Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
Supplement I—Transport Properties

Sanford Gordon
Sanford Gordon & Associates
Cleveland, Ohio

and

Bonnie J. McBride and Frank J. Zeleznik
Lewis Research Center
Cleveland, Ohio

October 1984
CONTENTS

SUMMARY .. 1

INTRODUCTION .. 1

APPROXIMATE MIXTURE METHODS 2
 Sources of Approximate Methods 2
 Selection of Approximate Method 6

COMPUTER PROGRAM FOR TRANSPORT PROPERTIES 6
 Transport-Property Dataset 7
 Subroutine UTRAN 7
 Subroutine INPUT 7
 Subroutine TRANP 8
 Entry OUT4 in Subroutine OUT1 8

DESCRIPTION OF PROGRAM OUTPUT 8

SELECTION OF TRANSPORT PROPERTIES 9
 Sources of Properties for Pure Species 9
 Sources of Properties for Binary Interactions 12

APPENDIX - SYMBOLS ... 13

REFERENCES .. 15
COMPUTER PROGRAM FOR CALCULATION OF COMPLEX CHEMICAL EQUILIBRIUM COMPOSITIONS AND APPLICATIONS

SUPPLEMENT I - TRANSPORT PROPERTIES

Sanford Gordon
Sanford Gordon & Associates
Cleveland, Ohio 44121

Bonnie J. McBride and Frank J. Zeleznik
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species have been selected for use with the program.

INTRODUCTION

An option for calculating the dilute-gas transport properties of complex chemical mixtures has been added to the chemical equilibrium program of reference 1. Computer programs for calculating mixture transport properties are presently available (e.g., ref. 2). Reference 2 gives transport properties in the form of collision integrals and uses the Hirschfelder "rigorous" method (ref. 3) for the viscosity and thermal conductivity of nonreacting mixtures. The Brokaw method (refs. 4 and 5) is used for the contribution of chemical reaction to thermal conductivity. The objectives are (1) to use a method for calculating nonreacting (frozen) mixture properties which is simpler than that presented in reference 2, while still retaining the same accuracy, and (2) to use a simpler representation for the properties of pure species and their binary interactions. These objectives should substantially reduce calculation times or increase the size of the system which can be calculated economically.

In the new program transport properties for pure species and several binary interactions are represented in the functional form suggested in reference 6. (See the section "Transport-Property Dataset.") Mixture viscosity is obtained by an approximate method in a form first proposed by Sutherland (ref. 7). Mixture frozen thermal conductivity is obtained by an approximate method in the form first proposed by Wassiljewa (ref. 8), which is similar to Sutherland's form for viscosity. Reaction thermal conductivity is obtained in the same manner as in reference 2. The total thermal conductivity of the mixture is the sum of the frozen and reaction thermal conductivities.

This report does not repeat the material presented in reference 1 (such as the equations and numerical techniques for obtaining chemical equilibrium compositions, mixture thermodynamic properties, and various applications of these properties). Only additional material relating to transport properties is given.
APPENDIX MEXTURE METHODS

Sources of Approximate Methods

In addition to the "rigorous" method for obtaining the mixture transport properties mentioned in the INTRODUCTION, numerous approximate methods may be found in the literature. Some approximate methods for mixture viscosity are described in references 7 and 9 to 14, while some approximate methods for mixture frozen thermal conductivity may be found in references 8, 12, and 15 to 20. Most of these approximate methods have forms similar to those first proposed by Sutherland for viscosity (ref. 7) and by Wassiljewa for thermal conductivity (ref. 8), which can be written as

\[\eta_{\text{mix}} = \sum_{i=1}^{n} \frac{x_i \eta_i}{x_1 + \sum_{j=1, j \neq i}^{n} x_j \varphi_{ij}} \]

(1)

and

\[\lambda_{\text{mix,fr}} = \sum_{i=1}^{n} \frac{x_i \lambda_i}{x_1 + \sum_{j=1, j \neq i}^{n} x_j \psi_{ij}} \]

(2)

where

- \(n \) number of gaseous species for transport calculations
- \(x_i \) mole fraction of species \(i \)
- \(\eta_i \) viscosity of species \(i \)
- \(\eta_{\text{mix}} \) thermal conductivity of mixture
- \(\lambda_i \) frozen-thermal conductivity of species \(i \)
- \(\lambda_{\text{mix,fr}} \) frozen-thermal conductivity between mixture
- \(\varphi_{ij} \) viscosity interaction coefficient between species \(i \) and \(j \) \((\varphi_{ij} \neq \varphi_{ji}) \)
- \(\psi_{ij} \) frozen-thermal conductivity interaction coefficient between species \(i \) and \(j \) \((\psi_{ij} \neq \psi_{ji}) \)

The approximate methods of this type differ only in the expressions for \(\varphi_{ij} \) and \(\psi_{ij} \). For example, Hirschfelder's first approximation to his "rigorous" method for mixture viscosity contains an expression for the \(\varphi_{ij} \) in equation (1) which is used by some other authors as a starting point for deriving other approximations to \(\varphi_{ij} \). Hirschfelder's expression (ref. 3, eq. (B.2-26)) is equivalent to
\[
\varphi_{ij} = \frac{2 \, n_i \, M_i \, M_j}{n_{ij}(M_i + M_j)^2} \left(\frac{5}{3A_{ij}^c} + \frac{M_j}{M_i} \right)
\]
(3)

where \(M_1 \) is the molecular weight of species \(1 \), \(A_{ij}^c \) is a ratio of collision integrals (defined in ref. 3, eq. (8.2-15)), and \(n_{ij} \) is a quantity which can be defined in several ways, some of which are discussed later. Various expressions for \(\varphi_{ij} \) derived by other investigators from equation (3) or by independent analysis can be put in the following general form for the purpose of comparison:

\[
\varphi_{ij} = k_{ij}^{n_{ij}}
\]
(4)

where

\[
m_{ij} = \frac{2M_i}{M_i + M_j}
\]
(5)

and where \(r \) is an exponent and \(k_{ij} \) is a function having several forms.

Two examples are given to illustrate equation (4). For the first example, Brokaw (ref. 12) gives an expression for \(\varphi_{ij} \) which is equivalent to the following:

\[
\varphi_{ij} = \frac{n_i}{n_{ij}} \, m_{ij}
\]
(6)

In this case \(r = 1 \) and

\[
k_{ij} = \frac{n_i}{n_{ij}}
\]
(7)

As a second example, Wilke (ref. 11) gives the following expression for \(\varphi_{ij} \):

\[
\varphi_{ij} = \frac{1}{4} \left[1 + \left(\frac{n_i}{n_{ij}} \right)^{1/2} \left(\frac{M_j}{M_i} \right)^{1/4} \right]^2 m_{ij}^{1/2}
\]
(8)

In this case

\[
k_{ij} = \frac{1}{4} \left[1 + \left(\frac{n_i}{n_{ij}} \right)^{1/2} \left(\frac{M_j}{M_i} \right)^{1/4} \right]^2
\]
(9)

and \(r = 1/2 \).
A summary of φ_{1j} for several approximate methods is given in Table I. These methods differ from one another only in the exponent r. The quantity η_{1j} which appears in equation (6) can be obtained in several ways as follows.

An expression for η_{1j} is given by Hirschfelder (Ref. 3, Eq. (8.2-21)):

$$\eta_{1j} \times 10^7 = \frac{26.696}{\sigma_{1j}} \sqrt{\frac{2M_1M_T}{(M_1 + M_j)}} \Omega_{1j}^{(2,2)*}$$

(10a)

where $\Omega_{1j}^{(2,2)*}$ is a collision integral and a function of c_{1j}, and σ_{1j} and c_{1j} are Lennard-Jones interaction-potential parameters for species i and j.

For $i = j$, equation (10a) reduces to the following form for pure species:

$$\eta_i \times 10^7 = \frac{26.696}{\sigma_i} \sqrt{\frac{M_T}{\Omega_{i}^{(2,2)*}}}$$

(10b)

where $\eta_i = \eta_{ii}$, $\sigma_i = \sigma_{ii}$, and $\Omega_{i}^{(2,2)*} = \Omega_{ii}^{(2,2)*}$. Hirschfelder suggests the following approximations for σ_{1j} and c_{1j}:

$$\sigma_{1j} = \frac{\sigma_1 + \sigma_j}{2}$$

(11)

$$c_{1j} = \sqrt{c_1 c_j}$$

(12)

An alternative expression for η_{1j} can be derived based on the following approximation for $\tilde{\Omega}_{1j}$, given by Svehla and McBride (Ref. 2, Eq. (36)):

$$\tilde{\Omega}_{1j} = \frac{1}{4} \left(\tilde{\Omega}_{11} + 2 \sqrt{\tilde{\Omega}_{11} \tilde{\Omega}_{jj} + \tilde{\Omega}_{jj}} \right) = \left(\frac{\sqrt{\tilde{\Omega}_{11} + \tilde{\Omega}_{jj}}}{2} \right)^2$$

(13)

where

$$\tilde{\Omega}_{1j} = \frac{\sigma_{1j}^2}{\sigma_{1j}} \Omega_{1j}^{(2,2)*}$$

(14)

The expression for η_{1j} derived from equations (10a), (10b), and (13) is

$$\eta_{1j} = \frac{\eta_i m_{1j}^{1/2}}{k_{1j}}$$

(15)
where \(k_{ij} \) is defined by equation (9). Substitution of \(\eta_{ij} \) from equation (15) into equation (6) gives the exact expression for \(\psi_{ij} \) in equation (8). Thus, if the approximation given in equation (13) is used, equations (6) and (8) are identical.

In addition to equations (10a) and (15), values of \(\eta_{ij} \) may also be derived from experimental data on mixture viscosity. These three methods for obtaining \(\eta_{ij} \) generally give different numerical values. Therefore, even the "rigorous" method gives different values for mixture viscosity depending on what value is used for \(\eta_{ij} \).

Expressions for \(\psi_{ij} \) (refs. 12 and 15 to 19) are given in Table II. The expressions from references 17 and 19 are the same as that from reference 18 except for the factors of 1.065 and 0.866. The formulas of Lindsay and Bromley (ref. 15) contain parameters known as Sutherland constants which can be estimated in various ways. Sutherland constants for this report were obtained from viscosity by means of the following formula (derived in ref. 21):

\[
1 + \frac{S_1}{T} = \left(\frac{3}{2} - \frac{d \ln n_i}{d \ln T} \right)^{-1}
\]

(16a)

The Sutherland interaction constant \(S_{ij} \) was obtained from the following approximation:

\[
S_{ij} = \sqrt{S_i S_j}
\]

(16b)

In addition to the foregoing methods there is an "averaging" method for thermal conductivity due to Burgoyne and Weinberg (ref. 20). A generalized version of this method is

\[
\lambda_{mix,fr} = \frac{1}{2} \left(\sum_{i=1}^{n} x_i \lambda_i + \frac{1}{n} \sum_{i=1}^{n} \lambda_i \right)
\]

(17)

An analogous formula for viscosity is

\[
\eta_{mix} = \frac{1}{2} \left(\sum_{i=1}^{n} x_i \eta_i + \frac{1}{n} \sum_{i=1}^{n} \eta_i \right)
\]

(18)
Selection of Approximate Method

A number of mixture methods were tested to discover the extent each reproduced experimental viscosity and thermal conductivity data for several binary systems. The methods tested were the "rigorous" method; the approximate methods, whose expressions for \(\psi_{ij} \) and \(\psi_{ij} \) appear in tables I and II; and the averaging method of reference 20. All the methods reproduced the experimental data by better than 3 percent for at least some of the test cases. However, each method also produced errors exceeding 7 percent in at least one case.

An example of the spread in accuracies is shown in table III for the Ar-NH \(_3\) system using the experimental data of reference 22. The experimental data are for eight different compositions of Ar and NH \(_3\) at a temperature of 308 K. Calculations were made with values of \(\eta_{ij} \) from equations (10a) and (15) and a value of \(\eta_{ij} = 175 \) derived from experimental data. In order to derive a value from experimental data, it is necessary to select the form of the mixture equation with which it is to be used. For this example, the mixture method of reference 12 was selected with \(k_{ij} \) from equation (7) and with the exponent \(r = 1 \). As expected table III shows that the best results (average absolute error = 0.2 percent) were obtained using the method of Brokaw (ref. 12) and the \(\eta_{ij} \) derived from experimental data with the same method.

For the binary systems tested, comparisons with experimental data showed that no one method of calculation could be judged superior to all others in all cases. The selection of a particular method represents a compromise between overall accuracy and ease of computations. To obtain viscosity of mixtures, the expression for \(\psi_{ij} \) from equation (6) is used in equation (1) if values of \(\eta_{ij} \) are available in the dataset discussed in the section "Transport-Property Dataset". Otherwise \(\psi_{ij} \) from equation (8) is used (which implies using a value of \(\eta_{ij} \) from eq. (15)).

Brokaw's mixture method for frozen thermal conductivity (ref. 16) was selected inasmuch as it reproduced the experimental data for the test cases slightly better than the other methods tried. The same values used for \(\psi_{ij} \) for viscosity are also used to calculate \(\psi_{ij} \) for frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as used in reference 2.

COMPUTER PROGRAM FOR TRANSPORT PROPERTIES

The computer program was written in FORTRAN IV and tested on an IBM 370/3033 Computer at the Lewis Research Center. A logical variable TRNSPT1, was added to NAMELIST/INPT2/ of reference 7. Transport calculations are carried out only if TRNSPT = 1 has been included in the namelist input. Table IV lists the I/O (Input/Output) units used by the program. A transport-property data- set, five subroutines, and BLOCK DATA are involved in transport-property calculations.

One of the five subroutines, SEARCH, has two purposes. One purpose is to search the unformatted thermodynamic data on I/O unit 4 for all possible
species in any specified chemical system and to store thermodynamic coefficients for these possible species in a COMMON block. A second purpose, if THNSET = 1, is to search the unformatted transport data on I/O unit 8 for all possible species in any specified chemical system and to store transport coefficients for these species on I/O unit 3. Subroutines TRANP and INPUT and the entry OUT4 in subroutine OUT1 are used exclusively for transport-property calculations. BLOCK DATA contains headings for transport property output as well as other information required by the program. The fifth subroutine, UTRAN, is used only for converting formatted transport properties to an unformatted form.

Transport-Property Dataset

Transport properties for 154 pure species and several binary viscosity interaction quantities \(\eta_{ij} \) were least-squares fitted to the following form, used in reference 6:

\[
\begin{align*}
\ln \eta &= A \ln T + \frac{B}{T} + \frac{C}{T^2} + D \\
\ln \lambda &= A_1 + B_1 T + C_1 \ln T
\end{align*}
\]

(19)

The coefficients were generated to give viscosity in units of \(\mu P \) and thermal conductivity in units of \(\mu W/cm K \). The temperature range was divided into two intervals to be consistent with the same intervals selected for thermodynamic properties, namely, 300 to 1000 K and 1000 to 5000 K (although the program permits any three intervals for any species). Therefore, in the present dataset, each pure species or binary interaction may have four sets of coefficients: two sets for viscosity (high- and low-temperature intervals) and two sets for thermal conductivity (high- and low-temperature intervals). If only viscosity or only thermal conductivity is present, only the two sets of coefficients for that property are given. The code word TRAN must precede the formatted sets of coefficients, and the code word LAST must follow. The format for the dataset containing these coefficients is given in table V.

Subroutine UTRAN

Coefficients for generating thermodynamic and transport properties are used by the program in an unformatted form in order to reduce computer time considerably. Conversion of the coefficients for transport properties from formatted to unformatted form is done by subroutine UTRAN. The formatted coefficients are read in as input on I/O unit 5. Subroutine UTRAN converts the formatted coefficients and writes them in the unformatted form on I/O unit 8. After conversion, the coefficients are available for future runs in unformatted form on I/O unit 8, and subroutine UTRAN need not be used again until the formatted dataset is revised.

Subroutine INPUT

After composition has been determined for a specified thermodynamic data point (such as an assigned temperature and pressure), subroutine INPUT selects coefficients for a maximum of the 50 most abundant gaseous species for that point from among the transport coefficients previously stored on I/O
unit 3. Depending on the accuracy desired, the number of species used by the
program may often be reduced by means of an optional input parameter TRPACC.
If, for example, TRPACC is set equal to 0.98, the program will consider only
those species which add up to 0.98 of the total molar composition (adding in
the order of largest to smallest species mole fraction). The default value of
TRPACC is 0.99995. The mole fractions of these selected species are first
normalized to give a total of 1.0 before mixture transport properties are cal-
culated. The transport properties are calculated from the selected coeffi-
cients at the current temperature.

Subroutine TRANP

Subroutine TRANP sets up the equations and solves for mixture viscosity,
frozen thermal conductivity, equilibrium thermal conductivity, and equilibrium
specific heat. The method and equations for obtaining equilibrium specific
heat and the reaction contribution to thermal conductivity are given in
reference 2.

Entry OUT4 in Subroutine OUT1

Entry OUT4 handles the output of the transport-property calculations. A
variable format is used which is the same as the format used for thermodynamic-
properties output (described in ref. 1).

DESCRIPTION OF PROGRAM OUTPUT

A sample problem containing transport-property output is given in table VI.
Transport properties are given for mixtures of gases only. Therefore, for mix-
tures containing condensed species, two values of equilibrium specific heat are
given. One value (which includes gaseous and condensed-species contributions)
is given with the output labeled THERMODYNAMIC PROPERTIES, while a second value
(which contains only gaseous-species contributions) is given with the output
labeled TRANSPORT PROPERTIES. For each point a maximum of the 50 most abundant
gaseous species is used for calculating mixture transport properties. Thermal
conductivities are given for the assumptions of both equilibrium and frozen
gaseous compositions. Viscosity is always given in units of mP. An option is
provided in the namelist input for units of thermodynamic properties. Units
for thermal conductivity are consistent with the option selected for thermo-
dynamic units. That is, thermal conductivity is in units of mW/cm sec if
SIUNIT = T is included in the input dataset and mcal/cm K sec otherwise. The
Prandtl number has the usual definition of $c_p n/\lambda$, while the Lewis number as
defined in reference 2, is

$$Le = \frac{\lambda_{\text{react}} c_p \text{fr}}{\lambda_{\text{fr}} c_p \text{react}}$$ \hspace{1cm} (20)
SELECTION OF TRANSPORT PROPERTIES

Sources of Properties for Pure Species

Transport properties for all species except those discussed in the following paragraphs were taken from the compilations of Svehla (ref. 23). For several species thermal conductivities were calculated for this report from viscosities by means of the following equations, given in reference 2:

\[\lambda_{tr,1} = \frac{15}{4} \frac{R}{M_1} n_1 \]

(21)

\[\lambda_{int,1} = \frac{R}{M_1} n_1 \left[\frac{6}{5} A^*_1 C_{int,1} - \frac{C_{rot,1}}{z_{rot,1}} \left(\frac{5}{2} - \frac{6}{5} A^*_1 \right) \right. \]

\[\left. - \frac{g(C_{rot,1})}{2} \left(\frac{5}{3} + \frac{6A^*_1}{5C_{int,1}} \right) \right] \]

(22)

\[\lambda_1 = \lambda_{tr,1} + \lambda_{int,1} \]

(23)

where

\[C_{int,1} = \frac{C_{p,1}}{R} - \frac{5}{2} \]

(24)

and

\[C_{rot,1} = \frac{C_{p,rot,1}}{R} \]

(25)

For atomic species, \(\lambda_{int,1} = 0 \) and \(\lambda_1 = \lambda_{tr,1} \). \(C_{rot,1} \) is assumed to be 1 for linear species and 1.5 for nonlinear species.

Argon. - References 6, 24, and 25 contain critical reviews of viscosity data for Ar. References 6 and 25 include more recently available experimental viscosity data in their evaluation than found in reference 24. Additionally, recommended values from references 6 and 25 are in close agreement (less than 1 percent difference from 200 to 2000 K). By contrast, the values of reference 24 agree with values from reference 25 at room temperature but differ by 8.6 percent at 2000 K. Viscosities and thermal conductivities were taken from reference 25 in order to have a consistent set of values.

Atomic carbon. - Collision integrals are given in reference 26 for every 1000 K from 1000 to 25 000 K. These collision integrals were extrapolated down to 300 K and converted to viscosities. Thermal conductivities were obtained by means of equation (21).

Methane. - Viscosities selected by references 6, 24, and 27 to 30 are all in extremely close agreement (less than 1 percent difference). The temperature range for viscosity in these references is from 200 to 1000 K, although
not every reference covers the entire range. The average of viscosities in
these six references was selected. Thermal conductivities were selected to be
the average of the values from references 27 and 30 to 32.

Carbon monoxide. - Viscosities from references 24, 27, 33, and 34 were
reviewed. The values selected by reference 27 are about 2 to 3 percent lower
than those of the other three references in the range from 500 to 1000 K and
were not used. The averaged values from the other three references are
extremely close to the N_2 viscosity values of reference 35. The reference 35
N_2 values were therefore selected as the viscosity for CO inasmuch as the N_2
values are given to 2000 K. Thermal conductivities were selected to be the
average of the values in the four references 27, 31, 33, and 36.

Carbon dioxide. - Viscosities from the five references 6, 24, 27, 37, and
38 were reviewed. Only those of references 6 and 38 were used to obtain aver-
age values. The values in reference 37 were not used because, according to
figure 3 in that reference, the calculated values appear to be about 0.5 to
2 percent too high from 400 to 800 K. The older values of references 24 and
27 were not used because they appear to be about 4 percent lower than the more
recent values in references 6 and 38. Thermal conductivities were averaged
from those given in the five references 27, 31, and 39 to 41.

Atomic hydrogen. - High-temperature viscosities (above 1000 K) were cal-
culated from the collision integrals given in reference 18. Low-temperature
viscosities (200 to 500 K) were taken from reference 42. Values from 500 to
1000 K were interpolated. Thermal conductivities were calculated by means of
equation (21).

Molecular hydrogen. - Viscosities of H_2 were taken to be the average of the
values in the four references 6, 24, 27, and 43. Thermal conductivities from
the four references 27, 31, 40, and 43 were reviewed. The selected values are
as follows: from 200 to 600 K, average values from the four references; from
1100 to 5000 K, reference 43 values; from 700 to 1000 K, values "faired"
between the other selected values.

Water. - Viscosities and thermal conductivities from 373 to 1073 K were
taken from reference 44 and extrapolated to higher temperatures by means of
equations given in reference 45.

Atomic nitrogen. - The high-temperature (1000 to 15 000 K) collision
integrals given in reference 46 were converted to viscosities and extrapolated
to lower temperatures. Thermal conductivities were obtained by means of
equation (21).

Ammonia. - Viscosities were selected to be the averages of those given in
references 23, 24, and 47. Thermal conductivities were selected to be the
average of those in references 27, 31, 48, and 49.

Nitric oxide. - The two sets of viscosities and thermal conductivities for
NO from references 2 and 24 are fairly close. The reference 2 viscosities were
selected inasmuch as a least-squares fit of these values gave less error than
a similar fit of the reference 24 values. The reference 2 thermal conductiv-
ities were selected in order to be consistent with the viscosities. The
selected transport properties are also given in reference 50.
Nitrogen dioxide. - A problem in obtaining transport properties for NO₂ lies in the fact that there is considerable association of NO₂ to N₂O₄ in the temperature region of about 300 to 400 K. Thus experimental data are open to interpretation as to whether measurements are for the pure species, an equilibrium mixture of NO₂ and N₂O₄, or some other combination of the two species. References 24 and 51 interpret the experimental data of reference 52 differently. There is close agreement for temperatures above 400 K (where the equilibrium mixture is 98 percent NO₂) but considerable difference otherwise. Inasmuch as reference 51 obtained viscosity data for NO₂ and N₂O₄ simultaneously from the reference 52 values, those results were selected for viscosity. Thermal conductivities were obtained from viscosities by means of equations (21) to (23) with $Z_{\text{rot}} = \infty$.

Diatomic nitrogen. - A comparison was made among the critically evaluated and selected viscosities given in the three references 6, 24, and 35. The agreement between the data from references 6 and 35 is excellent (only a few tenths of a percent difference in the entire temperature range from 200 to 2000 K). Reference 24 is in good agreement with the others at low temperatures but differs by as much as 8 percent at 2000 K. Viscosities and thermal conductivities were taken from reference 35 inasmuch as reference 6 does not contain thermal conductivities.

Nitrous oxide. - Viscosities from references 2 and 24 for N₂O are very close (less than 0.6 percent difference from 200 to 1000 K). The reference 2 values were selected since they are given to 5000 K. The thermal conductivities from reference 31 appear to be closer to the experimental data than do those in reference 2 and also closer to one recent value given in reference 53. The reference 31 thermal conductivities were selected up to 700 K. Above 700 K they were calculated from viscosities by means of equations (21) to (23) with $Z_{\text{rot}} = \infty$.

Atomic oxygen. - Two sets of high-temperature viscosities were compared (refs. 27 and 46). These agree to within 2.5 percent from 3000 to 5000 K. The viscosities of reference 46 were selected since these are given from 1000 to 5000 K, whereas the reference 27 values are given only above 3000 K. Low-temperature viscosities (200 to 300 K) were taken from reference 54. Viscosities from 400 to 900 K were interpolated. Thermal conductivities were obtained by means of equation (21).

Molecular oxygen. - Viscosities from references 6, 24, 27, and 35 were reviewed. The averages of these viscosities are within 1 percent of the reference 35 values. The reference 35 values were selected. Thermal conductivities from references 27, 31, 35, 55, and 56 were reviewed. The averages of these agree to within 1 percent with reference 35 from 200 to 600 K, but differ more at higher temperatures (3 percent from 1000 to 1300 K). According to Hanley (ref. 35), "...most of the data for the thermal conductivity coefficient for both nitrogen and oxygen seem unreliable outside the range of 150 to 600 K." Thermal conductivities were also taken from reference 35 to be consistent with the selected viscosities.

Hydroxyl radical. - Experimental transport data for the OH radical are not available. The collision integrals estimated in reference 57 and the rotational collision number $Z_{\text{rot}} = 8$ estimated in reference 2 were used to calculate viscosities and thermal conductivities.
Sources of Properties for Binary Interactions

The transport-property dataset currently provides coefficients for obtaining n_{ij} for only three pairs. These coefficients were taken directly from reference 58. Values of n_{ij} for other pairs are estimated in the program by means of equation (15) using k_{ij} from equation (9).
APPENDIX - SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C, D</td>
<td>coefficients in eq. (19)</td>
</tr>
<tr>
<td>$A_{ij}^$, $A_{ij}^$</td>
<td>ratio of collision integrals, dimensionless</td>
</tr>
<tr>
<td>C_p</td>
<td>constant-pressure heat capacity, J/kmol K</td>
</tr>
<tr>
<td>$C_{1\text{int},1}$</td>
<td>term defined by eq. (24), dimensionless</td>
</tr>
<tr>
<td>$C_{\text{rot},1}$</td>
<td>term defined by eq. (25), dimensionless</td>
</tr>
<tr>
<td>C_p</td>
<td>constant-pressure specific heat, J/kg K</td>
</tr>
<tr>
<td>D_1</td>
<td>self-diffusion coefficient, m2/sec</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>binary diffusion coefficient, m2/sec</td>
</tr>
<tr>
<td>k_{ij}</td>
<td>function defined by eq. (7) or (9), dimensionless</td>
</tr>
<tr>
<td>Le</td>
<td>Lewis number, defined by eq. (20), dimensionless</td>
</tr>
<tr>
<td>M_1</td>
<td>molecular weight of species 1, kg/kmol</td>
</tr>
<tr>
<td>m_{ij}</td>
<td>molecular weight function defined by eq. (5), dimensionless</td>
</tr>
<tr>
<td>n</td>
<td>number of gaseous species included in transport calculations, dimensionless</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant, 8.314.4 J/kmol K</td>
</tr>
<tr>
<td>r</td>
<td>exponent in eq. (4)</td>
</tr>
<tr>
<td>S_1</td>
<td>Sutherland constant for species 1, K</td>
</tr>
<tr>
<td>S_{ij}</td>
<td>Sutherland interaction constant for species 1 and j, K</td>
</tr>
<tr>
<td>T</td>
<td>temperature, K</td>
</tr>
<tr>
<td>x_i</td>
<td>mole fraction of species 1, dimensionless</td>
</tr>
<tr>
<td>Z_{rot}</td>
<td>rotational collision number</td>
</tr>
<tr>
<td>c_i</td>
<td>depth of potential energy well for species 1, J</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>quantity defined by eq. (12)</td>
</tr>
<tr>
<td>n</td>
<td>viscosity, kg/m sec</td>
</tr>
<tr>
<td>n_i</td>
<td>viscosity of species 1, kg/m sec</td>
</tr>
<tr>
<td>n_{ij}</td>
<td>quantity defined by eqs. (10a) and (15), kg/m sec</td>
</tr>
<tr>
<td>λ</td>
<td>thermal conductivity, W/m K</td>
</tr>
<tr>
<td>λ_i</td>
<td>thermal conductivity for species 1, W/m K</td>
</tr>
<tr>
<td>λ_{ij}</td>
<td>quantity in table II, W/m K</td>
</tr>
<tr>
<td>σ_i</td>
<td>molecular diameter for species 1, Å</td>
</tr>
<tr>
<td>σ_{ij}</td>
<td>quantity defined in eq. (11), Å</td>
</tr>
<tr>
<td>φ_{ij}</td>
<td>viscosity interaction coefficient (eq. (6) or (8)), dimensionless</td>
</tr>
<tr>
<td>ψ_{ij}</td>
<td>frozen-thermal-conductivity interaction coefficient (eq. (2) and table II), dimensionless</td>
</tr>
<tr>
<td>$\alpha_{ij}(2,2)^*$</td>
<td>collision integral, dimensionless</td>
</tr>
</tbody>
</table>
\[\Omega_{ij} \] collision cross section defined in eq. (14), A^2

Subscripts:

- fr: frozen contribution
- i,j: index for species
- int: internal contribution
- mix: for the mixture
- reac: chemical reaction contribution
- rot: rotational contribution
- tr: translational contribution
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Original expression for φ_{ij} given in reference</th>
<th>Exponent r in $\varphi_{ij} = k_{ij} \rho_{ij}^r$ (eq. (4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilke, ref. 11</td>
<td>(\frac{1}{4} \left[1 + \left(\frac{n_i}{n_j} \right)^{1/2} \left(\frac{M_j}{M_i} \right)^{1/4} \right]^2) (\rho_{ij}^{1/2} \rho_{ij})</td>
<td>(\frac{n_i}{n_j}) (eq. (7)) (\frac{1}{4} \left[1 + \left(\frac{n_i}{n_j} \right)^{1/2} \left(\frac{M_j}{M_i} \right)^{1/4} \right]^2) (eq. (9))</td>
</tr>
<tr>
<td>Brokaw, ref. 12</td>
<td>(\frac{D_i A_{ij}}{D_{ij} A_i} = \frac{\lambda_i}{\lambda_{ij}} = \frac{n_i}{n_{ij}} \rho_{ij})</td>
<td>1</td>
</tr>
<tr>
<td>Brokaw, ref. 12</td>
<td>(\frac{\lambda_i}{\lambda_{ij}} \rho_{ij}^{1/8})</td>
<td>7/8</td>
</tr>
<tr>
<td>Francis, ref. 13</td>
<td>(\frac{a_{ij}}{a_i} \rho_{ij}^{1/3})</td>
<td>5/6</td>
</tr>
<tr>
<td>Sutherland, ref. 7</td>
<td>(\frac{a_{ij}}{a_j} \rho_{ij}^{1/4})</td>
<td>3/4</td>
</tr>
</tbody>
</table>
TABLE II. - EXPRESSIONS FOR Ψ_{ij} FOR MIXTURE FROZEN THERMAL CONDUCTIVITY

<table>
<thead>
<tr>
<th>Reference</th>
<th>Ψ_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindsay and Bromley, ref. 15</td>
<td>$\frac{1}{4} \left{ 1 + \left[\frac{n_i}{n_j} \left(\frac{M_j}{M_i} \right)^{3/4} \frac{1 + S_{ij}}{1 + S_i} \right] \right}^2 \frac{1 + S_{ij}}{1 + S_i}$</td>
</tr>
<tr>
<td>Brokaw, ref. 12</td>
<td>$\Psi_{ij} \left[1 + \frac{2.54(M_i - M_j)(M_i - 0.177 M_j)}{(M_i + M_j)^2} \right]$</td>
</tr>
<tr>
<td>Brokaw, ref. 12</td>
<td>$\Psi_{ij} \left[1 + \frac{2.41(M_i - M_j)(M_i - 0.142 M_j)}{(M_i + M_j)^2} \right]$</td>
</tr>
<tr>
<td>Brokaw, ref. 16</td>
<td>$\Psi_{ij} \left[1 + \frac{2.54(M_i - M_j)(M_i - 0.177 M_j)}{(M_i + M_j)^2} \right]$</td>
</tr>
<tr>
<td>Mason and Saxena, ref. 17</td>
<td>$1.065 \left{ \frac{1}{4} m_{ij}^{1/2} \left[1 + \left(\frac{\lambda_i}{\lambda_j} \right)^{1/2} \left(\frac{M_i}{M_j} \right)^{1/4} \right]^2 \right}$</td>
</tr>
<tr>
<td>Vanderslice et al., ref. 18</td>
<td>$\frac{1}{4} m_{ij}^{1/2} \left[1 + \left(\frac{\lambda_i}{\lambda_j} \right)^{1/2} \left(\frac{M_i}{M_j} \right)^{1/4} \right]^2$</td>
</tr>
<tr>
<td>Tondor and Saxena, ref. 19</td>
<td>$0.866 \left{ \frac{1}{2} m_{ij}^{1/2} \left[1 + \left(\frac{\lambda_i}{\lambda_j} \right)^{1/2} \left(\frac{M_i}{M_j} \right)^{1/4} \right]^2 \right}$</td>
</tr>
</tbody>
</table>
TABLE III. - AVERAGE ABSOLUTE PERCENT ERROR FOR Ar-NH₃

[Comparison of eight experimental mixture viscosities from ref. 22 with corresponding calculated values.]

<table>
<thead>
<tr>
<th>Method of calculation</th>
<th>Average absolute percent error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\eta_{ij} = 148.2) (eq. (15))</td>
</tr>
<tr>
<td>Hirschfelder "rigorous" (ref. 3)</td>
<td>8.1</td>
</tr>
<tr>
<td>Wilke(^a) (ref. 11)</td>
<td>5.8</td>
</tr>
<tr>
<td>Brokaw ((r = 1)) (ref. 12)</td>
<td>5.8</td>
</tr>
<tr>
<td>Brokaw ((r = 7/8)) (ref. 12)</td>
<td>6.9</td>
</tr>
<tr>
<td>Francis (ref. 13)</td>
<td>7.3</td>
</tr>
<tr>
<td>Sutherland (ref. 7)</td>
<td>8.0</td>
</tr>
<tr>
<td>Burgoyne(^a) (ref. 20)</td>
<td>12.5</td>
</tr>
</tbody>
</table>

\(^a\)Method does not use \(\eta_{ij} \).
<table>
<thead>
<tr>
<th>I/O unit</th>
<th>Data file</th>
</tr>
</thead>
</table>
| 3 | Scratch unit
(1) Used during conversion of formatted to unformatted data
(2) Unformatted coefficients to generate transport properties for a particular chemical system |
| 4 | Unformatted coefficients to generate thermodynamic properties for all species |
| 5 | Formatted input. Case input (described in ref. 1) and formatted coefficients to generate thermodynamic and transport properties:
(Note: Formatted coefficients need to be processed only once. Program will write the unformatted files 4 and 8.) |
| 6 | Output |
| 8 | Unformatted coefficients to generate transport properties for all species and pairs of species |
TABLE V. - FORMAT FOR TRANSPORT-PROPERTY DATASET

<table>
<thead>
<tr>
<th>Number of cards</th>
<th>Contents</th>
<th>Format</th>
<th>Card columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRAN (indicates beginning of transport-property dataset)</td>
<td>A4</td>
<td>1 to 4</td>
</tr>
<tr>
<td>a1</td>
<td>Species name</td>
<td>4A4</td>
<td>1 to 16</td>
</tr>
<tr>
<td></td>
<td>Second species name if binary interaction, blank for pure species</td>
<td>4A4</td>
<td>17 to 32</td>
</tr>
<tr>
<td></td>
<td>V if there are viscosity coefficients</td>
<td>A1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Temperature intervals for viscosity (0,1,2, or 3)</td>
<td>A1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>C if there are thermal conductivity coefficients</td>
<td>A1</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Temperature intervals for thermal conductivity (0,1,2, or 3)</td>
<td>A1</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Comments-references, date, etc.</td>
<td>10A4</td>
<td>41 to 80</td>
</tr>
<tr>
<td>bAny number</td>
<td>Blank</td>
<td>1X</td>
<td>1</td>
</tr>
<tr>
<td>from 1 to 6</td>
<td>V if coefficients are for viscosity</td>
<td>A1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C if coefficients are for thermal conductivity</td>
<td>A1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>First and last temperature of temperature interval</td>
<td>2F9.2</td>
<td>3 to 20</td>
</tr>
<tr>
<td></td>
<td>Four coefficients in eq. (19)</td>
<td>4E15.8</td>
<td>21 to 80</td>
</tr>
<tr>
<td>1</td>
<td>LAST (indicates end of transport-property dataset)</td>
<td>A4</td>
<td>1 to 4</td>
</tr>
</tbody>
</table>

a Header card for each pure species or binary interaction.

b The number of cards for each pure species or binary interaction equals the sum of the number of temperature intervals for both viscosity and thermal conductivity (sum of the numbers in columns 36 and 38 of the header card). Temperature intervals must be in increasing order. Viscosity or thermal conductivity order is immaterial. Any number of species is permitted between the first card (TRAN) and last card (LAST).
TABLE VI. - THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED TEMPERATURE AND PRESSURE

<table>
<thead>
<tr>
<th>CASE NO.</th>
<th>6667</th>
</tr>
</thead>
</table>

CHEMICAL FORMULA

FUEL H 2.00000
OXIDANT O 2.00000

O/F = 7.9370 PERCENT FUEL = 11.1894 EQUIVALENCE RATIO = 1.0000 PHI = 1.0000

THERMODYNAMIC PROPERTIES

<table>
<thead>
<tr>
<th>P, MPa</th>
<th>0.10132 0.10132 0.10132 0.10132 0.10132 0.10132 0.10132 0.10132 0.10132 0.10132</th>
</tr>
</thead>
<tbody>
<tr>
<td>T, DEG K</td>
<td>5000.0 4500.0 4000.0 3500.0 3000.0 2500.0 2000.0 1500.0 1000.0 500.0</td>
</tr>
<tr>
<td>RHO, KG/CM3</td>
<td>1.49672 2.33757 2.33757 2.33757 2.33757 2.33757 2.33757 2.33757 2.33757 2.33757</td>
</tr>
<tr>
<td>H, KJ/KG</td>
<td>52569.0 57251.4 53835.4 51236.0 30168.6 46953.5 9278.32 10755.6 11979.6 12423.5</td>
</tr>
<tr>
<td>U, KJ/KG</td>
<td>45299.2 4150.9 2949.9 9757.99 3079.56 8165.48 11048.7 12441.1 12792.7 13116.8</td>
</tr>
<tr>
<td>G, KJ/KG</td>
<td>-107511.2 -91736.2 -76960.7 -65513.1 -54702.2 -66385.9 -38774.8 -31691.1 -26892.6 -22358.2</td>
</tr>
<tr>
<td>(DLV/DT)P</td>
<td>-1.02147 -1.06319 -1.15972 -1.01698 -1.06345 -1.03779 -1.00121 -1.00047 -1.00000 -1.00000 -1.00000 -1.00000</td>
</tr>
<tr>
<td>gamma (S)</td>
<td>1.3668 1.2355 1.1639 1.1244 1.1160 1.1235 1.1705 1.2124 1.2523 1.2734 1.2969 1.3097 1.3260</td>
</tr>
<tr>
<td>Son Vel./M Sec</td>
<td>3041.9 2677.0 2246.2 1712.4 1341.9 1157.2 1041.3 916.2 760.2 685.7 599.3 249.6 493.7</td>
</tr>
</tbody>
</table>

TRANSIENT PROPERTIES (GASES ONLY)

| Visc. MILLIPOISE | 1.2746 1.1764 1.0862 1.0238 0.94579 0.83861 0.70639 0.5536 0.37599 0.25605 0.21383 0.17324 0.13413 |
| Lewis NUMBER | 0.6776 0.7040 0.8112 1.1433 1.5069 1.5662 1.5487 1.6561 0.0000 0.0000 0.0000 1.6664 0.0000 |

WITH EQUILIBRIUM REACTIONS

| Conductivity | 16.5206 31.4536 70.8687 79.2502 34.1245 9.6637 3.2566 1.7355 0.5776 0.7022 0.4668 0.3603 0.2666 |
| Prandtl NUMBER | 0.5558 0.6114 0.5948 0.5504 0.4769 0.5733 0.7374 0.8429 0.8810 0.4903 0.9276 0.9398 0.9570 |

WITH FROZEN REACTIONS

| Conductivity | 9.6433 8.7161 7.4708 5.7984 4.3615 3.3469 2.6961 1.7049 0.9776 0.7022 0.4668 0.3603 0.2666 |
| Prandtl NUMBER | 0.4639 0.4689 0.4923 0.5696 0.6749 0.7507 0.8041 0.8488 0.8810 0.9063 0.9276 0.9396 0.9570 |

MOLE FRACTIONS

H	0.65095 0.61751 0.50211 0.25266 0.05762 0.00517 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
H2	0.01037 0.03230 0.10047 0.18532 0.13477 0.04282 0.00581 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000
H2O	0.00188 0.00213 0.02961 0.23355 0.64345 0.91099 0.9995 0.99999 0.00000 0.00000 0.00000 0.00000 0.00000
O	0.03663 0.31068 0.24987 0.11680 0.02421 0.00182 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
OH	0.00867 0.02972 0.08949 0.15698 0.09368 0.02332 0.00214 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
O2	0.00219 0.00786 0.02846 0.00668 0.04626 0.01596 0.00238 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.5000E-05 FOR ALL ASSIGNED CONDITIONS

H2O2 03 H2O(S) H2O(L)