
NASA-TM-8627219850008519

NASA Technical Memorandum 86272

First Derivatives of Flow Quantities
Behind Two-Dimensional, Nonuniform
Supersonic Flow Over a Convex Corner

Christine M. Darden

JANUARY 1985

i'H":1 ?~)1

L;c:ij.... l

LIS:\';.,;\'·','. ; ... ~_.A

.H,4MF:TON, 'i;~~::':!A

NI\S/\



t..



NASA Technical Memorandum 86272

First Derivatives of Flow Quantities
Behind Two-Dimensional, Nonuniform
Supersonic Flow Over a Convex Corner

Christine M. Darden

Langley Research Center
Hampton, Virginia

NI\S/\
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1985





Summary

A system of equations is developed for calculating
spatial derivatives of flow quantities behind an expansion
fan. For steady two-dimensional inviscid flow, equations
in terms of th,e curvature of the streamline behind the fan
are developed. Taylor series expansions of flow quan
tities within the fan are used and boundary conditions are
satisfied to the first and second order so that the cur
vature of the characteristics in the fan may be determined.
The system of linear equations for the spatial derivatives is
then developed.

An example of an application of the method is outlined
for the problem of shock coalescence in which asym
metric effects are included as derivatives in the cir
cumferential direction. The solution of the coalescence
problem may require values for spatial derivatives of the
flow variables behind a resulting expansion fan.

the expansion of the opposite family which results from
the solution of the coalescence problem. This approxima
tion limits the application of that method to cases for
which the assumption of continuous flow variables is ap
propriate. The extension of that method to coalescence
problems for which curved shocks of any strength may
occur is discussed in reference 3, and the equations
developed in the first part of this paper extend the ap
plicability of the method to coalescence problems in
which expansion waves of finite strength occur.

The second part of this paper describes the coales
cence problem and gives a description of how the equa
tions derived herein are incorporated into that solution.

This work was done to satisfy in part the re
quirements for the degree of Doctor of Science at George
Washington University, February 1983.

Symbols

A leading characteristic of expansion fan
Introduction

To solve supersonic-flow problems numerically, it
often becomes necessary to know spatial derivatives of
the flow quantities. Numerical computation of
derivatives by use of difference formulas can sometimes
cause difficulties or inaccuracies in the entire numerical
scheme. The problem becomes less severe if analytical or
semianalytical means of obtaining the derivatives can be
found. Included in the first part of this paper is a method
for finding spatial derivatives of flow quantities behind
two-dimensional, nonuniform flow over a convex corner
(Le., an expansion corner). Taylor series expansions
(ref. 1) are made for variables within the expansion fan.
Boundary counditions are then used to obtain first- and
second-order solutions for the variables and the cur
vature of the characteristics within the fan. Finally, equa
tions for the flow derivatives behind the fan are obtained
in terms of the curvature of the streamline behind the fan.

This method may be applied to the case of shock
coalescence including asymmetric effects and can be
combined with a sonic boom extrapolation program in
reference 2. In that situation, coalescence of shocks often
occurs at some distance from the body. This paper con
tains a description of the entire coalescence system in
cluding the resulting shocks, expansions, and contact sur
face. The asymmetric effects are felt through a second set
of governing equations developed by taking the cross
derivatives (derivatives in the cross plane) of the original
governing equations. It is in solving the asymmetric part
of the coalescence problem that it becomes necessary to
know derivatives of the flow variables in the axial and
radial directions. For calculations away from the body,
some of the resulting shocks or expansions are often so
weak that flow variables through them may be con
sidered continuous. In reference 2, a "continuous" ap
proximation for flow variables is made at the shock or
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I

speed of sound

zeroth-order term for speed of sound in region I

last characteristic of expansion fan

any characteristic within expansion fan

vertex of convex (expansion) corner

intersecting surfaces in shock coalescence
problem

wall ahead of convex (expansion) corner

wall behind convex (expansion) corner

slope of wall behind convex (expansion) corner

change in slope in wall behind convex:
(expansion) corner

=1/;- g t(a)

function defining leading characteristic of ex
pansion fan

function defining trailing characteristic of ex
pansion fan

curvature of trailing characteristic of expansion
fan

enthalpy

slipstream surface in coalescence problem

unit vector in Xdirection

unit vector in y direction

function defining streamline through expansion
fan



V velocity vector

Superscripts:

n

o
p

p

R

r

S

T

u

u*

direction normal to streamline

order

dummy variables

pressure

limit on maximum speed in inviscid, steady flow

gas constant

radial coordinate

entropy

temperature

velocity in radial direction in polar coordinates

velocity in x direction, inl Cartesian coordinates

rr

x

xx

a

°

second derivative with respect to r in coalescence
problem, a2/ar2

first derivative with respect to x, (J/ ax

second derivative with respect to x in coalescence
problem, a2/ax2

second derivative with respect to 'IF in
coalescence problem, a2/a'1'2

first derivative with respect to a, a/aa

first derivative with respect to 1/;, a/a1/;

zeroth order

first order, a/aa

'1' cross-flow direction in coalescence problem

4,5 regions behind shock and expansion fan in
coalescence problem

Subscripts:

properties in region I; properties in region (1) in
coalescence problem II

A;:----------X

A bar over a symbol indicates a quantity in region III
(see fig. 1). A prime on a symbol indicates a first
derivative. A double prime on a symbol indicates a sec
ond derivative.

Part I-Development of Flow Derivatives

Definition of Problem and Assumptions Made

The expansion wave problem is illustrated in figure 1.
Assume the flow is around a convex corner with the
vertex D at the origin (0,0). Let y = 11 (x) for x < D (D-)
and y = !z(x) for x > D (D +) denote the sides of the
corner. Flow ahead of the corner in region I is known to
the characteristic line: C+ at DA .. The expansion fan
(region III) is covered by C+ lines from point D. The
last C+ line, DB, separates the fan from the flow field
behind the corner.

unit vector in angular direction

polar coordinates

ratio of specific heats

flow angularity

Mach angle

density

unit vector in radial direction

velocity in angular direction in polar coordinates

velocity in y direction in Cartesian coordinates

intersection of surfaces in coalescence problem
(see fig. 3)

Cartesian coordinates

shock angles; angle of trailing characteristic in
fan

2 properties in region II; properties in region (2) in
coalescence problem

3 region ahead of expansion fan in coalescence
problem

v

v*

a

a,I/I

P

P

X('1') ,
R('1')

l'

()

x,y

{3

r first derivative with respect to r, alar Figure I. Flow over a convex (expansion) corner.
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Figure 2. Two-dimensional coordinate system.

x

u

/

(2)f(a,l/;) = p.(O)(I/;) + ap(l)(I/;) + 0.(a2)

5. In region III, the flow quantities must change
around point D, that is, they must be functions of I/; as
a-D. With a bar over a symbol representing quantities in
region III,

1aF .( 1)
1(i ill/; = 0;

In region III, the power series in terms of a has the form

Expansion (B)

y

a il
Pj (x,y) = Pj(O,O) + x ax Pj (0,0) + Y ay Pj (0,0) + ...

In polar coordinates (a,l/;) (see fig. 2), this becomes

Pj (a,l/;) = Pj (0,0) + a (cos I/; tx + sin I/; a~) Pj (0,0)

The problem is to determine the first derivatives of
the flow quantities behind the expansion fan, that is, in
region II at point D. In doing so, the first two terms in a
series expansion in region II shall be defined along with
the slope and curvature of the C+ lines. The following
conditions shall be used:

1. The flow quantities and their first derivatives (with
respect to x and y) at point D (region I) ahead of the ex
pansion fan are used. These data should be consistent
with the slope Ii (D-) and the curvature .!J."(D-) of the sur
face at point D ahead of the corner.

2. The slope I~{D+) and the curvature I;(D+) of
the surface at point D behind the corner (region II) are
used.

3. All physical quantities such as velocity V, pressure
p, and density p are continuous across the C+ lines, but
their normal derivatives may not be.

4. In regions I and II, the solutions for the flow prop
erties are regular in x and y near the corner. In par
ticular, their partial derivatives a/ax and a/ay exist at
point D. If P represents any flow quantity and) = 1 and 2
for regions I and II, then the series expansion about (0,0)
is

+ O(a2)

where O(a) indicates that the missing terms are of the
order of a, that is,

Expansion (A)

where P<I)(I/;) = (a/aa) l\o ,1/;). Expansions (A) and (B)
are the two basic ansatzes needed for the analysis. They
express the differences in the behavior of the solutions
near D in regions I and II from those in region III, the ex
pansion fan.

Pj'(a,l/;) = p~O) + ap~I)(O,I/;) + 0(a2) (1)
J J

where pJO) = P/O,O) and Pj(a,l/;) is independent of I/; as
a-D.

Stated alternatively,

a ./. a ' ../,1 a
ax = cos '/I aa - sm '/I -;; al/;

a . a 1 a
- = sm I/; - + cos I/; - 
ay aa a al/;

If a/ax and a/ay are finite as a-O, it is necessary that
(lIa) (a/al/;) is finite as a-O, that is, a/al/;-O as a-D.

Outline of solution. Basically, the procedure used in
the analysis will be to substitute expansions (A) and (B)
(eqs. (1) and (2» into the governing equations and then to
compare the coefficients of like powers of a. An outline
of the solution procedure is the following:

Step (1): Set up the general equations of two
dimensional motion with nonuniform enthalpy and
entropy.

Step (2): Determine the slope and curvature of the
first characteristic line in region III (DA) and the bound
ary conditions between regions I and III along DA. This
yields the first term in expansion (B).

Step (3): Determine the flow properties at point D in
the expansion fan, those behind the fan, and the slope of

3



the last C+ line (DB) from the slopef2<D+) of the sur
faceh·

Step (4): Determine the second term in expansion (B)
(eq. (2» in the expansion fan and the curvature of the
characteristic lines.

where P is the density.

a-momentum

(4a)

where p is pressure.Step (5): Apply boundary conditions along DB (con
nection between regions II and III) and determine the
first derivatives (with respect to x and y) of the flow prop
erties in region II, the derivative being compatible with
the curvature of the surface behind the fan.

Basic definitions and relationships used in solution.
Included below are a few definitions and relationships
which are used in the subsequent derivations. The com
ponents of the velocity along the radial unit vector (1 and
the circumferential unit vector 1/1 are u and v. Thus,

v = U(1(I/;) + vl/;(I/;)

I/;-momentum

v uv I
UV +-V.I, + - = -- P.I,a a 'I' a pa 'I'

Energy

where H is the total enthalpy defined by

a2 u2 + v2
H=r-,1+ 2

(4b)

(5)

The components u and v are in turn expressed as power
series in a as follows:

and a is the speed of sound. An additional equation.
valid along streamlines, is

and
(6)

where S is entropy. Eliminating p and p from the
momentum and continuity equations yields

(U2 + v2) (u,p - aVa - v) = uH,p - avHa - T(uS,p - vaSa) (8)

where T is the temperature. Equations (5), (6), (7), and
(8) are the forms of the governing equations used in this
derivation.

In regions I and II, V(a = 0) exists; hence,

u(O)(I/;) = V(a =0) • (1(1/;)

/0)(1/t) = V(a=O)· I/I(1/t)

and
U(I)(I/;) = Va(O,I/;). (1(1/;)

v(l)(I/;) = Va(O,I/;). d(l/;)

and

I (, a a) (U2 + v2 )
aua+ U + v,p =a2 ,au oa + v al/; 2 (7)

(3)

Also note that

and

v~) = -v • (1(1/;) = -u(O)

Solution Procedure

Step 1. In polar coordinates (a,I/;), let u be the radial
velocity and v be the circumferential velocity. The govern
ing equations in regions I, II, and III are as follows:

Continuity

ua + *" + } v,p - i (UPa + ~ p,p) = °
4

Step 2. Let I/; = gi (a), and thus G = I/; - gi (a), be the
equation for the slope of the first characteristic line (DA)
in region III. The velocity perpendicular to DA is' a, thaJ
is,

(9)

where gi =ogl!Od. Since VI < 0, the negative sign on a is
chosen. Expanding both sides of equation (9), one gets

[-u~O)agl(a) + VI + av?) + .. .J~l -1 a2 [gi(a)]2

+ ... ~ = -[aiD) + aail)(I/;) + O(a2)]'



(11)

But

V(I) - ~ - OVI o1/; - v(O) '= _U(IO)gl'
I - au - aif; au - II/; gl

Therefore,

[-u\O) ugi (u) + VI - uu\O)gi]{1 - ~ U2[gi(U)]2}

= -[aiD) + ua~l) + O(U2)] (10)

Equating u for the zeroth order, one gets

implying that gl(O) = tan (81 + Itt) at point D (i.e., it is a
characteristic line). Equating u for the first order, one
get.s

or

a\l)gl(O)
g; (0) = (0)

2u
I

Define 1/;1 = gl(O) to be the inclination of DA at D. Then,
the curvature of DA at D is gi(O) = a!/;Iau! a=O' Also
note that

aal (x,y) .1. oal (x,Y) . .1.
= cos '1'1 + sm '1'1ax ay

since

]5(1)(.,. ) = oP o1/; + oJ5 = p(O)(.,,) '(0) + p(l)(1/; )
'1'1 a!/; au aa I/; '1'1 gl I

at a = O. Recall that in region I, all flow properties
are finite and single valued as a - 0; however, in region
III, the properties are not single valued but are functions
of!/; at a = O. For the velocity V,

The velocity at point D, as indicated in equation (13), is

V(O) = V(O)(gl (0» = V(O)(!/;I)
I

= U(O)(1/;I) u (1/;\) + V(O)(!/;I) 1/;(1/;1)

and the velocity to the first order is

V(I)(!/;I) = [u~)g' (0) + dl)(!/;\) - v(O)g;(O)] U(!/;I)

+ [u(O)g'(O) + v~)g'(O) + f l
)(!/;\)]I/t(1/;I)

where the properties au/a!/; = 1/;, a1/;/o1/; = -u, au/aa

0, and al/t/Oa = 0 are used.

Step 3. From the application of expansion (B)
(eq. (2» to governing equations (3) to (6) and the
equating of the coefficients of u (0), the resulting zeroth
order equations are

at x = 0 andy = 0 in region 1.
Along the boundary DA (!/; = g\(a) =!/;I + ag;(O) +

...) the fiow quantities are continuous, that is,

,,-,(0)
H' = 0

I/;

",(0)
;y = 0

I/;

(15)

(16)

(17)

or, from ansatz (A) and ansatz (B) (eqs. (1) and (2»,

(I)
PI + aPI (gl(a» + O(a2) =

p(O)(g\(a» + ap(l)(gl(a» + O(a2) (12)

_(0) -(0)2 ,..,(0) _(0) _(0) (-(0)2 -(0)2) dO) 0u a -u v u + a -v v =
I/; I/;

(u(0)2 + v(0)2)(au(O) -v(O~ = u(O) FlO)- ii(O) r.o> '1-0) (18)
,a1/;} I/; I/;

Equations (15) and (16) imply that Hand S are in
dependent of !/;; thus,

where P represents the general flow quantity. Therefore, (19)

(13) (20)

and From equations (15) and (16), equation (18) becomes

(14) u(O) _ V(O) = 0
I/;

(21)
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Expanding from the boundary DA along the streamline

Along a streamline, defined by a = /(If.',al), one ob
tains (at the boundary DA)

From this, equation (17) may be written as

(a(W _v(0)2)(~)+ u(O»)' = 0

The zeroth-order term of equation (4b) gives

-(O)(dO)+ -(0») 1 _(0)v v U = --p
if; p(O) if;

Since Jf9> *" 0 at point D in region III, then
if;

f O
) + u(O) *" 0

if;

and equation (22) becomes

2i(0)2 _ v(W = 0

(22)

From equations (24) and (25),

a(O) = qm(~~llr cos cf>

and

dO) _ dO) _ ("I + 1)Y2
-(0) - - -;;{O) - - --=-r tan cf>va "I

(27)

(28)

(29)

From the direction of the flow, the negative sign is
chosen; thus,

_(0) ..JO)
a =-v (23)

(30)

one gets to the zeroth-order and first-order equations

which, as expected, defines each local (a -0) radial line
to be a characteristic. Equations (19) and (23) may be used
to relate u(0) to a(0). From the definition of qlr, as the
limit on maximum speed in inviscid, steady flow, one
obtains

U(0)2 + v(W a(W il0)2 + a(W a(W
----+--= +--

2 "I-I 2 "1'-1

= ii(O) = HI = elm
2

and

(31)

Recall that

1 dl(l) u(O) ("I + 1)'/2-----=--- tancP
t(l) dlf.' - v(O) "I - 1

!!:. = da =~ /(1) = _1_ /(1)
v a dlf.' a if; I (I) if;

In P) = _ "I + 1 In cos cP
"I - 1 cos cPl

Thus,

Therefore, for a streamline,

and

(24)

Equation (21) then becomes

Tt(O) = V<0) = _aM = _("I -1)Y2 fq2 _ U(0)2)Y2
if; "1+1 \'m

-(0) _ ~ 2 -(0)2)Y2('Y - 1) '12a - q -UI --
m "1+ 1

or

and after integration

(25)

where cP = [("(-1 )/("1 + 1)]Y2 (ex - If.') and "I is the ratio of
specific heats. From boundary condition (6),

~( )Y2 Jo (0) • "I - 1
u( )(If.'I) = u

1
= qm sm "1+ 1 (ex -If.'I)

From the definition of a given above,

a(lf.') = t(l)(lf.') = (cos cP)-h+I)/h-l) (32)
al cos cPI

To determine the slope of the last characteristic in
region III (DB), write the equation

and

~
(0») ( )'/2. _I U I.l...±...! ./..

ex = sm qm "I - 1 + '1'1 (26)
and define g2(0) = If.'2 as the inclination of the

6



(37)

(38)

characteristic at D. The boundary conditions along DB
between regions III and II are similar to those between
regions I and III along DA, that is, the flow quantities
along DB are continuous. These conditions imply the
following:

P2 (a,g2(a+» = P(a,g2(a-»

P2(a=0) = P2 = ji(0)(1/;2)

u2(a =0) = U2 = dO) (1/;2)

v2(a=0) = v2 = V(0)(1/;2)

An implicit equation for 1/;2 is derived using the slope of
the wall behind point D, y = !l(x). The slope is

f' (x) = dy = -u sin 1/; + v cos 1/;
2 dx u cos 1/; + v sin 1/;

f 2(0) = -u2 sin 1/;2 + v2 c.os 1/;2 (33)
U2 cos 1/;2 + V2 sm 1/;2

The results obtained in this step are identical to those
in a centered expansion wave separating two uniform
regions (ref. 4). They have been included so that the next
step provides a continuation to take care of the non
uniformity of the flow fields ahead of and behind the
expansion fan.

Step 4. In this step, values for the next-order terms
Ciil)(1/;), V(l)(1/;), H(l)(1/;), and 5(1)(1/;») are determined.
Also determined is the curvature of the characteristics at
point D by comparing coefficients of a in equations (7),
(8), (5), and (6).

Similarly, from equation (6) and the boundary conditions
at DA for S,

8(1)(1/;1) = S(l) = lim aSI I
1 a-O au "'=1f;

1

= (aS I cos 1/;1 + aSI sin 1/;1) 0
h .~ x s

ysO

and

s(l)(1/;) = (cos e/>~'Y+I)/('Y-I)= _1_

S(I) COS7Py 1(l)(1/;)
1

The first-order equations· for ii(1) and ji(1) are derived
from the coefficients of a in equations (7) and (8) The
first-order equation from equation (7) is

u(l)(_v(O) a(O») + a(l)( 2£1(0)2 _ d0)2 _ v(O) a (0) )

'" . '"
+ v~)(a(0)2 _ v(0)2) + y(1) ( _tiD) v(O) _ dO) u~O)

- 2v(0) ji~») + 0(1)2 (a(O) + v~») = 0 (39)

The following relations, derived in step 3, are used to
simplify equation (39) and a similar equation for equa
tion (8). From equation (21),

and from equation (22),

71°)2 _v(0)2 = 0

From equation (5), one obtains

fj(O)(I/;) H(l)(1/;) + VO) n(lll/;) = 0

'"
and therefore

Hgt1/;) -(0) ( I)YZ= _!:!.....- =.2..±.- tan e/>
jj(l)(1/;) V<0) "I - 1

and

(34)

(35)

(36)

Because of flow direction, choose (eq. (23»

ttO) = _V<0)

Likewise, equations (23) and (27) give

(
_1)YZ

a(O) = q _"1_ cos e/> = _v(O)
m "1+ 1

As given in equation (25),

TiO) = qm sin e/>

The boundary condition at DA yields

fl(l) (1/; ) = H(I) = lim. aHI I
1 1 a-O aa "'~ '" I

= (aHI cos 1/;1 + aHI sin 1/;.)
ax ay 'l x~O

y~O

where e/> = [("(-I)/('Y+1)]Yz (a-1/;) and de/> =-[("(-1)/
("1+ 1)]Yz d1/;. Differentiating if9>, one obtains

y, Yz
0<0) = qm(1" -1~ (sin e/»('Y -I) = "I - 1 fj(O)

'" "1+ 1) 1"+1 "1+ 1

7



and differentiating equation (23) gives

v(o) = _cf0) = _(I' - 1) ii(O)
I/; I/; 1+ 1

Thus,

(1) (3-y-1)!l2(-y-1») ( fl/;u = (cos¢) (sin¢)V,.y.{1 d1/;
1/;\

Substituting for ~), one then arrives at the following

expression for il(O) + ~) in equation (39):

(45)

;i0) + \i(0) = _2_ u(O)
I/; I' + 1

From the definition of enthalpy and aHlaa, one obtains

where

ii~l) (1/;1) = u~l) (1/;1) - il~O)(1/;I) gl(O)

+ V<0)(1/;I> g{(O) = u(1)(1/;I) (46)

(40)
and

Solving equation (39) for v(1) yields

= HI (_l_~-Y+I)/{-Y-I) (cos </>p-y+5)/12{-Y-I»)

qm cos <PI} f (sin <p) y, dcf>
(41)

riP u(1) fij(0)2 _ u(0)2[(h_l)/(I' + I)]}
\i(1) = __'I' + _~l' ---;:::~~~..2..:...._~

2 2u(0) VO)

I' - 1 Fl(l)

+ I'+1\i(0)

A similar procedure for equation (8) yields

u(1)
ii(1) = ..:::..:L __1 (~I) _ 1'"(0)'8(1)\

2 2a(0) \: I
(42)

= Slqm~__l_){-y+I)/{-Y-1) (cos </>l'Y+ 1/12{'Y-O]d

2-yR \COS </>1 f (sin </» 1/, rp

By equating equations (41) and (42), the following equa
tion for ii(1) is obtained:

If I' = 7/5, then

{I/; .AI dl/; = 2(i!;;)~os\t>J(Sinv,<p-sinV'<PI) (47)

and

I/; 5Stq' ~ 1 ~6 (2f .A2 d1/; = m -- - cos2 ¢ sin-V, <P
1/;\ 14R cos ¢t 7

Knowing uO), one can evaluate. equation (43) for ii~),
equation (42) for v(l), and equation (40) for ii!-1)2.

To evaluate the curvature of the characteristic C+ in
region III at point D with inclination 1/;0' define the
curvature ,with the equation 1/; = g(a,1/;o), that is,1/;o =
g(O,1/;o). For the first and last C+ lines in region III,

The integrating factor for this equation is

[ ( ~
y,

.=- 31' - 1 I' + 1
~ = exp - 2()' + 1) 1',- 1 f tan ¢ dif;

(' l)Y' J+ ~. ~ ~ 1 f cot ¢ d1/;

l3 1 J= exp ....:L:..- f tan ¢ d¢ _.1.f cot ¢ d¢
2(1'-1) 2

,qj'= (cos ¢) -(3r- I)!12('y-I)] (sin.¢)-Y' (44)

8 . I' A.. 2 2 ."+- sin" 'I' - -7 cos <PI sm- y
, ¢I

35

8 . I' ~-- sm,' <PI
35

(48)

8



Given this definition for g(a,1/Io), the dependence of g on
1/10 shall not be shown. The normal component of veloc
ity is ,a(a,g(a», or

~(U_u_+-:-V-,-,I/;)'-,-._V'~[--'-,1/I-,-+--.::::.g~(a=)] :;:: ii
IV' [1/' - g(a)] I
ug'(a) - (VIa) :;:: II

[g'(a)Z + (l/aZ)]Y2

Recall that 1/1:;:: g(a) :;:: g(O) + ag(l)(O) + ... , where g(O)
:;:: 1/10 is the angle at a:;:: 0, or

[iig'(a) - (iila)]a[1 +aZgZ(a)]Y'

or, equating uand 1/1 components

U(l) :;:: (il~O)- );<0))g' + u(l)

v(I) :;:: (u(O) + v~») g' + v<I)

yields

u~I)(1/'Z) :;:: ;;I)(1/'z) (52)

v~I)(1/'z) :;:: v(1) (1/Iz) + (v«j) + U(0»)lifi2 g;(1/Iz) (53)

Note that

Since we know the slope fh of the streamline, we obtain

:;:: 0<°)(1/10) + a[g'(O)a~) + ii(l)(1/'o)]

Expanding the left side and equating the coefficients of a,
one obtains

ilO)(1/Io) g '(0) :;:: if) (1/10) + v(l)(1/Io)

, ii(1)(1/'o) + v(I)(1/'o)
Curvature:;:: g (0) :;:: U(O) (1/'0)

Also note that

(49)

dHZ . aH
--sm Uh - p-z) :;::-
dn au

Similarly,

(54)

(55)

~(l)2 _ lim aaZ :;:: lim 20<0) aiJ :;:: 2ii(0) if,1)(1/')
a - a-O aa a-O aa

Therefore,

Step 5. The boundary conditions along DB, the last
C+ line in region III, are developed in the same manner
as those along DA. Along DB, 1/' :;:: gz(a) and gz(O) :;::
1/'z. The term g~ (0) is given by equation (49) with 1/'0
replaced by 1/'z. Applying the boundary conditions yields

Denote the velocity components in the x and y directions
in Cartesian coordinates by u* and v*; then,

:;:: 0lx cos 1/Iz + U;y sin 1/Iz)lx=o cos 1/Iz
y=o

+ (v~ cos 1/'z + V;y sin 1/'z)1 X=O sin 1/'z
y=o

or

(50)

(51)

U(I) U + v(l) 1/1 :;:: (a(O) u + dO) 1/1 + )7(0) 1/1 - VO) q)gl
I ifi ifi

+ a:(i) u + v(l) 1/1 (56)

9



Similarly, Equations (56), (57), (58), and (59) are four equations for
u2x<O,O), vix(O,O), u!y<0,O), and v;y<0,O) in region II. In
coefficient matrix form, these become

Equations (7) and (8) or (3) and (4) in Cartesian coor
dinates are equivalent to characteristic equations. Since
the boundary conditions along DB are used, the equa
tions along the C+ lines are fulfilled to the a order. Only
oneindependent equation is available from equations (7)
and (8) or (3) and (4). Choosing equation (4) we get

- U;y (0,0) sin2 lj;2 + v~ (0,0) cos2 lj;2

where

V2(X,Y) = V2(0,O) + a {[XU;(O,O) + YU;(O,O~i

+ [v;(O,O) x + V;(O,O)y]j} + O(a2)

(57) cos21/;2 sin 1/;2 cos 1/;2 sin 1/;2 cos 1/;2 sin21/;2 •u 2x

-sin 1/;2 cos 1);2 -sin2 Y-2 cos2 1/12 sin Y-2 cos 1/;2 •u 2y

0 -1 0 ·v2x

l' ([1)2 -1 -I; *2 2 v2y

U(l) (1/;2)
2

v(l) (1/;2)
2

1 dH2 a; dS2

q2 dn - 'YR dn

-u; f; (0)

The determinate of the coefficient matrix yields

dH dS
-q2(v - uy)= q- - Tq-

x dn dn cos2 lj; sin 2lj; sin2lj;

Iwhere q(olan) = u(olay) - v(alox) and alan is the
derivative normal to the streamline. The leading ,term
of this equation (00) yields

det = -sin lj; cos lj; cos 2lj; sin lj; cos y,

l' ([,,)2 - 1 -f'
222

along y =;= 12(x) yields

Part II-Application of the Method to the
Case of Shock Coalescence Including
Asymmetric Effects

= -sin 2112 '* °
2 cos2 t12

The coalescence system is briefly described herein.
For a detailed derivation of the governing equations
of the system, see reference 2.

The first two shock surfaces, F, (r, '1') and F2(r,'1'),
coalesce to form a resultant shock surface F3(r, ir), a con
tact surface h(r,ir), and a weak (isentropic) shock or ex
pansion of the opposite family F4 (r,'1'). The solution
developed in part I is applicable to the case for which F4 is
an expansion wave, as shown in figure 3..

The problem is first solved axisymmetricaIly, and at
some distance away from the body, it may be treated as a
two-dimensional problem, as shown in figure 4. All con
ditions in regions (1), (2), and (3) are assumed to be
known, as is the point of coalescence. The unknowns for

(58)
a~(O,O) dS2 (0,O)

"(R dn

where R is the gas constant.
One more equation, y = 12 (x), is available from the

boundary condition along the wall. Thus,

u;!2(X) - v; = °

:xI(0,0) ~;12(x) - v;]

10



" Resultant shock
"'::::::f

3 (r, tJ,)

Contact surface
r = h ( x, '1')

I ('1', w)

~(X.UI
(r, v)

Isentropic shock
or expansion,

x= F
4

(r,'I')

Figure 3. Three-dimensional shock coalescence.

F3(r) - Resultant shock

(1)

F
2

(r)

Incoming shocks

(3)

(5)

(4)

F
4

(r)

Expansion wave

h (x) - Slipstream

Figure 4. Two-dimensional representation of shock coalescence.
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r-momentum

Energy

Combination of all shock equations

(66)

(64)

(65)

P4x + P4rhx = PSx + PSrhx

*h *h * *h2 *h 0U4x x + U4 xx - V4x + U4r x - V4r x =

* *h * * h2 * h 0usxhx + Us xx - VSx + USr x - vSr x =

(us - uj) F3r + (v5' - vi) = 0

(us + ui) (uS' - uj) + (vS' + vi) (vS' - vi)

+ 2'YR (Ts- T 1) = 0
-y-l

2'YT I(1 +F; + 1) = h+ l)QIQs - ('Y- 1>Qf

where Q = u* -v*Fr' Taking the tangential derivative of
each of these equations along the resultant shock F3
yields the following four equations:

The tangential derivative of the three properties along
the slipstream h yield

The remaining equations at f3 are derived from the
following four shock equations:

Continuity of mass

x-momentum

this problem are the following: velocities U4' v!, us, and
vs; pressures P4 and Ps; temperatures T4 and Ts; the
angle of the resultant shock with respect to the upstream
flow 133; and the angle of the last characteristic of the ex
pansion fan 134. The system of equations consists of the
four shock equations across F3, the four isentropic condi
tions across the expansion wave F4, and the matching
pressure and flow direction at the slipstream surface h.

The system is closed, with 10 unknowns and 10 equa
tions. To derive the asymmetric system of governing
equations, the system is treated as five intersecting sur
faces along X('Ir), R('Ir). (See fig. 3.) The governing set of
asymmetric equations are the 5 intersection equations,
the 5 shock equations at F3 .(1 continuity, 1 energy, and 3
momentum), 5 equations across the expansion wave F4,

and 3 slipstream equations at h for a total of 18 equa
tions. The second derivative with respect to 'Ir (the
circumferential direction) is taken for each of the govern
ing equations along the corresponding surface. The equa
tions are then reduced to the 'Ir = 0 plane, resulting in 18
equations and 18 unknowns of the form uvv!i<=o'
\Pvv.!i< =0' and so forth. The, asymmetric system would be
closed except that in the asymmetric equations there ap
pear spatial derivatives of u*, v*, P, and T in both
regions (4) and (5). The method derived in part I is now
applied to provide a method for obtaining the spatial
derivatives. Equations (56), (57), (58), and (59) give U4x:'
V4x) U4r' and V4r in terms of the curvature of the
streamline behind the expansion fan (hxx for this problem).

The Euler equations in the plane of symmetry ('Ir = 0)
are valid in regions (4) and (5). The following four equa
tions are applied in region (5). Because the curvature of
the characteristics in the expansion fan have already been
determined by the method developed in part I, onlyequa
tions (60) to (62) need to be applied in region (4).

* * * *Psususx + psvsusr + RTsPsx = 0 (60)

r-momentum

Continuity

(62)

12

Energy

*'.:2 * * * * * * * * 2 *(US) Tsusx + USVSVSx + usvsusr + (vs) VSr

-y *7' 'Y *r. nI *+ --l·usLsx + --lvs Sr = 5:VS'Y- -y-
(63)

(*p,2 *F *= ,UIX 3r + vlx 3r + ul rF3r

+ utF3rr + vir) (68)



+ USUsr - uiuir + v5'vsr - vivir

'Y 'Y
+ -1 Tsr - --1 Tlr = 0'Y- 'Y-

and

2'Y[(T1xF3r + Tlr)(1 +F~r) + 2T1F3rF3rr]

[h-I)(QlxQs + QIUSx - QIV5xF3r)

- h-I)2QIQlxlF3r + [h+ l)(uirQs

(69)

expansion flow over a convex corner has been developed.
Equations for the axial and radial derivatives of the two
velocity components in the region behind the corner have
been derived in terms of the curvature of the streamline
behind the expansion fan. Taylor series expansions of
flow quantities within the fan are used and boundary
conditions are satisfied at the leading and terminal
characteristics of the fan to obtain the first- and second
order solutions and the curvature of the characteristics of
the fan.

The method is applied to the case of sonic-boom ex
trapolation including the solution of shock coalescence
with asymmetric effects. The calculation of the asym
metric effects requires finding the spatial derivatives
behind the coalesced system. An outline is given for in
corporating the results derived in this paper into the
system for those spatial derivatives. Application of this
method will remove the restriction of continuous proper
ties through the expansion wave and extend the ap
plicability of the sonic-boom extrapolation technique to
include expansion waves of finite strength.

The unknowns of the system are U4x' V4x' U4r, v~r'
* * * *Usx, uSr, vSx, vs" P4» Ps" PSx, P4" T4x, T4,. Tsx,

TSr' and the change in slopes of the slipstream hxx and the
resultant shock F3rr There are four shock equations «67)
to (70)) and four flow equations «60) to (63)) in region 5,
four expansion equations «56) to (59)) and three flow
equations «60) to 63)) in region (4), and three equations
«64) to (66)) valid at the slipstream h. The resulting
system of linear equations is closed, with 18 unknowns
and 18 equations. A matrix solution of the system yields
the needed spatial derivatives to complete the solution for
shock coalescence resulting in a shock, a contact surface,
and an expansion wave.

Concluding Remarks

A method for finding spatial derivatives of flow
quantities behind two-dimensional, nonuniform-
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