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SUMMARY

The theory of sound propagation over randomly irregular,

nominally plane terrain of finite impedance is discussed. The

analysis is an extension of the theory of coherent scatter

originally proposed by Biot [28] for an irregular rigid surface.

It combines Biot's approach, wherein the surface irregularities

are modeled by a homogeneous distribution of hemispherical

"bosses," with more conventional analyses in which the ground is

modeled as a smooth plane of finite impedance. At sufficiently

low frequencies it is shown that the interaction of the surface

irregularities with the nearfield of a ground based source leads

to the production of "surface waves," which are effective in

penetrating the ground shadow zone predicted for a smooth surface

of the same impedance.
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LIST OF PRINCIPAL SYMBOLS

a hemispherical "boss" radius

c speed of sound

f frequency (Hz)

F excess attenuation function, equation (3.9)

G Green's function

h see Figure 1

kO u/c

£ minimum distance between neighboring bosses

n iko/Z

n* see (2.28), (2.31)

N mean number of bosses per unit ground area

w numerical distance, equation (3.7)

Xm (xm , 0, xm ), center of mth boss1 3

Z R + iX, ground impedance

K flow resistivity of ground

see equation (2.29)

elevation of ground from x2= 0

o fractional ground area covered by bosses

p source-observer distance along ground

velocity potential

= 2_f radian frequency
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I. INTRODUCTION

A plane sound wave is incident on a flat surface of finite

impedance. As the angle of incidence approaches grazing the

amplitude of the reflected wave tends to that of the incident

wav e , but their phases ultimately differ by 180 ° [i]. Thus a

plane acoustic wave cannot propagate parallel to the surface,

and, in particular, this implies that most of the surface would

be in a "shadow zone" of an acoustic source located on or very

close to the surface. The intensity of the sound in this shadow

zone is very much less than it would be at the same distance from

the source had the surface been an ideal, rigid reflector. The

point source problem has been studied extensively in the

literature (see, e.g., the reviews [2-4]), and is the acoustic

analogue of the problem of radiation from an electromagnetic

dipole situated above a conducting boundary [5-7]. Detailed

analyses for an acoustic point source are given in references [8-

17].

These studies indicate that the shadow zone is penetrated by

a "ground wave" whose properties depend on the surface impedance

characteristics. Under certain conditions the ground wave

includes a trapped surface wave which propagates subsonically in

the acoustic medium just above the surface. The amplitude of

this wave decays inversely as the square root of the propagation

distance r, say, due to cylindrical spreading from the source,

and exponentially with r due to absorption by the surface. If

the absorption is sufficiently small, however, there can be a

considerable interval in r within the shadow zone wherein the

acoustic field exceeds that in free space at the same distance

from the source (i.e., the surface wave provides a temporary

means of negative damping).



There is confusion and controversy in the literature

regarding the role of the surface wave component of the ground

wave [14,16]. This has arisen because account has not always

been taken of changes in the asymptotic formula for the ground

wave function F(w) in different regions of the w-plane, w being

the complex numerical distance (see Sec. 3). Accordingly,

experimental studies often involve conflicting interpretations of

the measured sound pressure levels (see e.g., refs [2,3,18-22]).

The surface wave phenomenon has recently been discussed by

Tolstoy [23-27] in connection with the propagation of sound over

a randomly irregular surface. This work is a development of an

earlier treatment of the problem due to Blot [28-30], involving

propagation over a rigid surface formed by a homogeneous

distribution of hemispherical bosses on a plane. The surface

diffracted sound comprises a coherent component (obtained by

averaging with respect to an ensemble of realizations of the

distribution of bosses) and an incoherent component (having zero

mean). When the acoustic wavelength is large relative to the

spacing of the bosses, the incoherent field is small, and may be

neglected. In these circumstances the coherent radiation is

found to satisfy an impedance condition on a mean, smoothed

plane, an important property of which is that it leads to the

prediction of a coherent surface wave. Since the composite

irregular surface is rigid, however, this wave is not attenuated

by absorption at the boundary, although it must ultimately decay

due to scattering into incoherent waves. At low frequencies the

influence of such scattering is important only over very large

propagation distances. In consequence there is effectively no

surface shadow zone; on the contrary the surface pressure tends

to be enhanced. Tolstoy [24] has demonstrated theoretically that

the surface wave can also eliminate shadowing caused by a

vertically decreasing sound speed profile (which tends to refract

waves away from the surface).



Experiments performed by Medwin et al [31], using an

acoustically rigid irregular surface, confirm the presence of the

surface wave, and are in excellent detailed agreement with the

coherent wave theory. It is possible that this effect will also

be significant for propagation over homogeneous irregular ground

cover of finite impedance, and that there may exist ranges in

frequency and propagation distance within which the surface wave

will provide a degree of negative damping.

In this paper the Biot/Tolstoy theory is extended to examine

the interaction of sound with an irregular surface of finite

normal impedance. Attention is given, in particular, to the

problem of long range propagation over irregular terrain when

both the source and observer are on or close to the ground, and

when, in addition, the relevant acoustic wavelengths are large

relative to the scale of the surface irregularities. The latter

approximation is necessary to make the analysis tractable, but

may otherwise be justified on the basis that sound whose

wavelength is comparable to, or smaller than, the scale of the

surface irregularities, will be rapidly dissipated by surface

scattering. Indeed, according to Piercy et al [2], for broadband

noise sources and propagation distances of a mile or more, the

high frequencies are rapidly attenuated by atmospheric

absorption, midfrequencies by ground shadowing, and the main

contribution to the measured sound pressure level is from surface

waves of frequencies f _ 200 Hz.

In Section 2 of this paper the Blot/Tolstoy boundary

condition for the coherent field is determined for an irregular,

locally reacting surface. The analysis is restricted to one-and

two-dimensional surface roughness elements modeled respectively

by a distribution of parallel cylinders of semi-circular cross-

section, and hemispherical bosses. There is, of course, no

necessity to limit consideration to such specific roughness



shapes, but more general formulations of the theory (c.f. [23])

are unlikely to alter the principal conclusions of this paper,

provided the distribution of surface irregularities is

sufficiently homogeneous. The boundary condition is used to

study propagation from a ground-sited point source to an observer

also positioned on the ground (Sec. 3), making use of empirical

estimates of the ground normal impedance. In particular the

influence of surface roughness on the ground shadow zone is

examined.
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2. COHERENT ACOUSTIC BOUNDARY CONDITION AT A ROUGH SURFACE OF

FINITE NORMAL IMPEDANCE

Consider the propagation of sound in the region

x2>_(x _) (a= 1,3) of a rectangular coordinate system

xl,x2,x3, where x 2 = _(x ) is the rough surface formed by a

distribution of hemispherical bosses (N per unit area) of radius

a over the plane x 2 = 0 (see Figure i). The length £ ~ I/_N is

taken to characterize the spacing of the bosses, and it is
-i_t

assumed that £>>a. The sound has time harmonic dependence e

(which is suppressed in the following), and satisfies the

Helmholtz equation

(V2 + k2)#o = 0 , x2>_(x(x) , (2.1)

€ being the velocity potential, ko = m/c >0, and c is the speed

of sound. Greek suffixes, e, B, etc, range over the i, 3

directions only.

On the irregular surface the potential satisfies

_--_--+ n# = 0 , x 2 = _(x ) , (2.2)ax
n

where x is a local coordinate normal to the surface and directed
n

into the acoustic medium, and where

n : iko/Z, (2.3)

and Z = R + iX (2.4)

is the specific normal impedance, assumed to depend on frequency

alone. Attention is confined to sound of sufficiently low

frequency that

5



1 a << 1 (2.5)~ kO

The magnitude of Z in terrestrial applications is discussed in

Section 3.

Introduce a control surface S : x 2 = h (h> a), just above

the irregular boundary, and consider the diffraction of an

incident wave denoted by €I. In x2> h the total field can be

expressed in the form

_(x) = _i(x) + @R(X) + _ _y_2(Z) G(x,_) dYldY 3 , (2.6)S

the surface integral being taken over S. In (2.6) _R(X) is the

wave that would be specularly reflected from a rigid plane

coinciding with S, and the Green's function G(_,_) has outgoing

wave behavior in x2> h, satisfies aG/ay2 = 0 on S, and is given

by

ikoIx-zl ikoIx-l
-I e e

G(x,y.) = _ _ + , (2.7)- Ix-£1

where _ = (Yl, -Y2 + 2h, Y3)-

We now derive the leading order approximation to the

coherent (average) form of (2.6).

The integration in (2.6) may be expressed as the sum of

integrals over a sequence of non-overlapping area elements Sm of

S. Each Sm covers precisely one hemispherical boss, and has a

diameter of the same order as the separation distance £ .

Let Xm - (x m , 0, x ) denote the position of the center of the1 m3

boss in Sm. In the neighborhood of xm the coherent field

_(x), say, can be expressed in the form

6



8_ Xm )
'_(x) = '_(x,X,rn) + Cxj -Xmj) --_'_-(

i -x )(x -x ) _2_
+ 2(Xl ml j m3 _xi_-xj(Xm) + "'" (2.8)

(no summation with respect to the repeated suffix m). It follows

from (2.2) - (2.5) that

8___~ k _ ; ___~ k2a_ , (2.9)
_x o _x2 oe

and that the final term on the right of (2.8) ~0(ko£)2 _ , at

most.

This ordering suggests the following representation

of _(x) in Sm:

_(x) = _(xm) + @l(X) + @2(x) + ..., (2.10)

where

-X )Ii + a3 _ xm) (2 ii)
@l(x) = (xe me 21x-XmlJ)_xe(

~ O(ko_)_

and @2 contains all remaining terms ~0(ko£)2_. Observe that,

correct to 0(ko£)2, this representation implies that

V2@I = 0 ; V2@2 = -k_(Xm) , (2.12)

and that _#i/_xn = 0 on the surface Smo comprising the portion of

the plane x2 = 0 and hemispherical boss in Sm (see Figure i).

Hence, to the same approximation, (2.2) becomes in Sm:



_€2

= -n_(Xma) , x2 = _(x ) . (2 13)8xn a •

Next, for an observer at x at a large distance

from _ in Sm, (2.7) becomes

8G X,Xm ) +G(x,_) = G(X, Xm ) + (y -Xme)3_____(~ ..., (2.14)
me

where each term in this expansion is 0(ko£) relative to the
preceeding one.

The expansions (2.10), (2.14) are now used to determine the

principal contribution from Sm to the integral in (2.6).

Consider first that arising from €i(_). Since £>>a, one finds,

correct to the retention of terms of order (koa)2 ,

8¢i
--(_)G (_,_)dY idY 3

s 8y2
m

3€i 8G

= _ (Ye-Xme) _--_2(Z)_-_--(x,X_m)dyldY3
Sm me ~

= __a3 8_ (xm 8G X,Xm)8x )_--_--( ' (2.15)
me me

To the same order of approximation, the net coherent contribution

to the surface integral in (2.6) from all terms of this type can
be set in the form

3€i

mZ _S _Y G(x'_)dYldY3~ = S_ oa _82_ G(x,_)dy idY3 , (2.16)m

where

o = Nna 2 (2.17)
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is the mean fractional surface area of the plane x2= 0 covered by

the hemispheres.

Similarly, making use of the divergence theorem, one obtains

a_2 8_2

S _--Y-2(_)G(x,_)~ dYldY3 _ S_ _Y2 (_)G(x'X_m)dYldY3~
m m

= G(X'_m) IV_mV2@2d3_ + C_m V#2 " d_

+ _ V_2 • d£ _ (2.18)

Smo

where V m is the volumetric region bounded by Sm, Smo (see Figure

i) and laterally by the surface Cm, and d_ is the surface element

directed into Vm.

The individual coherent components of the integrals in the

brace brackets of (2.18) are evaluated as follows:

V2_2d3_ =-k 2 "$(Xm)lh-_-_) _ dYldY 3 ; (2.19)
v s
m m

-_2_'Xm)h _ dYldY ; (2 20)- Y_2. d~E _ _Z, 3
C u S
m m

V_2. d_ _ -n(l + o) _(_m ) _ dYldY 3 • (2.21)
S Smo m

In obtaining these results use has been made of (2.12) and

(2.13), and it has been noted that on Cm, #2 may be replaced by

aT
_2(X) = X2 -_2(Xm ) +

1 82_
+ _(x -X )(xn_) (Xm) (2.22)m_ p-Xmp 3x _x ~8 a



correct to an error (due to the field scattered by the boss in

Sm) which is 0[(a/£) 2] smaller.

Summing these results over all area elements Sm, as

previously, combining with (2.16) and substituting into (2.6) we

obtain the coherent field representation:

_(x) = _i(X) + @R(X) + _ _oa _2_ _h_2_- ~ ~ s

-(h-_a)ko2 _-n(l+o)_ IG(x,_)dYldY3 (2.23)

In other words, for the coherent component, the effective

value of _/Sx 2 on x 2 = h is given by

_ = -(h-oa) _ (h - )k 2 + n(l+o) _ (2 24)-- T O ' "
_x2 e

But _ satisfies the Helmholtz equation (2.1), so that this result

is equivalent to

= (h-oa) - n(l+o) + -_- ko2_x 2

(X 2 = h). (2.25)

The first term on the right of (2.25) may be discarded,

since it accounts for a small uniform phase shift in the

reflected field which is of no practical significance. To see

this, note that, if the wall were rigid and perfectly flat

(n = 0, o = 0), (2.25) would reduce to

- h _2_ _
8x 2 8x 2 0 on x2= h, (2.26)

which, correct to a relative error ~ 0(koh)2 , is the same as the

exact rigid surface condition

10



_--_= 0 on x2= 0.
_x2

In the presence of surface irregularities (2.25) indicates

that the effective location of the smoothed plane for application

of the boundary condition is x 2 = oa. This is very much smaller

than the acoustic wavelength of interest, and henceforth the

condition will be applied on x 2 = 0, in which case (2.25) reduces

to

i = -ik n*_ = 0 (2 27)
_x 2 o ' x2

where

n* - l+Oz -i_koa (2.28)

and 9 = o/3.

In obtaining this result it has been implicitly assumed that

the hemispherical bosses are sufficiently far apart that mutual

interactions via the incoherent field are negligible, an

approximation which requires o<<i. For finite o the analysis may

be modified (along the lines described in Biot's [28] original

work, or as described in reference [32]) to deduce that (2.27),

(2.28) remain valid provided that the definition of v is modified

as follows

ao ' (2.29)

(1 + 7y)

where £ is the minimum distance between the centers of the bosses

on x 2 -- 0.

ii



One Dimensional Surface Roughness

For an impedance surface which is irregular in, say,

the x I- direction alone, the roughness elements may be modeled by

a surface distribution of cylinders (N per unit length in

the x I- direction) of semi-circular cross-section and radius a.

The long wavelength, coherent field boundary condition in this

case becomes

_- -ik n*_ - no _2_ 0 (2 30)
8--_2-- O --_ a _ , X2= ,

where o = 2Na is the mean fractional area of the plane x2 = 0

covered by the cylinders, and

n* 1 + (_-i)o in
= Z - --_--okoa • (2.31)

These formulae are valid for o<<i only.

12



3. LONG RANGE PROPAGATION FROM A POINT SOURCE CLOSE TO THE
GROUND= TWO-DIMENSIONAL SURFACE ROUGHNESS.

The formulae derived above are now applied to study the

propagation of low frequency sound over randomly irregular

terrain. Both the source and observer are assumed to be located

at ground level (or close to he ground, since the wavelength is

large). This restriction avoids many of the complications which

tend to obscure more general treatments of propagation over an

impedance surface.

Consider the outgoing wave solution (for the coherent field)

of

(V2 = k_)# = 6(Xl)6(x2-€)6(X3) , €>O, (3.1)

where _ satisfied (2.27) on x 2 = 0, and the overbar on the

coherent field is henceforth suppressed. At ground level,

x 2 = 0, and as e+ + 0, the following Fourier integral

representation is readily derived with the aid of the boundary

conditions

KJ0(Kp)dK

#(p) _ -i f_ , (3.2)

2n {_K--Z:_ _ik0n, }

where Jo is the zeroth order Bessel function, and p =

_x_ + x_ . A branch cut for JK---T:_ in the half-plane Re K > 0

extends along the real axis from K = k 0 to + _. The path of

integration runs along the lower side of the cut (ImK = -0) where

{K_-i_ is real and positive. This configuration ensures hhat

Im _K2-k_ < 0 in the cut half-plane Re K > 0, which, for an

absorbant, irregular surface (R > 0 in (2.4)), implies that the

simple pole of the integrand at

13



K = k0(l - n*2) I/2

k0(l - ½ n.2) (n*2<<l) (3.3)

does not lie in the cut half-plane.

The decomposition J0(Kp) = (H_ I) (Kp) + H_2)(Kp))/2 in terms

i) H permits (3.2) to be replaced byof Hankel functions H ,

the sum of three integrals. Two of these, the first involving

H (kp) and the second H (Kp), are taken respectively along

the positive/negative imaginary axes, and sum to zero ([33]),

Sec. 9.6.4). The third integral is over the branch cut and

reduces to

-i leikoP_n .2 _ H (k0p/l + 12)dI
- koP fo 12 + n.2 (3.4)¢(P) 2_p

([34], page 736). In this expression the first term in the curly

brackets is the potential that would be observed on a perfectly

flat, rigid surface. For an observer in the acoustic far field

(k0p >> i), the value of the remaining integral may be

approximated by use of the asymptotic formula

_i) _ ei{k0P/I + 12 -_/4}
H (K0P/l + I z) = • (3 5)

(i + 12)I/4

According to the principle of stationary phase the dominant

contribution to the integral is from the region I << i, and may

be obtained by expanding the integrand about I = 0. In doing

this, however, note that the pole of the integrand can lie

arbitrarily close to I = 0 when the specific impedance Z is

large. To account for this the full effect of the term I 2 + n .2

in the denominator must be retained, leading to

ik0P 2wei_/4 _ eix2dx
¢(p) _-e {i - f0 xZ_ iw}, (3.6)

2_ p /_--

14



where, in accord with conventional notation,

ik0Pn*2
w -

2 (3.7)

is the (complex) numerical distance between source and observer.

Since n .2 << i, lwl can assume all values in the range

0 < lwl < _ when kop is large. Finally, a series of standard

transformations ([33], Sec. 9) enables (3.6) to be expressed in

the form

ikop

i(p) = -e F(w) (3.8)2_p

where F(w) is defined in terms of the complementary error

function by

F(w) = 1 + i J_w e Werfc(-i _w--). (3.9)

In evaluating this expression we take

-- i/w = lw exp{ _ arg w}, where _ _ arg w <3_/2.

This representation of the far field is consistent with

previous studies of propagation over a plane impedance surface

(c.f. references cited in the Introduction). The function F(w)

(hereafter designated the excess attenuation function) accounts

for the influence of the irregular impedance surface on

propagation relative to the field _0(p) = -eik0P/2_p obtaining

for a smooth rigid plane• F(0) = i, and when lwl >> 1 ,

F(w) _ 2i _--w--e-w + _ + ..,_--( arg w < _ ;

i + _2w "'' _ < arg w < (3.10a,b)

15



The first term on the right of (3.10a) represents the so-called

surface wave. This is exponentially damped if the boundary

resistence R _ 0, although there may exist intervals in lwl

wherein IFI > I. In the extreme case in which R = 0

-ikop 1 + o
w - 2 ( X + _koa)2 . (3.11)

Since it may always be assumed that k 0 has a small positive

imaginary part (corresponding to the existence of viscous

dissipation in the acoustic medium), it follows that

arg w = -_/2 + 0, and therefore that, for lwl >> i,

1 I ) - _/4}+ 0(i/wp)
k0 1/2 1 + o + _koa e i{k0p(l + _in, I2

_(P) _ (2-_p) X

(3.12)

Thus, the field at ground level is dominated by the surface wave,

which propagates subsonically at the phase velocity c/{l + __In*12},

and decays like i/Jp .

For an irregular, rigid surface (X = _ ) these results are

equivalent to those obtained by Tolstoy [23], and are in accord

with experimental observations of Medwin et al [31]. These

experiments confirm the predominance of the surface wave in the

far field, and in particular that the amplitude decays like I//_
3/2

and is proportional to k 0 (for X = _). They also establish

the validity of predictions of the coherent wave theory

for ko£ _ i.

16



3.1 Propagation Over Randomly Irregular Terrain

The relative importance of irregularities in ground

elevation on the propagation of low frequency sound will now be

examined. The dependence of the specific normal impedance

Z = R + iX on the frequency F = _/2_ Hz is approximated by

R = 1 + 0.051(</f) 3/4

X = 0.077(</f) "73 (3.13)

< being the flow resistivity of the ground. A reasonable fit to

experimental data given in [2,3] for grass covered ground is

obtained when < = 230,000 MKS units. Observe that IZl-I < 0.i

for F < 450 Hz, and does not excees 0.175 until f > 1000 Hz.

This may be taken to justify conditions imposed above in (2.5).

Evidently, for such frequencies the contributions to n* (Equation

(2.28)) from Z and the surface irregularities can be of the same
order of magnitude.

The variation of excess attenuation, 201ogl01F I dB with

absolute numerical distance lwl is illustrated in Figures 2(a) -

2(d) for surface irregularities of different sizes and

concentrations for the two frequencies f = 10, 100 Hz (for which

IZl-I = 0.0065, 0.035, respectively). The case _ = 0.9096

corresponds to tightly packed hemispherical bosses. The dashed

curves denote the excess attenuation ("ground shadowing") for

2/k 0 2flat ground (o = 0), where ultimately _ ~ Z p as p . _. For

flat, rigid ground, F £ i, and this characterizes the "near

field" behavior of the curves in the Figures for small values of

lwl. When k0a is large the surface irregularities have a

significant effect on propagation, the peaks in the curves

corresponding to the local predominance of the damped surface

wave term (first term on the right of (3.10a)). In such regions

17



the onset of the ground shadow zone is delayed by the surface

wave to such an extent that the field exceeds that obtaining for

a smooth, rigid plane. At larger distances the surface wave is

absorbed by the ground.

3.2 One-Dimensional Surface Irregularities

In this case formula (3.9) for the excess attenuation F(w)

remains valid provided the numerical distance w is defined by

ik°P2 _ (i + (TZ - i)o) i_°k0a4 }2w - _ - cos28 , (3.14)

for o < i. Here 8 is the angle between the direction of

propagation parallel to the ground and the x I axis (the surface

corrugations being parallel to the x3-direction). The variation

of the attenuation with lwl for different propagation directions

8 is illustrated in Figs. 3(a), (b) for o = 0.2, k0a = .i and for

f = i0,i00 Hz respectively. At 8 = 900 the propagation charac-

teristics reduce to those for smooth ground of specific normal

impedance Z/(I + (_ - i)o).

18



4. CONCLUSION

The theory of low frequency sound propagation over a

statistically homogeneous irregular surface of finite impedance

has been developed by extension of the Biot/Tolstoy [23-30]

theory of coherent scattering by an array of rigid bosses

distributed over a plane. In terrestrial applications, the

approximations involved are expected to be adequate at

frequencies less than about i000 Hz. The presence of the surface

irregularities is responsible for the generation by a ground-

based acoustic source of a surface wave which can be effective in

penetrating the ground shadow zone predicted theoretically when

the ground is modeled as a smooth, plane impedance surface.
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FIGURE i. Configuration of the idealized randomly irregular impedance
surface.
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FIGURE 2a. Variation of excess attenuation with absolute numerical

distance for irregular terrain of finite impedance modelled
by a distribution of hemispherical bosses of radius a.

(a) o = 0.2, f = i0 Hz;

....... excess attenuation for flat ground (a = 0) at
the same frequency.
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FIGURE 2(b) _ = 0.2, f = i00 Hz.
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FIGURE 2d. _ = 0.9096, f = i00 Hz.
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FIGURE 3a. Variation of excess attenuation with absolute numerical
distance for irregular terrain of finite impedance modelled
by a distribution of parallel cylinders of semi-circular
cross-section. 8 is the angle between the propagation
direction and the xl-axis (normal to the axes of the
cylinders); _ = 0.2, k0a = 0.i:

(a) f = i0 Hz;
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