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ABSTRACT

The analysis and incorporation into a multigrid scheme of
several vectorizable algorithms are discussed. von Neumann
analyses of vertical 1line, horizontal 1line, and alternating
direction ZEBRA algorithms were performeda; and the results were
nged to predict their multigrid damping rates. The algorithms
were then successfully irmplemented in a transonic conservative
full-potential computer program. The convergence acceleration
effect of multiple grids is shown and the convergence rates of
the vectorizable algorithms are compared to the convergence rates

of standard successive line overrelaxation (SLOR) algorithms.
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INTRODUCTION

Resec :-.: *r» the computation of transonic flows in recent
years hus been Jlevoted to improving the accuracy, speed, and
geometric capability of computational tools. Most three-
dimensional transonic codes use the potential approximation ¢to
model the flow-field physics and the successive line overrelaxa-
tion algorithm (SLOR) to solve the resulting system of equations.
These three~-dimensional transonic codes, however, still require
large amounts of computer resources and are therefore expensive
to use extensively. Thus, there is a need for improving the
computational efficiency and reducing the cost of these codes.

Two wWays to increase the computational efficiency of a
program are to improve its computation rate and the convergence
rate of its algorithm. The computation rate of a program can be
improved through efficient program coding and the use of fasgter
computers (ref. 1). The efficiency of the coding of a program is
programmer dependent; and it is not truly an area for research as
murk «s8s a topic for education. improvements in computer speed
are available bu: usually through specialized computer architec-
ture such as the Control Data Corporationo CYBER 203 and
CYBER 205 computer systems. Vector architecture places certain
restrictions on the algorithm in the program; and significant
research has been devoted to the development of algorithms which

can satisfy these restrictions. Algorithms which can make use of



the vector nature of the machines are referred to as vectoriz-
able. Unfortunately, the workhorse algorithm of ¢transonic
potential codes, SLOR, is not completely vectorizable. Even i€
SLOR were completely vectorizable, it still has a very slow
convergence rate for transonic flow problems.

Twe ZEBRA algorithms of South, Keller, and Hafez (ref. 2)
are a promising new class of vectorizable algorithms. Although
vectorizable, the convergence rate for the 2EBRA algorithms is
approximately the same as that for SLOR. The number of opera-
tions required to obtain a solution is proportional to the square
of the number of points (0(n2) in the flow field, where n |is
the number of points in the flow field for potential flow cal-
culations. Hence, for very fine grids, programs using the SLOR
and ZEBRA algor’-" :8 are too expensive for extensive use,

The conce . of using multiple grids to accelerate the
iterative solution of a set of finite difference equations was
first proposed by Federenko (refs., 3 and 4) in 1961, The
multiple grid concept was further analyzed by Bakhv..ov (ref. S);
but it was not until Brandt (ref, 6) ext: nded the technique and
applied it to an elliptic set of equations that multigrid started
to gain acceptance.,

Federenko showed that the solution for a set of equations
could be obtained in Oo(n) operations, Convergence in 0(n)
operations using multigrid@d was proven for fairly general condi-
tions by Nicolaides (ref., 7) and Hackbush (ref, 8). SLOR

algorithms take O(nz) operations to obtain a solution, so it



is quite obvious that multiple grid (multigrid) techniques are
quite attractive.

In recent years, multigrid has gained wide acceptance as an
acceleration technique. It was first applied to two-dimensional
nonlifting transonic potential flow calculations in 1977 by Scuth
and Brandt (ref. 9) to accelerate an SLOR algorithm. This work
was extended by Jameson (ref. 10) in 1979 to lifting airfoils but
with an alternating direction implicit (ADI) type algorithm.
Multigrid was applied to three-dimensional transonic potential
flow calculations by Caughey (ref. 11) in 1983 using a penta-
dragonal form of an SLOR-type algorithm. Although tremendous
improvements in convergence rates were observed in each of these
gstudies, the algorithms used with the multigrid 1limit the
vectorizability of the programs.

In an attempt to take advantage of the fast convergence
rate obtainable with multigrid@d and yet retain a high degree
of vectorizability, multigrid is used to accelerate the
vectorizable ZEBRA algorithms in the present study. Details of
multigrid, the ZEBRA algorithms and their smoothing rates as
compared to SLOR, and the results of the incorporation of ZEBRA
algorithms in multigrid are given below. To reduce run costs,
a two-dimensional problem is considered rather than a three-

dimensional problem.



THE POTENTIAL MODEL FOR TRANSONIC FLOW

Continuum Formulation
Consider the flow of a perfect gas past an airfoil with ea
shape defined by the function ¥(x). If irrotational €flow is

assumed, then the dimensional velocity, %, satisfies
v x% =0

This condition is satisfied by the introduction of a reduced (or

disturbance) potential function, ¢, such that

>

vV = wa + vw§¢
In conservation form, the two~-dimensional potential equation is:
(Du)x + (Dv)y = 0 (1)

where p 1is the isentropic density:

2. 2,1/(y - 1)
p = (M a®)

and

alaamie v -l
u =14+ ¢x (2)

v = ¢Y



where p and a have been normalized by their free-stream values
and u and v heve been normalized by Ve o Equation (1) is
nonlinear and is strongly affected by the Mach number. This
effect is more clearly seen if equation (1) is vrewritten in

nonconservation form:

2 _ .2 2 _ 2 - =
(a a€) °xx + (a ve) ¢YY 2uv¢xy 0

Note that as u > a (or M > 1), the coefficient of L -
approaches 0. If u >a (M > 1), the equation changes type and
becomes hyperbolic instead of elliptic.

In the present study, subcritical and supercritical flows

over a symmetric, nonlifting 12-percent-thick parabolic arec

airfoil are considered. The airfoil boundary condition is:

212
L}
cl<

This boundary condition was applied at the airfoil chord 1line
(y = 0). Since only nonlifting cases are considered, symmetry
boundary conditions (¢Y = 0) are used fore and aft of the airfoil
section. Zero-disturbance boundary conditions (¢ = 0) are used
at the upstream and downstream extents of the grid as well as the

top boundary of the grid. (See fig. 1.)



Discrete Formulation
Equation (1) may be solved at discrete points by rewriting
it in a finite-difference formulation. The artificial density
method is used in the present work to introduce dissipation. The

discrete form of equation (1) with artificial density is:

6 (pu) R §(ov)
Ox Sy

where

P =op -1 8x 0., (3)
p is the isentropic density, and

T = max [0, 1 - (1/M)?2] (4)

is the switching factor.
In the present work, a modification to the switching factor,

T, was used of the form:
v = max {0, 1 - (u_/M)?] (5)

where Mg is an input switch Mach number. By setting Mg < 1,
the additional damping of the artificial density method can be
introduced at subsonic points near the sonic region, This has

been found to aid convergence (ref. 10).



Boundary conditions as noted in figure 1 were used. Ghost
pcints were used to allow central differences for the Neumann
boundary conditiong at the airfoil section and the symmetry line.

A Cartesian grid with “interest fornula®™ grid stretching is
used in the present study. In the y~dircction (see fig. 1), grid

stretching beging at the airfoil where:

ij*1 = P, * ij (6)

The parameter, Fy ig an input to the program and varies from
1.0 for no grid stretching (uniform grid}) to higher numbers such
as 1,1 for 10-percent grid stretching, In the x-direction (see

fig. 1), a uniform grid is used above the airfoil. Forward of

the leading edge,

Axi-“ = Fx * Axi (7)

Aft of the trailing edge,

8%549 = Fx * Bx; (8)

The parameter, F, is an input to the program and is similar to
Fy except it is used for the x-direction -tretching. The 1local

grid aspect ratio is defined as

A = Ax/Ay (9)



where Ax and Ay are the qgrid spacing in the x- and y-
directions, respectively, as shown in fiqure 1.

For the subcritical test cases run in the present study
(Myp = 0.1), 2 nonstretched uniform grid with X = 1.0 was used.,
In the supercritical cases (M, = 0.8), grid stretching was neces-
sary to keep the outer boundaries far enough from the airfoil to
eliminate their effect on the results. Therefore, 8 percent
stretching was used in the x-direction (F, = 1.08) and 12 percent
stretching was used in the y-direction (Fy = 1.12). This gave a
range of aspect ratiogs on the fine grid of 0,298 < )X < 3,426.
This same stretched grid was also used in the compressible sub-
critical <cases (M, = 0.5). All cases were run using a
fine grid with 65 points in the x-direction and 33 points in the

y-direction unless otherwise noted.

THE MULTIGRID METHOD

The basis for multigrid igs the use of successively coarser
grids to <caliculate corrections to a fine grid solution.
Bxcellent developments of the multigrid technigque are given in
references 4, 12, and 13, For completeness, brief developments
of multigrid are given below €for both 1linear and nonlinear

operators.



Linear Eguations

Consider the problem

Lhyh = ¢h (10)

vhere L' is a linear, finite-difference operator on a grid, Gh,
with spacing h. The forcing function, £, is known and gh is
the solution to the problem on the grid with sgspacing h. If we

take u as an approximation to u" with an error of

equation (10) can be written as

th(ul &+ vP) = ¢h (1)

Since L 1is a linear operator, this can be written as

th(ul) + LP(vD) = ¢b (12)

If VP is a smooth function, it can be represented on a coarser

g2h

grid, + with spacing 2h, twice the spacing between the points

as the grid with spacing h. The grid g2h is formed by

deleting every other point in Gh. Therefore, c?he G'. Points

are eliminated from Gzh to form G‘h

géh, gl6h,

and so forth to form

etc. Each subsequent grid is a subset of the previous



grid, In this context, a function is considered smooth if it
containsg no high-frequency components which will cause aliasing
of the function when it is transferred to a coarser grid.

It is possible to solve for an approximation to vh on the
c2h,

coarser grid, using equation (12) written for the coarser

grid

Lzh(I:hvh) . I:h(fh - Mty (13)

Igh is known as the restriction operator, and it simply transfers
the values of a function from the fine grid to the coarse grid.

Details of restriction operators are given later. For simplic-

ity, define f2h = I:h(fh - Lhuh) as a forcing function on the
coarse grid. Taking VZh = I:hvh, equation (13) becomes
L2hy2h _ ¢2h (14)

Since equation (14) is for a coarser grid than equation (12), the

numerical solution for is much cheaper to obtain because

fewer points are involved. Or«: veh g obtained, it is used to

correct the fine grid iterative solution, ub using

h h h y2h
(u )new a (u )Old + Izhv (15)

10



The ccarse grid to fine grid transfer operator, in equa-

2,
tion (15) is called the prolongation operator. This operator is
discussed later.

Since the form of equation (14) is identical to the form of
equation (10), it is obvious that a grid with spacing 4h can be
used to find corrections to the "solution" of the problem on the
grid with spacing 2h. Successively coarser grids may be used
until a grid is reached which is so coarse that the "solution® is
obtained very, very quickly and cheaply. (The limit is a grid so
coarse that only a single unknown remains and is obtainable by
direct solution,) The correction from the coarsest grid is then
used to correct the correction on the next finer grid; and this
is continued through successively finer levels until the €finest
grid is reached and the approximate solution is updated.

The usefulness of corrections obtained on a coarser qrid is
dependent on the smoothness of the fine grid error passed to the
coarse grid, Hence, it is absolutely necessary that the high-
frequency components of the error on the fine grid are .educed,
if not completely eliminated. It is the responsibility of the
smoothe¢r (usually a relaxation algorithm) to damp the high-
frequency components of the error, The low-fregquency components
of the error are unimportant for all but the coarsest grid since
the grids which are coarser than the current grid will see these
low=-frequency components as high frequencies and they will bhe
damped there. If the high-frequency components are not damped,

then the restriction operator will pass aliased information to

1M1



the coarser grid and the entire multigrid scheme will cease to
converge. (An example of this is given in the Results
section.) The choice of a smoother is critical to the use of
multigriad. A subsequent section is devoted to a discussion of
gmoothers.

The cycle of work performed starting on the finest griad,
then visiting the coarser grids, and then returning to the finest
grid is called one multigrid cycle. The cycles are repeated
until sufficient convergence is obtained on the £finest grid.
In the present study, a fixed cycle known as the V-cycle was
used. In the V-cycle, a prescribed number of iterations are
performed on increasingly coarser grids, starting on the fine
grid and proceeding to the coarsest grid, and then proceeding on

increasingly finer grids back to the finest grid.

Nonlinear Eqguations

The previous development of the multigrid scheme was for
linear operators. Since the potential equation used to model
transonic flow is nonlinear, it is necessary to use the Full
Approximation Storage (FAS) multigrid scheme (ref. 9) which is
applicable to both linear and nonlinear problems. A development
of the FAS scheme is given below in equations (16)~-(20),

If the Lb operator is taken to be nonlinear, the step
taken between equations (11) and (12) in the previous development
Lhyh

is no longer valid. 1Instead, is subtracted from both sides

of equation (11) to give:

12



Pl « vy - tP®) = - P (16)

For the coarse grid, this becomes:

LZh( I2huh

2h
n )

Zh(Iﬁhuh) - IZh(fh - Lh

h
h u ) (17)

+ V - L
If the second term on the left~-hand side is moved to the right-
hand side, equation (17) can be written as:

L2h(y2h) . ¢2h (18)

where
- M) o+ L2r(12RP) (19)

2h

Once values of u are obtained, the fine grid iterative

solution is updated using the following eguation:
h

(u’) = (uh) + I
o

h [u2h _t2h, h
new 14 2h

I (u)

Two points should be noted. First, the prolongated term on the
right-hand side is a correction for the fine griad. Second, the
operator used on the coarse grid (eq. (18)) has the same form as
the fine grid operator, the grid spacing (h and 2h) being the

only difference.

13



Restriction Operators
As mentioned previously, the restriction operator, Ighn
transfers the values of some discrete function from a fine grid
to a coarser grid. The simplest restriction operator |is
injection. Here, the value of the function at each point on the
coarse grid is equated to the value of the function at the
coincident point on the underlying fine grid. In equation form

for a generic function, ¥, injection is:

2h h
] ] -
v (xo. Yo) =y (xoo yo)

for all (x,, yo) € (ch N ¢2hy,

For some problems, it is necessary to use more complex
restriction operators to transfer more "global" information from
the fine grid. ©Normally, this is to eliminate small oscillations
in the function on the fine grid, In the present work, a nine-

point weighted average was used,

2h h
" (xo. yo) = 1/4 Y (xor Yo)

+ 1/8 [wh (x° + h, yo) + w“ (x° - h, yo)

+ ‘Ph (xol YO + h) + "’h (xO. Yo - h)]

+ 1/16 [Wh (x + h, y +h) + oo (x, + h, y = h)

+ wh (xo - h, Y, * h) + wh (xo - h, Yo = h)]

14



Note that wzh (xo, yo) is now influenced by the values of the

function at nine points on Gh rather than just (xo, yo).

Prolongation Operators

The prolongation operator, Igh' is the coarse~ to fine=griad
transfer operator. In the present study, direct trangsfer of the
values of the function is used for fine grid points coincident
with coarse grid points (Type A in fige. 2), Linear interpolation
of coarse grid values is used for those fine grid points not co=-
incident with coarse grid points (Types B, C, and D in fig. 2).
It is obvious that four steps are necessary to complete the

prolongation.
SMOOTHING ALGORITHMS

As mentioned in the previous section, the smoother is used
in a multigrid scheme to eliminate the high-frequency components
of the error in the solution, The proper choice of a smoother is
critical to the success of multigrid., Fortunately, it is usually
possible to predict the performance of a smoother before it is

incorporated in a multigrid context,

Algorithms
Six algorithms were considered as multigrid smoothers in the
present work = vertical, horizontal, and alternating~direction
SLOR and Z2EBRA I. The three SLOR algorithms have been étudied by

other researchers and were inci.uded in the present work for

15



comparison with the ZEBRA I algorithms which are the focus of the
current study. A description of each of the six algorithms is
given below.

VLOR - Vertical 1line overrelaxation.- When updating the

point (i,3), VLOR uses updated values at three adjacent points;
(i=-1,3), (i,3+1), and (i,3=-1), if the solution proceeds in
th: increasing 41 direction. (See fig. 3.) The values at

(. - 4) are upJated when the previous i = constant vertical
1; .8 updated., The valves at (i,j+1) and (i,j=-1) are up-
dated at the same time as the (i,4) point. The implicit set of
tridiagonal equations generated by this scheme is readily solved
using the Thomas algorithm. Since the solution of the implicit
lines is order dependent and the Thomas algorithm is recursive,
VLOR is not fully vectorizable,

HLOR - Horizontal line overrelaxation.- The HLOR scheme is

basically the same as tlre VLOR scheme except that the impliecit
lines are 4in the horizontal direction. When updating the
point (i,3j), HLOR uses updated values at three adjacent points;
(i,5=-1), (i+1,3), and (i-1,3), if the solution proceeds in the
increasing 3 direction., (See fig. 4.) The values at (i,j=-1)
were updated when the previous 9§ = constant, horizontal line was
updated. The values at (i+1,9) and (i-1,4) are updated at
the same time as the (i,3j) point. The implicit set of tridiag-
onal equations generated by this scheme is readily solved by
the Thomas algorithm and, ac with VLOR, HLOR is not £fully

vectorizable.

16



ADLOR - Alternating direction line overre axation.- ADLOR is

just the alternating application of VLOR and HLOR sweeps. Ejither
VLOR or HLOR ig used to update all of the points in the field and
then the other is used to further update all of the points in the
field. The ADLOR algorithm tendgs to be less sgensitive to grid
stretching.

VZEBR!1 - Vertical 1line 2EBRA I.- VZEB1 4is a two-color,

implicit, vertical 1line scheme. For the first color, say

i = even points, only the "new® values at the po.1ts above and
below ((i,j+t) and (i,j-1)) the point to be updated ((i,j)) are
used. (See fig. S5.) This gives a set of tridiagonal equations
which can be solved using the Thomas algorithm. Once the points
in the first¢ color are updated, their new values are used to
update the points in the second color, odd values of 1 in this
examnple. Hence, for the second color, updated values of the
peints (£=-1,3), (i+1,3), (i,3-1), and (i,3+1) are i.sed to
update the valaes at the point (i,j). (See fig. S.) The values
at the points above and below the point at (i,j) and the values
at (i,j) are updated simultaneously. This results in another
set of tridiagonal equations which is solved using the Thomas
algorithm, Since the implicit 1lines of a qgiven color are
decoupled from one another, all the lines of a given color may
be solved simultaneously. Recall that the solutions of the
tridiagonal 1lines 4in VLOR were order dependent so that the
lines had to be solved ocne at a time. Hence, they were not

vectorigable. The tridiagonal lines of a given color in VZEBI
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are independent and can be solved simultaneously. This means
that vector instructions can be used. Specifically, vector in-
structions are used to calculate the tridiagonal coefficients for
all the implicit lines of a given color at each value of e
After all the coefficients are calculated, the back-substitutions
are performed for all the implicit lines, one value of 3j at a
time. Further information about the vectorization o' the ZEBRA
algorithms is contained in references 1 and 2.

HZEB1 - Horizontal 1line ZEBRA I.- HZEB1 is identical ¢to

VZEB1 except that the implicit 1lines are in the horizontal
direction.

ADZEB1 - Alternating direction line ZEBRA I.- ADZEB1 is just

the alternate application of VZEB1 and HZEB1 sweeps. One of the
two is used to update all of the points in the field and then the

other is used to further update the points in the field.

Smoothing Analysis

The von Neumann stability analysis was developed by John
von Neumann at Los Alamos around 1944, The method was circulated
privately for several vears (ref. 14). A short description of
the approach was first published in 1947 by Crank and Nicolson
(ref. 15) and the first thorough explanation was given by
O'Brien, Hyman, and Kaplan (ref. 16). An excellent textbook
explanation of the method was presented by Roache (ref. 17) in

1972,
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In the von Neumann analysis, the approximate solution to a
model eguation generated by the algorithm of interest is expanded
ugsing a finite Fourier series. The exact solution is then
subtracted - leaving the error. The decay or amplification of
each frequency of the error is considered to determine stability
or instability (ref. 17). The decay of the error is expressed by
the von Neumann damping or amplification factor, g, as a function
of frequency. The maximum value of g over the high-frequency
range of the error frequencies is defined as the smoothing factor

(ref. 9), u.
v = max {g(0,, 93}, n/2¢ e, 9y| < w (21)

where Sx and GY are the phase angles associated with the x-
and y-coordinate directions, respectively. The £full range of
each 6 in a general solution is -7 € 8 ¢ ®, The range from
=T to ® may be divided into two groups, the high frequencies
from -7 to -%/2 and n/2 to and the low frequencies
from -7/2 to w/2. The high-frequency components of the errors
must be eliminated on the fine grid because they cannot be
resolved on a coarser grid. The low-frequency components of the
error are reduced on a coarser grid where one-half of them become
"high" -frequency errors due to the change in grid spacing.
Coarser and coarser grids are visited to eliminate lower
frequency components of the .rror as one-half of the 1lovw-

frequency range of a given grid becomes the high-frequency range
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on the next coarser grid. Therefore, the smoother only needs to
eliminate the error frequencies from v/2 < |3| € 7 and this is
the range examined for the smoothing factor. {One additional
restriction is that the error not grow in the low-frequency
range, or g < 1 for 0 < |6| < ®/2.)

A von Neumann analysis was performed for each of the six
different algorithmse considered in this study. In these
analyses, generaligations for varying grid aspect ratio and Mach
number were taken into account. Grid stretching was not directly
modeled in the von Neumann analyses, but one of its effects was
modeled by the inclusion of grid aspect ratio, A.

From the description of the conservative transonic potential
flow problem given previously, it is clear that Mach number
effects must be included in the von Neumann analyses of the
smoothers. Recall that the density appears as a coefficient in
the conservative transonic potential equation. Variations n
density due to compressibility effects cause nonlinearities. The
type of the equation also changes with Mach number, elliptic
for M ¢ 1 and hyperbolic for M > 1,

The conservative full-potential equation with artificial
density is difficult to analyze using the von Neumann analysis.
Congiderably simpler is the analysis of the nonconservative
= 0,

small-disturbance potential equation (1 = u2) o +

¢YY
Results of the von Neumann analyses using the simpler equation
are expected to be consistent with the full-potential equation

due to the validity of the substitution as shown in Appendix A.
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Hence, the performance of the smoothers operating on the
transonic :mall-disturbance equation was analyzed, rather than
the consgeirvative full-pctential equation. Two sgeparate analyses
were pertormed for each of the algorithms: One for M ¢ 1 with
central differencing and one for M > 1 with upwind differenc-
ing., Over- or underrelaxation was accounted for in each subsonic
apalysis with the inclusion of the relaxation parameter, w,
Additional daxaping in the form of B,y where 8 is a free
parameter, was included in the supersonic analyses.

The von Neumann method for VLOR is straightforward and is
included here to dJdemonstrate the analysis for a simpler case
before the more complicated details of VZEB1 are given. The
analyses for the ZEBRA algorithms are more complex since they are
two-color schemes. The development for HLOR roughly follows the
analysis of VLOR and so is not included. The analysis of HZEB1
is given in Appendix B. The six algorithms analyzed and their

amplification factors are summarized in Table 1.

A von Neumann Analysis of VLOR
The following analysis is for the nonconsgrvative small-
disturbance potential equation using central differencing in
subsonic regions and upwind differencing in supersonic flow
regions. Since the finite dif erencing operator is different for
subcritical (central differencing) and supercritical (upwind

differencing) flow regions, it is necessary to analyze the two
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flow conditions separately. The subcritical case is analyzed

first.

Subgsonic FPlow M < 1

The smal.i -dirsturbance eguation in operator form is:

{ - m2 2 -
[(r - w5y 6+ syyl 054 = 0 for M < 1. (22)

where

M is the local Mach number

Gxx is an undivided, central difference operator in the =x-

direction

ny is an undivided, central difference operator in the y-

direction

A is the grid aspect ratio, Ax/Ay

and

¢ij is the potential at the point i,3.

VLOR can be written as

2 - n+l ~n+1 +. n

-y wn+t
- 21 + Ey) °1j = 0 (23)
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where

E is a displacement operator in the x (Ey) or y (Ey)
direction in the positive (BY) or negative (B~) direction.

That is,

ij is1,)

and

y i3 ~ 4’i,jiﬂ

¢:j is a wvalue of the potential at the nth time 1level
previous to the update, and 3:;1 is an updated value of the

potential which satisfies equation (23).

Fourier coefficients are substituted for the error, e, which
also satisfies the homogeneous difference equation given by
equation (23)., Therefore,
n n e¢-1 (ex+ey)

e =g

i3 (24)

Substitution of the Fourier components (eg. (24)) into equa-

tion (23) for ¢:j yields:
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n+l

g 2 =
g
/=1 8
(-0 - Mz)(e - 2 251) + 22 251 (2 cos 8_ - 2)]
- H (25)
) /=T 8 )
(1 - %) (e ¥ - 2/0) + 2%/w (2 cos Oy - 2)

where g is the amplification factor; Bx and Oy are the phase

angles associated with the x- and y-coordinate directions,

respectively; and w is the overrelaxation factor such that

n+1t - n )

~n+1 n
ij ¢ij )'

=w -
(o w {05y = 04y

Supersonic Flow M 2 1

For a Mach number greater than or equal to 1,0, the small-

disturbance potential equation is:

25 - gs

[ - 2
Le1 = M%) §xx + A vy xt]

¢ij = 0 for M > 1 (26)

where

M, A, § , and

vy are as defined below equation (22)
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Exx is an undivided upwind difference operator in the x-

direction

B is a free parameter

and

sxt is an undivided second difference operator in the x-
and time-directions which is added for stability. The

difference expression is:

Using the operators defined with eguation (23), equation (26) may

be written as:

n+1
ij

2 -2 - n+1 2
(1 - 8% ((nx) - 2E_+ 1) ¢ + A

- +
B -
i3 ( v 21 + Ey) ¢

+ 8 [(1 - 2)) of; - (1 -E]) of,] =0 (27)

Substitution of <the Fourier coefficients and simplification

vyields:
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g = 8{1 - (cos o, - V<1 sin ex)]/{n - %) [ (cos 6, - /=1 sin ex)z

2

- 2 (cos 8_ - V=1 8in 8_ ) + 1] + A° (2 cos 9_ ~ 2)
X R b4

+ 8 [1 - {cos ex - V=1 gin Sx)]} (28)

From eguations (27) and@ (28) it is clear that VLOR is a marching
scheme in purely supersonic flow and, if 8 = 0, g =0 for all
frequencies.

For a given method, Mach number (M), and values of g, w,

and X; values of g may be found as a function of ex and

8, where 6, and 6, vary from -180° to 180°, Tt is useful to

look at contour plots of g for varying Gx and OY as shown

in figure 6. The fregquency range for each of the 0's can be
divided into two segments - the high-frequency range (-180° to
-90° and 90° to 180°) and the low-frequency range (-90° to
90°). Note that the maximum values of g 4in figure 6 are in the

low~freguency ranges of © and 0 = 0,97).

x v Imax

With multigrid, only the high-frequency region is important
and the low~frequency region may be ignored as reflected 1in
figure 7. The maximum valuve of g in the high-frequency range
is the smoothing factor, u. Notice that the elimination of the
low-frequency region significantly lowers the maximum value of

g obtainable and so ¥ is significantly less than for

Imax

this case (U = 0,44 versus = 0.97),

Imax
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Subsonic Flow

A von Neumann Analysis of VZEBR1

M < 1

Using the

previougly defined displacement operators, the

VZEB1 algorithm applied to equation (22) yields:

~n+1/2 +n

2
(1 -mu) [E06 = + Eo¢ |
x 1J ij x ij
2 - 4+, ~n+1/2
+2 [g -2t +E] 0
y Y ij
“n+1/2 n-1/2 - n n-1
-8 ¢ - ¢ - (6 =-9¢ )] =0
i3 i3 x 1] i3 (29)
where:

¢2j= a new value of the potential at the "other"™ color
at the nth time level. The ¢two colors are
considered to be one-half time step apart in the
analysis.

¢2;1/2: an old value oF the potential on the color being
updated.,

n+1/2

¢ij s a new value of the potential on the color being
updated (overrelaxed).

~n+1/2

¢ij a value of the potential on the c¢olor being

updated which makes the residual zero.
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The three time levels in eguation (29) are related by

Tn+1/2 _ n+1/2 . w=1 ,n=1/2
¢ij 1/w ¢ij + —_ ¢ij (30)
where w is the relaxation parameter, Substitution of the

Fourier coefficients for the potential and simplification gives a

guadratic equation for /;1

2 2 2
[(1 = m)(-2)¢1/w) + 2 (2cos 8 - 2)(170)] (V9)
y
2
+ [(1 =M )2 cos 0] VT
X
2 w=1 2 w1
+ [(1 =M )(=2) (—) + 2 (2 cos 8 - 2) (—)] =0 (31)
w v w

This may be solved using the quadratic equation to find
the two roots. The root which represents g in the physical
Problem cannot be determined. The purpose of the von Neumann
analysis is8 to predict the multigrid smoothing rate v, for
VZEB1, Since the value of u is governed by the maximum value
of g, it is prudent to pick the root of g which has the

maximum absolute value.

Supersonic Flow M > 1

In operator form, VZEB1 applied to equation (26) can be

written as:

28



x ij x' i3 i3
- 172
+ 2 [BE 4+ 21 + E+J ¢ 1/
y b4 i3
+1/2 n=./2 - n=1
-8 [¢" /2 ) /2 (B )(¢n -6 )] =0 (32)
i3 ij X ij ij

There are some interesting things to note here., FPirst, an
"51d" value is used at 1i-2 to maintain the independence of the
vertical implicit lines. Second, note that the terms represent-

ing sxt are split between the two time steps. This equation

may be rewritten as a cubic equation in /;1

a /3" + b Lf?)z +ec/g+a=0 (33)
where

a=(1 -4 +2% (2cos 0 -2 -3

b = [(1 - Mz)(-z) + BJ (cos ¢ /=1 sin ex)

X

e = (1 - u%) (cos o, - /=7 sin Sx)2 + B

4 =-8 (cos 0, - /<1 sin ex)
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The maximum magnitude of the three roots is taken as the
magnitude of g.

In figure 8(a), a contour plot of g for VZEB1 at the
conditions of M, =0.1, R =0, A = 1,0, and ® = 1.0 is given.
These parameter values are the same as figures 6 and 7 €for
VLOR,. Note that there are three areas of g = 1,0 in this

contour plot. There is one at (O

% Gy) equal to (0°, 0°) as with

VLOR and there are two at (-180°, 0°) and (+180°, 0°), The
latter two areas of g = 1 are not in the low-freguency regions
and so are not discarded when u is examined, figure 8(b)., Por-
tunately, since the values of © equal to 0° and $180° are not
obtainable on a discrete grid, only a limited effect of this
region should be felt in a multigrid application. However,
since u for VZEB1 is 0.97 and for VLOR is 0.44 for the
given conditions, it is anticipated that the VLOR may give a
better convergence rate as a multigrid smoother.

It is useful to consider only u rather than the full
range of values of - In figure 9, u for VZEBR1 is plotted
versus Mach number for three values of aspect ratio. A = 1.0
is the uniform grid aspect ratio used for the entire grid for
the incompressible test case mentioned below in the Results
sectior, A = 3,426 and 0.0298 are the upper and lower limits of
aspect =atio on the fine grid of the stretched grid in the
compressible subsonic and supersonic test cases also discussed
in the Results section., It is clear from £figure 9 that the

performance of VZEB1 is strongly affected by aspect ratio over
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the entire Mach number range presented. The predicted perform-
ance is poor for X ¢ 1 but bettaer for X > 1, as expected for
VZEBR1,

A von Neumann analysis for HZEB1 is given in the Appendix B.
Contour plots of g for HZEB1 are quite similar to those of
VZEB1 excep. that they are rotated 90°., This is reflected in
figure 10 where U vegrsus M is plotted for various values of
aspect ratio. Note that HZEB! has good performance for small
aspect ratio and poor performance at high aspect ratio, the
opposite of VZEB1.

The von Neumann analysis of ADZEB1 is just a combination
of the analyses of VZEB1 and HZEB1, At each frequency, the
damping rate for ADZEB1 is the square roo: of .Le product of the
individual damping rates of VZEB1 and HZEB1. This reduces the
gengitivity of ADZEB1 to aspect ratio effects since frequencies
that either VZEB1 or HZEB1 has problems with are compensated for
by good performance by the oppcsite smoother (HZEB1 or VZEB1,
respectively:; i.e., for small-aspect-ratio grid cell , HZEB1 does
well and for large-aspect-ratio grid cells, VZEB1 does well. The
improved performance of ADZEB1 for varying aspect ratio is

reflected in figure 1 .,
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RESULTS

A computer code was written to test the performance of the
ZEBRA algorithms as multigrid smoothers. The transonic full-
potential equation was modeled using central differencing with
the artif’ 1 density method used to provide upwind bias in
supersonic egions. Small-disturbance boundary conditions vere
used to wmodel the presence of an airfoil.

The flow over a symmetric, 12-percent-thick parabolic arc
airfoil was calculated. Free-stream Machn numbers of 0.1, 0.5,
and 0.8 were considered. Stretched grids (8 percent in the x-
direction and 12 percent in the y-direction) were used at all
three Mach numbers. A uniform grid (no stretching, Ax = Ay) was
also ugsed at M, = 0.1. Only nonlifting cases were considered.

The performance of VZEB1 was examined at the conditions of
My, = C.1 on a uniform unstretched grid. Simple injection of the
potential and residual was used in a S-grid multigrid scheme.
The solution 4id not converge. To understand ..y this occurred,
surface plots of the potential, residual, and forcing function
for the various grids were made.

A surface plot of the potential on the fine grid (grid 1)
just before injection to grid 2 is shown in €figure 12, The
coordinate system for the grid is as shown in the figure and will
apply to all other surface plots. Note that the positive
direction for the function shown is down. Note also that the

function is reasonably smooth.
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A surface plot of the residual on grid 1 is shown in
figure 13, Note the jagged nature of the residual function. If
the x-y plane is rotated up and toward the viewer, so that the
line of sight is directly down the y-axis (see fig. 14), it can
be seen that every other "x = constant®™ line has a residual of
zero. This is to he expected with the decoupled-line, two-color
nature of the ZEBRA I sgchemes.

The high-~freguency oscillationg in the residual on the first
grid caused =aliasing of the forcing function on the second
grid. (The forcing function, f, is the difference of the fine
and coarse grid operators; see eg. (19).) With no residual
weighting (see Restriction Operator sectior above), the forcing
function on the second grid had the shape shown in figure 15,
With residual weighting, the forcing function on the second grid
had the shape shown in figure 16,

The effect of residual weighting on the convergence history
is shown in figure 17 where the logarithm of the ratio of the
fine grid residual to the initial fine grid residual is plotted
versus work. One unit of work is defined as the number of
operations required to perform one fine griad (Gh) fteration.
One iteration on grid g2h requires 0.25 work units for a two-
dimensional problem, etc.,

Prom the above discussion, it is obvious that residual
weighting must be used with VZEB1 to eliminate aliasing of the
coarse grid forcing function and allow convergence, (Purther
research showed that, for t:ese same reasons, residual weighting

is necessary for HZEB1 also.)
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Weighted averaging of the potential function was also
examined. It was found that this was not necessary since the
potential is relatively smooth on the fine grid (fig. 12) and the
injected values of the potential on the coarse grid are not
aliaged without the weighting. The "shape® of the coarse grid
potential is shown in the surface plot of figure 18. This same
shape is obtained independent of potential weighting. Injection
was used for the potential in all subsequent results discussed.

With residual weighting, VZEB1 was greatly accelerated by
the use of multigrid. In the most benign case considered in
this study (M, = 0.1, uniform grid), the acceleration of VZEB1
by multigrid is illustrated in figure 19 using 2, 3, 4, and
5 grids. All runs were conducted with an overrelaxation factor
of 1.0. Note that 4- and 5-grid multigrid give identical
convergence and are only slightly faster than 3-grid multigrid
for these conditions. At a Mach number of 0.1, the flow is
completely subsgonic and effectively incompressible, The
potential equation governing the flow is elliptic; and, since
the aspect ratio is unity, it effectively reduces to Laplaces'
equation. Thus, the excellent spee2up obtained using multigrid
was expected even though it was better than the von Neumann
analysis suggests. Evidently, the frequencies giving the
smoothing factor (u) as plotted in figure 9 were not obtained.
Figure B8(b) shows that the maximum values of g for VZEB1 at
M = 0.1 and A = 1,0 are concentrated at the two points of

high frequency in 9 and the 1low frequency in 0 If

b4 y*

these freguencies do not appear in the error of the solution,
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then they do not need to be damped and the effective 1] is
reduced. This evidently occurred at M, = 0,1 and A= 1,0
for VZEB1. PFrom this example, it is clear that the results from
a von Neumann analysis must be carefully examined to determine
validity. Predictions of u can be biased by frequencies not
found in the coded problem.

The performance of VZEB?" multigrid is dependent on the
grid aspect ratio. This dependence is reflected in figure 20.
Starting with the most benign conditions, M, = 0.1 and an un-
stretched grid, the performance of VZEB! multigrid is excel-
lent. If the Mach number is held the same but grid stretching
is included (8 percent in the x-direction and 12 percent in
the y-direction) the performance is significantly degraded.
{Compare M, = 0.1 curves,) ©Note that not only are the absolute
levels of the residual higher but also the asymptotic rate of
convergence is not nearly as good with the grid stretching.
Recall that the von Neumann analysis did predict a sensitivity to
aspect ratio.

If the Mach number is increased slightly to M, = 0.5 so
that compressibility effects are in the solution, the performance
is slightly worse than the incompressible case on the same
stretched grid. Most of the difference is in the absolute levels
of the residual and not in the asymptotic convergence rate. A
further increase in Mach number to Me, = 0.8 so that the flow
field becomes transonic further degrades the performance of VZEB1
multigrid but again mostly in absolute levels of residual and not

asymptotic rate of convergence. (Compare stretched grid curves
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in fig. 20.) From this discussion it 1is clear that the
performance of VZEB1 multigrid is affected more strongly by gqgrid
aspect ratio than by compressibility (nonlinearity) or super-
critical flow regions (equation type changes). This behavior was
supported by the von Neumann analysis as summarized in figure 9.
The acceleration afforded VZEB1 by various numbers of grids
in the multigrid scheme at M, = 0.8 is shown in figure 21. The
speedup at M, = 0.8 is not as dramatic as at M, = 0.1, Note
that 4- and S5-grid multigrid give nearly identical performance
and are only slightly better than the 3-grid multigrid. The
asymptotic rate for S5 grid is only slightly better than for
1 grid, but the absolute level of regsidual is significantly less.
Since many others have used VLOR as a multigrid smoother, it
is worthwhile to compare the performance of VZEB1 and VLOR in
multigrid. At M, = 0.8 on a stretched grid, their performance
is compared in figure 22. Note that their rate of convergence is
nearly identical, however the VZEBt1 can be more fully vectorized
and so should give better overall performance (less computer time
to obtain a converged solution). Similar comparison plots for
HZEB?! multigrid are shown in figures 23-26. The results follow
those for VZEB1., It should be noted that for the test problem in
the present work, HZEB1 gives better performance than VZEB1,
This is not a general result, but is obtained here only because
of the specific grid used and the difference in percentage of
total points included in the update implicit 1lines of the two

algorithms.
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In the von Neumann analysis of ADZEBt1, it was found that the
alternating direction scheme should give better performance on
varying aspect ratio grids. (See fig. 11.) The prediction is
confirmed in figure 27 where the effects of M, and aspect ratio
on ADZEB1 multigrid are examined., Note that the incompressible
{unstretched and stretched grid) and the compressible cases all
give roughly the same convergence rates. With the effects of
grid stretching reduced, the effect of supersonic regions is seen
to adversely affect the convergence rate. The performance of
ADZEB? in the transonic flow calculation is quite good and is
compared to ADLOR in figure 28. Unfortunately, because of the
alternating direction nature of ADZEB1, vectorization is not as

straightforward as with VZEB1 and HZEB1,.
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CONCLUSIONS

Three vectorizable multigrid gmoothers were examined;
vertical, horizontal, and alternating direction 2EBRA. The
smoothing performance of each was predicted using von Neumann
gstability analyses, The effects of Mach number, grid aspect
ratio and damping €factor were included. Ag aexpected, the
analyses predicted that VZEB1 performs best on grids with A > 1
and HZEB1 performs best on grids with A< 1. The analysis of
ADZEB1 predicted that it is less sensitive to grid aspect ratio
than V2ZEB1 or HZEB1, All three ZEBRA methods were predicted to
have poorer performance at supercritical Mach numbers than at
subecritical Mach numbers,

The actual performance of each of the ZEBRA alqorithms was
then assessed by incorporation into a two-dimensional full-
potential code. The performance of the vectorizable algorithms
was compared to three well-known SLOR algorithms. In each
comparison (VZEB1 to VLOR, HZEB1 to HLOR, and ADZEB1 to ADLOR),
the ZEBRA scheme had a convergence rate comparable with the
respective SLOR scheme. These comparisons indicated a reasonable
level of success of the multigrid acceleraiion of each ZEBRA
scheme. Using very powerful smoothers, it is possible to have
faster multigrid convergence rates than were obtained in the
present study. However, the purpose of the present work was to
study vectorizable 2EBRA multigrid algorithms, so slightly less
than optimal convergence rates were acceptable as a compromise to

obtain vectorigable code.
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It is unfortunate that the von Neumann analyses did not
predict gquaantitatively the performance of the ZEBRA schemes. 1In
a discrete problem, only a finite number of frequencies ce
present in the error. These frequencies are dictated, in part,
by the grid. A von Neumann analysis models a continuum problem
and so considers all frequencies of the error. The value of u
obtained from the analysis can be biased if it is predicted based
on frequencies which are not present in the discrete problenm,
particularly when Ox or By equals or is close to 0 or 2w,

Finally, it should be noted that only a nonlifting airfoil
wag considered in the present study. Convergence rates of cal-

culations for 1lifting airfoils using the current methods would

probably not be as fast.
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APPENDIX A
SIMPLIFICATION OF CONSERVATIVE FULL~POTERTIAL

EQUATION WITH ARTIFICIAL DENSITY

Congider the one-dimensional form of the full-potential

equation using the artificial density method:

(bu)_ = 0 (A1)
x

where

t = p = TAxp (a2)

X

p = (M: a2)1/(Y =" (A3)
and

al = 1//u: + (y - 1) (1 - uz)//z (24)

(Note that eguations (A1)-(A4) are the same as equations (1)=(4)
in the main paper with v = 0.,) The finite difference form of

equation (A1) is:

Pi+172 %i4172 ~ Piary2 Yiaay2
Ax

(as)

= Ri(¢)

where
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Pisr172 = Piery2 = T

£ Piery2 T Piaay2!

(a6)
= (V= T) Py Y Ty iy

and T is the switching facior as described in equation (S).

~

The residual, R?(Q), can be expanded about the exact solution ¢,

such that R1(8> = 0,

n - i§1 QR: n R )
R, (6) = R, ($) + (6, - ¢
i i Kot -2 5¢k k k
(A7)
i§1 aa? 0
= 0 + re
k=i-2 %% x

n

where ey is the error in the solution at the nth time level.

Substituting equation (A6) into equation (A5) and taking the
partial derivative of szni, we obtain:
2

§{ ax Ri) = (1 - 1) quGpi+1/2 + rAxu6p1_1/2 * DAx6u1+1/2

- (1 = T) quBp1_1/2 - 1Axu601_3/2 - pr6u1_1/2

) AxG(Tiu

(Py4172 = Piaiy2 14172)

) Axé (T (a8)

+ ‘”1-1/2 - °1-3/2 1—1“1-1/2)
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because they are

The values of the

(Pi4172 = Pij.qy2) Bx

the last two terms

(Di_1/2 - 91_3/2) Ax are

in equation (A8) may be

derivatives in equation (A8) are:

dropped

higher order termg than the first six terms.

90 dp
uldx —awﬁ = pMz uldx -——i—w- = pmz
[ ¢
i+1 i
3”1-142 2 3412 2
ulx a¢i = = pM uldx —Fazjf- = pM
9p, 9p
i=3/2 2 1=3/2 2
A = - =
ulx W oM uldx °i-2 pM (a9)
du du
pAx ;+1/2 pAx 1;1/2 = - p
i+ i
pAx s o1y2 = p pAX T—Laui'1 2 .-
4 LI

Substituting equations (A9) into equations (A7) and (Ay) and

simplifying gives:

2_n

Ax R 2 n
5 = [1 = (1 = 1T) M) LT

[(2 - 31) M2 - 2) e}

2

- [(1 = 37) M° - 1) &" 2

(310)
{-1 - TM e

n
i=2
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For M < 1, equation (4) gives T = 0, Substitution of this into

equation (A10) gives:

2_n 2 n n n
R{ =0 (1 - m%) [ef - 2e0 + ef ]

Ax i

For M » 1, equation (4) gives T = 1 = 1/M2.

this into equation (A10) gives:

2 n

bx i-1

R? = o (1 - M%) [e? - 2e

n
i -2]

(a11)

Substitution of

(a12)

From egquations (A11) and (A12) we see that the conservative full-

potential equation with artificial density may be simplified to

the nonconservative small-disturbance potential

equation with

upwind differencing in the supercritical regions for the purposes

of analysis.*

*The development showing this simplification is based on work
originally done by Jerry C. South, Jr., and is contained in his

personal notes.
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APPENDIX B

ANALYSIS OF HZEB1

Subsoni¢c Flow = M < 1

The smal! -disturbance equation in operator form is

[(1 - n?

2
) 6+ A any by4 =0 (B1)
where each term is defined after equation (22) in the main body
of this text. Uring the displacement operators defrned in the

text, the HZEB! algorithm applied to equation (B1) yields:

- M2 - +) Fn+1/2 2 Gn+1/2
(1 = M%) [nx 21 + E| ! + 2% (-21) oY
2 - + n
+ A [EY + Ey) 0y = O (B2)

The time levels of the pectential are defined with equation (29)
in the text. Substitution of the Pourier coefficients for the
potential and simplification give a quadratic eguation for /31

This can be solved for the two roots of f;' which are sauared
to get two roots of ge Which of the roots represents g in
the physical problem can.-..* be determined. The purpose of the
von Neumann analysis is to predict the multigrid smoothing rate,

v, for HZEB1., 8ince 1 1is governed by the maximum value of a,
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it is prudent to pick the root of g from the quadratic equation

which has the maximum absolute value. The two roots are:

= 2
g = {/g)% = [‘b<$~§a - 4°°l (83)

where:

%) (2 cos 8 = 2) - 23]

a = % [(1 - M

b = 212 cos 9§
y

and

c = (0w - 1) a

Supersonic Flow - M 3 1

HZEB1 applied to the transonic small-disturbance equation
for supersonic flow can be written as:

2
(tr - § +—-—22’]A¢ = A2

xx 13 i3 (B4)

where

n,n+1/2
ij

n+1/2 n+l1/2

. n
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and the time levels of 4% are defined above. The inclusion of
“new®” values at i - 2 would result in a pentadiagonal set of
equations. To eliminate this, a oxt type term is added. For
stahility, additional bt is also added. The following LY

terms are used:

2
- 0 - w%) s - e ) 4B (Aby = B8, 5 )

i‘z,j

Adding these terms to the left-hand side of equation (B4) gives:

2

F_ - ] - =
(-2 (v - m%) v 8] (a0, -8 ) s 1S sy,
(1 - m2) (o7, - 2¢" + o7 )
Y44 i=-1.3 i-2,3
2, ,n+1/2 _ n n+1/2)
+ A \¢i.j+1 2¢ij + ¢i,j-1' (BS)

Substitution of the Pourier coefficients for the potential
followed by algebraic manipulation of the eguation results in a

gquadratic equation for f?.
a /gQ +bvg+ec=0 (B6)
where:

- /=18

2, [-2 (1 - u2) + B] (1 - o )

a = A
b = -2A2 cos 9
Y
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and

-2/ =1 9
2 X

c =2 A o+ (1 - Mz) + (1 - Mz) e

Although the above represenvs a complete von Neumann
analysis, HZEBY was studied in greater detail in the present
worke Values of g can easily be found from equation (B6),
but it is not immediately obvious that the algorithm is stable,

g < 1 for all (8 8,). It is possible to show this

x’ y

analytically. Equation (B4) can be rewritten in the form:

z2 + Nz + Yy =0 (B7)
where

z = /g

n = b/a
and

Y = ¢/a
Since n and Y are complex, the conditions that must be

satisfied for 2z (and so0 g) to be less than or equal to 1 are:

|¥| < 1
and (B8)

n - yn <1-|Y|2
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where n is the complex conjugate of Ne The inequalities in

equation B6) lead to the restriction:

832 -28247/01 - M2)(1 - b - %) for M > 1 (89)

A numerical experiment was performed to determine the sharpness
of the restriction in equation (87), A glightly supersonic free-~
stream case (M, = 1.01) was run with a very thin airfoil (0.10-
percent thick parabolic arc) to produce a nearly uniform super-
sonic flow. Various percentages of the “"minimum®™ 8 prescribed
in equation (B7) were used as the coefficient of the additional
®x¢ term. It was found that the 8 required by equation (B9)
was not exact. As little as 80 percent of the g required
by equation (B9) was found to provide stability. Although the
von Neumann analysis does not exactly predict the performance
of HZEB1, it does provide a qualitative indication of the

performance.
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Figure 1.~ Coordinate system and schematic of stretched griad.
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Figure 2.- Prolongation operator.
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Figqure 3.- Schematic of VLOR algorithm.
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Figure 4.~ Schematic of HLOR algorithm.
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Figure 6.- von Neumann damping rate contours for VLOR.
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Figure 7.,- Mnltigiid smoothing factor contours for VLOR.
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Figure 8.~ von Neumann damping rate and multigrid smoothing
factor contours for VZEB1.
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Residual

Pigure 14.- BEnd view of residual on finest grid usin- ° ‘EB1
(HU = 0.1).
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Figure 15.~- Porcing function on second finegt grid using VZEB1
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Pigure 16.- Forcing function on second finest grid using VZEB1
and residual weighting (M, = 0.1).
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Figure 17.- Effect of residual weighting on VZEB1 (M, = 0.1).
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Potential

Figure 18.~ Restricted potential from finest grid using VZEBR1
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Figure .3.- Effect of multigrid on VZEB1 (M, = 0.,1).
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Figure 20.- Effect of M, and grid stretching on VZEB1.
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Figure 21,.,- Effect of multigrid on VZEBt (M, = 0.8).
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Figure 22.- Comparison of VZEB1 and VLOR in multigrid (M, = 0.8,
5 grids).
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Pigure 23.~ Effect of multigrid on HZEB1 (M, = 0.1).
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Figure 25.- Bffect of multigrid on H2EB1 (M, = 0.8).
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Figure 26.- Comparison of HZEB1 and HLOR in multigrid (M, = 0.8,
S grids).
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Figure 28.- Comparison of ADZEB1 and ADLOR in multigrid (M, = 0.8,

S grids).
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