR avoids problems of this type as will be shown in Section 2.1.1.

The purpose of the following sections is to describe RATFOR's way of treating
stylistic aspects of programming. Note that RATFOR may vary in certain details
from one implementation to another, mostly in the area of the stylistic features
discussed here. Also, and more important, an experienced FORTRAN programmer
should treat RATFOR as a totally new language. Correct usage of RATFOR
control structures will be attained more easily if the programmer avoids simply
"translating" his or her FORTRAN code to RATFOR.

2.1. The RATFOR Statement

Ewen though much of a typical RATFOR program looks like FORTRAN,
there are some fundamental differences, which are summarized here. The basic
differences involve the nature of the RATFOR statement, the way statements are
analyzed and the names of the control structures themselves.

2.1.1. Block Structure

An important part of RATFOR's attack on the problems mentioned in the
introduction to this section is embodied in the concept of block structure. A block

4

lof code Is deflned here as a sequence of statements from which and into which
control can neyer be passed. Execution begins at the top of the block and proceeds
directly to the bottom (with the exception of loops and excursions into external

r	 subprograms). Such a block can be treated as a unit with a single entry and a
single exit and its execution is controlled by a single RATFOR control statement.

A RATFOR otatement may be 1) a single FORTRAN statement or 2) a
RATFOR control statement and its associated block of code. The various RATFOR
control statements will be discussed In a later section. A block of code consists of
zero or more RATFOR statements that may be executed conditionally or executed
more than once as part of a RATFOR loop control structure.

The astute reader may be wondering how these blocks of code are recognized
by the preprocessor. There are two conventions: a RATFOR control statement
will control 1) the next single statement or 2) a sequence of RATFOR statements
bracketed by a pair of brace characters, "(" and ")". Where the brace characters
are not available or not preferred, a number of synonyms may be used. The square
bracket characters "C' and "I" or the diphthong combination "_ V and "a)" are

(also normally available and can serve the same purpose. Ames RATFOR has been
extended to include pairs of angle bracket characters "<<" and "»" as still another
alternative.

The RATFOR statement is designed to be executed from top to bottom except
when jumping back to the top of a loop or to an external subprogram. Thus,
no statement labels are needed within the structure, offering the programmer no
temptation to use a COTO statement to branch into a structure. When a programmer
finds a situation in which a COTO appears necessary, it is recommended that the
segment of code containing the COTO, and possibly the whole routine, be rewritten.

Let's return now to the example mentioned in the introduction to this section.
Suppose now that you inherited the same problem as before except that the segment
was coded in RATFOR as below. Note that, even though you may never have seen
any RATFOR code before, the logic used is much clearer and, if a correction can
be specified for A(T) = 0.0, it can be made by replacing two lines of code (and it
is almost certain to work as expected).

4

6

iT'r i

^:^ !AA1^7/N
.

r: ,.

i THIS CODE DEMONSTRATES A BETTER SOLUTION.

IF (A(I) < 0.0)
{

F(I) = A(I)	 B
(D -E) %A(I)

}
ELSE IF (A(I) > 0.0)

{
F 	 = A(I) + B(I)

+ (D - E) /A(I)
}

ELSE S A = 0.0, UNSPECIFIED CASE.
{

CALL MESSAGE ('ERROR: A = 0.0')
STOP

}

CALL PUTYAL (F(I))

The reader may think this is an unfair example. Still, wouldn't you admit that
you've seen things like the FORTRAN example in other programmers' work and
that you have seen so-called `Impossible" cases come back to haunt even you a few
times?

The RATFOR example above shows that this programmer realized that if A (I)
ever happened to be 0. 0, the program should do something dramatic to flag the case
that was not covered in the specifleations. fie or she programmed "defensively,"
covering the illegal case should it ever arise, not leaving it to execute incorrectly
until the bug happened to cause the program to crash or to give obviously bad
results. Notice that there is no need even to check for other possible paths to any
point in the above code — there can be only one.

Suppose that you want to reorder the cases considered in the above example or
in a more complex one. In RATFOR this is essentially a mechanical problem: the 	 _'
blocks of code are simply moves} (with some care to be sure that the syntax is left 	 2>
valid). Similar changes in FORTRAN are sometimes simply avoided as "dangerous"
unless absolutely necessary.

6
;^ i

2.1.2. Tokens

A RATFOR source statement is analyzed by the preprocessor in terms of
tokens. For this discussion, a token is dented as an alphanumeric string, a string of
digits, a quoted string or a single non -blank special character. Tokens of more than
one character are delimited. by any special character or a blank. Most blanks are

removed from the code, since they are not significant to FORTRAN. For example,
the statement

1000 ERROR = 'TRUE'

would be separated into the following four tokens, each of which would be treated
separately: the label 1000, the alphanumeric string ERROR, the special character

and the quoted string 'TRUE • . The important -thing to remember here is that
if you type "I F (A)", RATFOR will not recognize this as the beginning of an
IF statement. That is, embedded blanks are not allowed in RATFOR keywords,
In contrast to the case of FORTRAN. In the example above, if ERROR had been
typed ER ROR, RATFOR would have processed two separate tokens, but would have
generated the same FORTRAN code.

2.1.9. Keywords

The term keyword, mentioned in the previous paragraph, can be defined as
4 those symbols which are recognized as meaningful by RATFOR. That is, RATFOR

keywords are a special set of tokens for each of which the preprocessor must take a
very specific action, such as generating a certain type of FORTRAN statement. In
RATFOR the keywerrds are also reserved words: they must not be used eyeept as
keywords. Thus, variables cannot be named D0 or MT without hopelessly confusing
the preprocessor. The following symbols are designated RATFOR keywords:

^fo,

STSNDARD RATFOR KEYWORDS

Section 8
(Control Structures)

IF
ELSE
WHILE
FOR
DO
REPEAT
UNTIL
BREAK
NEXT

Section 4
(Additional Statomonty)

DEFINE

INCLUDE

STRING

MACRO

2.2. Source Code Format

RATFOR, unlike FORTRAN, does not impose on the user any statement
formatting requirements. RATFOR source code is free-format: statements may
begin anywhere on a line without regard to column number. Columns one to five
are not reserved for statement labels nor is column six reserved for statement con-
tinuation characters as in FORTRAN. Thus, the user is able to format his code to
demonstrate its logical structure in a natural way without visual interference from
statement labels and continuation characters. No attempt is made by RATFOR
to indent the user's code, under the assumption that this is a personal style con-
sideration.

RATFOR does not prevent a programmer from using statement labels, but
they are necessary only with FORMAT statements. Statement labels may appear
anywhere on a line of RATFOR source. How the need for statement labels is
eliminated is discussed further in later sections. For now it is worth noting that,
partly because of the lack of statement labels in RATFOR code, well-written
RATFOR programs are much easier to read and modify than equally well-written
FORTRAN programs.

Line continuation is normally indicated in RATFOR by an " _" (underscore)
character at the end of the line to be continued. This character is not passed to
the FORTRAN code being generated by RATFOR. Lines ending in a normally

B
i;

^. f

occurring comma (e.g., separating CALL arguments) or semicolon (e.g., In a FOR
loop, as described in the nest section) will also be continued.

' RATFOR line continuation conventions have been troublesome in several cases.
Ames RATFOR has been modified to allow the continuation character at the end
of any line containing an incompiete statement. In other implementations the
continuation character may be required in some cases, not allowed in others and
allowed but not required in still others.

RATFOR also does not, by design, restrict the user to seventy-two columns of
source code as does FORTRAN. However, there is always a practical limit to the
length of input records on any given system. In some cases, the source may contain
card sequencing information beginning at some point in the line. This part of the
input to RATFOR must not be processed as source code. The way in which this
is handled may -ary from site to site. For example, the RATFOR preprocessors
described in the appendices allow the user to invoke RATFOR with a parameter
specifying the length of the RATFOR source code lines.

The comment character in RATFOR is the "#" (sharp o* poand sign), denoting
information which is not to be processed by RATFOR. The characters between "#"
and the end of the line are ignored by the processor. Comments may be inserted
at any point in a source line, a feature of many computing languages other than
FORTRAN. A "C" in column 1 is not recognized as a comment character and will
generally confuse RATFOR.

A blank line is ignored by the processor and thus serves as a useful formatting
device for breaking up sections of source code. A blank line between continued
lines of a statement will terminate the statement, cancelling the continuation. The
user may, however, use a line containing only a continuation character for such
formatting purposes.

fi

,I
-Pr*W

A final note concerns the use of lower case letters. RATFOR is designed to
accept any ASCII character, including lower case letters, as input. RATFOR then
translates all lower case letters to upper case to be recognized by FORTRAN as
standard characters. Although this document shows examples in upper case only,
the Ames RATFOR preprocessor accepts lower case as well. Note, however, that
some equipment operates on a restricted (64 character) character set, converting all
Ietters to upper case, regardless of what the user types. In such an environment,
maintaining mixed cases is very inconvenient.

9

i

2.3. Additional Stylistic Features

Several other miscellaneous features of RATFOR must still be described.
Quoted strings are delimited by either the "0" (double quote), or the ""' (single
quote or apostrophe). RATFOR translates the strings into H format Hollerith
strings, treating blanks as significant characters. String delimiters must be matched
(i.e., a string begun with "I" must be ended with ""'). This provides a (not quite
fool-proof) mechanism for using quote characters in strings: simply bracket the
string with the other quote character.

Hollerith strings defined by H or such nonstandard FORTRAN delimiters as
L, R, or "*" (asterisk) will not be recognized by RATFOR as string declarations.
The use of such strings may result in RATFOR preprocessor errors or FORTRAN
errors because embedded blanks will be compressed out of the string.

In case o nonstandard RATFOR statement is really needed, the line can be
passed through RATFOR without change to the FORTRAN compiler by using a

(percent sign) in column 1. Such a statement is processed by removing the
and shifting each remaining character on the line one place to the left. (The

user must be sure to allow for this if the line is to contain a FORTRAN continuation
character in column 6, for example.) This mechanism is useful for the nonstandard
string delimiters such as L and R and other cases which arise from time to time.
The user wishing to pass large sections of code or whole routines through RATFOR
is directed to the Appendices for the discussion of the FORTRAN pass-through
preprocessor directive implemented in those versions of RATFOR.

The relational operators of FORTRAN, such as .LE. and .Ea. and the logi-
cal operators such as .NOT. and .OR. can all be represented in RATFOR by a
convenient shorthand as shown in the table on the following page.

10

l	 ,

RELATIONAL OPERATORS

I

c .Eq.

.NE. -1_

.LT. <

.LE. <_

.GT. >

.GE. >_

LOS.ICAL OPERATORS

.DR.	 I

.eau.

.NOT.

The original operators are also valid if the user is more comfortable with them. The
"__" is used for logical equality, as distinct from `=" which represents replacement.
The """ (logical not), and the "I" (vertical bar) are nonstandard characters on
many systems and keyboards and may be unavailable (e.g., the CDC T600 uses a
restricted character set of 64 characters which contains neither of these). The """
is not even part of most standard ASCII tables, "—" or tilde, being the nearest
equivalent.

WARNING

a

n

Although most implementations of RATPOR have been
modified to include various "common" equivalents to the non-
standard - and 1, using them will very likely make your code
less portable.

ii

3. Basic Control Structures

RATFOR control flow structures are described in this section, giving the user
enough information to understand the general nature of each structure. Examples,
drawn from scientific applications environments, are given for each structure. More
detail can be found in Section 1.8 of 151.

The examples which follow assume strong typing: each variable in a routine
must appear explicitly in a TYPE statement. If a variable is named BLANK and
It is used as an INTEGER, the reader can assume that it has been typed INTEGER
previously. The syntax of each structure is demonstrated by means of a "model"
in which upper case letters must be supplied by the user in exactly the form given
and lower case letters represent generic information which will be replaced by the
user. The following definitions will also be assumed for the discussion which follows:

statement any legal F, ORTRAN or RATFOR statement, or one or
more of these statements enclosed in compound statement
delimiters,

condition	 any legal RATFOR conditional phrase.

A RATFOR conditional phrase is a valid FORTRAN conditional phrase using any
combination of the standard FORTRAN operators and the operators recognized by
RATFOR as described in the previous section.

3.1. The IF-ELSE Statement

IF (condition)

statement i

ELSE
statement 2

This is performed in the following way: if condition is true, only statement
i is executed; otherwise only statement 2 is executed. The ELSE part is optional.
The IF-ELSE construct is frequently implemented in FORTRAN with the following
code:

12

IF(condition) GO TO 10

statement 2
GO TO 20

10	 statement 1
20	 CONTINUE

RATFOR, however, translates the construct in a way which maintains the original
structure slightly better:

IF (.NOT. (condition)) GO TO 10

statement i
GO TO 20

j	 io	 statement 2
{	 20	 CONTINUE

In the following example of an II'°ELSE construction, subroutine INMT is
called if I is greater than 0; otherwise, the error exit is taken. In either case,
processing resumes at the next statement after the right brace which signals the
end of the ELSE clause. Note that, braces are not needed for the single-statement
IF branch. The two-line block of code in the ELSE branch, however, must be
surrounded by compound statement delimiters; without them only the call to
MESSAGE would be controlled by the ELSE while the call to ABEND would be executed
regardless of the value of I.

IF (N > 0)	 CALL IFkMT l 1, 1', A. I)
ELSE
{

CALL KSSSAGE (IiMROR: IhYFRT REQUIRES N > 0')
CALL AREND

}

13

I

3.2. The ELSE IF Construction

IF (condition 1)
statement 1

ELSE IF (condition 2)

statement 2

ELSE IF (condition n-1)
statement n-i

ELSE
statement n

This construction is nothing more than a nested IF-ELSE statement, in which
each ELSE branch is another IF-ELSE statement. This construction is designed for
situations in which one and only one of several blocks of code is to be executed, in
the manner of the CASE statement of languages such as PASCAL.

The final ELSE, if present, serves as a perfect trap for that "impossible" case
as demonstrated in the example of Section 2. This author has never regretted
expending the effort of adding an extra three or four lines of code needed to print
a message and exit "just in case".

3.3. The W ILE Statement

WHILE (condition)

statement

This statement is performed in the following manner: Test "condition". If

"condition" is true, perform "statement" once and test again. If "condition" is
ever false (including the first time), control is passed to the first statement after the
body of the WHILE.

14

is
It

i This control statement corrects one of the major flaws of the FORTRAN D.
statement: the WHILE condition is tested before performing the loop body for the
first time. Thus; the loop behaves properly when the loop body may or may not be
performed on the first pass. A FORTRAN (before FORTRAN 77) DO loop would
require a separate explicit test and branch around the loop to work the same way.

Note the following:

WHILE (INLINE(I) _= BLANK)	 I = I + 1

o

The above statement can be used to skip any elements of the array IN/..INE which are
equal to BLANK. That is, the "pointer" I will be advanced from its current position
to point to the next non-blank character of the array INLINE. if I is pointing to such
an element initially, the loop body is not executed and the value of I is not changed.
Note that the free format feature of RATFOR allows the one-line statement seen
here.

I

3.4. The FOR statement

J

FOR (initialize ; condition ; reinitialize)i
	

statement

1

The "initialize" and "reinitialize" parts represent single, executable
FORTRAN statements. A preprocessor does not have all the syntax-checking
capabilities of a compiler; using statements other than simple assignments in FOR
statements may cause RATFOR to produce incorrect results or even abort. Note
the ";" (semicolon) separating the parts of the FOR statements. A common error has
been to substitute commas for the semicolons. The Ames RATFOR preprocessor
has been improved to recognize and report this error. Other versions may not do
so.

Except in one situation (see the section on the NEXT statement), the FOR loop

is

is performed in the following manner:

Initialize
WHILE (condition)

{
statement
reinitialize

}

Note that the above expansion can still be carried out even if aaay one or more of
the four parts are missing. A ";" (semicolon) may be used to indicate a missing
statement section (see the example below). A missing "condition" section is
treated as always true and an infinite loop results. For a way out of the infinite
loop, read the section on the BREAK statement below.

The following example of a FOR statement is equivalent to one which every
FORTRAN programmer has used: the simple, standard DO loop.

FOR (I=1I<=N;I=I+i)
{

F(I) = SIB(X(I))

G(I) _ - COS(X(I))
}

i

The programmer can read this as: "for each I from 1 to N, set" Note that there
are N iterations of the loop.

The FOR loop, however, is much more powerful. Let us suppose the function
GETLIN picks up a record from the file FD, saving the input record in the buffer
LINE and returning the length of the record in characters as the function value.
The function value is set to -1 on an "end-of-file" condition. The FOR loop in the
example below could be used to count the lines and characters in a file, starting

16

i

h;!

	

j	 from the current position.

•LINE = 0

!CHAR = 0

FOR (J = CETLIN(FD, LIME) J >= 0

J = GETLIN(FD, LIRE))

19LINE = NLINE + 1

NCHAR = NCHAR + J
}

Another exotic FOR loop (which performs the same operation as the WHILE loop
example in the previous section) is the following:

i

FOR (; INLINE(I) == BLANK ; I = I + 1)

In this case I is incremented while INLINE (I) has the value BLANK, leaving I pointing
at the first non-BLANK value (we are assuming, obviously, that I has been defined
previously). The body of the loop is a "null" statement; all the work is done by the
test and the reinitialization statement which increments I.

8.5. The DO Statement
1

"I
DO limits

statement

This structure is translated into a standard FORTRAN DO loop. The "limits" are
any legal DO loop limits written in the standard form and subject to the limitations
of the local FORTRAN compiler (e.g., I = 1. N). The "statement" is performed
as a block, so no statement labels are needed. Any FORTRAN programmer will

` 9	
st

	

";;Er`	 17

be comfortable with this example from the section above on the FOR statement:

DO I = 1, i
t
FM = sIV XM)
GM _ - COS(R(I))

}

To the reader who Is thinking "This is much easier to read and shorter to type
than the FOR loop," consider the following: what happens if i = 07 Experienced
FORTRAN programmers may remember that this question is left up to the compiler
writers who, before FORTRAN 77, usually specified that the body of the loop would
be executed at least once, no matter what the upper limit might be. That is, the
test for exiting the loop is performed at the end of the loop. The B = 0 case is
another of those "impossible" situations that pop up all too often in programming.
Where there are not compelling reasons to the contrary, the FOR loop is preferred
over the DO loop.

Having made the above point, there are still some situations in which the
DO loop is appropriate. Most FORTRAN compilers are constructed to optimize
a standard DO loop much better than the IF loops generated by RATFOR for
the other loop control structures. In particular, the Cray cannot recognize an IF
loop for vectorization purposes. Since the test in FORTRAN 77 DO loops is done	 j
before the body of the loop is executed, some users will no longer have to worry
about "zero-pass" loops. Also, but with more caution, it is recognized that in many
computational programs the LO construction is esactlywhat is needed. Calculations
may be done a set number of times, there may be no need for unusual index control
and there may be no question about whether or not the loop will be done the first
time.

i
The following approach can be recommended. First, design your program

carefully. The most dramatic gains in efficiency are almost always found at the
algorithmic level. Second, write your code using a language like RATFOR which
encourages a well-structured and modular program, parts of which can later be
changed if they Burn out to be inefficient. Third, once the program works, then
(and only then) use a timing facility to find out where, in fact, the program is
spending its time. Usually about twenty percent of the code is consuming a large
part of the execution time. Fourth, work hard at improving those sections found to
be inefficient, doing such things as replacing FOR loops with DO loops and replacing
modules for which a more efficient procedure can be obtained,

18
C
a.

I=

I.
3.6. The REPEAT - UNTIL Loop

REPEAT
statement

UNTIL (condition)

In this case "statement" is simply repeated until "condition" is satisfied. The
test is performed after each completion of "statement" much as in the case of the
DO loop. The IMIL rainy be omitted to make an "infinite" loop which must be
terminated by some other method (see %e section on the BREAK statement, below).

One situation in which the REPEAT-UNTIL loop structure is the most natural
way of expressing what is being done arises when an unknown number of records
must be read from a file. The example below skips to the "end-of-file" (EOF), starting
at the current record.

i
i

REPEAT

	

, l	{

	

i	 CALL READER (FILE, EOFVAL, BUFFER)
} UNTIL (EOFVAL =_ 'TRUE')

Note that in the above example, at least one record must be read to enable the
system to recognize the EOF condition. We can now treat the problem of exiting a
loop early as must be done in the case of an infinite REPEAT loop.

3.7. The BREAK Statement

BREAK

This statement causes control to pass to the next statement after the body of the
current loop (which may be any of the WHILE, FOR, DO or REPEAT loops). Only one

19

level of loop structure is "broken" at a tame; the current loop Is terminated and the
nest outer one takes over.

The example from the previous section can be modified slightly to perform
a different function. The loop is now "inflnite" to allow the program to process
an arbitrary number of records; when an EUF Is encountered, the BREAK statement
causes control to jump to the CALL REPORT statement without calling subroutine
CALL.

REPEAT
{

CALL CLEAR (BUFFER)

CALL READER (FILE, EOFVAL. BUFFER)

IF (EOFVAL =- 'TRUE') 	 BREAK

CALL CALL (BUFFER)
}

CALL REPORT

In the above example, the calls to CLEAR and CALC represent any type of processing;
the purpose is to show how clearly a RA.TFOR user can indicate the separation
of work to be done every time from work to be done after valid input. The NEXT
statement can be used if the situation calls for skipping only part of a loop.

3.8. The NEXT Statement

NEXT

This statement immediately initiates the next iteration of the current inside loop,
skipping the rest of the body of that loop. Control jumps to the condition section"""
of a WHILE, REPEAT-UNTIL or DO statement; to the top of an infinite REPEAT loop, or
to the "reinitialize" portion of a FOR loop. This is the case which was mentioned
earlier in which a FOR loop cannot be expanded in terms of a WHILE statement. It

^1

20

should be noted that the NEXT statement is not essential for the logical completeness
of RATFOR. The block of code to be skipped could be performed conditionally
(with an IF statement) instead.

•	 Expanding again on the previous example, we might find the following:

REPEAT
{

CALL CLEAR (BUFFER)

CALL READER (FILE, EOFVAL, BAD, BUFFER)

IF (EOFVAL == 'TRUE")	 BREAK

IF (BAD	 == ' TRUE')	 NEXT

CALL CALC (BUFFER)
}

CALL REPORT

In this case, the added statement allows the computation to be done only when the
input data satisfies some unspecified validity criterion. As mentioned in the previous
paragraph, the NEXT could have been replaced by the slightly more involved:

IF (BAD ^= 'TRUE')

CALL CALC (BUFFER)

This completes our synopsis of the basic control flow structures of the
RATFOR language. The interested reader may want to consult Software
Tools [51 for more detailed information. The next section describes features of the
RATFOR preprocessor which truly extend the capabilities of FORTRAN.

21

4. Additional RATFOR Statements

The four RATFOR statements described In this section offer the user
capabilities which do not exist in FORTRAN. RATFOR can replace a programmer,
defined symbol with various types of information. The DEFINE statement allows
RATFOR to save a "symbol" and its "definition", later substituting the definition
string for each occurrence of the symbol in the code. The DEFINE statement has been
extended in some cases to allow the user to perform simple arithmetic computations
In the definitions, allowing the user to define some program, parameters In terms of
other, more basic, parameters. The MACRO statement allows parameters to be passed
to the definition represented by a defined symbol. This, in effect, allows the user to
create new types of statements, The INCLUDE statement allows RATFOR to replace
a symbol with an image of a complete external file, The STRING statement found in
some versions of RATFOR provides the user with a way of defining a simple data
structure, charactee strings, not available in most versions of FORTRAN.

4.1. The DEFINE Statement

DEFINE(syabol,deflnition)

DEFINE provides a string replacement capability at compilation time, im-
plementing the concept of a "symbolic constant"(15j , page 9). The idea is to use
a symbol to represent something which might, for some •reason, confuse the reader
or obscure the meaning of the code. P'or example, a programmer might use the

99

t

25

would be even clearer It we could write:

DEFINE(XYSZ, <XSZ*YSZ>)	 N DIKENSION OF RORZ SLICE
DEFINE(XZSZ, <XSZ*ZSZ>)	 i DIMENSION OF PERT SLICE

This extension allows for simple integer arithmetic computations (*, /, + and -),
evaluated in a strict left-to-right fashion with no precedence of operations defined.
The < ...> indicates the part of the definition to be evaluated rather than saved as
a string.

Another extension of the DEFINE statement has been implemented in the
preprocessors described in the appendices. When using RATFOR in environments
supporting only upper case letters (the 7600, for example) a "DEFINEFLAG" character
is useful for distinguishing between defined symbols and normal variables. The
character chosen for this purpose is the "0" (at sign). These preprocessors also
recognize the standard unfiagged defined symbols (although a programmer might
not).

A fairly common extension is that of allowing the alternate syntax:

DEFINE (symbol = definition)

This syntax is allowed by the versions of RATFOR described in the appendices. The
blanks in this model are also allowed by most RATFOR preprocessors, including
those described here.

The use of the DEFINE statement need not be restricted to the cases described
here. The following items might be helpful when using this feature.

• The symbol may be longer than a standard FORTRAN
variable name. It can be as long as the input line length
currently in effect, but it cannot be continued from one
line to another.

• Embedded blanks and special characters are not allowed
in the symbol but may be in the definition. Some
versions are touchier than others in this regard.

• The DEFINE syntax is very strict in some versions of
RATFOR: blanks are not allowed even between certain
tokens of the statement. These "bugs" should not be a
problem in the versions described in the appendices.

• There are installation-dependent limits on the number of
deflnitions and the total length of all definitions processed.

• Only one dentition of 'a symbol is needed for a given
RATFOR job. The latest one remains in effect if aDEFINE
is repeated. In other words, there is no need to include
the DEFINE macros in each routine.

• Where upper and lower case letters are supported, case
is significant, so be very careful to avoid confusing the
distinct versions of a defined symbol (e.g., EOF, eoi and
Eoi are treated as distinct symbols).

The definition is, itself, processed by RATFOR and may contain one or more	 a
"abols which are in turn replaced. This can lead to recurzive definitions which
will cause RATFOR to abort. Don't, for instance, use a statement such as:

DEFINE(FALSE,.FALSE.)

In this case "FALSE" will be replaced'. by ".FALSE." which gets processed further.
RATFOR doesn't do anything with the "." but then finds the string "FALSE" and
replaces it with ".FALSE." again and so on, producing a long string of
and then aborting.

26

f

WARNING

A definition is available only to those routines compiled in
a single execution of RATFOR. If a given definition is being
changed, the user must be sure to recompile all routines needing
that definition. Routines making use of the old definition
may show subtle (or unsubtle) changes in behavior!

i

4.2. The MACRO Statement

MACRO (symbol., replacement)

DEFINE(symbol, replacement)

This statement is another extension of the DEFINE statement. The two names may
or may not be synonyms, depending on the implementation. The replacement

istring may contain dummy arguments, strings of the form $n (where n is an integer
between, for example, 1 and 9). The MACRO is invoked later in the program by typing

j symbol with real arguments which are inserted by RATFOR for the corresponding
dummy arguments in the replacement string. The macro expansion is, itself,
processed by RATFOR.

A simple example of this usage is the following:

MACRO (HUMP, $1 = $i + 1)

RATFOR then translates the source code HUMP(J) into J = J + 1. Another pos-
sibility is the following error reporting macro which would be expanded into two

27

subroutine calls.

MACRO (EnRFATAL, CALL FATAL ($1, $2)

CALL ABEND)

This macro might be invoked as follows:

IF (Y>N=)
{ ERRFATAL (ERROUT, 'NW exceeded') }

RATFOR would then expand this into the following code which would be further
processed as any other RATFOR source code:

IF < N > nMAY)

{ CALL FATAL (ERROUT, ' âMAY exceeded')
CALL ABEND }

4.3. The INCLUDE Statement

INCLUDE file

Another macro built into the RATFOR preprocessor is INCLUDE. "file" is a
(system-dependent) specification for a file external to the process. Most installations
use this capability to allow the maintenance of only a single copy of ,information
which is shared by more than one routine or program. When the information
changes, a change to the single copy is known immediately through the whole
system of routines or programs.

28

4.4. The STRING Statement

STRING name 'string•
STRING nane(length) •string'

Another type of FORTRAN extension in some versions of RATFOR, including
those considered in this document, is the STRING statement. The name becomes the
name of an array, each element of which contains a single character. The array is
dimensioned to be large enough for the string and a trailing "EOS" (end of string)
character. Some versions (not including those described in the appendices) allow
the user to allocate a length for the array, larger than that required by the string.

The characters in string are converted to the decimal equivalent of the ASCII
code associated with each character. The corresponding ASCII code is stored one
character per word. Thus the string 'A+go is stored as the numbers 65, 43, 66
and "EOS" in a four-word array. This feature can be used to enhance portability
in programs which routinely make use of such a data structure (the RATFOR
preprocessor is an example).

The STRING statement supported by Ames RATFOR may not appear useful
in many scientific applications. FORTRAN compilers which do not support a
CHARACTER data type essentially force the user to choose between inefficient storage
(one character per word) and inefficient execution (extraction of a single byte from
a word through bit manipulations). Furthermore, where ASCII is not the native
character set, some type of conversion must be done internally.

29

i;

E,

AppendixA

A. RATFOR on the Arnes Cray X MP

+ A version of the RATFOR preprocessor 4.escribed in the body of this document
has been installed on a Cray X]'cif'' computer. Although the implementation of
RATFOR described in this appendix was called MOUSE4 by its author, Douglas
Comer, of Purdue University 16], that program has been enhanced and released at
Ames under the name RATFOR. The name RATFOR was chosen for the ,released
program to avoid confusion — the program translates the RATFOR syntax — and
to be consistent with the previous usage, of RATFOR on the Ames CDC 7600.

The major features of this version are its speed. (the program is between three
and ten times as fast as the original RAMP, program [1], depending on the
RATFOR source being processed), its improved listing format and a number of
new options allowed, The speed of the MOUSEM program received from Purdue
has not been seriously impaired by the modifications made here at Ames. (Based
on preliminary usage of the Cray version, however, the speed can still be improved
substantially,) The listing has been reformatted, with breaks at program unit
boundaries and with line number information printed as a debugging aid. Options
which have been added to the preprocessor Include control of the production of list
output, page size of the listing, the width of the RATFOR source line, and the
capability of "passing through" a complete FORTRAN routine without change.

t	 A.I. Usage

This section provides the user with enough information to compile and run a
basic RATFOR program on the Cray X-IVIT.

.	 A.M. JCL for a Typical llKMOR :i'rb

The following example shows how the ;RATFOR preprocessor would be ac-
cessed in a typical situation in which the user wishes to compile and execute a

30

program stored in UPDATE program library (PL) format.

TESTJOB,YICR.
USER.....
JOB,JI=TESTJOB,....
ACCOUIT,....

UPDATE.....
ACCESS,DI=RATFOR,PDI=RATFOR,ID=LIBRARY.
RATFOR,I=$CPL,F=FTRAI,L==OUT,PS=45.
RELEASE,DI=$CPL:$PL:RATFOR.
CFT, I—WIM.ON=— f, OFF=S,
RELEASE,, DI=FTRAI.
LDR,YAP:=PART,SET=IIDEF.

In the above example, the input to RATFOR (source code) is produced by UPDATE
on the file $CPL, the generated Cray FORTRAN (CPT) code is written on the file
FTRAI, and the listing is written on the file BOUT. The RATFOR listing will be
printed on 45-line pages (PS=45), the generated FORTRAN code will not be listed
by CFT (OFF=S), and a full cross reference map (ON=CE) will be produced by CPT.
(A discussion of the preprocessor options will be found in Section A.2 below.)

f
A.1.2. Execution-time Parameter Sequences

The RATFOR file attached in the example above is a core image file, a compiled
and linked module which can be referenced by name, loaded and executed. When
this is done, no load map will be produced. In effect, the "RATFOR loader call"
JCL statement serves as a user-defined Cray Operating System (COS) command.
In what follows, the RATFOR loader call statement will be referred to as the RATFOR
command.

The operation of the RATFOR command can be modified by means of a set of
!!keyword" parameters, as can most other COS commands. These parameters take

31

the form of keyword--valno and may come in arty order. Each parameter may or
may not have a default value — a value that will be assumed unless overridden by
the user. The Cray RATFOR keyword parameters are described In the section on
Preprocessor Options.

A.M. Using RATFOR with UPDATE

The UPDATE source file maintenp nce utility provided by COS will affect Cray
RATFOR users in one important way, The COYDECK feature of UPDATE is more
powerful than the RATFOR INCLUDE statement (see Section 4.3), The reason for
this is that changing a COMDECK automatically cause& all routines accessing that
information to be recompiled. Because of this, only a limited form of the INCLUDE
statement has been provided in this version of RATFOR.

WARNING

Changing a DEFINE statement does not force the recompila-
tion of routines that use the defined symbol. The user must
insure that all routines making use of a given definition are
recompiled if the definition is changed.

A.2. Preprocessor Options

The default operation of the RATFOR preprocessor can be altered by means
of JCL keyword parameters and preprocessor directives which are embedded in the
user's RATFOR source program.

32

oil,

A.2.1. JCL Keyword Parameters

The keyword parameters control options which can be specified for an entire
RATFOR compilation. They are invoked as keywords on the RATFOR command
In much the same way that options are specified on other COS commands. The
keywords may come in arty order in the RATFOR command. The options currently
available are:

I=ldsnaste Defines the "input dataset" where idsnate is the dataset name
by which the RATFOR source file is known to the current job.
This dataset corresponds to the RATFOR "standard input"
dataset. If I is listed, idsnate is required. The default value is
sir.

F=idanaie Defines the "FORTRAN output dataset" where fdsnaae is the
dataset name by which the generated FORTRAN file will be
known to the current job. This dataset corresponds to the
RATFOR "standard output" dataset. If F is listed, fdsnate is
required. The default value is FTRAi.

L=ldsnate Defines the "listing output dataset" where ldsnate is the
dataset name by which the listing file will be known to the
current job. This dataset receives both RATFOR source listing
and error output. If L is listed, ldsnate is required. The default
value is BOUT.

PS=nlines Defines the "page size" where nlines is the integer number of
lines to be printed per page, including the page header. alines
must be ten or greater. Standard values are PS=60 for 11-inch
pages and PS=45 for 8.54nch pages. Using PS alone corresponds
to PS=45. The default page size is PS=60.

RC--ncol Defines the number of "RATFOR source columns," where ncol
is the number of columns (beginning in column 1) that will be
processed as RATFOR source code. Anything beyond column
ncol (e.g., UPDATE sequence identifiers) will not be regarded
as part of the RATFOR source line. The RC position is denoted
on the output page header by a "/" (slash). If RC is listed, ncol
is required. ncol must be in the range 1 to 110, inclusive. The
default line length is RC=72.

SL=slist Controls the production of a source listing. If SL=O (zero) the
RATFOR source listing will be suppressed, overriding the list-
control directives (L+ and L-) described in the following section.

33

Omitting the EL parameter, L.nitting clist or supplying a value
other than zero effectively enables the preprocessor list-control
directives. The default value is SL=i.

A.2.2. Preprocessor DirectiYes

RATFOR preprocessor directives are a special form of the RATFOR comment
statement:

N$brsbZcb.. .

where the symbols are defined as follows:

i	 RATFOR comment character

0	 preprocessor directive flag

b	 zero or more blanks

I	 any legal directive character

s	 sign: + for "ON" and - for "OFF"

The following directives are currently available:

L Controls the production of the RATFOR source listing. SL=O dis-
ables this directive. The initial value is ON and the switch value
reverts to ON after each END statement. L+ and L- cause the
corresponding FORTRAN list-control directives CDIR$ LIST and
CDIR= NOLIST, respectively, to be generated in the FORTRAN out-
put file.

F Controls "FORTRAN pass-through". In pass-through mode, source
code card images are copied from the input file ($II by default) to
the FORTRAN output file (FTRAN by default) without alteration,
until either an F- directive or an END statement is encountered. This
allows entire FORTRAN routines to be "passed through" RATFOR
without translation. The initial value is OFF and the switch value
reverts to OFF after each END statement.

P	 Causes an immediate page eject or top-of-form in the RATFOR	 r
listing. The default is OFF and the value reverts to OFF immediately

4.

34
j

after the page eject. If the list-control switch Is OFF (i.e., L-), this
directive has no effect.

An example of the usage of these directives is:

0 L- F+

which has the effect of enabling FORTRAN pass-through and disabling the source
listing. The current line will not be listed (L- Is in effect) and the translation of
RATFOR to FORTRAN is disabled. This z.^de will be in effect until changed in
another directive line or until the end of the program unit. When an EID statement
Is encountered, the mode automatically reverts to L+ F-, regardless of the previous
mode.

Unrecognized directives will be reported as RATFOR syntax errors and the
rest of the line will be ignored. Such errors should have no effect on the preprocessor.

u

A.2.3. The Default RATFOR Command

Using the information supplied in the above sections allows us to specify what
will happen if the default values of all parameters are assumed. Executing the
RATFOR command as follows:

f
I

ACCESS,DH=RATFOR,PDH=RATFOR,ID=LIBRART.

RATFOR.

is equivalent to:

ACCESS,DI=RATFOR,PDI=RATFOR,ID=LIBRARY.

RATFOR,I=$II,F=FTRAI,L=$DUT,PS=60,RC=T2,SL=1.

That is, RATFOR source is read from ;Ii, the FORTRAN output is v 3ritten on
MAN and the listing (including any error messages) is written on $OUT. The list

'b

;f

}

i

control directives (G+ and L-) will be In effect because SL is not o (zero) and the
listing will be written at 60 lines per page. The RATFOR source is assumed to be
limited to 72 columns, a value consistent with CFT and allowing UPDATE sequence
identifiers to be printed to the right of the listing.

A.3. Additional Notes on the Cray Version

This section is meant to cover a number of loosely related topics relevant
to the Cray RATFOR user, primarily in the areas of system and implementation
dependencies.

A.S.I. Character Sets

RATFOR utilizes the 7-bit (128 character) ASCII code internally, primarily to
increase portability. The same 7-bit ASCII code t is also supported by the Cray,
each character being represented by the low order 7 bits of an 8-bit byte. Howevor,
the Cray's Cyber front end operates on the input and output characters in such a
way as to compress the 128 characters into a63 character subset. Some inconvenient
translations are necessary to allow the user access to the special characters required
by RATFOR, a situation which should improve when a Cray front end machine
supporting the full ASCII character set is available. The following list summarizes
these problems. All character names and symbols are standard ASCII characters.

BRACE There are three alternatives to the RATFOR compound state-
ment delimiters: "(...I." The user may select square brackets
"I...]" or either of the "diphthong" combinations "« ... W
or "$ (... $)".

NOT The "-+" (logical negation) symbol used in the book Software
Tools [5] does not appear in many ASCII tables. The "—"
(tilde) has Men taken as the nearest equivalent in the Ames en-
vironment, but this character Is currently unavailable because
of the Cyber front end. The only character which works con-
sistently Is the "I" (exclamation point or "bang").

See the FORTRAN (CPT) Reference Manual, Append ix A, for details.

36

OR

	

	 The "I" (logical or) symbol Is currently unavailable because
of the Cyber front end. The upper case equivalent Is the
(backslash) which Is consistently available.

The problem is not one of simple availability. Some of these special characters
are, for various reasons, translated incorrectly (from the standpoint of FATFOR)
when submitted to the Cray through Remote Job Entry (RJE) terminals; also, some
machines translate them differently. Thus, it is recommended that the RATFOR
programmer use only the two standard FORTRAN operators .OR. and .NOT. rather
than the synonyms provided by RATFOR, to avoid portability problems.

A.3.:. RATFOR Listings

A large part of the effort of implementing this version of RATFOR has gone
Into producing a source listing which is both useful and aesthetically pleasing. This
work has been done on the preprocessor for several reasons. A complete and
correctly paginated program listing is useful during the global editing of large
program segments (i.e., several thousand lines). In addition, a flexible listing
capability has proven essential during debugging in a batch environment. Producing
the listing concurrently with the translated FORTRAN code allows the preprocessor
to report information which aids the user in finding problems without resorting to
listing the intermediate c ORTRAN code.

The listing is paginated to the PS parameter on the RATFOR com-
mand. Each page printed includes a header with identifying information for the
preprocessor as well as for the routine being processed and a "column template" for
the RATFOR source line. The template aids the user in reading program structures
which run over more than a single page.

Adding the capability of breaking the listing output at program unit boun-
daries required that RATFOR recognize a number of new keywords. These
keywords are: PROGRAM, SUBROUTINE, FUNCTION, BLOCKDATA, BLOCK, DATA and END.
When an END statement, is encountered, RATFOR expects to find one of the
program unit statements (PROGRAM, SUBROUTINE) FUNCTION, BLOCKDATA or BLOCK
DATA) to follow al;ortly. It any of these keywords or a. DEFINE statement is Sound
In the neat few lines (5 lines In the current implementation), a new page header
Is assembled from the information in the program unit statement. Otherwise, a
default "UL: Î tED SEGMENT" header is saved. The page header is then available if
and when aqy listing is requested before Lire next FAD statement. RATFOR con-
tinues searching for a valid program unit statement until one is found, making a
corrected page header available if and when another page is printed.

37

If out or more DEFINE statements are encountered outside a FORTRAN
program unit (i.e., between an END statement and the neat program unit statement
or before the first program unit statement), the page header will Include "RATFOR
DEFINES", To allow normal pagination for the next routine, an END statement
should follow the last DEFINE statement. This END statement will not be included
in the FORTRAN source generated by RATFOR.

WARNING

If a program unit statement is misspelled (e.g., SBROUTINE),

omitted or unrecognized, the remainder of the program unit
will be labelled "unnamed segment". The END statement will
then disappear as It does after a DEFINE segment, and this code
segment will not compile correctly.

Another major enhancement of this version of RATFOR is the inclusion on
the RATFOR source listing of the statement number of the generated FORTRAN
statements and the generated statement labels. These numbers, printed to the left
of the RATFOR source statements, when used in conjunction with the FORTRAN
cross-reference map (ON=cx), provide a powerful tool for tracing program aborts and
should eliminate the need for the source listing produced by CFT. It is suggested
that CFT be invoked with OFF=S.

Associated with the RATFOR source lines are the following types of informa-
tion. These items are printed at given intervals in the source listing or as available.

1. RATFOR source line numbers, counted from the beginning of each recog-
nized program unit. Every fifth ,source line (divisible by 5) is numbered
along with the first line of each program unit.

2. FORTRAN statement numbers, counting the FORTRAN statements
generated as they are written on the output file, FTRAN. These numbers
correspond to the statement numbers given in the CFT cross-reference
map.

S. FORTRAN statement labels generated by the RATFOR preprocessor are
printed as available. For efficiency reasons, this feature obtains the last
statement label generated by a given source statement, and should be
taken as only approximate when used to locate, for example, the loop in,y,^..
which a run aborted. 	 a

as

A.R.R. Preprocessor Efficiency

With one very important exception, the FORTRAN code generated by
RATFOR is nearly as efficient on the Cray as is code written in FORTRAN. The
exception is that the RATFOR FOR loop (which is translated into a FORTRAN IF
loop) cannot be recognized as a candidate for vectorization. This can have grave
effects on program efficiency, but in only a small percentage of all cases. There

• are at least two factors to be considered in deciding which way to write a segment
of code: Is the loop really time-critical? and Is the code likely to be run on other
machines which do not support FORTRAN 77f

The first question can be answered by obtaining some timing data for the
entire program. A very simple first step is to compile the program with the CPT
°OI=...F..." (flowtrace) option and perform a typical run which is long enough to
exercise all the nrrmal parts of the code. The flowtrace report gives results in terms
of whole routines (not individual loops), but in marry cases this will tell the user if
the code in question is really worth changing or Y,-,oding for more efficiency. Code
executed only once (e.g., initialization code) should be a very low-priority candidate
for additional work.

The second factor is a little more subtle. If the program is likely to be compiled
with a pre-FORTRAN 77 compiler or if the program is to be run on several machines
interchangeably, the user should be very cautious about changing all FOR loops to
DO loops. The DO loop of most FORTRAN compilers, before FORTRAN 77, was
usually implemented in such a way that at least one pass was trade through the
loop body, no matter what the upper limit was. In other words, the loop body of
the statement

DO I=1, 1

will be executed once even it Y is zero or negative because the ?.xit test is done at the
end of the loop body. This type of DO loop and the FOR loop are not equivalent in this
way; indiscriminately changing FOR loops to DO loops may lead to the introduction
of errors, some of which will be almost unrecognizable.

A reasonably cost-effective approach to this problem when not using a
FORTRAN 77 compiler is to use the FOR loop initially, without regard for efficiency.

" When the program has been debugged and a timing profile has been obtained, and
only then, replace those few time-critical FOR loops at the very lowest level with DO
loops if this can be done safely (Le., there is a reason, such as an explicit test, that

39

the "O-pass" case cannot arlo+e), IS the O-pass case is not prohibited or if nonstandard
increments are required, ai.mi ar approach may be necessary.

".4. Fatal Errors and Program Limitations

The RATFOR preprocessor is intended as a tool and should be treated as such
and not misused. RATFOR is not as complete or as smart as a compiler — the
user bent on tricking RATFOR can do so in a number of ways. Even so, when not
mistreated, the program is very reliable. RATFOR has performed well for several
years, nerving a number of programmers using various styles in a wide variety of
applicC ions.

In the rare cases in which RATFOR is pushed past its internal limits and
terminates early, the message

RATFOR FATAL ERROR, JOB TERMINATED.

should appear in the job's logfile and one of the following messages should be printed
on the listing file:

• END OF INPUT IN A DEFINE. RATFOR was probably confused by a miss-
ing terminating ")" (right parenthesis) in a DEFINE statement, possibly
many lines earlier.

• END OF INPUT IN A FOR STATEMENT. Look for invalid FOR loop syntax,
also possibly much earlier.

• INPUT BUFFER OVERFLOW (POSSIBLE RECURSIVE DEFINE). This is caused
by "pushing back" too many definitions, each of which is being rescanned
and further expanded. This probably indicates a set of circular definitions
or a recursion (e.g. DEFINE (FALSE,.FALSE.)).

• MAXIMUM STATEMENT LABEL EXCEEDED. RATFOR generates labels begin-
ning at 23000. A warning is printed after 23999 and this fatal error occurs
at label 99999.

• STACK OVERFLOW IN PARSER. This probably means that you've really con-
fused RATFOR, but it could mean an internal limit (see below) must be
reset. If this is so, you should consider restructuring the current routine.

40

Cray front end.

I • Hollerith strings of the form "BRA B C " will not be recognized as strings
by RATFOR and embedded blanks will be compressed out, causing
serious problems In the following code. Quoted strings must be used for
this situation or the line must be passed through RATFOR by using a

(percent sign) in column 1. Reminder: the "%" causes the rest of
the line to be shifted one place to the left.

• Users wishing to use the STRING statement must make use of the RATFOR
internal ASCII character definitions.

• The STRING statement must, because of a CFT restriction, come between
the last specification statement (DIMENSION, COMMON, etc.) and the first
DATA statement in a routine.

• This version of RATFOR may list error messages near program unit
boundaries with the wrong source line.

A.8.7. Differences from Standard RATFOR

• An extension to the DEFINE syntax allows the use of names which begin
with the "a" (at sign). This allows users to avoid confusing variable names
and DEFINE strings in an environment which supports only upper case
letters.

• The DEFINE syntax has been extended to allow statements of the type
DEFINE (A = B).

• The original RATFOR and MOUSE4 programs had grave difficulties with
the syntax:

FOR (I=1. I<=N. I=I+1)

(Note the commas in place of the normal semicolons.) This implementa-
tion correctly recognizes and reports a syntax error for a mistake of this
type.

• This implementation has also been extended to handle two problems with
DO loop processing. If a statement label is supplied by the user, it will

43

be removed and reported as an error. Also, this release now allows the
"(" (open brace) character to appear on the same line as the Do, a syntax
previously allowed for each of the other RATFOR control statements.

• The errors found in any program unit are reported in the listing output
regardless of the SL (source listing) parameter. Even if SL=O or L- (no
listing) Is in effect, the errors are reported along with the source line in
which the error was found.

• There is no external separation between the listing file and the error
report file. Internally, however, the files are maintained separately and,
with some effort, could be separated for output as well.

• A relatively common error in RATFOR occurs when brace delimiters
are not balanced (e.g., a missing "(" or ")"). In earlier versions, this
condition would be recognized by RATFOR when it occurred, but could
not be reported until the end of the run, many routines later. This error
is now reported at the M statement of the routine where it first occurs.

• A summary of the errors encountered in each program unit is printed in
the logfile. This is done to warn the user of errors which might not have
been noticed in the listing.

,i

1
I.
i

I °'

J

44

^r

:f

•

i
:I

°` ^rma

'I

1. B.W. Kernighan, "RXI'FOR -- A Preprocessor for a Rational Fortran,"
Software-Practice and Experience, %, No. 4, 395-406 (1975).

2. D. P. Sykes, "(RSX) RATFOR Docum. entation, Version 22," (distributed by
DECUS), American Management Systems, Arlington, 'VA, (1980).

3. D. Hanson, J. Sventek, D. Scherrer, A. Akin, "RATFOR Primer," distributed
by the Software Tools User's Group, Menlo Park, CA, (1977).

4. D. Comer, "RATFOR Language Srmciflca dons and User's Guide," Purdue
University, West Lafayette, Indiana, (1977).

S. B. Kernighan and P. Plauger, ,SMware 7boiv, Addison-Wesley Publishing Co.,
Reading, MA (1976).

6. D. Comer, "MOUSE4t An Improved Implenwntation of the RATFOR
Preprocessor," Software-Practice load Esperie race, 8, 35-40 (1978).

°I
,a

-i

J

1

F

e

i

l

i,

I

J

1, Scout No, 2. 6eewtmttwtt Ae.t.lm No. 2, Meawm s Doeslq No.

NASA CR-166601
L Title ww &W0e

RATFOR User's Guide
A. Mown Does
January.1985
6. Fee IN	 im	 0jA1p1imcedeVersion 2.0

7. AuMWIII e, wwmkq owmwt en Melton No.

Leland C. Helmle 10, wok thtit No.

K17076. FerforWni Orrnimlon Nome wtd Adam

Informatics General Corp. It, Cwmaet or cram No.
1121 San Antonio Road
Palo Alto, CA	 94303 u. Type of McOen wtd Pwiod covered

Contractor Report12. WtwormP Apncy Nerve end Addrm

National Aeronautics & Space Administration
Moffett Field, CA	 94035

14. lilme ,lap Aiw,ay Code

99-53-02 (RTOP)
16. Supplementary Notes

Point of contact:	 Technical Monitors, Robert Carlson, MS 233-10
Ames Research Center, Moffett Field CA 94035 (415)694-6627, FTS 464-6627

15. Abetnn

This doctmnnt is a user's guide for RATFUR at Ames Research center. 	 The
main part of the docmient is a general description of RATFOR, and the
appendix is devoted to a machine specific implementation for the Cray X-W.

The main body discusses the general stylistic features of RATFOR,
including the block structure, keyword3, source code, format, and the notion
of tokens.	 There is a section on the basic controlstructures (IF-ELSE, ELSE
IF, WHILE, FOR, DO, REPEAT-UNTIL, BREAK, NEXT), and there is a section on the
statements that extend FORTRAN's capabilities (LIEFINE 0 MACRO, INCLUDE, STRING).

The appendix discusses everything needed to compile and run a basic job,
the preprocessor options, the supported character sets, the generated listings,
fatal errors, and program limitations and the differences from standard FORTRAN.

17. Key wwae (suiiesnd by AuMorul) u, oittriMdtun Sesanwm

RATFUR, rational. FORTRAN, FORTRAN Unclassified - Unlimited
preprocessor, block structure, Cray Star Category 61
X-MP, user's guide

ti. Sanity amit (ail tbb moans 20. Sanity Qmwf. (of " pop) 21. Nd, et ►apt 22, Rite'

Unclassified Unclassified 46

•For Wt by the %nlwW TachniW inforrmtion Servio, SdrglitW, V(ronie 22161

	GeneralDisclaimer.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf

