SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
ON VECTOR AND PARALLEL COMPUTERS

James M. Ortega
Robert G. Voigt

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665
Operated by the Universities Space Research Association
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
ON VECTOR AND PARALLEL COMPUTERS

James M. Ortega
University of Virginia

Robert G. Voigt
Institute for Computer Applications in Science and Engineering

ABSTRACT

In this paper we review the present status of numerical methods for partial
differential equations on vector and parallel computers. A discussion of the relevant
aspects of these computers and a brief review of their development is included, with par-
ticular attention paid to those characteristics that influence algorithm selection. Both
direct and iterative methods are given for elliptic equations as well as explicit and implic-
it methods for initial-boundary value problems. The intent is to point out attractive
methods as well as areas where this class of computer architecture cannot be fully utilized
because of either hardware restrictions or the lack of adequate algorithms. A brief dis-
cussion of application areas utilizing these computers is included.

Research of the first author was supported in part by the National Aeronautics and Space
Administration under NASA Grant NAG-1-46. Research of the second author was sup-
ported by the National Aeronautics and Space Administration under NASA Contract Nos.
NASI-17070 and NASI-17130 while he was in residence at ICASE, NASA Langley
Research Center, Hampton, VA 23665.
1. Introduction

For the past 20 years, there has been increasing interest in the use of computers with a parallel or pipeline architecture for the solution of very large scientific computing problems. As a result of the impending implementation of such computers, there was considerable activity in the mid and late 1960's in the development of parallel numerical methods. Some of this work is summarized in the classical review article of Miranker [1971]. It has only been in the period since then, however, that such machines have become available. The Illiac IV was put into operation at NASA's Ames Research Center in 1972; the first Texas Instruments Inc. Advanced Scientific Computer (TI-ASC) became operational in Europe in 1972; the first Control Data Corp. STAR-100 was delivered to Lawrence Livermore National Laboratory in 1974; and the first Cray Research Inc. Cray-1 was put into service at Los Alamos National Laboratory in 1976.

Since 1976, the STAR-100 has evolved into the CDC Cyber 203, which is no longer in production, and the Cyber 205, which is now CDC's entry in the supercomputer field. The Cray-1 has evolved into the Cray-1S, which has considerably more memory capability than the original Cray-1, and the Cray X-MP, a faster multiprocessor version. On the other hand, the TI-ASC is no longer in production, and the Illiac IV ceased operation in 1981.

The Illiac IV consisted of 64 processors. Other computers consisting of a (potentially large) number of processors include the Denelcor HEP and the International Computers Ltd. DAP, both of which are offered commercially, and a number of one of a kind systems in various stages of completion or development: the Finite Element Machine at NASA's Langley Research Center; MIDAS at the Lawrence Berkeley Laboratory; Cosmic Cube at the California Institute of Technology; TRAC at the University of Texas; Cm* at Carnegie-Mellon University; ZMOB at the University of Maryland; Pringle at the
University of Washington and Purdue University; and the MPP at NASA's Goddard Space Flight Center. The first three of these are designed primarily for numerical computation while the others are for research in computer science, for image processing, etc. A recent development made possible by the increasing power and flexibility of microprocessors and the dropping cost of fabrication is the emergence of several small entrepreneurial companies offering commercial parallel and vector systems at modest prices. Examples include Elxsi, Flexible Computer, Inc. and Convex Inc.

Other computers of some historical interest, although their primary purpose was not for numerical computation, include Goodyear Corporation's STARAN (Goodyear [1974], Gilmore [1971], Rudolph [1972], and Batcher [1974]), and the C.mmp system at Carnegie-Mellon University (Wulf and Bell [1972]). Also of some historical interest, although it was not brought to the market, is Burroughs Corporation's Burroughs Scientific Processor (Kuck and Stokes [1982]).

During the last 15 years, the literature on parallel computing has been increasing at a rapid rate and a number of books and survey papers have been written which complement the present work. The book by Hockney and Jesshope [1981] contains much information on architectures as well as languages and numerical methods. Other books or surveys dealing with architecture or other computer science issues or applications include Worlton [1981] and Zakharov [1984] on the history of (and future for) parallel computing, Hord [1982] on the Illiac IV, Kogge [1981] on pipelining, Avizienius, et al. [1977] on fault-tolerant architectures for numerical computing, Hockney [1977], Kuck [1977, 1978], Kung [1980], Stone [1980] and Uhr [1984]. Surveys on numerical methods include, in addition to Miranker [1971] already mentioned, Traub [1974a], Poole and Voigt [1974], which was an essentially complete annotated bibliography up to the time of its publication, Heller [1978], which concentrates on linear algebra problems and gives considerable attention to
theoretical questions, T. Jordan [1979], which summarizes performance data for linear algebra software for several vector computers of the late 1970's, Book [1981], Buzbee [1981], Evans [1982a], which also contains a number of non-numerical articles, Sameh [1977,1981, 1983], Voigt [1977], Ortega and Voigt [1977], which the present paper updates, Rodrigue [1982], a collection of review papers on various numerical methods and applications, Gentzsch [1984b], which concentrates on vectorization of algorithms for fluid mechanics, and Schnendel [1984], an introductory textbook.

There are also several interesting papers which review the need and uses for supercomputers. These include Ballhaus [1984], Buzbee [1984a], Buzbee, et al. [1980], Chapman [1979], Fichtner, et al. [1984], Gautzsch, et al. [1980], Gloudeman [1984], Hockney [1979], Inouye [1977], Kendall, et al. [1984], Lomax [1981], Peterson [1984a,b], Rodrigue, et al. [1980], and Williamson and Swartztrauber [1984]. Finally, we mention that there has been increasing interest in the use of add-on array processors such as those made by Floating Point Systems, Inc. (Floating Point Systems [1976]), but this topic is beyond the scope of this paper; see for example, Eisenstat and Schultz [1981] and Wilson [1982].

The challenge for the numerical analyst using vector or parallel machines is to devise algorithms and arrange the computations so that the architectural features of a particular machine are fully utilized. Many of the best sequential algorithms turn out to be unsatisfactory and need to be modified or even discarded. On the other hand, many older algorithms which had been found to be less than optimal on sequential machines have had a rejuvenation because of their parallel properties. In sections 3 and 4 we review the current state of parallel algorithms for partial differential equations, especially elliptic boundary value problems. In section 3 we discuss direct methods for the solution of linear algebraic systems of equations while in section 4 we consider iterative methods for linear systems as well as time-marching methods for initial and initial-boundary value
problems. Finally, in section 5, we briefly review selected applications which have been reported in the literature.

In order to have a framework in which to study and evaluate algorithms, a variety of concepts have been introduced which we will use in the algorithm discussions that follow. Many of these ideas are becoming widely accepted as a basis for study and we introduce them in general terms now.

Traditionally, one of the most important tools of the numerical analyst for evaluating algorithms has been computational complexity analysis, i.e., operation counts. The fact that the fast Fourier transform of n samples requires $O(n \log n)$ arithmetic operations (here and throughout, log denotes \log_2) while the straightforward approach requires $O(n^2)$ provides a clear choice of algorithms for serial computers. This arithmetic complexity remains important for vector and parallel computers, but several other factors become equally significant. As we will see in the next section, vector computers achieve their speed by using an arithmetic unit that breaks a simple operation, such as a multiply, into several subtasks, which are executed in an assembly line fashion on different operands. Such so-called vector operations have an overhead associated with them that is called the start-up time, and vector operations are faster than scalar operations only when the length of the vector is sufficient to offset the cost of the start-up time. In section 3, we show that this start-up time typically enters the complexity formula as a coefficient of the next to the highest order term. Thus, terms that are neglected in the usual complexity analysis may play a prominent role in choosing algorithms for vector computers.

Nor is it sufficient just to minimize the number of vector operations. Every arithmetic operation costs some unit of time on a vector computer even if it is part of a vector operation. Thus for vectors of length n, an algorithm that requires $\log n$ vector operations will not be faster for sufficiently large n than an algorithm that requires n scalar
operations since \(n \log n \) operations will be performed. This preservation of arithmetic complexity is made more precise by the introduction of the concept of consistency in section 3 and we will show that in general for vector computers one should choose algorithms whose arithmetic complexity is "consistent" with the best scalar algorithm.

Two techniques for improving the performance of vector computers involve the restructuring of DO loops in Fortran, in order to force a compiler to generate an instruction sequence that will improve performance. It is important to note that the underlying numerical algorithm remains the same. The technique of rearranging nested DO loops is done to help the compiler generate vector instructions. For example,

\[
\begin{align*}
\text{DO 100 I = 1,N} \\
\text{DO 100 J = 1,N} \\
100 \quad & B(I) = B(I) + A(I,J)
\end{align*}
\]

would yield scalar add instructions and would be changed to

\[
\begin{align*}
\text{DO 100 J = 1,N} \\
\text{DO 100 I = 1,N} \\
100 \quad & B(I) = B(I) + A(I,J)
\end{align*}
\]

resulting in a vector add instruction for each value of \(J \). The other technique, characterized as unrolling DO loops in Dongarra and Hinds [1979], is used as a way to force the compiler to make optimal use of the vector registers on the Cray computers. (The role of these registers will be discussed in the next section). In its simplest form, loop unrolling involves writing consecutive instances of a DO loop explicitly with appropriate changes in the loop counter to avoid duplicate computation. Several examples are given by Dongarra [1983] and Dongarra and Eisenstat [1984] for basic linear algebra algorithms.
Although of little value in helping to evaluate different numerical algorithms, these techniques do provide insight into how to obtain maximum performance on vector computers.

The previous two examples indicate some of the limitations with present Fortran compilers, but a general discussion of compilers for vector and parallel computers, though crucial to performance, is beyond the scope of this review. For discussions of the present state of the art see, for example, Arnold [1982,1983], Kuck, McGraw and Wolfe [1984], and Kuck, et al.[1984].

The above discussion has focused on vector computers, and although some of the issues are relevant to computers consisting of parallel processors, there are other important considerations as well. Arithmetic complexity remains fundamental but extra computations may not involve the penalty that they would on vector computers (if, for example, there are processors that would otherwise be idle). Equally important will be the degree of parallelism, the amount of the computation that can be done in parallel, which will be defined in section 3 and used extensively in the discussions on algorithms. We will see that there are algorithms with relatively high operation counts that are attractive on parallel computers because a high percentage of those operations can be done in parallel.

As emphasized by Gentleman [1978], a non-numerical issue that is crucial to the performance of algorithms on parallel computers is the frequency and cost both of communication among processors and of synchronization of those processors. A simple iterative method provides an example. If unknowns are distributed among processors and if the new approximate solution has been computed in these processors, then parts of this solution must be communicated to other processors in order to compute the next iterate. The amount and destination of this information depends on the underlying problem, on how it is mapped onto the processors, and on the numerical algorithm. Once the communication
takes place there must be synchronization if the processors are to stay on the same iteration step. There are a number of ways to do this, with varying costs depending on the architecture. Many examples of communication and synchronization costs will be brought out in sections 3 and 4 but they will not be incorporated into a formal complexity analysis. Such analyses are only beginning to appear and a more complete discussion of the costs and how to analyze them may be found in Adams and Crockett [1984], Reed and Patrick [1984a,b] and Gannon and Van Rosendale [1984b].

Less formal consideration of communication and synchronization involves assumptions such as an equal cost to communicate one floating point number and to perform one floating point operation. As an extreme case, one can assume zero cost to communicate. This zero-cost model, although unrealistic, can provide useful bounds on the performance of an algorithm and it was this motivation that led to the proposal of the Paracomputer by Schwartz [1980]. In this model the parallel array contains an unbounded number of processors all of which may access a common memory with no conflict and at no cost. Such unrestrained resources make it possible to study the inherent, total parallelism in an algorithm and to obtain an indication of its optimal performance. It also provides a standard by which to measure the effectiveness of other architectures. Some of the algorithm development discussed in this review fits the paracomputer model. The paracomputer assumption of an unbounded number of processors has historically been a popular assumption and Heller [1978] reviews research of this kind, particularly for linear algebra algorithms.

At the opposite end of the spectrum from the paracomputer are actual running arrays where the number of processors is obviously fixed, and (for the immediate future) usually small relative to the size of the problem. These systems motivate research on models involving p processors where p is fixed and is much less than n, a parameter
measuring the size of the problem. In between one finds the model of a system with the
number of processors given as some simple function of n. We will see that these different
models can lead to different algorithms for the same problem.

Most parallel numerical algorithms follow one or both of two related principles
which we refer to as divide and conquer and reordering. The divide and conquer approach
involves breaking a problem up into smaller subproblems which may be treated independ-
ently. Frequently, the degree of independence is a measure of the effectiveness of the
algorithm for it determines the amount and frequency of communication and synchroni-
zation. Applying the divide and conquer concept to the inner product computation \(\sum a_i b_i \),
where the product \(a_i b_i \) has been computed in processor \(p_i \), might involve sending \(a_{i+1} b_{i+1} \) to
processor \(p_i \), for \(i \) odd. The sum operation is now "divided" among \(p/2 \) processors with \(p_i \)
doing the addition \(a_i b_i + a_{i+1} b_{i+1} \) for \(i \) odd. The idea is repeated \(\log n \) times until the sum is
"conquered" in processor \(p_1 \). There are several other ways to organize the computation, all
of which will be superior (on reasonable architectures) to simply sending all the products
\(a_i b_i \) to a single processor for summation. We will see that this simple idea pervades many
parallel algorithms.

The concept of reordering may be viewed as restructuring the computational domain
and/or the sequence of operations in order to increase the percentage of the computation
that can be done in parallel. For example, the order in which the nodes of a grid are
numbered may increase or decrease the parallelism of the algorithm to be used. An ana-
logous example is the reordering of the rows and columns of a matrix to create independent
submatrices that may be processed in parallel. Specific algorithms based on this concept
will be discussed in sections 3 and 4.

After one has obtained a parallel algorithm it is natural to try to measure its perfor-
manace in some way. The most commonly accepted measure is speedup, which is
frequently defined as

\[S_p = \frac{\text{execution time using one processor}}{\text{execution time using } p \text{ processors}} \]

The strength of this definition is that it uses execution time and thus encorporates any communication or synchronization overhead. A weakness is that it can be misleading to focus on algorithm speed up when in fact one is usually more interested in how much faster a problem can be solved with \(p \) processors. Thus, we wish to compare the best serial algorithm with the parallel algorithm under consideration, and we define

\[S_p = \frac{\text{execution time using the fastest sequential algorithm on one processor}}{\text{execution time using the parallel algorithm on } p \text{ processors}} \]

This second definition makes clear that an algorithm with excellent parallel characteristics, that is, a high speed up factor \(S_p \), still might not yield as much actual improvement on \(p \) processors as \(S_p \) would indicate.

Ware [1973] suggested another definition of speedup in order to reflect more clearly the role of scalar computation in a parallel algorithm:

\[S_p = [(1-\alpha) + \frac{\alpha}{p}]^{-1} \]

Here \(\alpha \) is the fraction of work in the algorithm that can be processed in parallel, and the execution time using a single processor has been normalized to unity. Buzbee [1983c] points out that

\[\frac{dS_p}{d\alpha} \bigg|_{\alpha=1} = p^2 - p \]

and this quadratic behavior is shown in Figure 1-1 where it is clear that the fraction of work that can be done in parallel must be high to achieve reasonable speedups. Buzbee also points out the similarity between Figure 1-1 and the behavior of vector performance if the abscissa is interpreted as the fraction of vectorizable work. Buzbee [1983b] uses the
Ware model to discuss the parallel properties of particle-in-cell codes for fusion studies, concluding that a large percentage of the work can be processed in parallel.

Buzbee [1983c] also notes that a weakness of the Ware model of speedup is that \(S_p = p \) for an algorithm that is completely parallel (\(\alpha = 1 \)), which is unlikely because of various overheads associated with parallel computation. In fact, Minsky [1970] conjectured that speedup for \(p \) processors would be proportional to \(\log p \). Buzbee modifies the Ware model by inserting a term \(\sigma(p) \) in the denominator to reflect the overhead of using \(p \) processors. Thus it is clear that if we are to improve on the Minsky conjecture, algorithms and implementations must be found for which \(\alpha \) is near unity and \(\sigma(p) \) is near zero. Other studies by Kuck, et al. [1973] and Lee [1977] suggest that over a broad range of problems it is reasonable to expect an average speedup proportional to \(p/\log p \).

Knowing the speedup, it is reasonable to ask how efficiently the parallel system is being utilized by the algorithm. One way to accomplish this is to use the efficiency
measure defined by

$$E_p = \frac{S_p}{p}.$$

Thus in the ideal situation of a speedup of p for p processors, the efficiency measure is unity. For some other speedup factors, such as the conjectured $p/\log p$ discussed above, E_p tends to zero as p is increased, giving a clear indication that certain algorithms may not be appropriate for systems with a large number of processors.

In section 2, we will review in more detail various architectural features of both pipelined computers and arrays of processors, and give further details on some of the machines mentioned in this section, as well as others. Among the topics that will not be discussed in section 2 are digital optical computing and special devices designed to execute a specific algorithm or to solve a specific problem. Digital optical computing utilizes photons as the information carrying media, but, generally, issues involving algorithms are the same as for conventional digital computing. For a review see Sawchuck and Strand [1984] and for a discussion of some algorithmic considerations see Casasent [1984]. Computers designed specifically for an algorithm or problem are receiving increased attention because of the dropping cost of components. One such system, described by Christ and Terrano [1984], would deliver several billion floating point operations per second for elementary particle physics calculations.
2. Review of the Hardware

In this section we shall review some of the basic features of vector and parallel computers. However, because of the plethora of such systems, each differing in detail from the others, we shall attempt to stress some of the basic underlying architectural features, especially as they affect numerical algorithms, and refer the reader to the literature for more details on the individual computers. Another reason that we shall not attempt to give a detailed treatment of any particular system is that the field is changing so rapidly. For example, as of this writing, Cray Research Inc. has announced the Cray-2, Control Data Corp. the Cyberplus, Denelcor the HEP-2, ETA the GF-10, and there are a number of university development projects. Moreover, there is an expected impact from VLSI technology, although the precise form this will take is not yet clear. Finally, the Japanese are developing several systems (Buzbee, et al.[1982], Kashiwagi [1984] and Riganati and Schneck [1984]).

One obvious way to achieve greater computational power is to use faster and faster circuits, and improvements in this area have been immense. However, the limit on transmission speeds imposed by the speed of light and fabrication limitations (see, for example, Seitz and Matisoo [1984]) have led to attempts to improve performance by parallelism, which, in its most general form, occurs whenever more than one function is being performed at the same time. This idea actually dates back to the ENIAC, the first electronic computer (Eckert, et al.[1945]), which was capable of executing many arithmetic operations simultaneously. However, the authors discussed several levels of parallelism and concluded that serial operation was to be preferred. One of their reasons - the difficulty of programming for parallel operations - was certainly prophetic. They also observed that improving component speeds made parallelism unnecessary!
Parallelism did reappear occasionally in various forms beginning in the early 1950's. For example, there was parallelism in the arithmetic units of the Institute for Advanced Study computer at Princeton University and the Whirlwind I at Massachusetts Institute of Technology (Kuck [1978]), and parallelism between program execution and I/O on the UNIVAC I (Kogge [1981]). For a brief history of computers and an excellent guide to the literature the reader is referred to Kuck [1978].

The general notion of parallelism discussed above is basically the same as that set forth by Hobbs and Theis (Hobbs, et al. [1970]) but is too broad for our interests here since we are focused primarily on numerical algorithms. For our purposes, parallelism in computing will be exemplified by those computers which contain instructions for performing arithmetic operations on a collection of operands as an entity, such as vectors, or which contain independent processing elements that may be used on the arithmetic aspects of the same problem simultaneously.

One way of obtaining significant speedups is by the technique known as pipelining. We will use the term pipelining (as given in Kogge [1981]) to refer to design techniques that take some basic function to be invoked repeatedly and partition it into several sub-functions which can be done in an assembly line fashion. This is illustrated in Figure 2-1, which shows how a floating point instruction is broken down into more elementary parts.

![Figure 2-1 Floating point pipeline](image-url)
By the early 1960's pipelining was being used in a variety of computers to speed up functions like memory access and instruction execution (Kogge [1981]). Eventually the technique was used in arithmetic units on the CDC 7600 and the IBM System 360 Model 91. However these computers do not fit our view of parallelism because the arithmetic instructions are executed with only one set of operands. The last necessary step was taken with computers such as the CDC Cyber 200 series (formerly the STAR-100), the Cray Series and the TI-ASC, which have hardware instructions which accept vectors as operands. Since the ASC is no longer available, we will focus on the former two computers (see Watson [1972] for a description of the ASC). For simplicity, throughout the remainder of this paper we will refer to the Cyber 200 series including the 203 and 205 as the Cyber 200 and to the Cray family as the Cray unless there is some reason to make a further distinction.

We next give a very brief functional description of the Cyber 200 and Cray families. A thorough review of the Cray-1, the Cyber 205 and the Cray X-MP may be found in Russell [1978], Lincoln [1982] and Chen [1984], respectively; see also Larson [1984] for the X-MP. The Cyber 200 has separate arithmetic units for scalar and vector floating point arithmetic. The latter units, which we shall refer to as pipelines, are accessed by hardware vector instructions which obtain their operands directly from main memory. Main memory size ranges from 0.5 to 2 million 64 bit words on the 203 and one to sixteen million on the 205 with further increases in memory size already announced. The 203 had two separate pipelines while the 205 may have 1, 2 or 4. The pipelines are reconfigurable via microcode in order to execute a variety of arithmetic operations. A schematic of the Cyber 200 is given in Figure 2-2.

A vector hardware instruction initiates the flow of operands to the pipeline, and assuming that the instruction involves two source vectors, each segment of the pipeline
accepts two elements, performs its particular function (e.g., exponent adjustment), passes the result to the next segment, and receives the next two elements from the stream of operands. Thus several pairs of operands are being processed concurrently in the pipeline, each pair in a different stage of the computation. The number of results emerging from the pipeline each clock period (cycle time) depends upon the arithmetic operation and the word length (64 bits or 32 bits). The maximum result speeds are given in Table 1 for various cases.

<table>
<thead>
<tr>
<th></th>
<th>203 (2 pipe)</th>
<th>205 (2 pipe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64 bit</td>
<td>32 bit</td>
</tr>
<tr>
<td>+</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>x</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>/</td>
<td>12.5</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 1 Maximum computation rates in MFLOPS for Cyber 203/205

For a 4 pipeline 205, the computation rates shown in Table 1 are doubled. Moreover, the 205 has the capability of handling "linked triads" of the form vector + constant × vector at the same rate as addition; hence, this operation achieves 200 million floating point operations per second (MFLOPS) for 64 bit arithmetic on a 2 pipeline machine, and 800
MFLOPS for 32 bit arithmetic on a 4 pipeline machine. This is the fastest possible result rate for the 205.

The maximum result rates given above are not achievable because every vector operation has associated with it a delay incurred after the instruction is issued for execution and before the first result emerges from the pipeline. An approximate timing formula for vector instructions for the Cyber 200 has the form

\[T = S + \alpha n \]

where \(S \) is the overhead, frequently called the start up time, \(\alpha \) is the time per result in clock periods, \(n \) is the length of the vector, and \(T \) is measured in clock periods. For the Cyber 203, the clock period is 40ns, \(\alpha \) is 1/2, 1 and 2 for addition, multiplication and division, respectively, in 64 bit arithmetic and \(S \) ranges from 70 clock periods for addition to 165 for division. On the 205, the clock period is 20ns, while \(\alpha = 1/2 \) for 64-bit arithmetic and \(S \leq 50 \) for all the arithmetic operations. The effect of the startup time is to degrade seriously the performance when \(n \) is small. This is illustrated in Table 2 for the 205 for a particular case.

<table>
<thead>
<tr>
<th>(n)</th>
<th>T(clocks)</th>
<th>(T/n)</th>
<th>MFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>55</td>
<td>5.5</td>
<td>9</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>1000</td>
<td>550</td>
<td>.55</td>
<td>91</td>
</tr>
<tr>
<td>10000</td>
<td>5050</td>
<td>.505</td>
<td>99</td>
</tr>
<tr>
<td>(\infty)</td>
<td>-</td>
<td>.5</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 Performance for 2-pipeline Cyber 205 in 64 bit arithmetic

As Table 2 shows, for short vectors (\(n=10 \)) performance is less than 10 percent of the maximum rate and vectors of length almost 1000 are required to achieve 90 percent of the maximum rate. The computation rates can be further degraded by the fact that a vector
on the Cyber 200 is a set of contiguously addressable storage locations in memory, and if the data for a vector operation is not already stored in such fashion, it must first be rearranged. Although there are hardware instructions (gather, scatter) to effect this data transfer, they add further overhead to the computation.

Hockney and Jesshope[1981] have introduced the useful concept of the half-performance length, \(n_{1/2} \), which is defined as the vector length required to achieve one-half the maximum performance; in the example of Table 2, \(n_{1/2} = 100 \). They use this parameter together with the maximum performance rate to characterize a number of vector and array computers; see also Hockney [1983a,b]. We also mention that it has been noted by several people that "Amdahl's Law", first suggested in Amdahl [1967]and a special case of Ware's Law discussed in section 1, is particularly relevant in parallel computing.

Briefly, if a computation contains \(x \) scalar operations and \(y \) operations that can be done by vector instructions, then the computation can be accelerated by no more than a factor of \((x+y)/x \), even if the vector operations are infinitely fast. For example, if there are 50 percent scalar operations no more than a factor of 2 improvement over scalar code can be achieved.

The Cray computers are similar in many ways to the Cyber 200 but have fundamental differences. Memory size ranges from 500,000 to 4 million 64 bit words on the Cray-1 and 1S and up to 8 million words on a four processor X-MP, but there is no provision for 32 bit arithmetic. Again, there are hardware vector instructions but these utilize separate pipelined arithmetic (functional) units for addition, multiplication, and reciprocation rather than reconfigurable units as on the Cyber 200. The clock period is 12.5ns on the Cray-1 and 1S and 9.5ns on the Cray X-MP, as compared with 20ns on the Cyber 205. The X-MP series allows a configuration of 1,2 or 4 processors. The most basic functional difference between the processors, however, is that the Cray vector instructions obtain
their operands only from eight vector registers, of 64 words each. A schematic of a Cray processor is given in Figure 2-3.

![Figure 2-3 Cray Processor Schematic](image)

For data in the vector registers, the vector instructions on the Cray again obey approximately the timing formula (2.1) but now the start-up times are $O(10)$ clock periods, considerably lower than the Cyber 200, while α is, again, $O(1)$. Discounting the relatively low start-up time, the maximum result time for each of the three arithmetic operations is 80 MFLOPS on the Cray-1. However, all functional units can be operated in parallel so that, theoretically, the maximum speed on the Cray-1 is 160 MFLOPS for addition and multiplication running concurrently. On the X-MP, this figure increases to 210 MFLOPS per processor because of the faster cycle time and would be 840 MFLOPS on a full 4 processor X-MP system.

Although the vector operations on the Cray have relatively low start-up time, this is balanced by the time needed to load the vector registers from memory. For example, for an addition, two vector registers must be loaded and the result stored back in memory from a vector register. Although arithmetic operations can be overlapped to some extent
with the memory operations, there is only one path from memory to the registers on the Cray-1 and IS, and since memory load and store operations require one clock period per word (after a short start-up), only either a load or a store can be done concurrently with the arithmetic operations. This problem is alleviated to a large extent on the Cray X-MP series, which has three paths between memory and the registers on each processor. In any event, and especially on the Cray-1, one attempts to retain data in the registers as long as possible before referencing memory. One says that vector speeds are being obtained if vector hardware instructions are being utilized but that sufficient memory references are required to hold the operation rate to nominally less than 50 MFLOPS on the Cray-1, and that super-vector speeds are obtained if information can be held in the registers long enough to obtain rates in the 50-160 MFLOP range. These figures would be scaled up appropriately for the X-MP. The attainment of supervector speeds is enhanced by the capability of chaining, which is the passing of results from one arithmetic unit directly to another as illustrated in Figure 2-4.

Another major advantage that the Cray X-MP offers over the Cray-1 is that of multiple CPU’s. The CPU’s function off of a shared central memory with a set of shared data and synchronization registers for communication. Some early benchmarks indicate speed-ups of from 1.5 to 1.9 for two processors (Chen [1984], and Chen, et al.[1984]).

To summarize the main functional differences between the Cray and Cyber 200, one attempts to organize a computation on the Cyber 200 to utilize vector lengths as long as possible while on the Cray one attempts to organize the computation so as to minimize references to storage and utilize as much as possible information currently in the vector registers. However, any realistic computation will require deviation from these ideals and will also require a certain amount of scalar processing. Several benchmarking studies have been published (e.g. Rudinski and Pieper[1979], Nolen, et al.[1979],
Gentsch [1983, 1984a]) which give valuable performance data for certain classes of problems. See also Ginsburg [1982].

It should be noted that Fujitsu, Hitachi and Nippon Electric have developed supercomputers whose performance would appear to be comparable to the Cyber and Cray machines (see, for example, Riganati and Schneck [1984]). The previous discussion on the Cray is appropriate for these machines for they are architecturally similar to it; in particular, they employ vector registers in much the same way as the Cray does (see, for example, Miura and Uchida [1984]). Preliminary benchmark results including a comparison to the Cray are given in Mendez [1984] and Worlton [1984].

We turn now to computer organizations consisting of a potentially large number of processing elements. These computer architectures fall into two classes as defined by Flynn [1966]. In Single Instruction Multiple Data (SIMD) systems, each processor executes the same instruction (or no instruction) at the same time but on different data. In Multiple Instruction Multiple Data (MIMD) systems, the instructions may differ across the
processors, which need not operate synchronously. A much more detailed taxonomy has been given by Schwartz [1983] based on fifty-five designs, and excellent reviews of various architectural approaches are given by Haynes, et al.[1982], Siewiorek[1983] and Zakharov [1984].

In the late 1950's, interest in designing a parallel array computer began to grow. Designs such as the Holland Machine (Holland [1959]) and von Neumann's Cellular Automata (von Neumann [1966], first published in 1952), consisting of arrays of processing cells operating in MIMD mode and communicating with their four nearest neighbors, were proposed. In the same period, Unger [1958] had proposed a parallel array of bit-serial processors using the four nearest neighbor communication strategy; the machine was intended for pattern recognition and suggested the architecture of later machines such as the SOLOMON and the DAP. In the early 1960's, Westinghouse Electric Corp. constructed prototypes of a parallel computer (SOLOMON) designed by Slotnick, et al.[1962]. The design was modified and refined into the Illiac IV at the University of Illinois (Barnes, et al.[1968] and Bouknight, et al.[1972]) and constructed by the Burrough's Corporation.

The Illiac IV consisted of 64 fast processors (about 1 MFLOP each), with memories of 2048 64 bit words connected in an 8×8 array as illustrated in Figure 2-5. The individual processors were controlled by a separate control unit and all processors did the same instruction (or nothing) at a given time. Hence, the machine was of SIMD type and could be visualized as carrying out vector instructions on vectors of length 64 or shorter. In many ways, algorithm considerations were very similar for the Illiac IV and the Cray and Cyber 200 machines. The Illiac IV was the first parallel array computer to become operational for the benefit of a large, diverse user community when it was installed at the NASA Ames Research Center in the early 1970's. (It was removed from service in 1981.) Although a large number of parallel computers have been, and continue to be, developed,
probably most of the computational experience with such computers has been gained on
the Illiac IV (see, for example, Feierbach and Stevenson [1979]).

At the same time that the Illiac IV was becoming operational, advances in micropro-
cessors led to a variety of speculations on connecting tens of thousands, or even hundreds
of thousands, of such processors together. A major consideration is how these processors
are to communicate. The design of the Illiac IV, in which each processor is connected to its
four nearest neighbors in the north, south, east, and west directions with wrap-around
connections at the edges (Figure 2-5), is suitable for the simplest discretizations of simple
partial differential equations but becomes less suitable for more complicated situations and
more sophisticated algorithms. Although the Illiac IV was capable of performing in the 50
MFLOP range, this rate was difficult to sustain because of the relatively small memories and the limitations of the processor interconnection scheme.

The importance of communication among processors has led to extensive research on interconnection methods. Fundamental work was done by Clos [1953] and by Benes [1962, 1965] for telephone networks, and surveys of more recent research may be found in Anderson and Jensen [1975], Sullivan and Bashkow [1977], Siegel [1979], Feng [1981], Haynes, et al. [1982] and Broomwell and Heath [1983]. It is now clear that the interconnection scheme is probably the most critical issue in the design of parallel systems because it determines how data, and possibly instructions, are made available to the appropriate processing elements. For many algorithms, the total time required to move data to the appropriate processors is as large or larger than the time required for the completion of the computation (see, for example, Gentleman [1978]).

Ideally, every processor would have a dedicated connection to every memory. Although this would allow access in unit time independent of the number of processors, it is impractical for systems with a large number of processors for two reasons. In the first place, the complexity of the interconnection scheme for n processors increases as n². Furthermore, since each processor must support n communication lines, if a processor is a single chip or even a few, the number of pins required to provide the communication connections will exceed what present technology can provide, even for moderate size n. On the other hand, an inadequate interconnection scheme limits the performance of the system and thereby reduces the class of problems which can be solved in reasonable time; this is the trade-off facing the designer of a parallel machine.

In practice, three fundamentally different interconnection schemes have been used, and in turn, we will use these to introduce a classification of some simple types of parallel arrays. More complex systems can usually be viewed as a combination of these three
types. We also note that, in principle, each of these interconnection schemes could be used to implement a global shared memory.

Lattice: P processors, each with local memory, arranged into some form of regular lattice. Each processor is permanently connected to a small subset of the others, usually its neighbors in the lattice (Figure 2-5).

Bus: P processors, each with local memory, connected to a bus structure allowing communication among the processors (Figure 2-6).

Switch: P Processors and M memories connected by an electronic switch so that every processor has access to some, possibly all, of the memories (Figure 2-7).

The classical lattice array is the Illiac IV. Other lattice computers include the Distributed Array Processor (DAP) (Flanders, et al.[1977] and Parkinson [1982]), constructed by International Computers Limited, the Massively Parallel Processor (MPP) at NASA-Goddard (Batcher [1979,1980]), and the systolic arrays proposed by H. T. Kung and his collaborators (Kung and Leiserson [1979], and Kung [1979,1980,1982,1984]). The DAP is an array of single bit processors, each connected to their four nearest neighbors, and with additional row and column data paths. A 64 × 64 array performing multiplication of two 64 × 64 matrices using software to affect 32-bit arithmetic provides a computation rate of 18 MFLOPS (Reddaway [1979]). The bit orientation, which permits parallelism at a very low level, and the row and column connections should alleviate some of the communication difficulties of the Illiac IV. The MPP, constructed by Goodyear Aerospace Corp, is also an array of single bit processors, 16,000 of them operating in SIMD mode. It is used primarily for satellite data reduction but is capable of substantial floating point computation rates. For example, for 32 bit operands, addition may be done at a rate of 430 MFLOPS while the rate for multiplication is 216 MFLOPS (Batcher [1979]).
Gallopoulos [1984] discusses performance on several fluid dynamics applications.

Systolic arrays consist of very simple processors capable of performing a single operation such as \(ab + c \). They are designed to perform specific computations such as matrix multiplication or LU factorization. This specificity makes it possible to use a simple interconnection pattern and move the data continuously through the array. Thus one could view the device as a large pipeline with each processor accepting data, performing a simple operation and passing the operands and/or the result on to the next processing element. The difference between this and a usual pipeline is that each processor performs precisely the same simple function rather than different subfunctions. A significant number of systolic algorithms have been developed; see, for example,

![Figure 2-6 Bus Interconnection as Exemplified by ZMOB](image-url)
Figure 2-7 Switch Interconnection as Exemplified by C.mmp

Another lattice that has received considerable attention is the tree structure. For example, Mago [1979, 1980] has proposed a design for directly executing the functional programming languages of Backus [1978] based on a binary tree in which a typical processor is connected to one processor above it and two processors below. Such a tree is said to have a "fan-out" of two; larger fan-outs have been discussed, but there is a potential for communication bottlenecks as the fan-out increases. This can be particularly troublesome at the root of the tree if a large amount of global communication is required. One way to lessen the demand on the root is to introduce horizontal communication links among the
2.16

processors on any given level of the tree. Shaw[1984] has also proposed a tree structure for the NON-VON machine, which is intended primarily for non-numerical processing.

It is also possible to consider, at least conceptually, multi-dimensional lattices. An example of such a structure is the binary k-cube for connecting \(n = 2^k \) processors (see, for example, Bhuyan and Agrawal [1984]). If the processors are viewed as the corners of a cube in \(k \) dimensions, then the connections are the edges of the cube. For \(k = 3 \) this reduces to a simple cube with each processor connected to three others. In general, if each processor is given a unique label from the integers zero through \(n-1 \), then processor \(i \) is connected to processor \(j \) if and only if the binary representations of \(i \) and \(j \) differ in a single bit. The strength, and potential weakness, of this strategy is that the number of processors connected to a given processor is \(k \); thus there is a rich interconnection structure but at some point the requirement for \(k \) wires would introduce a fabrication difficulty. A 64 processor machine based on the 6-cube and known as the Cosmic Cube is operational at the California Institute of Technology (see, e.g., Seitz [1982, 1984]). The processors utilize the Intel 8086/8087 chip family and have 128k bytes of memory.

Examples of bus arrays include Cm* at Carnegie Mellon University (Swan, et al.[1977], Jones and Gehringer [1980]), ZMOB at the University of Maryland (Rieger[1981]), and Pringle at the University of Washington and Purdue University (Kapauan, et al.[1984]). Cm* is a research system consisting of approximately 50 Digital Equipment Corporation LSI-11's configured in clusters, with the clusters connected by a system of buses. The processors share a single virtual address space and the key to performance lies in the memory references. For example, if the time to service a local memory reference is one unit, then Raskin [1978] reports that a reference to a different memory, but one within the same cluster, requires a little more than three units while a reference to a different cluster requires more than seven units, assuming no contention. Further perfor-
mance data based on some applications programs, including the iterative solution of a
discretized Laplace's equation and a problem in computational chemistry, are given in
Raskin [1978] and Hibbard and Ostlund [1980], respectively. Additional applications are
treated in Ostlund, et al.[1982], and general programming considerations are discussed in
Jones, et al.[1978]. The machine was also used to simulate electrical power systems (Dugan,
et al. [1979] and Durham, et al.[1979]).

ZMOB is an array of up to 256 Z-80 microprocessors configured in a ring as depicted
in Figure 2-6. The performance of the bus relative to that of the processors is so great
that there are not the usual delays in communication characteristic of bus arrays. Because
of the high speed bus, a processor can obtain data from any memory in approximately the
same time but, unfortunately, this is not a characteristic that could be maintained if the
array were scaled up to a larger number of more powerful processors.

The Pringle system was designed and built to serve as a test bed to emulate the CHiP
architecture (Snyder [1982]) as well as others. The system consists of 64 processing ele-
ments based on eight bit Intel processors with a floating point coprocessor (Field, et
al.[1983]). The processing elements, with a modest amount of local memory, are connected
via separate input and output buses. The two buses are connected via a message routing
processor or "switch" which establishes communication patterns that allow the Pringle to
emulate a variety of communication networks. Some preliminary performance data is
given in Kapauan, et al.[1984] for summing a sequence of numbers using an algorithm
based on recursive doubling.

The now classic example of a switch array is Cmmp, a research machine developed
at Carnegie Mellon University in the early 1970's (Wulf and Bell [1972] and Wulf and
Harbison [1978].) The system consisted of up to sixteen Digital Equipment Corporation
PDP minicomputers connected to sixteen memory modules via a 16 × 16 crosspoint switch,
as depicted in Figure 2-7. There is not a great deal of data on the performance of C.mmp on scientific applications; however, one study by Oleinick and Fuller [1978] provides insight into the importance of synchronization on performance. In a parallel version of the bisection method for finding the root of a monotonically increasing function, after all processors have evaluated the function they must halt and await the decision of which subinterval to use next. Several synchronization techniques were investigated and it was found that their time of execution varied by a factor of 15 with the more sophisticated techniques requiring over 30 milliseconds. This obviously adds significant overhead to the algorithm for all but the most complicated functions. Synchronization techniques are a major area of concern in the design and use of parallel arrays.

The crosspoint switch is also the basis for the communication mechanism for the S-1 array under development at Lawrence Livermore National Laboratory (Farmwald [1984]). This machine is intended to support up to sixteen processors of approximately Cray-1 performance connected to a shared memory consisting of about 10^9 bytes per processor.

The full crosspoint switch for connecting n processors with n memories contains n^2 switches, which is not feasible for large n. This has led designers to consider simpler switches consisting of $O(n \log n)$ subswitches. An introduction to this area is contained in Haynes, et al. [1982]. An example of an $n \log n$ switch (and there are many) is the Banyan switch (Goke and Lipovski [1973]), which is the basis for the Texas Reconfigurable Array Computer (TRAC) under development at the University of Texas (Sejnowski, et al. [1980] and Browne [1984b]). Some projected performance data for the TRAC, based on odd-even reduction algorithms for block tridiagonal systems (Heller [1976]), is given by Kapur and Browne [1981, 1984].

Another computer utilizing a Banyan type switch is the Heterogeneous Element Processor (HEP) manufactured by Denelcor, Inc., (Smith [1978] and H. Jordan [1984]). It
consists of up to sixteen processors with the switch providing access to a data memory. In a HEP processor two queues of processes are maintained. One of these controls program memory, register memory and the functional units while the other controls data memory. The mode of operation is as follows. If the operands for an instruction are contained in the register memory, the information is dispatched to one of several pipelined functional units where the operation is completed; otherwise the process enters the second queue which provides information to the switch so that the necessary link between processor and data memory can be established. After the memory access is complete, the process returns to the first queue, and when its turn for service occurs, it will execute since the data is available. The time required to complete an instruction is 800 ns, but a new instruction may be issued every 100 ns. Thus, if the processors can be kept fully utilized, on a sixteen processor machine a 160 MFLOP rate is theoretically possible. Some preliminary information on utilizing the HEP for solving linear systems is given by Lord, et al. [1980, 1983], H. Jordan [1983, 1984], Dongarra and Hiromoto [1984] and by H. Jordan [1981], who concentrates on the sparse matrix package from AERE, Harwell, England, (Duff [1977]). Moore, et al. [1984] discuss several hydrodynamic applications for which efficiencies very close to unity are obtained on a single processor HEP. Operational results for a four processor HEP at the Army Ballistic Laboratory are given in Patel and Jordan [1984], where an iterative method for a problem in fluid mechanics is discussed. Some preliminary performance data for the HEP and several other MIMD systems may be found in Buzbee [1984b].

We have indicated many examples of parallel array computers covering the three major classifications. Because of the importance of communication and the limitations of the various strategies, we may expect to see computers which utilize combinations of the techniques described above. One such machine is the Finite Element Machine (H. Jordan...
2.20
dan[1978], Storaasli, et al.[1982] and Adams and Voigt[1984b]) at the NASA Langley Research Center. This lattice array was designed for 36 16-bit microprocessors configured in a planar array with each processor connected to its eight nearest neighbors as shown in Figure 2-8. It is also a bus array because the nearest neighbor connections are augmented by a relatively high performance bus which services every processor of the array. Some preliminary performance data are available in Adams[1982] and Adams and Crockett[1984]. A rather similar machine, PACS, is being developed in Japan (Hoshino, Kawai, et al.[1983] and Hoshino, Shirakawa, et al.[1983]).

Another system which combines communication strategies is MIDAS, a prototype of which is operational at the Lawrence Berkeley Laboratories (Maples, et al.[1983]). The array consists of clusters of processors configured as a tree, with each cluster containing up to eight processors interconnected by a full crosspoint switch. A discussion of program-

\[\text{Figure 2-8 Finite Element Machine} \]
ming considerations and some results for a Monte Carlo simulation are given in Logan, et al.[1984]; additional results are reported in Maples, et al.[1984].

Another approach to the communication problem is the configurable highly parallel (CHiP) computer (Snyder [1982]). An interesting feature of this project is that the communication network is programmable and reconfigurable. Thus, for an application involving the direct solution of linear systems, it can be made to function as an appropriate systolic device, while for another application involving the iterative solution of a discretized differential equation, it can function as a lattice array. Reconfigurability offers additional benefits for adapting to varying problem sizes and for providing fault tolerance. An example of this flexibility is given in Gannon and Panetta [1985] which discusses implementing SIMPLE, a benchmark hydrodynamics code, on the CHiP.

The parallel microprocessor system PμPs under development at Los Alamos National Laboratory is intended to provide a means for studying the performance of various communication strategies (Ethridge, et al.[1983]). The system will consist of twenty 16-bit microprocessors and 32 memory modules implemented as shared memory via a bus system. A memory mapping facility will make it possible to configure the system to emulate a variety of architectures.

There are also several other efforts whose impact will have to await further development. More exotic switching networks such as the shuffle exchange, cube-connected-cycles and omega networks have been studied, (see, for example, Haynes, et al.[1982]). The Ultracomputer project at New York University is building, in cooperation with IBM, a large array based on the shuffle exchange (Gottlieb and Schwartz [1982], Gottlieb, Grishman, et al.[1983] and Gottlieb [1984]). The nodes of the shuffle exchange network possess rudimentary processing capability which is used to help alleviate memory contention. The Cedar project (Gajski, et al.[1983,1984]) at the University of Illinois
makes use of the omega network to connect clusters of processors to a large shared memory. Wagner [1983] has proposed the Boolean Vector Machine (BVM) as a large array of single-bit processors with very small memories operating in SIMD mode using bit serial arithmetic. The processors are interconnected via a cube-connected-cycles network (Preparata and Vuillemin [1981]) which links each processor to three others. An algorithm for solving sparse linear systems on the BVM is analyzed in Wagner [1984].

Another interesting idea is the dataflow computer, which has been the subject of over 10 years of research by J. Dennis of MIT and his colleagues as well as others (see e.g. Dennis [1980,1984b] and Agerwala and Arvind [1982] and the references there-in for a general overview). Two systems based on this concept are the Manchester Data Flow Machine (Watson and Gurd [1982]) which has been operational since 1981, and the SIGMA-1 (Hiraki, et al. [1984] and Shimada, et al. [1984]) which is under construction at the Electrotechnical Laboratory in Japan. Gurd and Watson [1982] report very promising results for a variety of problems run on the Manchester machine. Studies on the effectiveness of data flow computers for applications such as the weather problem and computational fluid dynamics have been done by Dennis and Weng [1977] and Dennis [1982,1984a], respectively.

It is now clear that new designs from commercial manufacturers will utilize a combination of vector and array concepts for computers that might be characterized as arrays of vector processors. The first of these was the Cray X-MP (see e.g. Chen [1984],) which was introduced as a two processor version and is now available with four processors. The Cray 2 and Cray 3 are also expected to involve multiple processors with the Cray 2 initially offering four. Control Data Corp. has announced the Cyberplus (Ray [1984]) which consists of up to 64 processors each with multiple pipelined functional units. The functional units within a processor may be connected via a cross bar switch to obtain the
equivalent of chaining, and the processors themselves are connected via three independent buses. ETA Systems Inc., a spin off of Control Data Corp., has announced the GF-10 (Johnson [1983]). This system is expected to utilize up to eight pipelined processors similar to the Cyber 205, but faster, operating off of a shared memory with up to 256 million words. The individual processors will also have local memory of approximately four million words.
3. Direct Methods for Linear Equations

We consider in this section direct methods for solving linear algebraic systems of equations

\begin{equation}
Ax = b
\end{equation}

where \(A \) is \(n \times n \). Our main concern will be when \(A \) is banded and usually symmetric positive definite (or at least pivoting is not required). We will treat first elimination (factorization) methods, then methods based on orderings such as nested dissection, and finally special methods for tridiagonal systems and fast Poisson solvers.

Consider first Gaussian elimination, without pivoting, when \(A \) is a full matrix. If we assume that \(A \) is stored by columns, as done by Fortran, then the usual row-oriented elimination process is not suitable for vector machines. Rather, we need a column-oriented algorithm as illustrated by the following first step of the elimination process. Let \(a_i \) be the \(n-1 \) long vector of the last \(n-1 \) elements of the \(i \)th column of \(A \). Then

\begin{equation}
m = a_i^{-1}a_i, \quad a_i - a_i, m \to a_i, \quad i = 2, \ldots, n
\end{equation}

completes the first step of the reduction. Note that all operations except one are \(n-1 \) long scalar-vector multiplies or vector additions.

Following Hockney and Jesshope [1981], we will say that the degree of parallelism of an algorithm is the number of operations that can be done concurrently. On vector computers, such as the Cyber 200 and Cray, we will interpret this to mean the vector lengths while on parallel computers it will mean the number of processors that can be operating simultaneously. Clearly the degree of parallelism is \(n-1 \) for the first stage of the elimination reduction. For the second stage, the vector lengths decrease to \(n-2 \) and so on down to
a vector length of 1 for the last stage. Hence, the degree of parallelism constantly decreases as the reduction proceeds, with an average degree of parallelism of $O(n/2)$.

If A is banded, with semi-bandwidth m defined by $m = \max\{|i-j|:a_{ij} \neq 0\}$, then the above algorithm allows constant vector lengths m until the reduction has proceeded to the last mxm block, at which time the vector lengths again decrease by one at each stage down to a length of 1. Thus, this algorithm leads to a low degree of parallelism for small m and is totally inappropriate for tridiagonal matrices ($m=1$), for which special methods will be discussed later in this section.

While the above form of Gaussian elimination is an appropriate starting point for a parallel algorithm, the architectural details of a particular machine may necessitate changes, perhaps drastic, to achieve a truly efficient algorithm. Several early papers (e.g. Lambiotte [1975], Knight, et al. [1975], Calahan, et al.[1976], George, et al.[1978b], Fong and Jordan [1977]) considered in detail the implementation of Gaussian elimination and the Choleski decomposition $A = LL^T$ on the CDC STAR-100, TI-ASC, and Cray-1. The variations on the basic algorithms because of the machine differences are summarized in Voigt [1977].

An important aspect of the analysis in some of the above papers is the derivation of precise timing formulas which show the effect of the start-up times for vector operations. For example, George, et al. [1978b] gave the following formula, which omits scalar arithmetic times, for the Choleski decomposition of a banded matrix, taking advantage of symmetry in the storage, on the STAR-100.

\[(3.3) \quad T = 0.75n^2 + 232nm + \text{low order terms}\]

This timing formula is in units of machine cycles. The leading term reflects the arithmetic operation count and the result rate for addition and multiplication while the second
term shows the effect of the vector operation start-up times which contribute most of the large coefficient of the nm term. As an example of the effect of machine architecture, Voigt [1977] showed that by modifying the Choleski algorithm to take advantage of some features of the TI-ASC, the timing formula on that machine became

\[T = n m^2 + \frac{19}{16} n m + 485n + \text{low order terms} \]

which gave a dramatic decrease in the coefficient of the nm term. Timing formulas analogous to (3.3) can be developed for the Cyber 205 and show a similar, but smaller, effect of start-up time in the second term.

On the Cray-1, one is much less concerned with the start-up times; instead the basic Choleski or elimination algorithms must be revised to keep data in the vector registers as long as possible. This is accomplished by completely modifying the k+1st column of the matrix during the k-th step of the factorization, leaving all other columns unchanged. The details may be found in Voigt [1977] for the Choleski algorithm and in Dongarra, Gustavson and Karp [1984] for Gaussian elimination. The latter paper gives an interesting detailed analysis of six different forms of the basic algorithm which differ only in how the data is accessed.

The above discussions concern only the factorization phase of the overall algorithm and it still remains to carry out the forward and backward substitutions, i.e. to solve lower and upper triangular systems. Perhaps the simplest and most natural approach to this, called the column sweep algorithm in Kuck [1976], is as follows for the upper triangular system \(Ux = b \). First, \(x_n \) is computed from the last equation and its value is inserted into each of the remaining equations so as to modify the right hand side, and, clearly, the \(n-1 \) equations can be processed in parallel. The original system is now reduced to an \(n-1 \) by \(n-1 \) system and the process is repeated. The degree of parallelism is the
bandwidth \(m \) until the system has been reduced to \(mxm \) and then the degree of parallelism is reduced by one at each stage. We will consider other algorithms for triangular systems later.

One way to circumvent, in a sense, the back substitution phase is by the Gauss-Jordan algorithm, which is not often used on serial computers since its operation count of \(O(n^3/2) \) to solve a linear system has a larger constant than the \(O(n^3/3) \) of Gaussian elimination. However, it is relatively more attractive for parallel computing since the back substitution is effectively combined with the triangular reduction in such a way that a degree of parallelism of order \(n \) is maintained throughout the computation. The implementation of the Gauss-Jordan algorithm on arrays of processors has been discussed by Kant and Kimura [1978] and Kimura [1979]; see also Parkinson [1984] for a banded system. Unfortunately, the algorithm fills in the upper triangle and so is not attractive for a banded system.

In principle the factorization methods discussed above may be implemented on parallel arrays and a nice introduction may be found in Heller [1978]. For example, the vector operations in expression (3.2) could be given to the \(i \)th processor, \(i=2,\ldots,n \), or if fewer processors are available, groups of columns could be assigned to processors. It should also be noted that the more usual row-oriented elimination could be implemented in a similar fashion. But these algorithms have at least three drawbacks. First, as was pointed out above, the degree of parallelism decreases at each stage of the elimination, eventually leaving processors unused. Second, the algorithms require significant communication because the pivot column (row) must be made available to all other processors (see e.g. Adams and Voigt [1984a]). Third, when the problem does not match the array size, a very difficult scheduling problem may arise (see, e.g., Srinivas [1983]). For banded matrices the processor utilization problem is not as severe since it is not a factor except in the final
A detailed analysis of the computational complexity of factorization algorithms may be found in Kumar and Kowalik [1984]. Algorithms for the Denelcor HEP are given in Dongarra and Hiromoto [1984] and the banded case is discussed in Dongarra and Sameh [1984]. Computational results are reported by Leuze [1984b] for the Finite Element Machine, and an interesting aspect of this study is the influence that different organizations of the rows of the matrix have on the performance of the algorithm due to different communication requirements. Leuze [1984a] and Leuze and Saxton [1983] have also noted that minimizing the bandwidth does not always lead to the best parallel factorization time for a banded matrix. They suggest other orderings of the matrix which appear to improve on the degree of parallelism. Huang and Wing [1979] present a heuristic for reordering a matrix specifically to increase the degree of parallelism. They also discuss an implementation on a hypothetical parallel system designed to take advantage of the heuristic.

Algorithms based on a block partitioning of A are natural to consider on arrays of processors. Lawrie and Sameh [1983,1984] (see also Sameh [1983] and Dongarra and Sameh [1984]) give a block elimination algorithm for symmetric positive definite banded systems which generalizes one of Sameh and Kuck [1978] for tridiagonal systems. The coefficient matrix A is partitioned into the block tridiagonal form

$$
A = \begin{bmatrix}
A_1 & B_1 \\
B_1^T & A_2 \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & B_{p-1} \\
& & & B_{p-1}^T & A_p
\end{bmatrix}
$$

where each B_i is strictly lower triangular and p is the number of processors. For simplicity, assume that each A_i is $q \times q$ so that $n = pq$. The factorizations $A_i = L_i D_i L_i^T$ are then
carried out in parallel, one per processor. Using these factorizations, the systems
$A_i V_i = B_i$, $A_{i+1} U_{i+1} = B_i^T$, $i=1, ..., p-1$, are solved, utilizing the zero structure of the B_i. These
solutions are done in parallel, one pair per processor. The matrix A has now been reduced
to

$$
\hat{A} = \begin{bmatrix}
I & V_1 \\
U_2 & I & V_2 \\
& & \ddots & \ddots \\
& & & I & V_{p-1} \\
& & & & U_p
\end{bmatrix}
$$

and, provided that $2pm \leq n$, where m is the semi bandwidth of the system, there is an
uncoupling of $2m(p-1)$ equations in the corresponding system, namely the equations
$jq - m + k, j=1, ..., p-1, k=1, ..., 2m$. Once this smaller system is solved, the remaining unknowns can be evaluated by substitution. Note that the larger $2mp$, the larger the size of
the uncoupled system, which is undesirable. A reasonable balancing of work would have
all systems roughly the same size. Since the A_i are $n/p \times n/p$ this would imply that
$2mp \leq n/p$ or $2mp^2 \leq n$ which, of course, also implies that $2mp \leq n$.

Other block algorithms have been proposed by Hwang and Cheng[1980] and Halada[1980, 1981]. The former authors, motivated by VLSI design, propose a block Gaussian elimination scheme in which four basic chips handle LU decomposition without interchanges, matrix multiplication, matrix-vector multiplication, and inversion of triangular matrices, respectively. Halada presents an algorithm for banded linear systems with $n > 3m$ based on the partitioning of the system as

$$
\begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
$$

where A_{12} is $n-m \times n-m$, triangular, and assumed non-singular. The key step in the
algorithm solves an auxiliary system with the coefficient matrix

\[
\begin{bmatrix}
A_{12} & 0 \\
A_{22} & I
\end{bmatrix}
\]

Unfortunately, without further (and unreasonable) assumptions on \(A_{12} \), the algorithm is numerically unstable.

The above discussions are predicated primarily on the assumption that \(A \) is symmetric positive definite or, in any case, that no interchanges are required to maintain numerical stability. The incorporation of an interchange strategy into Gaussian elimination causes varying degrees of difficulty on parallel architectures. Partly to alleviate these difficulties, Sameh [1981] (see also Sorenson [1984b] for further analysis) introduced a different pivoting strategy in which only two elements at a time are compared. This ensures that the multipliers in the elimination process are bounded by 1, but requires an annihilation pattern different from the usual one for Gaussian elimination. (This annihilation pattern is identical to the one used for the parallel Givens algorithm of Sameh and Kuck, to be discussed next).

The difficulties with implementing interchange strategies on parallel architectures suggest that orthogonal reductions to triangular form may have advantages. It was observed by Gentleman [1975] that the orthogonal reduction to triangular form by Givens or Householder transformations has a certain natural parallelism, and an algorithm for the Givens reduction was given in detail by Sameh and Kuck [1978], who also show that the use of Givens transformations is slightly more efficient in a parallel environment than Householder transformations. Recall that the Givens reduction to triangular form can be written as

\[
Q_r \cdots Q_1 A = U
\]
where \(r = \frac{n(n-1)}{2} \) and each \(Q_j \) is a plane rotation matrix whose multiplicative effect is to zero one element in the lower triangular part of \(A \). The Sameh-Kuck algorithm groups these rotations in such a way as to achieve a degree of parallelism essentially the same as Gaussian elimination. An illustration of the grouping is given in Figure 3-1 for an 8x8 matrix in which only the subdiagonal elements are shown. In this figure, the number indicates the stage at which that element is annihilated.

![Figure 3-1. Sameh-Kuck Givens annihilation pattern.](image)

Gannon [1980] develops an implementation of the Sameh-Kuck Givens algorithm for a mesh-connected array of processors such as the Finite Element Machine. The implementation is such that the data moves through the array so as to give a pipelining or systolic effect. The back solve is carried out in an analogous way.

Lord, et al. [1980, 1983] (see also Kowalik, Kumar and Kamgnia [1984]) also discuss Givens transformations for full systems, motivated by multiprocessor systems and the Denelcor HEP in particular. As opposed to the annihilation pattern of Sameh and Kuck [1978], which is predicated on using \(O(n^2) \) processors, they assume that \(p \leq O(n/2) \) and give two possible annihilation patterns as illustrated in Figure 3-2. The zigzag annihilation pattern is based on using \((n-1)/2 \) processors, one for each two subdiagonals, while the column sweep pattern assumes \(p \ll n \). Numerical results indicating the effectiveness of the zigzag algorithm on the Denelcor HEP are given in Lord, et al. [1980].
Although not discussed by the authors, note that the zigzag pattern adapts nicely to banded systems; here one would assume that $p = \lceil m/2 \rceil$. Moreover, for banded systems the process is relatively more efficient since in the full case, the higher numbered processors are doing considerably less work. The column sweep pattern also adapts nicely to banded systems and seems to be very efficient. Other parallel orderings for Givens annihilations are considered by Modi and Clarke [1984].

In general, it would seem that the use of Givens transformations is probably preferable to Gaussian elimination if interchanges are required and probably not otherwise. However, the details of a particular architecture could make a difference on both of these statements. For least squares problems, however, orthogonal reduction has other advantages and Sameh [1982] has considered the use of Givens transformations for this problem in the context of a ring network of processors.

Toeplitz matrices (each diagonal is constant) arise in a number of applications. Grear and Sameh [1981] consider banded Toeplitz matrices and, under various assumptions on the
matrix, they give three algorithms. For banded symmetric positive definite matrices, their algorithm requires $O(m \log n)$ time steps using $4n$ processors. See also Bini [1984] for other work on Toeplitz matrices.

An interesting variation of the elimination process has been advanced by D. Evans and several colleagues in a series of papers (Evans and Hatzopoulos [1979], Evans and Hadjidimos [1980], Evans, et al. [1981]; Shaker and Evans [1981, 1982]) and reviewed in Evans [1982b, 1983]. The basic idea is a factorization of A, called the Quadrant Interlocking Factorization (QIF), which has the structure

$$A = WZ = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
* & 1 & \cdots & * \\
\vdots & * & 0 & * \\
* & \cdots & 0 & 1
\end{bmatrix} \begin{bmatrix}
* & \cdots & * \\
0 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & 0
\end{bmatrix}$$

(3.4)

Here W has 1's on its main diagonal, Z has non-zeros on its main diagonal and the *'s indicate generally non-zero elements. Variations of this factorization have been given that allow a Choleski type decomposition WDW^T and that are appropriate for banded systems.

The decomposition (3.4) is carried out as follows. First $z_{11} = a_{11}, z_{ni} = a_{ni}, i = 1, \ldots, n,$ and then the first and last columns of W are obtained from the $n-2$ 2×2 systems

$$w_{11} z_{11} + w_{in} z_{in} = a_{11},$$
$$w_{1i} z_{1n} + w_{in} z_{nn} = a_{in}, \quad i = 2, \ldots, n-1$$

(3.5)

The first and last columns of W and Z are now determined and the elements of A are updated by
(3.6) \(A \rightarrow A - W_1 Z_1^T - W_n Z_n^T \)

where \(W_1 \) and \(W_n \) are the first and last columns of \(W \) and \(Z_1^T \) and \(Z_n^T \) the first and last rows of \(Z \). The first stage of the factorization is now complete and the second stage proceeds in the analogous way to determine the remaining elements in the 2nd and n-1st rows and columns of \(W \) and \(Z \) and then update \(A \) corresponding to (3.6). Thus the factorization is complete in \(O(n/2) \) stages.

At the \(k \)th stage, \(n-2k \) 2x2 systems need to be solved to determine the \(w \)'s at that stage, and these 2x2 systems can be solved in parallel. Also, an \(n-2k \) by \(n-2k \) submatrix of \(A \) needs to be updated and these calculations can also be done in parallel. Hence, the degree of parallelism at the \(k \)th stage is \(O(n-2k) \) and the overall average degree of parallelism is \(O(n/2) \), the same as Gaussian elimination. To complete the solution of \(A x = b \), we then need to solve the systems \(W_1 y = b, Z_n x = y \). The solution of the first system can be overlapped with the factorization; as the \(w \)'s become available during the factorization, the corresponding \(y \)'s can be computed.

Evans and his coworkers have done various analyses of this and related QIF methods and claim essentially the same numerical stability as Gaussian elimination; in particular, the algorithms are stable if \(A \) is symmetric positive definite or diagonally dominant. These QIF methods seem to be potentially attractive alternatives to Gaussian elimination or Choleski factorization for parallel computation but more experience with their numerical stability and efficiency on different parallel architectures is needed.

The methods we have reviewed so far all have a maximum degree of parallelism of \(O(n) \) for full systems or \(O(m) \) for banded systems. There have been a number of attempts, especially in the earlier literature, to devise methods with a higher degree of parallelism. In general, these papers have been directed at the theoretical question of how fast a sys-
tem can be solved given an unlimited number of processors, ignoring such practical constraints as communication delays, etc. Several results of this kind are reviewed in detail in Sameh [1977] and Heller [1978] and we give here only a sampling.

It is quite easy to see that, for a full matrix and without pivoting, Gaussian elimination can be carried out in $3(n-1)$ time steps using $(n-1)^2$ processors. Preparata and Sarwate [1978], improving on a result of Csanky [1976], showed that the system can be solved in $O(\log^2 n)$ time steps using no more than $2n^{3.31}/\log^2 n$ processors. The algorithm makes use of the Cayley-Hamilton theorem to compute A^{-1} and is numerically unstable. It is an interesting complexity result but does not yield a practical algorithm.

Similarly, for triangular systems (which are to be solved in the back substitution phase of elimination or orthogonal reduction algorithms), Sameh and Brent [1977] gave algorithms which could be carried out in $O(\log^2 n)$ steps using no more than $n^3/68 + O(n^2)$ processors for full matrices, and $O(\log m \log n)$ steps using no more than $m^2 n/2 + O(mn)$ processors if the bandwidth is m. These results improved on previous ones of Chen and Kuck [1975], but the error analysis given, as well as some numerical results, shows that the algorithms may be numerically unstable in certain cases. Chen, et al. [1978] gave another algorithm for banded systems which requires $O(2m^2 n/p)$ time steps, where p, the number of processors, is assumed to be at least $2m$. Generally, this algorithm will require more time steps, but uses fewer processors; for example, if $p=2m$, $O(mn)$ time steps are required. Again an error analysis performed by the authors showed a potential exponential growth in rounding error, but numerical experiments showed that the error bounds were probably unrealistically large.

More recently, Montoye and Lawrie [1982] have given an algorithm for full triangular systems on a hypothetical SIMD array of p processors which are connected to p memories with suitable alignment networks. The algorithm uses partitioning of the
system and requires $O(n^{2-r})$ time steps with $r = \log p/\log n$; for example it requires $O(n)$ steps with n processors.

Evans and Dunbar [1983] give two algorithms for solving triangular systems called the Wavefront and Delayed Wavefront methods. The former assumes that the number of processors satisfies $2(n-1)/3 \leq p \leq n-1$ while the latter assumes that $p \leq 2(n-1)/3$. In both cases, optimal performance is achieved for $p=2(n-1)/3$ and in this case, $O(2n)$ time steps are required. The algorithms proceed in 3 phases. In the first, processors are assigned to the 2nd through p-1st rows of the system. The known value x_i is substituted into row 2, giving x_2, and processor 2 is reassigned to row $p+2$. The process continues in this way until a processor has been assigned to row n. This is the end of the first phase. In the second stage, as soon as processor k becomes available it is reassigned to row n at column $k+1$, processor $k+1$ is assigned to row $n-1$ at column $k+2$, and so on. The x_i are now being worked on in two pieces until the two "wavefronts" come together. At this point, there remains only a triangular system of less than p rows and it is solved by assigning one row per processor. A potential drawback of these methods is the large amount of communication required by reassigning processors.

Although many of the above algorithms for triangular systems are interesting, and may turn out to be useful in practice, it is unlikely that they will give enough speed-up over the basic column sweep algorithm to justify their increased complexity. Moreover, the numerical stability of the column sweep algorithm is well-understood since it is just the usual serial algorithm.

The previous discussion has focused on banded systems such as might arise from discretizations of elliptic equations in which the node points are ordered so as to achieve relatively small bandwidths. We now consider other orderings that are known to reduce both the number of arithmetic operations and the storage requirements for factoring the
matrix of the resulting system. The first of these is known as one-way dissection and is discussed in detail in George[1972,1977] and George and Liu[1981]. Referring to Figure 3-3, the idea is first to divide the grid of NxN nodes with \(l \) horizontal separators. The nodes in the \(l+1 \) remaining rectangles are numbered toward a separator as indicated by an arrow and then the separators are numbered. For the proper choice of \(l \) this ordering has been shown (see George[1972]) to reduce the number of arithmetic operations required for the factorization of the \(n \times n \ (n = N^2) \) system from \(O(n^2) \) for the natural ordering to \(O(n^\frac{7}{4}) \).

The nested dissection ordering further reduces the operation count to \(O(n^\frac{3}{2}) \) as shown in George[1973,1977]. The idea here is to divide the grid with both horizontal and vertical separators as shown in Figure 3-4. Regions 1 - 4 are again divided using horizontal and vertical separators. Clearly the idea may be applied recursively, and in the case \(N = 2^k - 1 \), dissection will terminate after \(k-1 \) steps. In order to obtain the \(O(n^\frac{3}{2}) \) operation count, dissection must be carried to completion; however, as noted in George, et al.[1978a], there are advantages in terms of storage to terminating dissection early.

![Figure 3-3. An N by N mesh dissected into 4 blocks with the ordering indicated by the circled numbers and the arrows.](image)
Nested dissection for vector computers was first discussed by Calahan [1975], in the context of rather general rectangular finite elements, and estimates are given of the number of vector operations required for the factorization and their average lengths, assuming dissection is carried to completion. The appropriate level of dissection becomes an interesting question for a vector computer. We have already seen that for the Cyber 200 it is desirable to work with vectors whose length is as great as possible; however, from Figures 3-3 and 3-4 it is clear that at least some of the vectors become shorter as dissection continues. This problem is studied in detail in George, et al. [1978b] for vector computers with a range of start-up times covering both the Cray and the Cyber 200. For the Cyber 200 their results indicate that the minimum time for factorization is obtained by stopping nested dissection two levels from completion. Another approach to the problem of vector lengths was suggested by Calahan [1975]. He noted that on the TI-ASC it was possible to execute simple triply nested DO loops as one vector instruction resulting in vector lengths equal to the product of the loop lengths. Applying this idea to nested dissection resulted in an increase in average vector lengths. Unfortunately no vector computer presently available provides this capability; however, the idea is closely related to unrolling DO loops, a technique that has become a powerful way to increase perfor-

Figure 3-4. One step of the nested dissection ordering for the N by N grid.
Another result discussed in George, et al. [1978b] deals with the general problem of how effectively an algorithm translates into vector operations. Both the one-way and the nested dissection algorithms translate almost entirely into vector operations; however, in spite of a lower operation count, one-way dissection introduces more vector operations than are present in banded algorithms for the natural ordering, resulting in the natural ordering being superior for all but very large n. Fortunately this phenomenon is fairly rare, and as expected, nested dissection can be implemented with fewer vector operations than the usual banded algorithms. This situation is discussed in more detail in Voigt [1977]. In principle, both dissection algorithms would be attractive for the Cray X-MP; however, the limited paths between memory and the vector registers could adversely affect performance on the earlier Crays.

Calahan [1979b] introduces a variant of nested dissection in which the separators are the diagonals indicated by the square points in Figure 3-5. The dissection may be performed recursively, and Calahan claims that if the nodes are properly ordered, resulting

![Figure 3-5. Diagonal Variant of Nested Dissection](image)

in 4×4 diagonal blocks, the process may be implemented on the Cray-1 with performance in excess of 50 MFLOPS on the 4×4 factorizations. The dense lower right hand block corresponding to the separators may be factored at rates in excess of 100 MFLOPS. For the processing required by the blocks that represent the connections between the separators
and the 4x4 diagonal blocks, Calahan estimates performance in the 30 MFLOP range but this requires introducing new nodes and unknowns in order to achieve regularity of the block structure. This technique adds approximately 25 percent more nodes to the dense lower right block and the overall effect on computation time is not known.

Another variant of nested dissection suggested by Liu[1978] may offer distinct advantages for parallel arrays. Liu suggests making the separators two mesh lines wide rather than one as in the George algorithm shown in Figure 3-4. This provides more complete independence of the remaining subsets which may lead to better interprocessor communication characteristics. A possible disadvantage is that the submatrices associated with the separators are twice as large. Nevertheless, Liu shows that, in theory, the algorithm will solve an N×N grid problem in O(N) steps using O(N^2) processors.

For parallel arrays, a careful analysis of nested dissection has been given by Gannon[1980]. He considers an MIMD array with nearest neighbor connections and assumes a processor for each node in the discretization. The algorithm uses a pipelined version of Givens rotations as a building block. Utilizing an N×N array for an N×N grid, Gannon shows that nested dissection will run in C(N + r log N) time for r right hand sides. The constant C is fairly large and may result in the algorithm not being competitive with other methods for a single right hand side. Communication time is included, and he shows that contention for data in common regions such as the bisectors can be avoided. The MIMD capability is essential because different processors execute different code sequences. Allocation of one grid point per processor does mean that some processors would be idle during the algorithm. Using more points per processor could increase processor utilization but it might also increase communication time.

We now turn to general sparse matrices. The methods discussed above do not explicitly deal with the sparsity structure of the system (3.1). For banded matrices this is not
normally necessary because the matrix fills out to the band during the factorization. However, there are applications such as load in electrical power networks which produce very sparse matrices with little exploitable structure and treating these as dense systems incurs an intolerable overhead. The importance of such systems was recognized by Control Data Corp. in the development of the STAR-100 and sparse arithmetic instructions were implemented; these remain available on the Cyber 200. The idea is to store as vectors only the non-zero values, together with a bit vector which indicates the location of the non-zero elements. There seems to be little use of the instructions, however, because their performance is not much better than the standard arithmetic instructions unless the vectors are extremely sparse and the non-zeros occur in clusters. In addition, the storage requirements of the bit vector are much greater than those of modern sparse matrix methods. For example, since a word on the Cyber 200 contains 64 bits, the storage of an \(\text{n} \times \text{n}\) sparse matrix requires \(\frac{n^2}{64}\) words plus the nonzeros even though the matrix may be less than 1 percent dense. For large matrices this is simply too large an overhead.

The storage requirement is potentially reduced in a sparse arithmetic processor proposed by Gao and Wang[1983]. In their scheme, an integer vector denoting the locations of the nonzero elements of the data vector is carried with the data vector. Depending on the storage format for the integer vector and the degree of sparsity, this could be an efficient scheme. They include a high level description of a machine which uses a floating point pipeline for the arithmetic processor; however, details such as the integer format are not discussed.

We next consider algorithm development for general sparse matrices. In one approach, changes are made in the implementation of standard methods in order to improve performance; in the other approach, different ordering schemes are employed with the express purpose of introducing parallelism. Most of the implementation changes
have focused on vector computers, and we begin the discussion with these techniques.

As noted in Duff [1984] (see also Duff [1982a,b]), for example, the difficulty with vectorizing a general sparse routine is the indirect addressing as given below. This loop may

\[
\begin{align*}
\text{DO } 10 & \text{ II = I1,I2} \\
& I = \text{INDEX (II)} \\
& T(I) = T(I) + \text{CONST*} A(\text{II}) \\
10 & \text{CONTINUE}
\end{align*}
\]

be treated directly using a GATHER operation to form a vector out of the T's, performing the arithmetic operation on the vector, and then using a SCATTER operation to distribute the new vector to the proper locations in T. The Cyber 200 provides hardware instructions for these operations while on the Cray they are available as assembly language routines. For the Cray-1 this technique has an asymptotic rate of 7 MFLOPS or approximately double that obtained from the FORTRAN code given above (see Duff [1984]). Additional results involving assembly language coding also are reported in Dodson [1981] and Duff and Reid [1982].

In order to avoid the problem of indirect addressing in sparse systems, Duff [1984] proposed using a frontal technique based on the variable band or profile scheme suggested by Jennings [1966]. The idea is not to form the entire matrix but to eliminate each variable whenever its row and column are available. This allows one to work with a relatively small dense submatrix whose size is governed by the distance from the main diagonal of the first non zero in a row. The size may vary as the process moves down the diagonal since all elements will not in general be the same distance from the diagonal. No extra storage is used because the factorization produces fill inside the first non zero of each row. By holding appropriate values in the vector registers in the spirit of the algorithms
discussed earlier, Duff [1984] claims performance in the 80 megaflop range for the factorization, a dramatic improvement over general sparse techniques. The frontal technique is particularly attractive for finite element analysis since the factorization may be coupled with the assembly of the global stiffness matrix so that the entire matrix is never formed. The technique also offers a possible solution to the I/O problem produced by very large problems and known to be potentially devastating on high performance systems (see for example Knight, et al. [1975]).

In a series of papers, Calahan [1979a,b, 1981a] has suggested a block approach to solving sparse systems that has some of the characteristics of the frontal technique discussed above. Again the motivation is to reduce the cost of indirect addressing usually associated with sparse methods. In Calahan [1979a], for example, it is pointed out that sparse matrices arising from discretizations of partial differential equations typically give rise to matrices that are globally sparse but locally dense. This observation is particularly true if the fill associated with direct methods is taken into account. Motivated by the ability of the Cray to process relatively short vectors efficiently, Calahan [1979a, 1979b] suggests the use of block factorization methods where efficient dense solvers are used to factor the diagonal blocks. As one would expect, the approach becomes very efficient on the Cray as the block size approaches 64. Based on a very accurate simulator described in Orbits [1978], Orbits and Calahan [1978]and Calahan [1979a]predict performance exceeding 100 MFLOPS.

The choice of the blocks is an interesting issue, particularly if the sparse matrix is not sufficiently regular. Calahan [1979a] suggests that the blocking should be done on the LU map of the factored matrix, thus taking into account any fill that may take place. He also proposes that it be based on selecting the largest diagonal block available followed by the next largest and so on. There remains the problem of determining when to end one block and begin with a new one since there is a trade off between the inclusion of a row
in order to approach the optimum size of 64 and the unnecessary computations that may result because of the structure of the row. This is illustrated in Figure 3-6 where one must decide between the blocking indicated by solid lines and the one indicated by dashed lines. Note that neither this approach nor the frontal method would be as attractive on the Cyber 200 because of the short vector lengths.

The matrix in Figure 3-6 also demonstrates that blocking can be used to introduce parallelism. If the solid line blocking is used, then the 4×4 block cannot be factored until the 2×2 block is factored and the 3,1 element is eliminated. However the dashed line

\[
\begin{bmatrix}
 x & x \\
 x & x \\
 x & 0 \\
 0 & x
\end{bmatrix}
\]

Figure 3-6 Matrix Blocking

blocking decouples the matrix and makes it possible to factor both 3×3 blocks simultaneously. For systems with a sufficiently large number of decoupled diagonal blocks of the same size and structure, this strategy could be effective on the Cyber 200 where vectors would consist of appropriate elements from successive blocks. Arrays of processors could also be used on the system, and if the array is of MIMD type, the blocks could have a different size and structure.

This suggests another way to seek parallelism in the sparse matrix problem, namely, can the underlying grid be numbered or can the rows and columns be interchanged so as to decouple blocks of the matrix? In an early paper, Calahan [1973] noted that the odd-even reduction strategy of Buneman [1969] applied to tridiagonal matrices could be viewed as a decoupling of those matrices. This will be treated in more detail shortly. Calahan
[1973] also discussed a reordering strategy for finding diagonal submatrices in order to introduce parallelism.

The existence of diagonal blocks that are also diagonal matrices, although attractive, is not necessary for parallel factorization of a matrix. Thus we seek orderings which produce diagonal blocks, with no particular structure, that are decoupled from one another. Such an ordering has been used by structural engineers and is called substructuring (see, for example, Noor, et al.[1978], and also Golub and Meyer [1983] and Widlund [1984] for related approaches). The motivation for substructuring in structural analysis was not to introduce parallelism but to decouple as much as possible different parts of a structure that were united by a relatively small number of points; for example, the wing and fuselage of an aircraft would be treated as separate structures joined by a few points where the wings are attached. Conceptually, the situation is depicted in Figure 3-7, in which the circle points represent interface nodes between the two regions.

![Figure 3-7 Substructuring](image)

Notice that the regions may consist of different types of elements - in this case rectangular and triangular elements. The nodes in the region may be numbered in any appropriate order but the interface points are numbered last. This gives rise to a block matrix of the form
where the A matrices represent the two substructures, the B matrix represents the interface points, and the C and D matrices represent the dependencies between the interface nodes and the two regions. For many problems, the matrix is symmetric so that $D_i = C_i^T, i = 1,2$. The A matrices may be factored in parallel, and then steps of the form $B - D_1A_1^{-1}C_1$ are used to eliminate the off diagonal blocks. Finally the modified B matrix is factored. This process may be generalized to any number of substructures, and is discussed in more detail in Adams and Voigt [1984a]. They use a three dimensional cube as a model region and obtain formulas to help in the selection of the number of substructures, for if too many are chosen, there will be too many interface nodes and the work involved in factoring the modified B matrix will dominate all other computation. They also compared the technique with a parallel band solver and found that for sufficiently large problems the substructuring technique has advantages.

It should be noted that the nested dissection process described earlier may be viewed as a type of substructuring in which the ordering is chosen so as to minimize storage requirements and operation counts. If the dissection is carried to completion, the diagonal blocks of the resulting matrix reduce to single elements and the upper left hand corner of the matrix is diagonal. If the dissection is stopped early, as discussed in George, et al. [1978a], the matrix has a block structure of the type obtained by substructuring.

The computing system considered for the substructuring study in Adams and Voigt [1984a] was of MIMD type. This is particularly attractive because in general the A matrices will not be of the same size nor will they have the same structure. Consequently, it would be difficult to use a vector processor where the vectors were defined across substructures or submatrices. For sufficiently large problems, the Cray would be
effective applied to each diagonal block in turn; however, the relatively short vector
lengths would probably make the technique less desirable for the Cyber 200.

As we have already pointed out, the degree of parallelism for factorization methods
is governed by the semi-bandwidth, \(m \), of the linear system. The tacit assumption has
been that \(m \) is sufficiently large so that vector operations are efficient or so that there is
reasonable processor utilization in a parallel system. However, for small bandwidth sys-
tems, and in particular tridiagonal systems (\(m=1 \)), the methods discussed above are inap-
propriate, and we will now focus on algorithms which have been designed specifically for
tridiagonal systems.

If we consider an LU factorization of a tridiagonal matrix \(A \) where \(L \) is unit lower
bidirectional and \(U \) is upper bidirectional, the usual algorithm is inherently serial. Defining
the \(i^{th} \) row of these matrices as \((0,...,0,c_i,a_i,b_i,0,...,0) \), \((0,...,0,l_i,1,0,...,0) \), and \((0,...,0,u_i,b_i,0,...,0) \)
respectively, the \(i^{th} \) element of the diagonal of \(U \) is given by

\[
(3.7) \quad u_i = \frac{a_i - c_i b_{i-1}}{u_{i-1}}.
\]

Since \(u_i \) depends on \(u_{i-1} \), expression (3.7) cannot be evaluated directly using vector op-
erations or an array of processors. This example points out the importance of recurrence
relations and indicates why they are a particular problem for parallel processing. We
will not discuss algorithms for recurrence relations but instead refer to Kogge and
Stone [1973], Hyafil and Kung [1977], Heller [1978], Kuck [1978] and Hockney and
Jesshope [1981] for detailed discussions and additional references.

There are algorithms which avoid the difficulty suggested by equation (3.7). The first
of these was introduced by Stone [1973] and it still represents one of the very few new
algorithms that have resulted from considering parallel computation; most others are
attempts to introduce parallelism into traditional sequential algorithms. Stone began
with the well-known fact that the formulas required by LU factorization of a tridiagonal matrix could be expressed as first and second order linear recurrences. In particular, if one uses the recurrence

$$q_0 = 1, \quad q_1 = a_1, \quad q_i = a_i q_{i-1} - c_i b_{i-1} q_{i-2}, \quad i = 1, \ldots, n$$

then u_i of equation (3.7) is given by

$$u_i = q_i / q_{i-1}, \quad i = 1, \ldots, n$$

On the surface this does not appear to help, but Stone also observed that the recurrence (3.8) can be written in matrix form as

$$Q_i \equiv \begin{bmatrix} q_i \\ q_{i-1} \end{bmatrix} = \begin{bmatrix} a_i & -c_i b_{i-1} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} q_{i-1} \\ q_{i-2} \end{bmatrix} \equiv G_i Q_{i-1} = \left(\prod_{j=2}^{i} G_j \right) Q_1, \quad i = 2, 3, \ldots$$

Similar expressions are given for the forward and back substitution.

Stone proposed the parallel computation of (3.9) by recursive doubling, a procedure which, in the simplest case, expresses the $2i$-th element in a sequence in terms of the i-th. Thus for $n = 2^k$, the n-th component can be computed in $\log n$ steps. For purposes of illustration, let $n = 8$ and define $p_{ij} \equiv \prod_{i=1}^{j} d_i$, where $d_i, 1 = 1, \ldots, n$ is a set of scalars. Then Figure 3-8 shows the k vector multiply operations that compute each of the p_{ij} for $j = 1, 2, \ldots, n$. The blanks left in some of the vectors are to indicate that no operations are performed there. Thus the first is a multiply of length 7, then 6, and then 4. In general, for $n = 2^k$, there are k multiplies of length $n - 2^i$ for $i = 0, 1, 2, \ldots, k-1$. The average length of each multiply is given by

$$n_a = (1/k) \left(\sum_{i=0}^{k-1} n - 2^i \right) = (n(\log n - 1) + 1)/\log n \approx n.$$
Since there are $\log n$ such multiply's, the total number of results generated is then $n\log n - n + 1$. Thus we have replaced a serial computation requiring $O(n)$ computations with one that requires $O(n\log n)$ computations. If there are n processors available, then we have gone from $O(n)$ steps to $O(n\log n)$, a clear improvement. However, as was pointed out in Lambiotte and Voigt [1975], for vector computers the total number of operations is important, so that even though vector operations can be used, at some point the $n\log n$ operations will dominate and the vector algorithm will require more time than the scalar algorithm. This led them to propose the following definition for a consistent algorithm. A vector implementation of an algorithm for solving a problem of size n is said to be consistent if the number of arithmetic operations required by this implementation as a function of n is the same order of magnitude as required by the usual implementation on a serial computer. Thus both the recursive doubling algorithm and the tridiagonal algorithm which uses it are inconsistent. Stone [1975] and Lambiotte and Voigt [1975] give consistent versions of Stone's original algorithm although the latter paper points out that the asymptotic superiority has little significance for problems whose size might be of
practical interest.

Another consistent algorithm known as odd-even reduction or cyclic reduction appears to be the most popular alternative to the standard sequential algorithm. Cyclic reduction was originally proposed by Gene Golub and Roger Hockney and is discussed in Hockney [1965] for the block tridiagonal systems arising from the five-point difference approximation for Poisson's equation. Subsequently, several authors, including Hockney [1970] and Ericksen [1972], pointed out that the algorithm could also be adapted to general tridiagonal systems. The idea is to eliminate the odd numbered variables in the even numbered equations by performing elementary row operations. Thus if \(R(2i) \) represents the \(2i \)-th row of the tridiagonal matrix, the following operations can be performed in parallel for \(i=1,\ldots,\frac{n-1}{2} \), assuming \(n \) is odd:

\[
(3.10) \quad R(2i) - \left(\frac{c_{2i}}{a_{2i-1}} \right) R(2i-1) - \left(\frac{b_{2i}}{a_{2i+1}} \right) R(2i+1)
\]

There are several observations about cyclic reduction that should be noted. If the matrix is stored by diagonals, then expression (3.10) may be evaluated using vector operations on a computer like the Cray or the Cyber 200. After the step indicated by (3.10) is completed, the resulting system under a reordering is again tridiagonal but only half as large. Thus the process may be continued for \(k \) steps until, in the case that \(n = 2^k - 1 \), only one equation remains; then all of the unknowns are recovered in a back substitution process. The details of these observations are given in Lambiotte and Voigt [1975], where it is also shown that cyclic reduction requires \(O(n) \) operations and is thus consistent. It should be noted that this is another example of the paradigm of reordering to increase parallelism that was discussed in section 1.

One major difficulty with cyclic reduction is that it can require significant data rearrangement between steps. For example, on the Cyber 200 one cannot apply vector opera-
tions directly to every other element of a vector. Thus extra operations must be employed to reformat those elements into a new vector. Lambiotte and Voigt [1975] show that this overhead accounts for approximately half of the total operations. Their analysis is based on STAR-100 timing but the situation remains essentially the same for the Cyber 200. Accessing elements of a vector on the Cray at a fixed increment or stride is possible but it may lead to a degradation in performance if the same memory bank is read too frequently. This was recognized in Kershaw [1982], where a storage scheme is discussed that makes it possible to avoid memory bank conflicts. Results reported there indicate that the algorithm is more than six times faster than the scalar algorithm for matrices of order $n > 1000$; even for small systems with $n \leq 10$ the cyclic reduction algorithm is faster.

The importance of this overhead was also discussed by Boris [1976b] who considered an implementation of cyclic reduction for the TI ASC, a computer which did not require that a vector be defined as elements in contiguous memory locations.

Because of the overhead of data rearrangement, one would expect that for sufficiently small n the serial algorithm would run faster than cyclic reduction. This leads to the possibility of a polyalgorithm in which cyclic reduction is used until the matrix size is reduced to the point that the serial algorithm is more efficient. This idea is discussed in Madsen and Rodrigue [1976], where it is shown to be superior to an inconsistent algorithm proposed by Jordan [1974]. The idea also serves as a basis for discussion of many algorithms in Hockney and Jesshope [1981], including those for the tridiagonal problem.

Under appropriate assumptions, Heller [1976] showed that during the cyclic reduction process the off-diagonal elements decrease in size relative to the diagonal entries at a quadratic rate. This means that it may be possible to terminate the process in less than $\log n$ steps. For vector computers it is thus possible to avoid the last few steps which are with short vectors; for parallel computers it means that poor processor utilization associated
with the last few steps may be avoided. A similar phenomenon was observed earlier by
Malcolm and Palmer [1974] for an LU factorization algorithm for tridiagonal systems
which are real, symmetric and diagonally dominant with constant diagonals. Their idea
was used by O'Donnell, et al. [1983] as a basis for a fast Poisson solver tailored for the
Floating Point Systems, Inc. FPS-164.

Cyclic reduction for block tridiagonal matrices has been studied for parallel comput-
ers by Kapur and Browne [1981, 1984] who consider implementations on the TRAC com-
puter. They also considered a variant of cyclic reduction known as odd-even or cyclic
elimination that was introduced in Heller [1976, 1978]. In this elimination method expres-
sion (3.10) is applied to each equation (or block) rather than to just the even ones. The
result is that the off diagonal entries move away from the diagonal so that after \(\log n \) steps
a diagonal matrix remains and the solution is obtained immediately without a back sub-
stitution process. As with cyclic reduction, the off diagonal elements decrease at a qua-
dratic rate making early termination an attractive alternative. The algorithm is of little
interest for vector computers because it is inconsistent, requiring \(O(n \log n) \) operations.
However, it was superior to cyclic reduction on the TRAC. This is made possible because
the extra operations of the elimination method are done in parallel at no extra cost and
because there is no back substitution step. Thus we have an example of a good uniproces-
sor algorithm being outperformed by a poor uniprocessor algorithm in a parallel environ-
ment. Another interesting aspect of their study is that they were able to implement the
algorithm so that the overhead cost of data movement, synchronization etc. was kept to
approximately ten percent of the total time. Gannon, et al. [1983] also recognized the
potential superiority of odd-even elimination in their study of implementing parallel
algorithms on the CHiP system. The algorithm was also used by Gannon and
Panetta [1985] in a study of the performance of the SIMPLE code on CHiP. In a recent
paper, Johnsson [1984b] gives a thorough analysis of the implementation of cyclic reduction and some variants on a family of parallel computers called ensemble architectures. These designs are of MIMD type using simple processors and no global memory. A variety of interconnection schemes are considered.

To this point we have said nothing about the stability of the tridiagonal schemes. There has been the tacit assumption, for example, that no pivoting is required, and in fact there does not appear to be any way to incorporate a pivoting strategy into the algorithms discussed. Several authors have noted that cyclic reduction is just Gaussian elimination applied to $P\pi P^T$ for a particular permutation matrix P (see, for example, Lambiotte and Voigt [1975]). Thus the algorithm is numerically stable for matrices for which Gaussian elimination is stable without pivoting, for example, symmetric positive definite or diagonally dominant matrices. The situation is not as attractive for Stone's algorithm. Using a stability analysis technique for recurrence relations introduced in Sameh and Kuck [1977a], Dubois and Rodrigue [1977a] have shown that the algorithm is in general unstable, suffering from exponential error growth.

As discussed earlier in this section, Givens transformations may be used to overcome the difficulties of pivoting for stability. Sameh and Kuck [1978] present two such algorithms for tridiagonal systems using $O(n)$ processors. One of the algorithms requires $\log n$ steps but can suffer from exponential growth of errors; the more stable version requires $O((\log \log n)(\log n))$ steps. Another Givens based algorithm is discussed in Hatzopoulos [1982].

The different feature of this algorithm is that the Givens transformations are applied from the top and from the bottom of the matrix simultaneously, thus increasing the degree of parallelism by a factor of two but still requiring $O(\log n)$ steps on $O(n)$ processors. Hatzopoulos [1982] also considers using the QIF method discussed earlier in this section. Again the implementation requires $O(\log n)$ steps on $O(n)$ processors. Unfortunately all of
these algorithms are inconsistent and unless stability is a problem, they would not be attractive for vector computers. There appears to be no implementation of a Givens transformations based algorithm that is consistent.

There are consistent algorithms other than cyclic reduction. Swarztrauber [1979a,b] introduced an algorithm for tridiagonal systems based on an efficient implementation of Cramer's rule. The algorithm requires $O(\log n)$ steps on $O(n)$ processors but only $O(n)$ total operations are performed. The algorithm also requires only a single divide, and unlike cyclic reduction it is well defined for general non-singular systems. There has been no formal stability analysis but Swarztrauber reports results comparable to Gaussian elimination with partial pivoting for a series of experiments run on the Cray-1. The algorithm has a slightly higher operation count than cyclic reduction but it is more efficient than Gaussian elimination on the Cray-1 when n exceeds 32. Kascic [1984a] has compared cyclic reduction with the Cramer’s rule algorithm and found cyclic reduction to be about twice as fast on the Cyber 205.

A variety of other algorithms have been proposed for tridiagonal systems. For example, Sameh [1981] and Kowalik, Lord and Kumar [1984] consider a block algorithm where the number of blocks is chosen to match the number of processors available. An elimination scheme is used within each block until a reduced system remains. Following an order of elimination suggested by Wang [1981], Kowalik, Lord and Kumar [1984] obtain a system of p equations that must be solved sequentially, where p is the number of blocks. They present results from an implementation on the Denelcor HEP and note that the speedup falls considerably short of p because of extra computation that the algorithm requires. Sameh [1981] considers his algorithm for a linear array of processors. The sequential part of the algorithm is in the back substitution but the algorithm is structured nicely for a linear array so that the communication should not be a major overhead. He
shows that for $p = n$ the algorithm requires $O(n^{1/2})$ time including communication.

Because of their inherent parallelism, iterative methods have been considered by Traub [1974b] for solving tridiagonal systems, and further studied by Lambiotte and Voigt [1975] and Heller, et al. [1976]. Traub's idea was to turn the three basic recurrence relations associated with the LU factorization into iterations. For example, equation (3.7) is formulated as

$$u_i^{(k+1)} = a_i - c_i u_{i-1}^{(k)} / u_{i-1}^{(k)} , k = 1, \ldots, m.$$

and the rate of convergence depends on the degree of diagonal dominance of the system. Except for certain situations such as a very strongly diagonally dominant system or where an excellent starting value need only be improved by a few digits, these methods do not appear to be competitive with direct methods such as cyclic reduction.

Most of the work discussed to this point has focused on reducing the parallel computational complexity of the algorithm with occasional concerns for the overhead arising from such things as communication. A rather different approach is taken by Merriam [1984] where, motivated by the small memory that was available on the Illiac IV, he considers minimizing the total time to solve tridiagonal systems by trading off extra computation with storage that might require expensive I/O operations. His idea is to save a few carefully selected values from the factorization stage, and then begin the back substitution. When an element is required that is not available it is recomputed using the values saved from the factorization. This idea can have merit in any situation where the cost of communication is high relative to computation.

There are, of course, non tridiagonal matrices of interest whose bandwidth is too small for efficient use of banded solvers on vector or parallel computers. One way to treat these problems is to view them as block tridiagonal and apply block cyclic reduction as
discussed in Lambiotte [1975] and Heller [1976]. It would be more attractive to apply the cyclic reduction idea directly as suggested by Rodrigue, et al. [1976] and Madsen and Rodrigue [1977] so that the parallelism obtained is by the diagonals of the matrix rather than the band. Unfortunately, the numerical stability of the algorithm remains in doubt; indeed, even reasonable conditions on the matrix that guarantee that the algorithm remains well defined (i.e. division by zero cannot occur) have not been given although some numerical experience in Madsen and Rodrigue [1977] did not expose any problems.

So far in this section, we have made few assumptions about the differential equations which give rise to the linear systems to be solved. However, for separable problems there are special methods, generally known as "fast" methods, which are considerably better than other direct or iterative methods. These methods are reviewed for scalar computers in, for example, Dorr [1970], Swarztrauber [1977], and Temperton [1979a,b,1980]. Although some of the algorithms are applicable to more general problems we will again use the Poisson equation on a square in order to provide a focus for the discussion. For this problem, Swarztrauber [1977] has shown how to handle periodic, Dirichlet-Dirichlet, Dirichlet-Neumann, and Neumann-Neumann boundary conditions.

The algorithms to be discussed depend on the Fast Fourier Transform (FFT). Swarztrauber [1982, 1984] contains a thorough discussion of FFT's on vector computers, particularly the Cray, while the Cyber 200 motivated Korn and Lambiotte [1979] and Lambiotte [1979] to develop algorithms for multiple transforms that give rise to vector lengths that are longer than that provided by a single transform. These algorithms maintain the serial complexity of $O(mn \log n)$ for m transforms of length n and exhibit a degree of parallelism of m or n.

Pease [1968], Stone [1971] and Jesshope [1980a] have considered the efficiency of FFT algorithms on a variety of parallel arrays. Since the algorithms depend on data
distributed over the entire array rather than on data contained in neighboring processors, communication becomes a significant issue. Finally, Hockney and Jesshope [1981] provide a lengthy discussion of algorithms for both arrays and vector processors including guidelines on the choice of methods depending on the architecture and the size and number of transforms required.

Both Pease and Stone noted than an interconnection scheme known as the perfect shuffle provided the kind of data transmission required by the FFT. For processors \(P_i, i = 0, \ldots, N-1 \), the perfect shuffle provides direct communication as follows:

\[
P_i \rightarrow P_{2i}, \quad 0 \leq i \leq N/2-1, \\
P_i \rightarrow P_{2i+1-N}, \quad N/2 \leq i \leq N-1.
\]

This accomplishes an interleaving of transmitted information analogous to what one obtains with a perfect shuffle of a deck of cards. The following figure shows the perfect shuffle interconnection for eight processors.

![Perfect Shuffle Interconnection](image)

Figure 3-9 Perfect Shuffle Interconnection

We now show how the Fast Fourier Transform plays a crucial role in various fast Poisson solvers. Following Hockney and Jesshope [1981], we assume that a five point difference scheme is used to discretize the Poisson equation

\[
(3.11) \quad \Delta u = f
\]
with doubly periodic boundary conditions on an N by N grid. Then taking a Fourier transform in the x direction followed by one in the y direction gives rise to the following expression for the transform of the right hand side \(f_R \),

\[
\tilde{f}_{jk} = \frac{1}{N} \sum_{q=0}^{N-1} \left(\frac{1}{N} \sum_{p=0}^{N-1} f_{pq} \exp(-2\pi ijp/N) \right) \exp(-2\pi ikq/N), \quad 1 \leq j,k \leq N.
\]

A division of each \(\tilde{f}_{jk} \) by the coefficient of the transformed left hand side of the discrete form of (3.11) gives a value for each transformed unknown variable \(\tilde{U}_{jk} \) and finally the solution \(U_{jk} \) is obtained by an inverse transform of \(\tilde{U}_{jk} \). The serial complexity of the algorithm is \(O(N^2 \log N) \) and the degree of parallelism in calculating \(\tilde{f}_{jk} \) is either \(N \), if a serial algorithm is used on \(N \) transforms in parallel, or \(N^2 \) if a parallel algorithm is used. As usual, the choice would depend on the machine and the value of \(N \).

Another algorithm based on the FFT, which also has serial complexity of \(O(N^2 \log N) \), is known as matrix decomposition. It was introduced by Buzbee, et al. [1970] and was first analyzed as a parallel algorithm by Buzbee [1973]. If equation (3.11) is discretized using the five point difference formula on an evenly spaced square grid one obtains the block tridiagonal system

\[
A \begin{bmatrix} U_1 & \cdots & U_N \end{bmatrix} = \begin{bmatrix} f_1 & \cdots & f_N \end{bmatrix}
\]

(3.12)

where \(A \) is an \(N \times N \) tridiagonal matrix whose ith row is \((0, \ldots, 0, 1, -4, 1, 0 \cdots 0) \), and \(U_i \) and \(f_i \) are \(N \)-vectors. Matrix decomposition is based on the fact that the eigensystem of \(A \) is known explicitly and thus the factorization \(V^T A V = \Lambda \) is possible where \(\Lambda \) is a diagonal matrix whose entries are the eigenvalues of \(A \). Using this relationship, equation (3.12)
may be rewritten as

\[\Lambda \tilde{U}_1 + \tilde{U}_2 = \tilde{f}_1 \]

\[(3.13) \quad \tilde{U}_{i-1} + \Lambda \tilde{U}_i + \tilde{U}_{i+1} = \tilde{f}_i \quad i=2,\ldots,N-1 \]

\[\tilde{U}_{N-1} + \Lambda \tilde{U}_N = \tilde{f}_N \]

where \(\tilde{U}_i = VU_i \) and \(\tilde{f}_i = Vf_i \) \(i=1,\ldots,N \). Because of the form of the eigenvectors of \(A \), \(\tilde{f}_i \) may be computed using a fast sine transform. Then \(\tilde{U}_i \) is obtained by solving the systems that result from reorganizing (3.13) into \(N \) independent tridiagonal systems each one of which depends on a single eigenvalue of \(A \). The solution \(U_i \) is recovered from \(\tilde{U}_i \) by means of an inverse sine transform. Thus the degree of parallelism and the appropriateness of the method for a particular computer depends on algorithms for the FFT and for systems of tridiagonal equations.

Sameh, et al. [1976] obtained a complexity of \(O(\log N) \) parallel steps for matrix decomposition on a parallel computer consisting of \(N^2 \) processors with an arbitrarily powerful interconnection network that required unit time for the transfer of a piece of data from any processor to any other processor. The interconnection requirement could be relaxed to a perfect shuffle network without serious degradation in performance. Sameh [1984a] has also considered a ring of \(p \) processors, \(p<N \), where each processor can simultaneously perform an arithmetic operation, receive a floating point number from an immediate neighbor and transmit a floating point number to another neighbor. With such a system, he shows that matrix decomposition requires \(O((N^2/p) \log N) \) parallel steps, resulting in a speedup of \(O(p) \). He also considers a three dimensional problem using a seven point difference approximation on an \(N^3 \) grid. By using \(N \) copies of the ring of \(N \)
processors with each ring attached to a global memory, it is possible to solve the Poisson equation in $O(N \log N)$ parallel steps. Performance degrades linearly for $r < N$ rings of $p < N$ processors.

Vajtersic [1982] reports results obtained from an implementation of matrix decomposition on the MIMD system EGPA (Erlangen General Purpose Array) under development at the Erlangen-Nürnberg University. The system presently consists of a pyramid of five processors with four processors serving as slaves to the apex processor. Using the four processors for the execution of the algorithm he obtains speedups increasing to 3.6 for N ranging to 128. The speed up figures are not as high as they might be because the full parallelism of the algorithm is not utilized in order to simplify synchronization and data transfer.

As mentioned earlier in the discussion of tridiagonal systems, cyclic reduction was developed as a fast Poisson solver for a system of the form (3.12) on which it exhibits serial complexity of $O(N^2 \log N)$. Its parallel implementation is analogous to that discussed for the tridiagonal problem; details for the Iliiac IV are given in Ericksen [1972].

Hockney [1965] used one step of cyclic reduction and then solved the remaining system, which is half the original size, by matrix decomposition, resulting in an algorithm he called FACR. Later Hockney [1970] noted that the overall work could be reduced by taking more cyclic reduction steps. The algorithm known as FACR(t) involves t as steps of cyclic reduction, the resulting system is solved by matrix decomposition, and the solution of the discretized Poisson equation is obtained by a back substitution step. Swartztrauber [1977] showed that the minimum computational complexity of $O(N^2 \log \log N)$ is obtained with $t = \log \log N$.

Grosch [1979b] presents an analysis of the FACR(t) algorithm including communication costs for arrays with a nearest neighbor connection and a nearest neighbor connection...
augmented with a perfect shuffle. He found that the augmented array would operate with an efficiency of around 90 percent for a wide range of values for N while the efficiency of the other array would drop off rapidly with increasing N.

As was noted in the previous discussion of cyclic reduction for tridiagonal systems, the degree of parallelism decreases as more steps are taken and Temperton [1980] points this out for the FACR(l) algorithm. This phenomenon has prompted research on the selection of the appropriate value of l to maximize performance on a variety of vector and parallel computers (see, for example, Hockney and Jesshope [1981] and Hockney [1982a, 1983b] and the references therein). In particular, evaluating the FFT more rapidly will lead to smaller values of l while solving tridiagonal systems faster will lead to a larger value of l. The algorithm has been used on a variety of computers including the Illiac IV (Erickson [1972]), the Cray-I (Temperton [1979b]), and the Cyber 205 and ICL DAP (Hockney [1983b]).

Finally, we should mention that the multigrid algorithm can also be viewed as a fast Poisson solver because of its theoretical complexity of O(N^2). We defer a detailed discussion until the next section since the method is appropriate for more general partial differential equations but point out that Grosch [1979b] has studied parallel implementation issues for a Poisson solver that indicates that the method is attractive on arrays of processors.
4. Iterative and Time Marching Methods

The parallel implementation of most of the usual iterative methods for discrete elliptic equations has been studied extensively by a number of authors. Some of the earlier papers were Ericksen [1972], Hayes [1974], and Lambiotte [1975], primarily for the ILLIAC IV, the TI-ASC, and the CDC STAR-100, respectively, and Morice [1972] for general parallel processors. We also note the papers by Heller [1978] and Ortega and Voigt [1977], which survey many aspects of iterative methods for vector and parallel computers up to that time. More recent surveys which include material on iterative methods are Buzbee [1981, 1983a], Evans [1982b], Feilmeier [1982], Hockney and Jesshope [1981] and Sameh [1983].

For simplicity and ease of presentation much of our discussion will be for the model problem of Laplace's equation on a square with Dirichlet boundary data discretized using the five point difference star. Such a problem would, of course, actually be solved by one of the fast Poisson solvers mentioned in the last section but it makes a convenient example with which to treat many of the issues that arise in more general problems.

The discrete domain is shown in Figure 4.1 where the boundary points are indicated by b's and N is the number of interior points in each row and column. The classical Jacobi method

\begin{equation}
 u_{ij}^{k+1} = \frac{1}{4}\{u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k\}
\end{equation}

where the superscript denotes the iteration number and \(u_{ij} \) is the solution at the \(i,j \) grid point, is generally considered to be a prototype parallel method. However, care is needed in certain aspects of its implementation in order to achieve the greatest degree of parallelization. For example, (4.1) would be more efficiently implemented on the Cray in a row by row fashion if \(N \) were 64 or a multiple thereof and on a \(p \times p \) array of processors if \(N \) were a multiple of \(p \).
Figure 4-1 Grid Points

On the Cyber 200 machines, on the other hand, we would like the vector lengths to be as long as possible. One could carry out (4.1) row by row but then the vectors would only be of length N and one would pay N times the number of start-up penalties. Alternatively, we can use vectors of length \(O(N^2)\) by treating the boundary positions as unknowns. That is, let U now denote an \((N+2)^2\) long one-dimensional array with the lexicographic ordering of Figure 4-1, and use the notation \(U(K;L)\) to denote the L-long subvector starting at the Kth position of U. With \(M1 = (N+1)(N+2) - 1\) and \(M2 = N(N+2) - 2\), we can then implement (4.1) by the instructions

\[
(4.2) \quad T(2;M1) = U(2;M1) \frac{1}{2} U(N+3;M1) \quad U(N+4;M2) = T(2;M2) \frac{1}{2} T(N+5;M2)
\]

where T is a temporary vector and where we have used \(\frac{1}{2}\) to denote an "average" instruction, that is, addition followed by division by 2. Such an instruction is available on the Cyber 200's and takes essentially the same time as an addition.

As a penalty for using vectors whose length is the total number of grid points, the final instruction of (4.2) will overwrite the positions \(2N+4, 2N+5, 3N+6, 3N+7,...\) corresponding to boundary positions along the vertical sides, thus destroying the correct boundary values. One
would then have to restore these values before the next iteration. On the Cyber 200's however, there is a convenient feature which permits storage to be controlled by a bit vector (the control vector); this can be used to ensure that the boundary positions are not overwritten and, hence, no "fixing up" is needed before the next iteration. The instruction time is no greater using the control vector but, of course, one pays the penalty for storage of approximately $N^2/64$ words for the bit vector.

Although the Jacobi method vectorizes well, it has not been used in practice because of its slow convergence. However, Schonauer [1983a,b] has reported promising results on a "meander" Jacobi over-relaxed method in which the relaxation parameter varies with the iteration number in rather complicated ways.

Whereas the Jacobi iteration is often cited as a "perfect" parallel algorithm, the Gauss-Seidel and SOR iterations are considered to be the opposite. The usual serial code for Gauss-Seidel in the context of (4.1) would have new values at each point replace the old as soon as they are computed; it is this recursive process that is not amenable to vectorization. However, several early authors (e.g. Ericksen [1972], Hayes [1974], Lambiotte [1975]) observed that by using the classical red-black ordering of the grid points, as shown in Figure 4-2, Gauss-Seidel can be carried out

\begin{verbatim}
 B11 R9 B12
 B8 R7 B9 R8 B10
 R4 B6 R5 B7 R6
 B3 R2 B4 R3 B5
 B1 R1 B2
\end{verbatim}

Figure 4-2. The Red-Black Ordering
in the same fashion as the Jacobi iteration by using two vectors of length $O(N^2/2)$ corresponding to the red and black points. The boundary points would be handled in the same way as with Jacobi's method and the introduction of the SOR parameter causes no difficulty. The time per iteration for SOR carried out in this way should be little more than for the Jacobi iteration so that the SOR method is potentially very useful for parallel computation. Lambiotte [1975] also considered a diagonal ordering for the grid points but showed that this is inferior to the red-black ordering.

In related work, Buzbee, et al.[1977] discussed the treatment of the equation $(\alpha u_x)_x + (\beta u_y)_y = f$ on the Cray-1. They used the 5-point difference star with the red/black ordering, and also considered a skewed 5 point difference scheme using the NE, SE, SW and NW grid points rather than the usual north, south, east, west ones. In the latter scheme, they ordered the grid points red/black by columns.

While the red-black ordering allows an efficient implementation of the SOR method for the five point difference scheme, it does not work for higher order finite difference or finite element discretizations or for more general elliptic equations which contain mixed partial derivative terms. However, several authors have observed that the red-black ordering can be extended to a "multi-color" ordering which can give the same effect as the red-black ordering for the 5-point star. Hotovy and Dickson [1979] used a three-color ordering for a finite difference approximation of the small disturbance equation of transonic flow, Hackbusch [1978] used a four-color ordering for 9-point finite difference stars and Adams and Ortega [1982] gave a general treatment of the idea which we now describe (we note that Young [1971] had much earlier used a three-color ordering but not in the context of parallel computing and that Berger, et al. [1982] use multicolor orderings for the assembly of finite element equations).
The basic idea of the multicoloring ordering is to label (color) the grid points in such a way that there is local decoupling between the unknowns. This leads to the system being expressed in the form

\[
\begin{bmatrix}
D_1 & B_{12} & \cdots & B_{1p} \\
B_{21} & D_2 & & \\
& & \ddots & \\
B_{p1} & \cdots & B_{p,p-1} & D_p
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
\vdots \\
x_p
\end{bmatrix} =
\begin{bmatrix}
B_1 \\
\vdots \\
\vdots \\
B_p
\end{bmatrix}
\]

(4.3)

for \(p \) colors, where the \(D_i \) are diagonal. The case \(p=2 \) is the red-black ordering. The \(k+1 \)st Gauss-Seidel iterate is then

\[
D_i x_i^{k+1} = -\sum_{j<i} B_{ij} x_j^{k+1} - \sum_{j>i} B_{ij} x_j^k + b
\]

and is effectively implemented by \(p \) Jacobi sweeps. As an example, Figure 4-4 gives a coloring suitable for a discretization in which each grid point is coupled to its eight nearest neighbors as indicated in Figure 4-3.

![Eight Nearest Neighbors](image)

Figure 4-3. Eight Nearest Neighbors

A variety of other examples could be given (see, e.g., Adams[1982]). Provided that the domain of the differential equation is a rectangle or some other regular two or three dimensional region and the discretization pattern is repeated at each grid point, it is usually evident how to
Other orderings which are conducive to parallel computing have also been used. O'Leary [1984] gives a number of interesting orderings, one of which is illustrated in Figure 4-5. Here, the nodes are grouped in blocks of five, except at the boundaries. First, all points labeled 1 are ordered, followed by all points labeled 2, then all points labeled 3. The resulting system has the form (4.3) with \(p = 3 \) but now the \(D_i \) are block diagonal matrices with blocks that are 5×5 or less. A block SOR iteration can then be carried out with block Jacobi sweeps which involves solving 5×5, or smaller, systems.

There are at present only partial results concerning the rate of convergence of SOR using multicolor and related orderings. Adams [1982] showed that, in general, these are not consistent orderings in the sense of Young. However, O'Leary [1984] proved that if the matrix (4.3) is an
irreducible Stieltjes matrix then the asymptotic rate of convergence is no worse than for the natural ordering. A different approach was motivated by the implementation of SOR on the Denelcor HEP by Patel and Jordan [1984] in which they use the natural ordering and let the updating take place as soon as the requisite values at the neighboring points are available. This is illustrated in Figure 4-6 for the 9-point stencil of Figure 4-3; the numbers given under each grid point are the times at which the corresponding unknown can be updated.

11,15,19,23 12,16,20,24 13,17,21,25 14,18,22,26 15,19,23,27
9,13,17,21 10,14,18,22 11,15,19,23 12,16,20,24 13,17,21,25
7,11,15,19 8,12,16,20 9,13,17,21 10,14,18,22 11,15,19,23
5, 9,13,17 6,10,14,18 7,11,15,19 8,12,16,20 9,13,17,21
3, 7,11,15 4, 8,12,16 5, 9,13,17 6,10,14,18 7,11,15,19
1, 5, 9,13 2, 6,10,14 3, 7,11,15 4, 8,12,16 5, 9,13,17

Figure 4-6 Update times for 9-point stencil

Further analysis of this procedure by Adams and Jordan [1984] showed that it is equivalent, in certain cases and up to transient effects, to carrying out SOR under a multicoloring ordering. In particular, they show for a wide class of discretization stencils that the spectral radius of the SOR iteration matrix for certain multicolor orderings is the same as that of the iteration matrix for the natural rowwise orderings and hence, in these cases, the asymptotic rate of convergence for the multicolor orderings is the same as that for the natural ordering.

We turn now to the implementation of the Jacobi or SOR iterations on a array of processors. As discussed in section 2, this will require a suitable distribution of the work amongst the processors so as to minimize processor idleness. In order to carry out these iterations in their mathematical form we also need to ensure that the processors are synchronized before the
beginning of each iteration, or in the case of the multicolor SOR method, before the beginning of each Jacobi sweep. This synchronization can be carried out in a number of ways but, in essence, it requires that each processor wait after completion of its part of the computation until all processors have completed their work and the next iteration can begin. This adds two forms of overhead to the computation: one is the work required to verify that every processor is ready for the next iteration, the other is the idle time that some processors may experience while waiting for all processors to complete their tasks.

An alternative that has special appeal in the case of the Jacobi or SOR iterations is to let the processors run asynchronously. This idea goes back at least to the chaotic relaxation methods of Chazan and Miranker [1969] and has been studied in some detail by Baudet [1978], following work of Kung [1976]. See also Deminet [1982], who gives some performance results on the Cm', Barlow and Evans [1982], and Dubois and Briggs [1982]. In its simplest form, in the present context, we would simply not worry about synchronization at each iteration in carrying out the Jacobi sweeps of the multicolor SOR method; that is, at any given time, the Jacobi iteration would take as its data the most recently updated values of the variables. In general, this asynchronous iteration will deviate from the synchronized one but this need not diminish the rate of convergence.

A different approach to the parallelization of the SOR iteration is taken by Evans and Sojoodi-Haghighi [1982] who develop methods related to the QIF factorizations of the previous section; they are not SOR methods but have somewhat the same spirit. Let \(A = X - W - Z \) be a splitting of \(A \) where the zero/non-zero patterns of \(X, W \) and \(Z \) are indicated by

\[
X = \begin{bmatrix}
\begin{array}{c}
\hline
\end{array}
\end{bmatrix}, \quad W = \begin{bmatrix}
\begin{array}{c}
\hline
\end{array}
\end{bmatrix}, \quad Z = \begin{bmatrix}
\begin{array}{c}
\hline
\end{array}
\end{bmatrix}
\]

\[
(4.4)
\]
that is, \(X \) has non-zero elements only on the main diagonal and the cross diagonal, and \(W \) and \(Z \) have zeros on the main and cross diagonals and non-zeros only in the indicated hatched positions.

Evans and Sojoodi-Haghighi then define overrelaxed Jacobi and SOR-like methods by

\[(4.5a) \quad u^{k+1} = [\omega X^{-1}(W+Z) + (1-\omega)]u^k + d, \quad k=0,1,...\]

\[(4.5b) \quad u^{k+1} = (X-\omega W)^{-1}[\omega Z+(1-\omega)X]u^k + d, \quad k=0,1,...\]

called, respectively, the Jacobi-Overrelaxed Quadrant Interlocking (JOQI) and the Successive Overrelaxed Quadrant Interlocking (SOQI) methods. They prove most of the usual types of convergence theorems for these methods; for example, if \(A \) is irreducibly diagonally dominant, then SOQI converges for \(0<\omega \leq 1 \). If \(A \) and \(X \) are symmetric positive definite, then SOQI converges for \(0<\omega<2 \) and JOQI converges if and only if \(2\omega^{-1}X-A \) is positive definite. The solution of the systems with either \(X \) or \(X-\omega W \) as the coefficient matrix in (4.5) can be effected by solving \(n/2 \) two by two systems, which can be done in parallel. Since the right hand sides of these systems can be evaluated in parallel, the degree of parallelism of the methods is essentially the same as that of SOR with the red/black ordering. What is not clear at this time is the rate of convergence of these new methods.

Relaxation methods play a critical role in the multigrid method developed by Brandt [1977], Bank and Sherman [1978], Bank and Dupont [1981], and others. The crucial observation in all multigrid methods is that relaxation methods are very effective at reducing the high frequency component of the error between the computed solution on a particular grid and the true solution, but are very ineffective at reducing the long wave length components. However, if the error is viewed on a sufficiently coarse grid, the long wave length components become high frequency components on that coarser grid, and thus can be effectively reduced by relaxation methods. A
very simple multigrid algorithm that incorporates the essential ideas is as follows.

1) Let \(G^i, i=1,\ldots,m \), be a sequence of nested grids covering the domain of interest such that the grid spacing of \(G^{i-1} \) is \(2h_i \) where \(h_i \) is the grid spacing of \(G^i \). \(G^m \) is the grid on which the solution is desired and \(G^1 \) is an appropriately chosen coarse grid.

2) An approximate solution, \(u^m \), to the discretized differential equation \(L^h u^h = F^h \) is obtained by a few iterations of a relaxation method on \(G^m \).

For \(i=m, \ldots,2 \),

3) The residual \(F^h - L^h u^i \equiv f^i \) is transferred to the grid \(G^{i-1} \) by a process known as injection.

4) A correction to the solution \(u^i \) is computed on the grid \(G^{i-1} \). This step reduces high frequency errors that appear on the coarser grid \(G^{i-1} \).

5) The solution on the grid \(G^i \) is corrected using information interpolated from the grid \(G^{i-1} \) for \(i=2,\ldots,m \).

This description, though somewhat simplistic, captures the main steps in the multigrid algorithms; there are many sophisticated variations that are used in practice (see e.g. Hackbusch and Trottenberg [1982]).

The major attraction of the multigrid method is that a wide class of problems discretized on a grid with \(n \) points requires only \(O(n) \) arithmetic operations to obtain a solution to within the truncation error of the discretization. This attractive computational complexity has led researchers to investigate the method for vector and parallel computers. The relaxation steps on the various grids may be carried out using methods discussed earlier with red-black SOR being
the most popular, and the issues raised for effective utilization of the Cray and Cyber 200 remain relevant; however, the nested grids introduce a new difficulty. One would prefer to use vectors of grid points from the finest grid in at least one direction of the region, but then coarser grids require sets of points that are not contiguous in memory and are thus not vectors. For the Cray this means that the vectors must be moved from the vector registers to memory and then the appropriate subset read back into the registers. As indicated earlier, this prevents operation at super vector speeds, and in fact, Caughey [1983] reports performance of 32 MFLOPS on a multigrid code for the solution of the three-dimensional transonic potential flow equations.

For the Cyber 200, hardware instructions for data manipulation must be used to create vectors from the coarse grid points. A detailed description of a multigrid algorithm tailored for the Cyber 205 is given in Barkai and Brandt [1983] and, despite the overhead associated with the data manipulation instructions, the authors report that the vector version of the algorithm runs 15 times faster than the scalar version for a Poisson problem discretized on a 129×129 fine grid. The Cyber 205 is also the target machine for a comparison by Gary, et al. [1983] of multigrid, SOR and a conjugate gradient method preconditioned by a fast Poisson solver. For a three dimensional diffusion equation with Neumann boundary conditions, they report similar performance for the multigrid and conjugate gradient methods on a 32×32×32 fine grid. They also conjecture that if the fast Poisson solver based on FFT's were replaced with one based on multigrid then the conjugate gradient algorithm would be 2 to 4 times faster than the pure multigrid algorithm. Finally, Hemker, et al. [1983] discuss the development of fast solvers for elliptic equations based on the multigrid method, including modifications required for the Cyber 205.

Multigrid algorithms have also been considered for parallel arrays. As with vector computers, the nested grids create some difficulties. If these grids are reproduced in their entirety on an array of processors, then in the traditional multigrid formulation most of the processors will be idle most of the time since computation is done only on one grid at a time. On the other hand, if
only the finest grid is laid out on the processors, then the pattern of communication between processors will change as the algorithm moves through coarser grids. This can create serious difficulties for a mesh connected array because communication that is between nearest neighbors on the finest grid will not be between nearest neighbors on the coarser grids.

This communication difficulty was recognized by Grosch [1979b] in the first paper that discussed the parallel aspects of multigrid. He compared two strategies. In the first the finest grid is distributed across the processors and the necessary data is communicated for each grid; in the second the coarser grid is compressed onto directly connected processors before computation is initiated on that grid. The second strategy is shown to require fewer data transfers. In order to facilitate the communication, Grosch proposed a perfectly shuffled nearest neighbor array by augmenting the nearest neighbor connections with perfect shuffles on each row and column of processors (see Figure 3-8). A comparison of these two arrays with the optimal paracomputer of Schwartz [1980] indicated that the multigrid algorithm could be implemented with high efficiency on either array.

Brandt [1981] also advocated the perfectly shuffled nearest neighbor array as the basis of a parallel computer for multigrid. In addition he pointed out that the overall efficiency of such computers was going to be adversely affected by processors that were near boundaries or singularities because those processors could have higher computation requirements that would dictate the overall pace of the computation. One suggestion by Brandt that may hold promise for improving the efficiency is to use the finer grid processors to continue relaxation sweeps while the basic algorithm is requiring computation on a coarse grid. A specific example using this idea is given in Brandt [1981] but the results do not indicate that much is accomplished by the extra relaxation sweeps; in fact, if the extra relaxation steps are not done with care, the solution process can deteriorate.
Simultaneous relaxation on all grids is the basis of an algorithm proposed by Gannon and Van Rosendale [1982]. They give a specific way for moving the solutions and residuals between grids and thereby seem to overcome the difficulties encountered by Brandt. This algorithm and two others based on serial implementations of multigrid are analyzed for parallel architectures exhibiting a variety of communication topologies. Simulation experiments based on solving three specific problems indicate that the parallel algorithm would be superior when the computer can efficiently support communication between physically remote processors. One difficulty with the algorithm is that its spectral radius increases with finer grids. This is in sharp contrast to the "classical" multigrid algorithm which owes its attractiveness to the fact that the spectral radius is independent of grid size.

Another study of parallel implementations of serial multigrid algorithms was done by Chan and Schreiber [1983]. They considered large networks of simple processors with local communication, incorporating the ideas that make systolic architectures attractive for VLSI implementation. Their work contains a careful complexity analysis involving parameters that control key aspects of the multigrid algorithms and a parameter that specifies the number of processors as a function of the number of points in one direction of the grid. By using these complexity results and the concepts of speedup and efficiency they make precise the notion discussed above that if the number of processors is related to the total number of grid points, then many of the processors will be idle a significant amount of the time.

Another approach that has not received study would be to trade off efficiency with performance by sizing the array of processors with one of the coarser subgrids. Processors would go idle only when grids coarser than the one that matched the number of processors were being used. The performance degradation would occur because parallelism available on finer grids could not be utilized due to the restricted number of processors. Using this approach one could be led to different size arrays and different communication topologies depending on the power and
cost of the individual processors. It also raises the question of whether one should select a small number of powerful processors or a large number of simple processors for the design of a cost effective computing system for multigrid.

We consider next the Alternating Direction Implicit (ADI) method, which seems, at first glance, to be rather unsatisfactory for parallel computation since it is based on the solution of tridiagonal or small bandwidth systems. Ericksen [1972] and Morice [1972], however, observed that since these tridiagonal systems are independent, they can be solved in parallel. More precisely, we recall that the ADI method - for the model problem and the grid of Figure 4-1 - consists of two half-steps as indicated by the iteration scheme (see, e.g., Varga [1962])

\[(4.6a) \quad (H+\alpha_k I)x^{k+\frac{1}{2}} = (\alpha_k I-V)x^k + b \]

\[(4.6b) \quad (V+\alpha_k I)x^{k+1} = (\alpha_k I-H)x^{k+\frac{1}{2}} + b \]

The first step, (4.6a), consists of the solution of N tridiagonal systems of size N corresponding to the horizontal lines of the grid, while (4.6b) likewise is the solution of N tridiagonal systems (after permutations of the unknowns) corresponding to the vertical lines. On an array with p processors, p of the tridiagonal systems (4.6a) can be solved in parallel with the usual Gaussian elimination algorithm; it is desirable in this case that N be a multiple of p. On the next half step, the systems of (4.6b) will be solved in parallel. On a vector computer, the vectors would be aligned across the systems to be solved.

A potential problem on both parallel and vector computers is to arrange the storage so that transfers between half-steps are minimized. This storage problem is particularly pronounced on the Cyber 200, if we vectorize across the tridiagonal systems, and the storage must be rearranged - by the equivalent of a matrix transpose - between each sweep. However, Lambiotte [1975] observed that on the half-sweep that the storage is not correct for the simultaneous solution of the tridiagonal systems, it is correct for the solution of the individual tridiagonal systems by the
cyclic reduction (CR) method of the previous section. Moreover, the N individual systems may be viewed as forming a single tridiagonal system N times as large and the CR method may be applied to this large system; as we saw in the last section, the larger the system the better. Finally, because the individual systems are uncoupled, the CR method will actually terminate in \(\log N \) steps rather than the expected \(\log N^2 \). Thus, the ADI algorithm is implemented on the Cyber 200 by solving the tridiagonal systems "in parallel" on one half-sweep and as a single large tridiagonal system on the other half-sweep. Lambiotte also discusses a similar strategy for three dimensional problems.

Many of the same considerations for ADI apply also to the implementation of Successive Line Over-Relaxation (SLOR). If one uses the lexicographic ordering, the same difficulties occur as with point SOR. To circumvent this, Ericksen [1972] and Lambiotte [1975] studied various other orderings, such as a red-black ordering by lines, which allow a number of the tridiagonal systems either to be solved in parallel or as one large tridiagonal system by cyclic reduction. Likewise, multicoloring by lines may be used, if necessary. More recent work on block or line methods has been reported by Boley, et al. [1978], Buzbee, et al. [1979] and Parter and Steuerwalt [1980, 1982] motivated largely by three dimensional elliptic problems on the Cray-I; see also Faber [1981]. Various possible relaxation schemes using \(K \times K \) blocks are discussed, and some of these methods may prove to be attractive. We note also that on arrays, the number of processors may be a key factor in determining the block size. For example, with \(p \) processors we would probably try to arrange the computation so that the number of blocks assigned to each processor is a multiple of \(p \).

Somewhat related to block methods, O'Leary and White [1984] consider multisplittings

\[
A = B_i - C_i, \quad i=1, \ldots, k,
\]

of \(A \) and an iteration matrix is defined by

\[
H = \sum_{i=1}^{k} D_i B_i^{-1} C_i
\]

where the \(D_i \) are non-negative diagonal matrices, with \(\sum D_i = I \). Then the iteration \(x^{k+1} = Hx^k + d \)
is carried out by executing in parallel the partial iterations defined by $D_jB_j^{-1}C_j$.

Another group of methods which are potentially useful on vector or parallel machines is semi-iterative (SI) methods. (See, e.g., Young [1971] for a general discussion of these methods.) Consider, for example, the Jacobi-SI method which can be written in the form

$$u_{k+1} = \alpha_k Bu_k + \beta_k u^k + \gamma u^{k-1}$$

for suitable choice of the parameters α, β, and γ. Here B is the Jacobi iteration matrix so that Bu_k is the result of a Jacobi sweep starting from u^k, and the remainder of the calculation of (4.7), once the parameters are known, is ideally suited for vector or parallel machines. Of course, one pays the penalty of additional storage for u^{k-1}. More importantly, the choice of good parameters may be difficult for other than model problems since the optimal parameters are based on a knowledge of the largest and smallest eigenvalues (assumed real) of B. In the case that the coefficient matrix A is symmetric positive definite and has property A, then it is known that the asymptotic rate of convergence of Jacobi-SI is approximately half that of SOR, both using optimal parameters; in this case, Jacobi-SI may not be useful, even on vector computers. However, in more general situations, the rate of convergence of Jacobi-SI may be quite superior to SOR and its somewhat better parallelization properties makes it potentially attractive, provided that reasonable values of the parameters can be chosen. Hayes [1974] and Lambiotte [1975] considered, for the TI-ASC and CDC STAR-100, respectively, the Jacobi-SI method in some detail, as well as other semi-iterative methods such as SSOR-SI and cyclic Chebyshev-SI.

We turn next to conjugate gradient (CG) methods, which were first developed by Hestenes and Stiefel [1952] as alternatives to Gaussian elimination. Although iterative in nature, they are actually direct methods since, in the absence of rounding error, they converge to the exact solution in no more than n steps for systems of size n. However, in the presence of rounding error, this no longer occurs and the CG methods dropped out of contention as a competitor to elimin-
tion. Reid[1971], however, following earlier work of Engeli, et al.[1959], observed that for certain large sparse problems, CG methods gave sufficiently good convergence in far less than n iterations and this spurred revival of these methods as iterative methods for discrete elliptic equations. See, also Concus, et al.[1976] as one of the important early papers in this revival.

The rate of convergence of the CG methods, viewed as iterative, depends on the condition number, \(K(A) \), of A: the smaller the condition number, the more rapid the convergence. Hence, much of the more recent work on CG methods has been devoted to the development of suitable pre-conditioning strategies. It turns out (see Chandra [1978] for a full discussion of this and many other basic facts about CG methods) that the preconditioning can be incorporated into the basic CG algorithm as applied to the original matrix A in the following form:

Preconditioned Conjugate Gradient (PCG) Algorithm:

Set \(x^0 = b - Ax^0 \). Solve \(Mx^0 = x^0 \). Set \(p^0 = r^0 \).

For \(k = 0, 1, \ldots \) until convergence

\[
\text{Compute } \alpha_k = \frac{(r^k, x^k)}{(p^k, Ap^k)}, \quad x^{k+1} = x^k + \alpha_k p^k
\]

Check for convergence. If not, continue

\[
\text{Compute } r^{k+1} = r^k - \alpha_k Ap^k. \quad \text{Solve } Mx^{k+1} = r^{k+1}
\]

\[
\text{Compute } \beta_k = \frac{(r^{k+1}, x^{k+1})}{(r^k, x^k)}, \quad p^{k+1} = r^{k+1} + \beta_k p^k
\]

In the above, \((x, y)\) denotes the inner product \(x^T y \) and \(M \) arises from the preconditioning of A; if \(M = I \), the algorithm reduces to the standard conjugate gradient method. As pointed out earlier, inner products are not attractive computations on parallel or vector computers because of the summation. With this in mind, Van Rosendale [1983b] proposed a modification to the conjugate gradient method that permits the calculation of the inner product from previously computed and
stored information. This idea is applicable to the variants discussed below and merits further study.

The matrix M can be viewed as an approximation to A and should satisfy the following criteria (See Concus, et al. [1976]):

a) M is symmetric positive definite
b) the system $M\mathbf{x} = \mathbf{r}$ is "easily" solved
c) $M^{-1}A$ has "small" or "nearly equal" eigenvalues or has small rank.

Condition c) ensures that the rate of convergence of the PCG method will be faster than that of CG itself. Condition a) is a necessary part of the current theory.

There have been proposed several possible ways to obtain a suitable M; for example:

a) Take M to be the tridiagonal or small bandwidth part of A
b) Obtain M from an "incomplete" Choleski decomposition of A
c) Obtain M as a splitting matrix for some suitable iterative method.

As we saw in section 3, the solution of small bandwidth systems is not very efficient on vector and parallel computers and option a) has not been very seriously explored for such architectures. We discuss the other two possibilities in more detail.

Probably the most successful preconditioned conjugate gradient methods for sequential computers are the incomplete Choleski conjugate gradient (ICCG) methods (Meijerink and van der Vorst [1977, 1981]). Here, M is obtained as an "incomplete" Choleski decomposition of A; that is, $M = LL^T$ where L is constrained to have the same sparsity pattern as the lower triangular part of A, or some other constraint which makes "easy" both the formation of L and the solution of the linear systems

\[(4.8) \quad L\mathbf{x} = \mathbf{r}, \quad L^T\mathbf{y} = \mathbf{z}\]

with L and L^T as coefficient matrices. The decomposition can be done once and for all at the
outset of the iteration and the factor L retained. Thus in the PCG method the solution of \(M\tilde{x} = r \) is effected by the solution of the (4.8). As with option a), the solution of these banded systems is not particularly attractive on parallel architectures and most of the research to date has been on different approaches to circumvent this problem.

Rodrigue and Wolitzer [1982a,b], T. Jordan [1982a] and Kershaw [1982a] all assume that A is block tridiagonal and that the blocks themselves are tridiagonal, so that A is a 9-diagonal matrix. Then all of the above authors use some variant of incomplete block cyclic reduction or block odd/even reduction (see section 3) to form L and solve the triangular systems (4.8). This extends earlier work of Greenbaum and Rodrigue[1977] who treated 5-diagonal matrices. Kershaw reports that this vectorized algorithm gives speed-ups of factors of 3 to 6 over the corresponding scalar code on the Cray-I for certain test problems. Axelsson [1984] also considers block tridiagonal matrices and gives a preconditioning based on an approximate block factorization of A in which the inverses required in a block LU factorization of A are approximated by banded matrices. This is recursive but need be done only once at the beginning of the iteration. The forward and back solves, which are done on each iteration, require only matrix-vector multiplication and are amenable to parallel computation. A modification of the factorization using a cyclic reduction ordering is also presented.

A somewhat different, but related, approach to the ICCG algorithm has been taken by Lichnewsky [1982] (see also Lichnewsky [1983,1984]) and Schreiber and Tang [1982] by reordering the equations. Lichnewsky, assuming also a block tridiagonal matrix, reorders the blocks in a red/black (odd/even) fashion, and then further reorders within the blocks. The final algorithm is similar to the block cyclic reduction ones described above. Schreiber and Tang use red/black and 4-color reorderings of the equations, and also consider orderings for the ICCG(3) version of Meijerink and van der Vorst [1977], in which L is allowed to have 3 non-zero diagonals outside the non-zero pattern of A. Following Schreiber and Tang's suggestions, Poole and Ortega [1984]
give experimental results for two model problems on the Cyber 203 and show that the choice of
the multicolor ordering is important in achieving maximum vector lengths. Other related work
on ICCG includes Meurant [1985], who develops an incomplete block Choleski decomposition
based on work of Concus, et al.[1982], and implements it on the Cray-1, Reiter and Rodri-
gue[1984], who give an incomplete block Choleski decomposition but based on a permuted form
a multiprocessor environment such as the Denelcor HEP, use a limited Choleski preconditioning
scheme in which the diagonal blocks of A are Choleski decomposed, and Jordan and Podsiadlo
[1980], who describe a conjugate gradient method implementation on the Finite Element
Machine.

Still another approach to ICCG was taken by van der Vorst [1981]. He assumes that A is a
5-diagonal matrix with the main diagonal scaled to 1 and takes L to be the lower triangular part
of A so that no Choleski decomposition is really involved. The solution of the systems (4.8) is
then effected by a truncated Neumann expansion of (I-E)^{-1}, where E is one of the off-diagonals
of L. However, this choice of L is just equivalent to the 1-step SSOR PCG method described
below and Adams[1982] has shown that the SSOR approach is more effective.

We now turn to the other general approach to obtaining preconditioning matrices. Let A =
P - Q be a splitting of A which defines an iterative method with iteration matrix G = P^{-1}Q. If
we take m steps of this iterative method towards the solution of the system A\hat{x} = \tau, \tau,
starting with an initial guess \hat{\tau}^0 = 0, the mth iterate satisfies

\hat{\tau}^{(m)} = (I+G+...+G^{m-1})P^{-1}\tau

so that \hat{\tau}^{(m)} is the solution of the linear system

(4.9) \quad M\hat{x} = \tau \quad M \equiv P(1+...+G^{m-1})^{-1}
As perhaps the simplest example, we can use the Jacobi method in which \(P = D \) (the diagonal part of \(A \)); the solution of the system (4.9) is then implemented by \(m \) Jacobi iterations which, as we have seen, are easily done on parallel and vector architectures.

As a second example, we could use the SOR iteration but this gives a nonsymmetric matrix \(M \). The symmetric SOR (SSOR) iteration (see, e.g. Young [1971]) does lead to a symmetric positive definite \(M \). In the SSOR method, one iterative step consists of an SOR sweep through the grid points followed by a sweep through the grid points in the reverse order. Formally, this can be represented by the splitting \(A = P-Q \) with

\[
P = \frac{1}{\omega(2-\omega)}(D-\omega L)D^{-1}(D-\omega L^T)
\]

where \(D, -L, -L^T \) are the diagonal, lower and upper triangular parts of \(A \); the solution of the system (4.9) is then implemented by \(m \) SSOR iterations in which we would probably use the multi-color orderings previously discussed. We note, however, that the number of iterations of the \(m \)-step SSOR PCG method using multicolor orderings to implement the SSOR sweeps may be somewhat more than when using the natural ordering. Wang [1982b] has reported on an implementation of a 1-step SSOR PCG using diagonal ordering of the grid points. Although the diagonal orderings do not vectorize as well as the multicolor ones, a reduction in the number of iterations could make them attractive. Rodrigue, et al. [1982] and Lipitakis [1984] have also discussed the use of Jacobi and SSOR preconditioners.

The question arises, in general, as to when the matrix \(M \) of (4.9) is symmetric positive definite. Adams [1982,1985] proved the following, which extended a previous result of Dubois, et al. [1979]. If \(P-Q \) are symmetric positive definite with \(P \) symmetric and nonsingular, and \(G = P^{-1}Q \), then the matrix \(M \) of (4.9) is symmetric and

a) For \(m \) odd, \(M \) is positive definite if and only if \(P \) is positive definite
b) For \(m \) even, \(M \) is positive definite if and only if \(P+Q \) is positive definite.

As an example of the use of this theorem, it can be shown that the matrices \(P \) and \(P+Q \) of the SSOR splitting are symmetric positive definite if \(0 < \omega < 2 \). Thus the matrix \(M \) for the \(m \)-step SSOR preconditioning is symmetric positive definite. Similarly, for the Jacobi iteration, the theorem shows that for \(m \) odd, \(M \) is positive definite but for \(m \) even, \(M \) is positive definite only if \(D+L+L^T \) is positive definite, which is the classical condition for the convergence of the Jacobi iteration (see, e.g., Young [1971]).

Adams [1982, 1985] has given numerical results for the \(m \)-step SSOR PCG method applied to Laplace's equation and a plane stress problem. For these problems the number of iterations required was indeed a decreasing function of \(m \) but the point of diminishing returns occurred for \(m = 1 \) or 2; that is, at least for these problems, it did not pay to use \(m \) larger than 2.

Johnson and Paul [1981a,b] and Johnson, et al. [1983] have extended the Dubois, et al. [1979] approach in another direction by replacing the expansion \(I+\ldots+G^{m-1} \) in (4.9) by a polynomial in \(G \); that is,

\[
M^{-1} = (\alpha_0 I + \alpha_1 G + \ldots + \alpha_{m-1} G^{m-1}) P^{-1}
\]

(Actually they considered only the case \(P = I \) corresponding to the Jacobi iteration on a matrix assumed to have its main diagonal scaled to be the identity. But Adams [1982, 1985] has shown that the same general approach holds for splittings in which \(P \) is symmetric.) The idea now is to choose the parameters \(\alpha_i \) in (4.10) so as to ensure the positive definiteness of \(M \) and to minimize the ratio of the maximum and minimum eigenvalues of \(M^{-1}A \). Johnson, et al. [1983] approach this problem by first noting that, in the case \(P = I \), \(M^{-1}A \) is also a polynomial, \(g(A) \), in \(A \) and then choosing the \(\alpha_i \) to minimize either \(\max g(x)/\min g(x) \) or

\[
\int_{\lambda_1}^{\lambda_2} [1-g(x)]^2 w(x) dx.
\]
In the above, λ_1 and λ_n are the minimum and maximum eigenvalues of A, w is a suitable weight function, and the max and min of g are taken over the interval $[\lambda_1,\lambda_n]$. Numerical experiments are reported for Laplace's equation on a rectangle with the five-point-star finite difference discretization. They compared their method (with $m=3$ and the α_i chosen by minimizing (4.11)) with various other methods (ICCG, point SOR, conjugate gradient without preconditioning, etc.) and showed that in every case their method required fewer iterations. Johnson and Lewitt [1982] describe software for implementing the method on the Cyber 205. Saad [1983a,b] has given a rather general analysis of the polynomial preconditioning approach including application to non-symmetric matrices.

Rodrigue, et al. [1982], consider various versions of the preconditioned conjugate gradient method applied to a diffusion problem on the STAR-100. The diffusion equation is approximated by the method of lines and the corresponding system of ordinary differential equations solved by an implicit method. It is in carrying out this implicit method that the CG algorithm is used. Preconditioners considered were 1-step Jacobi, 1-step line Jacobi, 1-step Symmetric Gauss-Seidel (SGS) and 1-step SGS with the equations ordered in red/black form. On a particular sample problem run on the STAR-100, the 1-step Jacobi PCG method was the fastest by a good margin.

Saad and Sameh [1981b] and Saad, et al. [1985] also consider the conjugate gradient method as well as a cyclic Chebyshev method and a block Stiefel method treated in an earlier paper (Saad and Sameh [1981a]). Their model problem is a second order elliptic equation with Dirichlet boundary conditions on the unit square, discretized by the five-point star and with the finite difference equations ordered red/black by lines. They consider the use of a hypothetical array of p processors with a shared memory and report numerical experiments on a sequential computer which showed that the conjugate gradient method was the best of the three, but under certain assumptions on the array they conclude that the block Stiefel method may be superior.
Software for some of the above methods, as well as others, is discussed in several papers by Kincaid (see, e.g., Kincaid, et al. [1984]) and Schonauer (see, e.g. Schonauer, et al. [1983]) and their colleagues.

So far we have considered mostly the solution of the linear systems obtained from discretizing a differential equation. With general elliptic operators, additional difficulties will tend to revolve around the best ways to compute and manage storage of the coefficients. For example, consider the equation

\[au_{xx} + bu_{yy} + cu_{zz} = f, \quad 0 \leq x, y, z \leq 1 \]

where \(a, b, \) and \(c \) are functions of \(x, y, \) and \(z. \) The corresponding difference equations using the usual 7-pt formula with \(h = \Delta x = \Delta y = \Delta z \) are

\[
2(a_{ijk} + b_{ijk} + c_{ijk})u_{ijk} = a_{ijk}(u_{i+1,jk} + u_{i-1,jk}) - b_{ijk}(u_{ij+1,k} + u_{ij-1,k}) - c_{ijk}(u_{ijk+1} + u_{ijk-1}) = h^2 f_{ijk}
\]

For a sufficiently coarse grid, the coefficients can be computed once and for all and held in five \(O(N^3) \) long arrays for vector machines, or distributed over the various processors of an array. But for a moderately fine grid, say \(N > 100, \) back-up storage may be required and depending upon the complexity of the coefficients, the operating system, and various other factors, it may be more economical to recompute the coefficients at each iteration. This strategy is, of course, common on existing serial machines and the only new factor for vector or parallel computers would be to compute the coefficients in sufficiently large batches - say \(1,000 - 10,000 \) at a time - so that the computation as well as the subsequent usage in the equation solver can be done efficiently with parallel or vector operations. In particular, recomputation of the coefficients on an array might be useful to save communication time between the processors.

A less satisfactory situation exists for handling irregular domains. Consider, for example, the grid in Figure 4-7.
where the boundary nodes are indicated by b. One way to handle such a grid is to circumscribe it by a rectangle - the additional grid points thus introduced are indicated in Figure 4-7 by crosses - and work with the entire rectangular grid. For example, for Laplace's equation and the Jacobi iteration on such a grid, one could use the vector code (4.2) on the Cyber 200 with a control vector, as before, to ensure that the boundary positions are not overwritten. Of course, both additional storage and additional arithmetic are required for the points outside of the domain, and the procedure becomes increasingly less efficient as the domain deviates from a rectangle. At some point, it is probably beneficial to use a union of smaller circumscribing rectangles. This, of course, would save considerable storage over a complete circumscribing rectangle but now the rectangles must be processed separately; that is, the code (4.2) must be written separately for each rectangle. Ideally, of course, one would like an ordering of the grid points that would allow processing and storage of only the minimum number of points and still use vectors whose length is the total number of grid points; but such an ordering, if it exists, is not evident and has not appeared in the literature. A more sophisticated approach is to use capacitance matrix methods (see, e.g., O'Leary and Widlund [1979]) but no results for vector computers have been reported.

We turn now to methods for parabolic and hyperbolic equations. As we will see, many of the considerations for time-marching methods on vector and parallel computers are very similar, if not identical, to those for iterative methods for elliptic problems. Explicit methods will tend
to be relatively more attractive than on serial computers because of their usually better parallelization properties, but this will not necessarily overcome the stringent stability requirements of small time steps. The question of implicit versus explicit methods, however, is only one part of the broader consideration of how well the method can be adapted to the architectures under consideration. Other aspects which affect this will include the domain, the boundary conditions (and perhaps computational boundary conditions needed for hyperbolic equations and/or higher order methods), the form of the coefficients and whether their calculation can be parallelized, the number of space dimensions, etc.

We will begin with the simple parabolic equation

\begin{equation}
(4.12) \quad u_t = au_{xx}, \quad t > 0, \quad 0 < x < 1
\end{equation}

with constant coefficient a and initial-boundary conditions

\begin{equation}
(4.13) \quad u(0,x) = g(x), \quad u(t,0) = \alpha, \quad u(t,1) = \beta
\end{equation}

for constant α and β.

Consider first the standard second-order Crank-Nicolson scheme

\begin{equation}
(4.14) \quad u_{j}^{k+1} - u_{j}^{k} = \frac{\mu}{2}(u_{j+1}^{k+1} - 2u_{j}^{k+1} + u_{j-1}^{k+1} + u_{j+1}^{k} - 2u_{j}^{k} + u_{j-1}^{k}), \quad j = 1, ..., N
\end{equation}

where $\mu = a\Delta t/(\Delta x)^2$ and u_{j}^{k} and u_{j}^{k+1} indicate values at the current and next time levels, respectively. At each time step, a tridiagonal system of equations must be solved and, as we saw in the last section, this is not particularly efficient on vector or parallel computers with the algorithms now known. By contrast, the simplest explicit method

\begin{equation}
(4.15) \quad u_{j}^{k+1} = u_{j}^{k} + \mu(u_{j+1}^{k} - 2u_{j}^{k} + u_{j-1}^{k}), \quad j = 1, ..., N,
\end{equation}
is mechanistically ideal for vector or parallel computers. Indeed, (4.15) has the same form as the Jacobi iteration applied to a tridiagonal system of equations. On the other hand, the Jacobi iteration could be applied to the tridiagonal systems of the Crank-Nicolson method (4.14). McCulley and Zaher[1974] reported reasonable results with this approach for a diffusion problem on the ILLIAC IV; in their case 15 Jacobi sweeps sufficed at each time-step. More recently, Berger, et al. [1981] discussed a similar approach using the Crank-Nicolson method. With a suitable time step and a suitable predictor formula (forward Euler, Dufort-Frankel) to obtain the initial guess, they found that a single Jacobi sweep on the implicit equations gave sufficient accuracy.

Gelenbe, et al.[1982] also consider the solution of the one dimensional heat equation. Finite difference discretization is used with a resulting parameterized scheme which includes the fully implicit, fully explicit and Crank-Nicolson methods as special cases. For the implicit schemes, an equation \(A u^{m+1} = Bu^m + c \) must be solved at each time step and the grid points are ordered in such a way that \(A \) has the form

\[
\begin{bmatrix}
** \\
*** \\
***** \\
\vdots \\
** \\
* \\
\end{bmatrix}
\]

That is, it is tridiagonal except for two elements. This sparsity pattern is maintained under LU or Choleski decomposition which is assumed to be done once at the outset. The problem is the forward and back substitutions at each time step. The main purpose of the paper is to give a probabilistic model of the computation on a multiprocessor system and the authors consider in detail the two processor case. The results of their model agree very well with experiments conducted on a system of two LSI 11's at the University of Paris.
The same general considerations apply to problems in two or three space dimensions. For example, for the two dimensional heat equation, the explicit method corresponding to (4.15) has the same form as the Jacobi iteration. Similarly, the ADI iteration will have the same form as discussed for elliptic equations and the same techniques for handling the tridiagonal systems would again apply.

For hyperbolic equations, the situation is similar. Indeed, it is somewhat simpler in the sense that except for certain "stiff" systems (i.e. systems with a wide range of eigenfrequencies and characteristic phase velocities), implicit methods are less frequently used, even on serial computers. As a simple example, consider the hyperbolic system

\[u_t + F(u)_x = 0, \quad 0 \leq x \leq 1 \]

with suitable initial and boundary conditions. The standard two-step Lax-Wendroff scheme is

\[u_j^{k+1/2} = \frac{1}{2}(u_{j+1}^k + u_j^k) - \gamma_1(F_{j+1}^k - F_j^k), \]

\[u_j^{k+1} = u_j^k - \gamma_2(F_{j+1}^{k+1/2} - F_{j}^{k+1/2}) \]

where \(\gamma_2 = \Delta t/\Delta x \) and \(\gamma_1 = \gamma_2/2 \). We see that the two sets of difference equations in (4.17) again have the general form of a Jacobi-like iterative method. A potential difficulty, however, is the evaluation of the vectors derived from \(F(u) \). How well this can be done in parallel will depend on the form of \(F \). For example, suppose that \(u \) is the 3-vector of density \(\rho \), momentum \(m \), and energy \(e \) and \(F = (m, p + m^2/\rho, (e+\rho)m/\rho) \) where \(p \) is given in terms of \(\rho \), and possibly also \(m \) and \(e \), by some "equation of state" \(p = f(\rho, m, e) \). Then the evaluation of \(F \) can be done in parallel as indicated in

\[F_j = (m_j, p_j + \frac{m_j^2}{\rho_j}, (e_j + \rho_j) \frac{m_j}{\rho_j}), \quad j = 1, \ldots, N \]

where \(N \) is the number of gridpoints. However, the calculation of the vector of \(p \) values may or
may not also be computed efficiently by vector operations depending on the form of \(f \). In addition, we will need to handle the given boundary conditions as well as the computational boundary conditions obtained, for example, by extrapolation. Johnson [1984] reviews various other considerations in solving the three dimensional wave equation on vector computers.

The preceding discussion has assumed that the grid over which the partial differential equation, be it elliptic, parabolic, or hyperbolic, is discretized remains fixed throughout the solution process. This makes it relatively easy to create vectors out of the grid points or to map grid points onto processors so as to balance computation or to take advantage of the communication topology. On the other hand, many problems or methods may require a dynamically changing grid. It has become common to treat time dependent problems, where some physical phenomena such as a shock wave is moving through the region, with adaptive techniques or grid refinements by adding or deleting grid points in some area of the region that requires more accuracy. This dynamic change in the grid structure has a dramatic effect on the data structures for either vector or parallel computers.

For vector computers adaptive computation can be handled in much the same way as described earlier for the multigrid algorithm, that is, by using the data movement instructions on the Cyber 200 or by returning to memory on the Cray. In either case machine efficiency will be reduced. The situation is more difficult for parallel computers. If a subregion assigned to some processor is refined, then either the computation on that processor increases, causing an imbalance, or the region must be redistributed across the array of processors. In either case, an extra burden may be placed on the interprocessor communication mechanism. One approach to the redistribution problem is to have processes that are controlling the computation on a subregion spawn new processes to handle the refined region. Then a computing system that executes these processes on available processors is required. This provides indirect load balancing, but the communication system must be very rich because locality of communication will, in general, be lost.
The FEARS project (see Zave and Rheinboldt [1979] and Zave and Cole [1983]) was an adaptive finite element system which spawned processes to take advantage of parallelism. Refinement was based on a continuous monitoring of the errors and is discussed in detail in Babuska and Rheinboldt [1977]. The subregions, whether refined or not, were organized independently in the spirit of substructuring. As was discussed in section 3, this allows for independent parallel computation on the subregions; however, the linear system that connects the subregions was solved sequentially. As reported in Zave and Cole [1983], the sequential solution process requires 70 to 90 percent of the time and thus reduces the overall speedup and efficiency of the process dramatically. Simulations were performed for several computer systems including ZMOB and variations of Cm'. The results of this study are reported in Zave and Cole [1983] and indicate that the majority of the time is spent in communication or waiting.

Adaptive computation in a multigrid setting for three dimensional problems was the basis of a study by Gannon and Van Rosendale [1984a]. Based on ideas introduced in Van Rosendale [1983a], they also used dynamically spawned processes to provide a framework for the extraction of parallelism. They went on to define an architecture to take advantage of the parallelism. The architecture, which is similar to Cedar (Gański et al. [1983]), consists of clusters of processing elements with local memory; the clusters are connected via a cross bar message switching network. Preliminary simulation studies indicate that the system would have a very high level of efficiency due to the fact that over 95 percent of the communication takes place within the clusters.

A relatively new technique for solving partial differential equations that appears to be appropriate for vector and parallel computers is the spectral method (see e.g. Gottlieb and Orszag [1977] and Voigt, et al. [1984]). In the spectral method, a discrete representation of the solution \(u(x) \) of the differential equation \(Lu = f \) is approximated by

\[
(4.18) \quad u_n(x) = \sum_{k=0}^{n} a_k \phi_k(x)
\]
where the ϕ_k are given functions and (4.18) is evaluated at appropriate points x_j. In order to obtain an approximate solution u_n, expressions for the derivatives of u_n are required based on the form of L. If the x_j and ϕ_k are appropriately chosen, $u_n(x_j)$ and its derivatives may be evaluated using the FFT. Thus any of the methods alluded to in section 3 could be used in a vector or parallel environment. The $u_n(x_j)$ values can be obtained using an appropriate direct or iterative method so again the techniques discussed previously become relevant. Spectral methods are being used extensively on vector computers; see Orszag and Patera [1981a,b, 1983] for the Cray and Bokhari, Hussaini, Lambiotte and Orszag [1982] for the Cyber 200. These are only representative, and many more references may be found in the bibliography given in Gottlieb, et al. [1984]. There appear to be no studies of the use of spectral methods on parallel computers.
5. Applications

An increasing number of papers have appeared in the last several years describing the use of parallel or vector computers in a variety of application areas. In this section, we will summarize a sampling of this literature without giving extensive details.

The major application area has been fluid dynamics calculations of various kinds. Several early papers described the use of the Illiac IV, some before it was operational. For example, Carroll and Weatherald [1967] discussed the possible application of the Solomon computer - the predecessor, which was never built, of the Illiac IV - to hydrodynamics problems and general circulation weather models in particular; Reilly [1970] considered a Monte Carlo method for the Boltzmann equation; and Ogura, et al. [1972] reviewed the theoretical efficiency of the Illiac IV for hydrodynamics calculations. Wilhelmson [1974] and Erickson and Wilhelmson [1976] considered convection problems - and in particular the Benard-Rayleigh problem; they used Dufort-Frankel differencing on the diffusion terms, a scheme of Lilly for the convection terms, a fast Fourier method for the Poisson equation, and leap-frog differencing in time. One of the main thrusts of their work was a proper balancing of computation with disk to main memory transfers. Davy and Reinhart [1975] discussed the application of the Illiac IV to a chemically reacting, inviscid hypersonic flow problem, using MacCormack's method with shock capturing. McCulley and Zaher [1974] reported on the solution of diffusion type equations in a problem that arises in planetary entry.

There were also a number of early papers addressing fluids problems on the TI-ASC and CDC STAR-100. Boris [1976a] applied his flux-corrected transport (FCT) algorithm to continuity type equations on the TI-ASC and concluded that the FCT method is "fully vectorizable". Lambiotte and Howser [1974] compared the ADI method, Brailovskaya's
method [1965], and Graves' Partial Implicitization method [1973] on the CDC STAR-100 for the driven cavity problem and concluded that both Brailovskaya's method and Graves' method vectorize well and were the fastest on the STAR even though the ADI method was the fastest on a serial machine. Weilmunster and Howser [1976] considered a boundary layer/shock interaction calculation governed by the full Navier-Stokes equations in 2 dimensions. They reported speed-ups of as much as 65 to 1 on the STAR over a corresponding program on a CDC 6600.

Giroux [1977] described the conversion of the HEMP code to the CDC STAR-100. HEMP models two-dimensional deformations, motions and interactions of materials as they are subjected to force fields; it uses an explicit finite difference scheme. Giroux discussed in some detail the many issues in a successful implementation of this procedure on the STAR. The final program showed a speed-up of as much as a factor of 5 over the CDC 7600. Soll, et al. [1977] reported on the conversion of the GISS general circulation model to the STAR. Preliminary runs of part of the code showed a speed-up of about an order of magnitude over the IBM 360/95.

More recent work has concentrated primarily on the use of the Cyber 200 and Cray series of machines, as well as some parallel arrays. Before describing these developments, we note that there have also been a few recent papers dealing with the older machines. For example, Lomax and Pulliam [1982] (see also Pulliam & Lomax [1979]) report on computations for the unsteady Reynolds-averaged Navier-Stokes equations on the Illiac IV. We also note that there have recently been a number of conference proceedings or anthologies devoted wholly or partly to applications. These include the Los Alamos workshop on vector and parallel computing (Buzbee and Morrison [1978]), applications of the Cray-1 at the Daresbury Laboratory in England (Burke, et al. [1982]), a symposium on applications of the Cray-1 (Cray Research, Inc. [1982]), three symposia on applications of the Cyber 205
(Control Data Corp. [1982], Gary [1984], and Numrich [1985]), and a compilation of articles dealing with a variety of machines but especially the Cray-1 (Rodrigue [1982]). Several of the articles in these sources will be covered in the sequel. We also mention that the book by Gentzsch [1984b] on vectorization contains an entire chapter and an extensive bibliography on applications in fluid dynamics.

Strikwerda [1982] has used the CDC STAR-100 and Cyber 203 for solving the compressible Navier-Stokes equations to obtain laminar flow in converging/diverging nozzles with suction slots. A time-split differencing was used involving three different splittings, one for the parabolic (viscous) terms and two for the hyperbolic (inertial) terms, one for each space direction. Only two dimensional or axisymmetric problems were handled. The program was coded in SL/1 (Knight and Dunlop [1983]) using 32-bit arithmetic, which was found to give suitable accuracy. For a particular sample calculation for a two dimensional slotted nozzle, the number of grid points was 12,000 and the number of time steps to convergence was 40,000. The CPU timing for this problem was 1.1 × 10⁻⁵ seconds per time step per grid point on the Cyber 203.

Bokhari, Hussaini, Lambiotte and Orszag [1982] treat the Navier-Stokes equations for three dimensional viscous compressible flow, including compressible shear flows at high Reynolds number, for the Cyber 203 by a mixed spectral/finite difference method, using the one and two dimensional FFT codes developed by Korn and Lambiotte [1979] and Lambiotte [1979] as well as techniques for computing derivatives described in Bokhari, Hussaini and Orszag [1982].

Deiwert and Rothmund [1983] use the Cyber 205 for the three dimensional Navier-Stokes equations modeling boatailed afterbodies which are at moderate angles of attack and which contain a centered propulsive jet. There were 216,000 grid points and a database of 5×10⁶ words. Fornberg [1983] describes the computation of steady viscous flow past
a circular cylinder on the Cyber 205 for Reynolds numbers up to 400. Wu, et al.[1983] report on a direct turbulence simulation which requires solving the time-dependent Navier-Stokes equations in 3 dimensions. On a two pipeline, 2 million word Cyber 205, they obtain for a $64 \times 64 \times 64$ mesh a computation rate of over 100 MFLOPS using 32-bit arithmetic.

Hankey and Shang[1982] (see also Shang, et al.[1980]) consider three dimensional Navier-Stokes codes for aerodynamics computations on the Cyber 200 and the Cray-1. Results are given for wind tunnel diffusers, missiles at high angles of attack, self-excited oscillatory flows, etc. Kumar, et al.[1982] report on similar problems for the three-dimensional Navier-Stokes equations on the Cyber 203, including scram-jet inlet and combustor analyses. Rudy[1980] reports on a two-dimensional aerodynamics code for the Cray-1 in which a vectorization of about 85 per cent is attained. This holds the megaflop rate to slightly over 10.

Transonic flow is an important area of aerodynamics which has received considerable attention. Hotovy and Dickson [1979] used a three color ordering of the nodes in connection with a relaxation scheme to solve the two-dimensional small disturbance equation on the CDC STAR-100. They give timing comparisons for this "checkerboard" method on the STAR and an SLOR code on a CDC Cyber 175. On various runs on a 101×41 grid, the STAR was 2.5 to 3 times faster although the checkerboard method required over twice the number of iterations to converge. On a finer (200×80) grid, about 4 times as many iterations were required for the checkerboard method and the STAR was less than twice as fast as SLOR on the Cyber 175.

Redhed, et al.[1979] treated the three-dimensional small disturbance equation of transonic flow on the CDC STAR by using a red-black ordering of grid lines in the cross-flow plane and applying line SOR to all the red columns and then all the black
ones. This yields a vector length of half the number of grid points in the cross-flow plane. On a model problem with a relatively coarse mesh, 64×28×20, they reported a speed-up of a factor of 3.4 over a standard line relaxation code running on a Cyber 175.

Hafez and South [1979] and South, et al. [1980a,b] consider relaxation methods for the full potential equation of transonic flow in both two and three dimensions on the CDC-STAR with comparisons with the CDC 7600 and Cyber 175 as well as the Cray-1. They conclude that point and block SOR using red/black ordering is almost fully vectorizable for this problem. In a subsequent paper, Hafez and Lovell [1983] consider line SOR where m lines are given one color followed by m lines of the other color. They found experimentally that m=2 gives the best results. In earlier work, Keller and Jameson [1978] had used the CDC-STAR for the small disturbance equation of transonic flow using a new explicit method. However, they achieved only a speed-up of a factor of 1.8 over line overrelaxation running on a Cyber 175.

Melson and Keller [1983] treat the three dimensional full potential equation in non-conservative form by finite difference methods and in conservative form by finite volumes. Using a test case with a 192×32×32 grid and a two color point relaxation scheme (Zebra II, South, et al. [1980b]) they report a computation rate of 26 MFLOPS on the Cyber 203. However, the convergence rate was poor compared with an SLOR algorithm; for related work see Yu and Rubbert [1982], Eberhardt, et al. [1984] have studied the mapping of a three-dimensional, implicit, approximate factorization algorithm for the Euler or Navier-Stokes equations onto a two processor Digital Equipment Corp. VAX system that is a reasonable model of a Cray X-MP. They note the importance of careful memory management in a shared memory system and conclude that the algorithm can be implemented on a two processor system with a speed up of 1.9.
Kascic [1984b] discusses the implementation on the Cyber 205 of a vortex method for the Euler equation for an incompressible inviscid homogenous fluid. The emphasis is on carefully utilizing the architecture and instruction set of the 205. Woodward [1982] considers various schemes for hydrodynamic problems on different machines and makes a number of worthwhile observations; for example, logical operations are generally slow on vector computers and compress, merge, and mask operations are slow on the Cray-1 since they must be implemented by software. Cox [1983] describes the use of the CDC Cyber 205 on an ocean model. A problem with $18 \times 150 \times 195 = 5 \cdot 10^6$ grid points required approximately 4 seconds per time step, about 4 times faster than the TI-ASC previously used.

There have also been a number of papers dealing with reservoir simulation. Nolen, et al. [1979] give comparisons between the CDC STAR-100 and the Cyber 203 for a model problem. Six different three-dimensional grid sizes were used with the number of unknowns ranging from 2000 to 8000, and tests are reported on the solution of linear equations of these sizes, corresponding to one time-step for the time dependent problem. The algorithms considered for the solution of the linear systems are the D4 method of Gaussian elimination based on the ordering scheme of Price and Coats [1974], and line, 2-line, and plane SOR. For the SOR methods, red/black orderings of the grid points are used in such a way that for line SOR the vector length is on the order of $nm/2$, where n and m are the number of grid points in the x and y directions. Similar orderings are used for 2-line and plane SOR, giving smaller vector lengths. Run times on the STAR and 203 are reported for the six grid sizes for the D4 and line-SOR methods; the 203 is somewhat faster on these problems with speedup factors ranging from about 1.15 to 1.5. The only comparison reported for a scalar machine is for Gaussian elimination on a 2000 unknown problem where the 203 was about 14 times faster than a CDC 6600. Additional comparisons between the 203, 205, and Cray-1 are given in Stanat and Nolen [1982]. For the prob-
lems reported on, the 205 was a factor of about 2.5 to 3.5 times faster than the 203. The above work and more recent developments are reviewed in Kendall, et al.[1984], which gives comparisons of Cyber and Cray times for various aspects of the algorithms, and also discusses architectural differences that influence implementation decisions.

Also for problems in reservoir simulation, Killough [1979] considered comparisons between the IBM 370/168, with and without an attached IBM 3838 array processor, and the Cray-1. His primary benchmark problem used a three dimensional rectangular grid with $35 \times 19 \times 5$ (= 3325) grid points and 29 production wells. A production code for the 370/168 was converted and vectorized for the Cray-1 and showed a factor of 12 improvement over the 168. Other papers dealing with reservoir simulation include Buzbee, et al.[1979], Wallis and Grisham [1982] and Kendall, et al.[1983]

Gentzsch [1984a,c] provides an interesting benchmark study that includes a variety of production codes for fluid dynamics problems such as the two dimensional magnetohydrodynamic equations, the Navier-Stokes equations, and two- and three-dimensional Euler equations. Results are given for a variety of computers including the Cray-1S, Cyber 205, STAR-100, ICL-DAP, Denelcor HEP and a number of scalar machines. One significant result is that hand coding to improve vectorization improved performance by factors of 2.5 to 5.4 on the Cyber 205 and 1 to 3.3 on the Cray-1S.

Numerical weather prediction has historically provided one of the major applications of fluid dynamics on high performance computers dating back at least to the ENIAC (see Platzman [1979]). Probably the first weather simulation work with a vector processor was done on the TI-ASC at the Geophysical Fluid Dynamics Laboratory; the mathematical approach and the vectorization of the algorithm are described in the review by Welsh [1982].
The present state of the art for numerical weather prediction is outlined in Cul-
len [1983]. Current models for global forecasts use a horizontal grid resolution of 150km
with 15 levels in the vertical direction. Such models require approximately three minutes
of Cray or Cyber 200 time for each day of forecast and the average useful forecast period
is about four days. Local models for tracking specific meteorological phenomena may
have resolution down to 1 km or less. The numerical models tend to be finite differences
in the vertical direction and in time and either finite differences or spectral in the hor-
izontal direction. There are at least three other excellent reviews of this field, oriented
primarily toward the Cray. Williamson [1983] and Williamson and Swartztrauber [1984]
discuss the derivation of the underlying equations, the numerical algorithms, and the
implementation on the Cray. Both papers contain extensive bibliographies. Kasahara [1984]
reviews many of the decisions that went into the development of computational models and provides some performance figures for the Cray. This paper contains
over one hundred references.

Parallel arrays have also been considered for numerical weather prediction. For
example, Kopp [1977] and Nagel [1979] report on the use of the SMS201, an array of 128
Intel 8080 microcomputers, for weather problems. They describe a stratified three-
dimensional problem in which there are 2000 mesh points at each of three levels and six
unknowns per grid point.

Another major application area for vector and parallel computers is structural
analysis. Noor et al. [1983] discuss the role of high performance computing systems for
analysis based on the finite element method concluding that parallelism will play a
significant role but suggesting that the full impact will not be reached until software such
as programming languages and compilers improves.
Early research on structural analysis applications on vector computers focused on the generation of the elemental stiffness matrix (Noor and Hartley [1978]), and on the solution of the global stiffness matrix system by direct methods (Noor and Fulton [1975], Noor and Voigt [1975], and Noor and Lambiotte [1978]). These studies indicated that the traditional goal in structural analysis of striving for matrices with small bandwidths led to relatively inefficient programs on the STAR-100 because of short vector lengths. The advent of the Cray with its superior performance on short vectors led to renewed interest in the structural analysis community.

A careful study of the effectiveness of the Cray-I for a structural optimization problem, using an aircraft wing design as motivation, has been done by Venkayya, et al.[1983]. Stresses and displacements are computed and then compared with values representing an acceptable design envelope. Using optimization techniques the process is repeated until satisfactory values are obtained. All modules of the algorithm were studied and those that contributed significantly to the solution time were vectorized. As expected, the most time consuming module was the linear equation solver. The resulting code, which was fine tuned using assembly language, was, on average, 74 times faster than a scalar Fortran code on the Cray for a wing whose discretizations yielded stiffness matrices with 756 to 5280 equations and half-bandwidths of 45 to 105. Another series of applications reported by Goudreau, et al.[1983] involves the study on the Cray-I of the deformation of large cylindrical cannisters subjected to external loads.

NASTRAN, a large structural analysis program, has been vectorized and is operational on the Cray. The results of this effort for the MacNeal Schwendler Corporation version of the program are reported in Gloudeman and Hodge[1982], Gloudeman [1984] and Gloudeman, et al.[1984]. Timing comparisons with a scalar machine (that unfortunately is not identified) are given. The impact of sparse matrix operations is discussed in McCor-
Improvements in the Cyber 200 over the STAR-100 have brought about renewed interest in the Cyber 200 for structural analysis. For example, Robinson, et al. [1982] considers implementation of SPAR on the Cyber 203. A different application involves the study of fiber reinforced composite materials that are used in aircraft. At issue is the damage caused by delamination, or the separation of individual layers, in the presence of holes or discontinuities. In particular, Raju and Crews [1982] have conducted a three dimensional analysis of a four ply laminate with a circular hole, which involved approximately 7000 grid points and a 20 million word database. A very recent study of a more complicated composite led to a system of 100,000 equations with a half bandwidth of 2700 and a total database of 70 million words. This problem was solved on a two pipeline Cyber 205 with 16 million words of memory at an overall computation rate in excess of 150 MFLOPS.

We next consider a number of miscellaneous application areas. Chang [1982] treats an acoustic wave propagation problem and gives comparisons between a Cray-1S, a Cyber 203, and a Cyber 730. On a series of 6 test problems, the largest of which had vector lengths of 591, the 203 and the Cray were, respectively, 67 to 118 and 142 to 187 times as fast as the 730. The 730, however, had to use disk while the 203 and Cray did not. The state of the art in the dimensional modeling of acoustic phenomena of interest to seismologists is reviewed by Johnson [1984]. This paper contains a discussion of system and programming considerations and gives some performance results. For example, a two dimensional problem requiring more than ten hours on a Digital Equipment Corp. VAX with an attached Floating Point Systems, Inc. FPS-100 required only eleven minutes on a Cyber 205. Day and Shkoller [1982] describe a three dimensional code for earthquake analysis which was first developed for the Illiac IV and then converted to a Cray-1. They report
that the Cray code ran 75 times faster than its implementation on a UNIVAC 1100/81.

McDonald [1980] used a Chebyshev explicit iteration on an equation of the form \(\Delta u + \alpha \cdot \nabla u = f \) with doubly periodic boundary conditions and where \(\alpha \) is a function of \(x \) and \(y \). This equation arises, for example, in plasma physics. The differential equation is discretized by the usual 5-point star for the Laplacian and centered difference quotients for the first derivatives, and the domain is taken to be a rectangle. Timings from runs on a TI-ASC are given for various grid sizes and compared with an ADI iteration. Although ADI required fewer iterations, the superior vectorization properties of the Chebyshev iteration resulted in considerably faster running times.

The design of VLSI devices is another area that is making increased use of high performance computers. This application is reviewed in the article by Fichtner, et al.[1984]. The significant equations are presented and the numerical methods are discussed including implementation considerations for the Cray. The paper includes over eighty references to other literature on integrated circuit design.

Molecular dynamics problems have been solved on the Cray, Cyber and ICL DAP computers. Bowler and Pawley [1984] give a detailed analysis of implementing simulations of phase transitions at the atomic level. They explain how to utilize the architectural features of the DAP and present some representative results. Berendsen, et al.[1984] provide a performance comparison of the Cray 1, the Cyber 203 and 205, the DAP and several scalar computers on some relatively simple molecules. For example, a simple protein in water required approximately 30 hours of Cray or Cyber time. Projections for more complex molecules range up to \(10^9 \) hours of CPU time, making these among the most demanding computational problems.

Other papers dealing with applications include Tennille [1982] on a Cyber 203 code for modeling atmospheric chemical reactions, Liles, et al.[1984] on a thermal-hydraulics
program designed to study internal flows in nuclear reactors on the Cray, and Boris and Winsor [1982] on reactive flow problems on the TI-ASC.

There have also been a number of studies of the potential solution of partial differential equations on new, or as yet unbuilt, architectures. As previously mentioned, Dennis and Weng [1977] consider a dataflow architecture for numerical weather predictions. They use as a model the 4th order GISS code (Kalnay-Rivas, et al. [1976]) with a nominal goal of a speed-up by a factor of 100 over a 360/95, and describe the computation on a hypothetical dataflow machine. In another study, Dennis [1984a] investigated an implicit algorithm for the solution of the three dimensional Navier-Stokes equations. The Fortran version of the algorithm was rewritten in Val and this code was used to outline a hypothetical machine capable of 1000 MFLOPS. Meyer [1977] studied the possibility of solving the nonlinear Poisson equation $\Delta u = f(u)$ on a hypothetical array of processors. Gallopoulos and McEwan [1983] describe the use of a simulator for the MPP for the solution of the shallow water equations for weather prediction. They conclude that the MPP is suitable for such numerical problems, even though it was designed for image processing. Fox [1984] discusses a variety of applications on a parallel system with the hypercube interconnection and concludes that reasonable efficiency requires the ratio of communication time to computation time be kept near unity.
Epilogue

We have attempted to describe, perhaps too briefly, much of the work which has been done on the use of parallel and vector computers for partial differential equations. Two themes which occurred often, sometimes in conjunction, were decomposition of a problem into independent portions, and reordering of the unknowns in order to enhance such a decomposition. We expect these two themes to be even more prevalent in algorithm development in the future.

It should be clear by now that the differences between vector computers and parallel computers can have a profound effect on the selection of algorithms. In particular, we have shown that computational complexity, the basis for algorithm selection for decades, is still relevant for vector computers because each computation costs some unit of time; however, it is much less relevant for parallel computers for two reasons. First, parallel computers can support extra computation at no extra cost if the computation can be organized properly. Secondly, parallel computers are subject to new overhead costs required, for example, by communication and synchronization that are not reflected by computational complexity. The value of doing extra computation at no extra cost seemed to be recognized by many early researchers in the field who dealt with models consisting of an unbounded number of processors. However, now that parallel systems are available, the research community appears to be focused on analyzing existing algorithms rather than exploring new algorithms for a parallel computing environment. For whatever reason, there have been very few truly new algorithms developed as a result of the opportunities offered by parallelism.

In the near term, it now seems clear that supercomputers from the major vendors will consist of a relatively small number (4, 8, 16, etc.) of powerful vector computers. This is the case with the Cray X-MP, the Cray 2, the Cray 3, the Cyberplus, the ETA
GF-10 and the Denelcor HEP. The effective utilization of these machines will require
decomposition of the problem into a small number of large, relatively independent parts,
and vectorization of the individual parts. The longer term impact of VLSI in the
development of highly parallel architectures of thousands of individual processors
remains to be seen, although prototypes of such machines are being built. In between
these two extremes there are a number of small, new companies offering parallel systems
consisting of tens to hundreds of processors each with VAX like performance. It is sim-
ply too early to speculate on how these systems will influence algorithm selection and
development.

Thus, all one can say with any certainty is that large scale computing of the future
will certainly be highly parallel in one form or another. Even if a single standard paral-
lel system were to exist, there would still be considerable work to be done in the
development of efficient numerical algorithms. The likely plethora of different parallel
architectures in at least the foreseeable future makes this development more interesting.
An especially challenging question is that of software portability across different parallel
architectures, a task that will only be feasible when the foundations of parallel computa-
tion are much better understood than at present.
The literature on the parallel solution of partial differential equations is scattered throughout a variety of sources: archival journals in numerical analysis, in computer science, and in a number of engineering disciplines; conference proceedings covering a variety of emphases ranging from numerical analysis to computer architecture to applications such as reservoir simulation; anthologies; and a large number of (as yet) unpublished departmental reports. One of the most important sources is the proceedings of the annual international conferences on parallel processing, listed in the bibliography as Proc. 19xx Int. Conf. Par. Proc. and available through the IEEE Computer Society Press. Certain other conference proceedings and anthologies which have been published in book form we list under the name of the editor (or editors) and then list individual articles with a pointer back to the whole volume; for example, the reference

refers to the article by Brandt in the volume listed under Schultz [1981].

B.6

Grosch, C. [1979a]. "Performance Analysis of Tridiagonal Equation Solvers on Array Computers," Department of Mathematical and Computing Sciences Technical Report No. TR 79-4, Old Dominion University, Norfolk, VA.

Halada, L. [1980]. "A Parallel Algorithm for Solving Band Systems of Linear

Inversion," CONPAR 81, Conf. Proc., Lecture Notes in Computer Science III, W.

Halin, H., Buhrer, R., Halg, W., Benz, H., Bron, B., Brundiers, H., Isaccson,

Handler, W., Hofmann, E. and Schneider, H. [1976]. "A General Purpose Array
with a Broad Spectrum of Applications," in Informatik-Fachbrichte Berlin-
Heidelberg, Springer-Verlag.

Research, Inc. [1982], pp. 49-66.

Happ, H., Potte, C. and Wirgan, K. [1978]. "Parallel Processing for Large

Harding, A. and Carling, J. [1984]. "The Three-Dimensional Solution of the
Equations of Flow and Heat Transfer in Glass-Melting Tank Furnaces: Adapting
to the DAP," in Paddon [1984], pp. 115-133.

Hatzopoulos, M. [1982]. "Parallel Linear System Solvers for Tridiagonal

Hayes, L. [1974]. "Comparative Analysis of Iterative Techniques for Solving
Laplace's Equation on the Unit Square on a Parallel Processor." M. S. Thesis,
Department of Mathematics, University of Texas at Austin.

Hayes, L. and Devloo, P. [1984]. "An Overlapping Block Iterative Scheme for
Finite Element Methods, Department of Aerospace Engineering and Engineering
Mechanics, University of Texas at Austin.

Heller, D. [1974]. "A Determinant Theorem with Applications to Parallel

Heller, D. [1976]. "Some Aspects of the Cyclic Reduction Algorithm for Block

Heller, D. and Ipsen, I. [1983]. "Systolic Networks for Orthogonal

Methods for the Solution of Tridiagonal Linear Systems on Parallel Computers," J.

B.34

Poole, E. and Ortega, J. [1984]. "Incomplete Choleski Conjugate Gradient on the CYBER 203/205," in Numich [1985].

Swarztrauber, P. [1982], "Vectorizing the FFTs," in Rodrigue [1982], pp. 51-83.

Tennille, G. [1982]. "Development of a One-Dimensional Stratospheric Analysis Program for the CYBER 203", in Control Data Corp. [1982].

Wittie, L. [1980]. "Architectures for Large Networks of Microcomputers," Workshop in Interconnection Networks for Parallel and Distributed Processing, April, pp. 31-40.

In this paper we review the present status of numerical methods for partial differential equations on vector and parallel computers. A discussion of the relevant aspects of these computers and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial-boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. A brief discussion of application areas utilizing these computers is included.