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SUMMARY

Data gathered under experimental conditions are often used to obtain an analytic

model for generating further data with similar random characteristics. The quantile

function (inverse of the cumulative distribution function) is very useful in this

respect. With this function, a probability is first randomly selected from a uniform

distribution. The quantile function then associates a random value with this proba-

bility. In this paper, two spline functions (B-spline and rational spline) are used

to approximate the quantile function from a sample of data. Also, an analytic repre-

sentation of the quantile function is used for comparison. These approximations are

used to generate random samples for simulations. Comparisons are made between the

three representations for samples generated from known distributions and for a sample

of experimental data. The spline representations are shown to be more accurate for

multimodal and skewed samples and to require much less time to generate samples than
the analytic representation.

INTRODUCTION

An important aspect of scientific research is the analysis of data gathered

under experimental conditions. Because of the stochastic nature of the data, it may

be desirable to determine the probability distribution of the data sample. In some

instances, it is reasonable to assume that the data were sampled from a continuous

population obeying the rules of a standard probability distribution, such as the

normal distribution. In other instances, the distributional nature of the sample may

not be obvious. For these latter cases, the researcher may represent the underlying

population distribution with histograms, analytic functions, or function approxima-

tions (ref. I). Histograms provide only a rough, discrete version of a continuous

function. Analytic functions often are limited to unimodal distributions having

restricted skewness and kurtosis ranges. Function approximation methods can overcome

the weaknesses of the other approaches.

In seeking to sample information to describe the distribution of a population, a

researcher can choose to approximate the cumulative distribution function (CDF), the

quantile function (inverse of the CDF), or the probability density function (PDF).

The CDF is the probability of occurrence of a value less than or equal to a given

value of the random variable. To approximate either the CDF or the quantile function

from a sample, the probability of occurrence of each sample value must be either

known or assumed. The PDF is the first derivative of the CDF and may be fitted to

histograms or sample values by various complicated classical or nonparametric methods

(ref. 2). The intent of the present investigation is to study a relatively simple,

straightforward representation of the relationship between random values and the
corresponding probabilities.

The study reported here considers spline representations of the sample quantile

function of a continuous probability distribution. These representations provide

both a functional description of a random sample and a method of generating random

variables. The major purpose of this research is to develop a method for generating

continuous random values that are distributed similarly to a random sample of unknown

origin. Determining a quantile function that adequately represents the random sample

constitutes a major portion of the method. Two spline formulations are considered.



The first (ref. 3) consists of a linear combination of cubic basis splines
(B-splines). The second (ref. 4) is the rational spline, which has a separate ten-
sion parameter for each subinterval defined by two knots. With a zero tension param-
eter, the rational spline reduces to a cubic spline; for infinite tension, the
rational spline becomes a linear function. Both spline formulations based on equally
spaced knots are fit in a least squares sense to the sample quantile function.

The usefulness of both spline formulations for representing the quantile func-
tion and generating samples is shown with samples obtained from standard distribu-
tions. The spline capabilities are further illustrated in an example using experi-
mental data. The spline results for both simulated and experimental data are
compared with the results from an analytic representation of the quantile function
developed by Ramberg and Schmeiser (refs. 5 and 6).

SYMBOLS

ai coefficient of Bi(p) in B-spline representation of quantile function

Bi(p) B-spline function centered at Pi

f(x) probability density function of x

F(x) cumulative distribution function of x

F(I0,9) F-distribution with 10 and 9 degrees of freedom

h distance between abscissa coordinates of knots, equal to I/k

Hi constant for interval i in rationa! spline

k number of subintervals in spline representations

Mr rth moment about zero

n number of points in sample

p probability, 0 ( p _ I

pj probability of jth ordered sample point, equal to (j - 0.5)/n

Pi abscissa of ith knot, equal to (i - 2)h

Q(p) quantile function

QB(p) B-spline representation of quantile function

QG(p) generalized lambda distribution representation of quantile function

QR(p) rational spline representation of quantile function

Qs(p) sample quantile function

t function of probability on ith subinterval, equal to I - u
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Ti rational spline tension parameter for ith subinterval

u function of probability on ith subinterval, equal to (Pi+1 - p)/h

x random variable

xi ordinate of ith knot

xj jth ordered sample value of x

11,12,13,14 parameters of generalized lambda distribution

Abbreviations:

CDF cumulative distribution function

GLD generalized lambda distribution

PDF probability density function

A prime indicates derivative with respect to the independent variable.

CONTINUOUS RANDOM VARIABLES

Let x be a real, continuous random variable from a probability distribution

having the cumulative distribution function (CDF) denoted by F(x). The CDF defines

the probability of obtaining a value less than or equal to x:

p = F(x) (I)

Because F(x) is a probability, it has the following properties:

I. 0 (F(x) < I

2. F(x) is a nondecreasing function of x: F(x I) ( F(x 2) if xI < x2

3. F(-_) = 0 and F(_) = I

The first derivative of F(x) is the probability density function (PDF) of the
distribution and is denoted by

f(x) = F'(X) (2)

Because F(x) has property 2, the PDF is a nonnegative function. For the normal

distribution, the PDF defines the familiar bell shape of the distribution.



Quantile Functions

The inverse function of the CDF is the quantile function Q(p). Hence, given a
probability p, the quantile function associates a value of the random variable

x = Q(p) (3)

with the probability. The major advantage to having a representation of the quantile
function is that Q(p) can be used to generate random values from the corresponding
distribution. This is accomplished by first generating a uniform random value p
and then using equation (3) to transform to a random value x. Equations (I) and (3)
can be combined to give

F[Q(p)] = p (4)

Differentiating both sides of equation (4) with respect to p and substituting
equations (2) and (3) yields

I
f(x) Q'(p) = 1 or f(x) = Q,(p----_ (5)

\

By evaluating equations (3) and (5) at various values of p and plotting f(x)
versus x, a graphical description of the PDF can be obtained from knowledge of only
the quantile function Q(p).

Calculation of Moments

The first few statistical moments of a distribution offer a way of character-
izing the distribution with a few parameters; the normal distribution is completely
defined by the first two central moments (mean and variance) (ref. 7). For many
distributions, the first four moments do not completely define the distribution, but
do provide good summary descriptions of the distribution. The moments are usually
calculated from the PDF.

The quantile function can also be used to calculate the moments of the distribu-
tion. In terms of the PDF, the rth moment about zero is classically defined as
(ref. 7)

00

M = xr f(x) dx (r = 1,2,3....) (6)r
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Substituting equations (3) and (5) into equation (6) and changing variables yields

1
Mr = [Q(p)]r dp (r = 1,2,3....) (7)

The first moment about zero is the mean; the first four moments can be used to
calculate the variance, skewness, and kurtosis ("peakedness") of the distribution
(ref. 7).

QUANTILE FUNCTION REPRESENTATIONS

The previous section has shown the usefulness of the quantile function for gen-
erating random values. For arbitrary random samples, the quantile function is not
usually known; therefore, an approximate representation of the quantile function is
needed.

Three representations of the quantile function are presented. The first two
representations are function approximation methods; the third is an analytic func-
tion, the generalized lambda distribution (GLD). The GLD was chosen as a basis of
comparison because it applies to a wide range of skewness and kurtosis values.

B-Spline Approximation

For the B-spline approximation, the interval 0 ( p _ I is first partitioned
into k subintervals of width h = I/k. This yields k + I boundary points (knots)
with coordinates (Pi,Bi(Pi)) at the following abscissa values: 0,h,2h.....I. The
B-spline centered at the knot Pi is defined in reference 3 as

I_[h3 3h2(hJp_ill
6h3 +

.3h(hIP_il)2 3(h-IP_il)3] (JP_if_hl
Bi(P) = (8)

I--(2h fP _i)3 (h<fP _iJ<2hl6h3

0 Otherwise

To fully define the B-spline approximation, two additional B-splines centered at
= -h and p = I + h are included in the model. Figure I illustrates this model
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for k = 4 (which gives h = 0.25 and k + 3 = 7 B-splines). The quantile func-
tion is approximated by

k+3

QB(p) = _ aiBi(p) (9)
i=I

where Pi = (i - 2)h for i = 1,2,...,k+3 and ai are the coefficients to be
determined. Figure I shows that for any value of p, equation (9) contains only four
nonzero terms on the right-hand side; thus equation (9) reduces to

s+2

QB(p) = _ aiBi(P) (Ps _ p < Ps+1 ) (10)
i=s-1

For example, for k = 4 and p = 0.4, figure I shows that s = 3 in equation (10).
In this study, k was 4, 8, or 16, which yield models with 7, 11, or 19 B-splines,
respectively.

Rational Spline Approximation

The rational spline is a cubic function defined between two knots so that the
function and first two derivatives are continuous at the knots. Associated with each

knot subinterval is a distinct tension parameter Ti that allows the curvature to
range from that of a cubic spline to that of a linear function. The rational spline
was originally derived by Spath (ref. 4); the formulation used to represent the
quantile function is derived in reference 8 and is defined by

I3 u>u _,,+ -
QR(p) = uxi + Hi Tit + I l txi+1

IT t3 _ (Pi ( p ( Pi+1)

\
+ Hiiu + I / _''i+I

(11)

where

h2
Hi =

and u = (Pi+1 - p)/h and t = I - u. Equation (11) defines a rational spline as a

function of the ordinates (xi and Xi+l ) and second derivatives (x_' and x" ) ofl i+1
the function at these knots.
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From equation (11), it can be seen that with no tension (Ti = 0) the rational
spline is a cubic spline; as Ti becomes large, the function tends to the line join-
ing the two knots. The rational spline is well-defined over the entire subinterval
as long as Ti > -I. For each subinterval, the tension can be adjusted manually or
by means of an automated algorithm described in reference 9. That algorithm incre-
ments the tension on a given subinterval until the rational spline deviates from the
line joining the knots by no more than a user-specified amount.

Generalized Lambda Distribution

The analytic function representation of the quantile function used in this study
is the generalized lambda distribution (GLD) developed by Ramberg and Schmeiser
(refs. 5 and 6). The GLD quantile function has the form

13 14

QG(p ) = 11 + p - (I -p)
12 (0 ( p (I) (12)

Specifying the four lambda parameters defines the mean, variance, skewness, and
kurtosis of the distribution through the use of equation (7); analytic expressions
for the moments are given in reference 6. Symmetric distributions are specified by
setting 13 = 14 .

The GLD was chosen for comparison in this study for two reasons. First, the GLD

is defined for a wide range of skewness and kurtosis values. Specifically, the kur-

tosis can range from 1.83 to 22.21 for a symmetric (zero skewness) distribution and

from 1.84 to 73.76 if the absolute value of the skewness lies in the interva! from

0.001 to 4.646. Note the limitation that the GLD is not defined for all combinations

of skewness and kurtosis values in these ranges. Second, tables are given in refer-

ences 5 and 6 for finding approximate values of 13 and 14 corresponding to given
skewness and kurtosis values. The two remaining lambda parameters can be calculated

from the given mean and variance and the tabulated values of 13 and 14 through
the use of equations in reference 6.

FITTING METHODS

The methods used to fit the three quantile representations to a sample are
described in this section. The three representations differ sufficiently to require
a different method for each representation.

Let xj (j = 1,2....,n) be a sample of random values from an unknown distribu-

tion ordered from smallest (Xl) to largest (Xn). Since both spline representations
are function approximation, or curve fitting, approaches to approximating the

quantile function, it is necessary to define the abscissa, pj (j = 1,2,..°,n),
corresponding to the random values in the sample. The resulting relationship,
xj = Qs(Pj), is called the sample quantile function. Standard practice is to assume
that the probabilities pj are uniformly distributed for 0 ( p ( I (ref. 10);



however, there is no standard definition for the probabilities themselves. For this
study, they are defined to be

j - 0.5
(j = 1,2,...,n) (13)Pj = n

This definition places the p5 symmetrically about the midpoint, 0.5. Since Pl > 0

and Pn < I, equation (13) allows for the possible existence of values in the distri-

bution smaller than x I and larger than Xn; however, equation (13) also has the

disadvantage that the tail areas to the left of Pl and to the right of Pn are not
defined by the sample. In the terminology of function approximation, random values

in the tails must be evaluated by extrapolation.

B-Spline Fit

The B-spline approximation is obtained by a linear least squares fit of QB(p)

to the sample quantile function. This requires finding the coefficients ai

(i = 1,2 ..... k+3) for k + 3 < n which minimize

n n [ s+2 )12
[Qs(Pj) - QB(Pj)]2 = _ xj - _ aiBi(Pj (14)

j=1 9=I i=s-1

where Ps ( Pj < Ps+1" The method of minimizing equation (14) can be found in any
text on least squares or regression analysis, such as reference 11.

Rational Spline Fit

The rational spline fit to the sample quantile function is similar to the

B-spline fit. For the rational spline approximation, the 2(k + I) unknown param-

eters in equation (11) are xi and x_ (i = 1,2, .... k+1); however, solving for the
abscissa and second derivative of the quantile function at each knot does not ensure

that the first derivative is continuous at the knot. This continuity requires that

the first derivative of the rational spline on the left side of an interior knot and

the first derivative of the rational spline on the right side of the same interior

knot both have the same value at that knot.

Therefore, using least squares, the rational spline fit to the sample quantile
function consists of minimizing

n

[Qs(Pj) - QR(Pj)]2
j=1



with respect to xi and x[' (i = 1,2,...,k+I), subject to the first derivative ofI-

QR(p) being continuous at Pi (i = 2,3 .... ,k). The solution to this constrained
least squares problem is given in reference 8.

Generalized Lambda Distribution Fit

The parameters of the GLD are determined from sample values of the mean, vari-

ance, skewness, and kurtosis. Since these four quantities summarize the character-

istics of the sample, details of the distribution of the sample are lost when fitting

the GLD. However, the GLD does maintain the location and general shape of the sample
distribution.

As indicated previously, two of the GLD parameters (I3 and 14 ) can be deter-
mined from the sample skewness and kurtosis through the use of tables in reference 6.

However, the sample skewness and kurtosis may not occur in the tables in many

instances. In this situation, the Levenberg-Marquardt algorithm (ref. 12) is used to

find the two parameter values that best fit the GLD skewness and kurtosis equations

to the sample values. Since the Levenberg-Marquardt algorithm is a nonlinear tech-

nique, starting values of the parameters are required; these can be obtained from the

tables in reference 6 by finding tabulated skewness and kurtosis values close to the

sample values and using the corresponding parameter values. After the parameters

13 and 14 are determined, the remaining two parameters can be calculated with the
sample mean and variance from equations given in reference 6.

RANDOM NUMBER GENERATION

The major purpose of this research is to develop a method for generating

continuous random values which are distributed similarly to a random sample of

unknown origin. A quantile function that adequately represents the random sample

constitutes a major portion of the method.

Since the domain of the quantile function is the unit interval, the quantile

function transforms uniformly distributed random values in the interval 0 _ p _ I

into the range of the distribution of interest. This approach to generating random

values requires a standard method for generating uniform random values in the unit

interval. For the study presented here, the uniformly distributed random values were

generated using the computer subroutine GGUBS of reference 13.

RESULTS FOR KNOWN DISTRIBUTIONS

In this section, the B-spline, rational spline, and GLD representations are

compared with each other for quantile functions of samples generated from known

probability distributions. The use of known distributions allows the approximated

quantile functions and PDF's to be compared with the actual quantile function and PDF

of the underlying population distribution. Moments of random samples generated by

the approximations are also compared.

Fitting the Distributions

The representations are compared in two ways. First, the quantile functions and
PDF's are graphically compared with the actual functions. This provides a global



view of the trends of these functions and indicates intervals in which the fits are
best. A graphical comparison is also relatively independent of the fitting method,
since neither sums of squared residuals nor statistical moments are being compared.

Second, the first four moments of the sample and the approximating distributions
are compared. Since the GLD is fit to the sample moments, it appears most favorable
in this comparison. However, the first four moments do offer a second way of com-
paring the global fit of the representations and also provide a simple statistical
description of a probability distribution. For the two spline approximations, the
moments are calculated by numerically integrating equation (7) for r = 1,2,3,4 with
Simpson's rule. The moments of the GLD are calculated from equations given in
reference 6.

Known distributions.- Three continuous distributions are considered in this
study. First, the standard normal distribution, which has a mean of 0 and variance
of I is chosen since it is symmetric and frequently used in research. Second, a
mixture of normal distributions, in which two-thirds of the sample is from a standard
normal distribution and one-third is from a normal distribution having mean of 4 and
variance of I, is studied. This distribution was chosen because it has two modes and

is asymmetric. Finally, an F-distribution with 10 and 9 degrees of freedom (F(I0,9))
is considered since it is unimodal but asymmetric with large skewness and kurtosis.
These three distributions are representative of the range of sample distributions
encountered in experimental studies. Samples from the three distributions were
generated using the computer software described in reference 13. All results pre-
sented in this section and the next were obtained on the Control Data Corporation
(CDC) CYBER 175 computers at Langley Research Center.

Choosing the number of knots.- Before proceeding with the comparison of the
three representations of the distributions, an issue to be settled is the number of

knots required to yield a good spline approximation. This question is answered by
comparing the B-spline approximations of samples of size 25 and 100 for 7, 11, and
19 knots, since the choice of the number of knots is the only manner in which the
B-spline approximations of a sample quantile can differ. Table I presents a com-
parison of these three B-spline representations for a sample from a standard normal
distribution. For a sample of size 25, the 19-knot case is not considered because
the number of unknowns is close to the number of data points. The table indicates
that increasing the number of knots from 7 to 11 or 19 does not significantly improve
the comparison between the calculated moments and the moments of the sample. In
fact, in most instances, the accuracy of the moments degrades as the number of knots
increases. Comparison of the results for the two samples indicates that sample size
is more important than the number of knots; the fit is better for the large sample
size. Figures 2 and 3 illustrate this degradation as the number of knots increases
from 7 to 19. As the number of knots increases, the quantile approximation tends to
become rough because it is fitting the random error in the sample. Figures 4 and 5
illustrate the same phenomenon for the PDF derived from the approximation. Figure 5
also illustrates discontinuities that may occur in the PDF at knot locations. These
spikes occur apparently because the PDF is the result of plotting the quantile
function versus the reciprocal of the first derivative.

The effect of the number of knots for the B-spline fit was also tested on the
mixture of normal distributions and the F-distribution with the result in each case
that the best fit was obtained for seven knots. Hence, in all the results to follow,
seven knots (at -0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25) were used for the B-spline
fits. Analogously, the rational spline is fit with the five knots at 0, 0.25, 0.50,
0.75, 1.00.
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Fits to standard normal distribution.- Results for the standard normal distribu-
tion are shown in figures 6 to 9 and table II. For n = 25, figures 6 and 7 indicate
that the representations are all skewed because the small sample is skewed. The GLD
fit to the PDF (fig. 7) is slightly better than the spline fits. Table II indicates
that the GLD exactly fits the moments of the sample, as expected, with the rational
spline fit second best overall. For the sample of size 100, figure 8 indicates that
all three fits are about equally good. The GLD representation of the PDF shown in
figure 9 is excellent. The two spline approximations show the basic shape of the
normal PDF with the B-spline fit closer near the peak and the rational spline fit
closer in the tails. Note the "shoulders" on the left of the rational spline fit,
which result from discontinuities occurring at the knots. For the larger sample
size, table II shows the GLD fit to the moments to be exact and the rational spline
fit to be closer overall than the B-spline fit. For each of the three generated
samples and the experimental data presented later, the rational spline tension was
adjusted in order to improve the smoothness of the PDF without appreciably degrading
the fit of the quantile approximation.

Fits to mixture of normal distributions.- Results for the mixture of normal
distributions are presented in figures 10 to 13 and table III. For the small sample
size, all the quantile fits are smooth and fairly good (fig. 10). Although the
Levenberg-Marquardt algorithm converged to the GLD fit, the third and fourth lambda
parameters are larger than specified in reference 6. Furthermore, the GLD represen-
tation of the PDF tends to oversmooth by removing one of the modes (fig. 11), which
illustrates the inability of the GLD to accurately represent multimodal distribu-
tions. The spline approximations are very similar to each other. Table III again
shows the GLD fit to be exact and the rational spline fit to be very close to the
sample moments. The B-spline fit is not as close, particularly to the skewness and
kurtosis. For the sample of size 100, the fits illustrated in figure 12 are fairly
close. The GLD representation of the PDF (fig. 13) is poor, clearly indicating that
the GLD is inaccurate for bimodal distributions. In this case, the Levenberg-
Marquardt algorithm could not converge on the GLD any closer than shown in table III;
the fourth lambda parameter was much larger than allowed by reference 6. This poor
fit is due either to the bimodal nature of the distribution or to the larger skew-
ness. The spline approximations suggest the second peak (fig. 13) but still show
shoulders at two of the knots. The rational spline fit is slightly better than the
B-spline fit.

Fits to F-distribution.- The final example uses samples from the F-distribution
with 10 and 9 degrees of freedom. For the sample of size 25, figures 14 and 15 show
that the GLD does not fit the sample quantile function, although table IV indicates
an exact fit. Examination of the lambda parameters, however, shows them to be larger
than the allowable values (ref. 6). The poor quality of this fit may be due to the
large kurtosis of this distribution. The spline fits to the quantile function
(fig. 14 and table IV) are fairly close, but fits to the PDF are poor (fig. 15),
apparently because of the small size of the sample. For the larger sample size
(n = 100), the GLD deviates from the sample quantile function in the left tail and is
fairly close elsewhere (fig. 16). Figure 17 shows that the GLD representation of the
distribution extends too far to the left. Although table IV indicates an exact fit,
the lambda parameters are too negative and violate the mathematical theory of the GLD
(ref. 6). The difficulty appears to be the large kurtosis or a skewness-kurtosis
combination that is not feasible for the GLD. Both spline fits to the sample quan-
tile (fig. 16) are close. The B-spline fit to the PDF (fig. 17) has a modal value
that is too large and two pointed shoulders. The rational spline approximation of
the PDF is closer with a modal value that is not excessively large. All three PDF
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representations are shifted to the right because of the particular sample. The
rational spline moments (table IV) are good approximations of the sample moments.

Generating Random Values

In this section, the three representations are examined by comparing the moments
of random samples generated by each representation. Using the parameters estimated
from the larger samples (n = 100) in the previous section, 1000 samples each of
sizes 25 and 100 were generated. The first four mean moments of the 1000 samples
were calculated and compared in order to determine the tendency of each method to
reproduce the moments of the original sample. The procedure is outlined as follows:

I. A uniform random number generator (ref. 13) was used to generate 1000
"seeds."

2. Each seed was used by the same generator to produce a sample of n uniform
random numbers.

3. The n uniform random numbers were transformed by one of the three quantile
representations to the interval of interest.

4. The first four moments (mean, variance, skewness, and kurtosis) of the
transformed sample were calculated.

5. The mean values of the 1000 sets of moments were calculated.

For the results presented here, the two spline methods required at least one-third
less computer time than the GLD to generate a random number on a CYBER 175 computer.

Table V presents the results of the quantile representations of the standard
normal distribution. For both sample sizes, all the mean moments of the GLD are
closest to the sample moments. Except for both the variance and the mean in the
small sample case, the rational spline moments are closer than those of the B-spline.

On the other hand, the superiority of one particular method of generating
samples from the mixture of normal distributions (table VI) is less obvious. Overall
the B-spline moments appear to be slightly closer than the moments of the other meth-
ods. Since the mean and variance of a sample can be adjusted to any desired values
by a linear transformation, the most critical moments for comparison are the skewness
and kurtosis. With the exception of the kurtosis for the small sample, the B-spline
and rational spline methods produce samples having mean skewness and kurtosis values
closer to the sample moments than does the GLD. Therefore, on the basis of the com-
parison of the two highest moments, the two spline methods are superior to the GLD
for this example. Much of this superiority can be attributed to the inability of the
GLD to fit a bimodal distribution as noted previously.

Although the estimated values of the GLD parameters for the sample of size 100
from the F-distribution are more negative than prescribed in reference 6, random
samples were generated with the GLD for comparison purposes. Table VII shows that
the mean skewness and kurtosis of the GLD samples are especially in error. However,
the mean moments from the two spline approximations for the larger sample size are
very good. For the smaller sample size, the B-spline moments are slightly worse than
for the larger sample, and the rational spline moments have decreased considerably.
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SURFACE WIND EXAMPLE

This example compares the three representations when applied to experimental
data. The data consist of the two horizontal components (east-west and north-south)
of surface wind velocities measured in meters per second. For purposes of illustra-
tion, the wind components are treated as two independent samples of wind velocities.
Before analyzing the data, each sample was ordered from smallest to largest in order
to associate the sample values with the corresponding probabilities (eq. (13)) which
define the sample quantile function.

Table VIII and figures 18 to 21 compare the fit of the three representations to
the samples. Figures 18 and 20 indicate that the three representations generally fit
the sample quantile function quite well. The only exception appears to be the GLD
fit to the north-south component (fig. 20) for p < 0.3, which diverges somewhat.
Table VIII shows the GLD fits to the moments to be exact. The rational spline fits
are somewhat worse than the GLD fits and generally better than the B-spline fits.

In figures 19 and 21, the PDF representations are plotted along with the sample
histogram expressed as a relative frequency. The histograms were constructed by
subdividing the range of the east-west and north-south samples into 11 and 14 subin-
tervals, respectively. Hence, the histogram is a rough approximation of the sample
PDF. The peaks of the three representations are located near the histogram peaks.
In each case, the unimodal shape of the GLD PDF tends to smooth the smaller peaks in
the histogram. The spline PDF's again have shoulders, which may be due to discon-
tinuities in the plots or, because of their location, may actually reflect better
fits to the sample distribution. Clearly, the rational spline PDF appears to be
better behaved than the B-spline PDF. Because of the crude nature of these histo-
grams and the behavior of the spline PDF's on the previously generated samples, it is
not clear whether the GLD or the rational spline PDF is more representative of the
sample PDF.

Samples of the two wind components were generated using the parameters for the
three representations obtained in fitting the two samples. Table IX presents the
mean moments of 1000 generated samples of size 100 Ifor each representation. With the
exception of the kurtosis of the distribution of north-south components, the GLD
moments are closer to the original sample moments than are the moments of the two
spline approximations. For this particular application, the two spline approxima-
tions generate samples that are about equally good. Apparently, the GLD is superior
in this application because the skewness and kurtosis values are not excessively
large and the combinations lie in the range of values tabulated in reference 6.

CONCLUDING REMARKS

The research presented here has examined the feasibility of using B-spline and
rational spline functions to approximate the quantile function of a random sample.
The spline approximations provide means not only for representing the distribution of
the sample but also for generating random values having statistical properties like
those of the original sample.

Included in this study was a comparison of the spline approximations with the
generalized lambda distribution (GLD), an analytic representation of the distribu-
tion. Comparison of these representations of samples from three standard distribu-
tions indicate that the GLD provides a better fit if the distribution is nearly
symmetric and unimodal or the combination of skewness and kurtosis are reasonably

13



close to values tabulated for the GLD. In contrast, since the spline functions can
be fit to essentially any set of data, the spline approximations are better for
samples from skewed or multimodal distributions. Furthermore, the spline approxima-
tions are more easily fit by linear least squares, whereas the GLD requires the use
of a nonlinear method which may not converge. However the spline approximations of
the probability density function are generally inadequate, since they often exhibit
false peaks at values corresponding to spline knots.

As methods of generating random values, the two spline approximations were at
least one-third faster than the GLD. The ability of each method to produce random
values having statistical properties similar to the original sample is directly
related to how well the approximation fits the sample.

The rational spline is recommended as an alternative to the GLD for several
reasons. First, it can be fit to an arbitrary random sample. The fitting method for
the rational spline uses each individual sample value, rather than summary statis-
tics. The distinct tension parameter associated with each knot interval provides a
flexibility not available with other methods; with all the tension parameters set to
zero, the rational spline reduces to a cubic spline. Finally, the rational spline
can generate samples faster than the GLD.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
October 16, 1984
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TABLE I.- COMPARISON OF MOMENTS FOR B-SPLINE FITS TO STANDARD
NORMAL RANDOM SAMPLES

Mean Variance Skewness Kurtosis

Population 0 1.0 0 3.0

Sample size n = 25

Sample -0.436 0.604 0.273 2.221
7 B-splines -.498 .603 .183 2.381

11 B-splines -.498 .607 .187 2.318

Sample size n = 100

Sample 0.012 0.991 0.024 2.848
7 B-splines -.009 .989 -.017 2.784
11 B-splines -.012 1.002 -.076 2.968
19 B-splines -.013 .999 -.046 2.969
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TABLE II.- COMPARISON OF MOMENTS CALCULATED FROM THE THREE FITS
TO STANDARD NORMAL RANDOM SAMPLES

Mean Variance Skewness Kurtosis

Population 0 1.0 0 3.0

Sample size n = 25

Sample -0.436 0.604 0.273 2.221
7 B-splines -.498 .603 .183 2.381
Rational splinea -.438 .606 .248 2.246
GLD -.436 .604 .273 2.221

Sample size n = 100

Sample 0.012 .991 0.024 2.848
7 B-splines -.009 .989 -.017 2.784
Rational splinea .013 .998 .035 2.895
GLD .012 .991 .024 2.848

a5 knots.

TABLE III.- COMPARISON OF MOMENTS CALCULATED FROM THE THREE FITS TO
RANDOM SAMPLES FROM MIXTURE OF NORMAL DISTRIBUTIONS

Mean Variance Skewness Kurtosis

Population 1.333 4.556 0.488 2.086

Sample size n = 25

Sample 1.182 3.960 0.180 2.050
7 B-splines 1.026 3.976 .103 2.258
Rational splinea 1.182 3.955 .172 2.063
GLD 1.182 3.960 .180 2.050

Sample size n = 100

Sample 1.161 4.548 0.677 2.395
7 B-splines 1.122 4.457 .685 2.472
Rational splinea 1.163 4.562 .683 2.474
GLD 1.161 4.548 .583 2.445

a5 knots.
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TABLE IV.- COMPARISON OF MOMENTS CALCULATED FROM THE THREE FITS TO RANDOM

SAMPLES FROM F(10,9)-DISTRIBUTION

Mean Variance Skewness Kurtosis

Population 1.286 1.124 5.203 127.32

Sample size n = 25

Sample 1.355 1.563 3.178 13.934

7 B-splines 1.246 1.407 3.615 16.580

Rational spline a 1.374 1.897 4.010 23.453

GLD 1.355 1.563 3.178 13.935

Sample size n = 100

Sample 1.287 1.411 2.544 9.866

7 B-splines 1.287 1.639 3.189 13.868

Rational spline a 1.287 1.407 2.488 9.470

GLD 1.287 1.411 2.544 9.866

a5 knots

TABLE V.- COMPARISON OF MEAN MOMENTS FOR 1000 SAMPLES SIMULATED FROM THE THREE

FITS TO A SAMPLE OF SIZE 100 FROM THE STANDARD NORMAL DISTRIBUTION

Mean Variance Skewness Kurtosis

Sample (n = 100) 0.012 0.991 0.024 2.848

Sample size n = 25

Simulations:

7 B-splines -0.016 1.144 -0.137 2.341

Rational spline a -.020 1.161 .014 2.527
GLD .019 .942 .031 2.711

Sample size n = 100

Simulations:

7 B-splines -0.036 1.022 -0.101 2.511

Rational spline a -.028 1.036 -.071 2.710

GLD .012 .987 .014 2.834

a5 knots.
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TABLE VI.- COMPARISON OF MEAN MOMENTS FOR 1000 SAMPLES SIMULATED FROM THE THREE
FITS TO A SAMPLE OF SIZE 100 FROM THE MIXTURE OF NORMAL DISTRIBUTIONS

Mean Variance Skewness Kurtosis

Sample (n = 100) 1.161 4.548 0.677 2.395

Sample size n = 25

Simulations:

7 B-splines 0.913 4.553 0.654 2.462
Rational splinea 0.932 4.645 .610 2.468
GLD 1.148 4.340 .548 2.454

Sample size n = 100

Simulations:
7 B-splines 1.106 4.522 0.656 2.387
Rational splinea 1.103 4.553 .650 2.426
GLD 1.163 4.498 .568 2.443

a5 knots.

TABLE VII.- COMPARISON OF MEAN MOMENTS FOR 1000 SAMPLES SIMULATED FROM THE

THREE FITS TO A SAMPLE OF SIZE 100 FROM THE F(10,9)-DISTRIBUTION

Mean Variance Skewness Kurtosis

Sample (n = 100) 1.287 1.411 2.544 9.866

Sample size n = 25

Simulations:

7 B-splines 1.243 1.291 2.408 9.247
Rational splinea 1.202 1.280 1.922 6.860
GLD 1.292 1.386 1.464 5.125

Sample size n = 100

Simulations:

7 B-splines 1.264 1.366 2.429 9.345
Rational splinea 1.264 1.367 2.439 9.446
GLD 1.290 1.403 1.860 7.606

a5 knots.
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TABLE VIII.- COMPARISON OF MOMENTS CALCULATED FROM THE THREE FITS TO
EXPERIMENTAL WIND SAMPLES

Mean Variance Skewness Kurtosis

East-west wind component

Sample (n = 100) -1.101 4.976 -0.366 2.515
7 B-splines -1.101 4.956 -.348 2.426
Rational splinea -1.101 4.988 -.362 2.539
GLD -1.101 4.976 -.366 2.515

North-south wind component

Sample (n = 100) -0.907 23.485 -0.608 4.042
7 B-splines -.908 23.290 -.648 4.000
Rational splinea -.904 23.516 -.584 4.189
GLD -.907 23.485 -.608 4.042

a5 knots.

TABLE IX.- COMPARISON OF MEAN MOMENTS FOR 1000 SAMPLES OF SIZE 100
SIMULATED FROM THE THREE FITS TO WIND SAMPLES

Mean Variance Skewness Kurtosis

East-west wind component

Sample (n = 100) -1.101 4.976 -0.366 2.515
7 B-splines -1.194 5.241 -.379 2.436
Rational splinea -1.200 5.323 -.426 2.581
GLD -1.112 4.961 -.359 2.504

North-south wind component

Sample (n = 100) -0.907 23.485 -0.608 4.042
7 B-splines -1.157 25.854 -.756 4.013
Rational splinea -1.157 25.975 -.733 4.105
GLD -.920 23.157 -.572 3.858

a5knots.
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