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INTRODUCTION

Vegetation is a key element in the environment and ecology of the Earth.

Full understanding of global climate, biospheric productivity, human impact on

environment and related biophysical phenomena requires detailed knowledge of

the geographic and seasonal patterns of terrestrial vegetation (Shukla & Mintz

1982, Hansen et al. 1981, Woodwell et al. 1978, Sharpe 1916, Thomas 1959).

Currently, information concerning the distribution and seasonality of global

vegetation are derived from a wide range of information sa,rrces, such as maps,

atlases, and field reports, which are of varying reliability and usually compiled

from observations taken at different times. Recent efforts to estimate the

global extent of selected vegetation types have produced results which differ

by more than a factor of two for comparable vegetation types (Ajtay, Ketner &

Ouigneand 1979, Olson & Watts 1982, Matthews 1983). Much less information is

available on the global patterns of vegetation seasonality (Junye & Czeplak

1968, Lieth 1974, Fung, Prentice, Matthews, Learner & Russell 1983). There is

a need for consistant, timely and reliable information sources to facilitate

analysis of global vegetation patterns. Remotely senso(I suectral measurements

of reflected solar radiation may contribute such an inf,)r,mt ion source (Shay

1969, NASA/HQ 1983). This report discusses preliminary results from a study

of North American vegetation patterns observed with visible and near-infrared

measurements from the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR).

BACKGROUND

Spectral Vegetation Indices

Research carried out since the 1940's has shown that photosynthetically

active "green" vegetation displays a unique spectral reflectance pattern in the

visible and near-infrared spectral regions when compared to other earth surface

materials (Krinov 1947, Colwell 1956, Gates, Keegan, Schleter & Weidner 196b,
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Knipling 1970, Colwell 1974). The spectral reflectance of rocks, soils, dormant

vegetation and woody plant materials, although variable in overall brightness,

generally increases monotonically with increasing wavelength in the 0.4-1.0 um

wavelength region. Photosynthetically active plant components, primarily

leaves, produce a stepped reflectance pattern with low reflectance in the

visible and high reflectance in the near infrared. This green vegetation

spectral reflectance pattern results bran A rony absorption of visible light

by chlorophylls and related piyments and scattering, because of leaf structural

properties, but minimal absorption of light in the near infrared. Researchers

have proposed a number of spectral vegetation indices premised on the contrasts

in spectral reflectance between green vegetation and background materials

(Rouse, Hass, Deering & Schell 197 9 , Kauth & Thomas 1976, Richardson & Wiegand

1977, Tucker 1979, Jackson 1983). All of the indices are computed, at least

in part, by calculating a difference or ratio of visible to near infrared

measurements. This calculation minimizes the effects of variable background

brightness while emphasizing variations in tne measurements that occur because

of varying green vegetation density. The normalized difference vegetation

index (NUVI) is represcntdtrv ,^ )f Lot , various spectral vegetation indices

(Rouse, Hass, Deering & Schell 1914).	 It is computed;

NUVI = (NIR-VIS)/(NIR+VIS)

where NIR = near infrared spectral measurement
VIS = visible spectral measurement

In theory NDVI measurements range between -1.0 and +1.U. However, in practice
cY

the measurements generally range between -U.1 and +U.7. Clouds, water, snow

and ice give negative NUVI..values. Bare soils and other background materials	 .a

produce NUVI values between -0.1 and +U.1. Laryer NUVI values occur as the

amount of green vegetation in the observed area increases. The relative meritsv

of the various spectral vegetation indices is still subject to discussion
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(Tucker 1979, Jackson 1983, Hatfield 1983), however, analytical evaluation

has shown that the various indices are functional equivalents (Perry Jr. &

Lautenschlager 1984).

The physical significance of spectral vegetation indices is under

intensive investigation. Field studies, predominantly for agricultural crops

and grasslands, have shown that the spectral vegetation indices correlate, in

a nonlinear manner, with the green leaf area index and green biomass in the

canopy (Dethier 1974, Ueering, Rouse, Bass & Schell 1974, Blair & Baumgardner

1977, Holben, Tucker & Fan 1980, Bauer, Daughtry & Vanderbilt 1981, Curran

1983). These relations however are species-specific and saturate at high LAI

and greet. leaf biomass levels. Theoretical studies of vegetation canopy

radiance characteristics show that at a minimum the leaf area index, leaf

angle distribution and leaf optical properties of the canopy must be known to

predict observed canopy reflectance patterns (Idso & de Hit 1970, Suits 1973,

Bunnik 1978). Parallel research on photosynthesis has shown that calculation

of intercepted photosynthetically active radiation (IPAR) requires equivalent

specification of canopy attrihutes (Wienman & Guetter 1972, Lemur & Blad 1974,

Monteith 1977, Hosko th & Jones 198U). Recent field studies of several different

agricultural crops have shown a strong linear relation between IPAR and the

spectral vegetation indices (Kumar & Monteith 1981, Daughtry, Gallo & Bauer

1983, Asrar, Fuchs, Kanemasu & Hatfield 1984). This IPAR-spectral vegetation

index relation provides a physical link between the indices and plant productivity

which is supported by studies of crops and grasslands which show a direct

relation between the integrated value of spectral vegetation index measurements,

acquired several times through the ground season, and the seasonal accumulation

of biomass (Tucker, Holben, Elgin Jr. & McMurtrey 1981, Daughtry, Gallo &

Bauer 1982, Hatfield 1983, Steven, Biscoe & Jaggard 1983, Tucker, Vanpraet,
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8oerwinkle & Gaston 1984). This research suggests that periodic visible and

near-infrared observations of the Earth may be used to characterize the cu^rent

status, seasonal dynamics and integrated seasonal magnitude of vegetation

photosynthetic activity.

Advanced Very High Resolution Radiometer

Satellite-hased remotely sensed observations have provided major impetus

to vegetation studies based on spectral measurements. Satellites conveniently

provide consistent, repeated coverage of all land areas. Muni attention has

been given to Landsat multispectral scanner (MSS) observations and selected

studies have successfully used these measurements to analyze the regional

extent, seasonality and productivity of natural and cultivated vegetation

(Dethier 1974, Deering, Rouse, Hass & Schell 1974, NASA/JSC 1979, Thompson &

ilehemenan 1979). However Landsat data are not well suited for global scale

studies. The MSS 80 meter ground resolution produces a large data volume--over

6,000 MSS scenes are required for one observation of the Earth's total land

area--and in cloudy regions of the globe, the 18 day repeat cycle produces too

few cloud-free observations to record vegetation seasonal dynamics. The AVHRR

sensor on the TIROS-N series of meteorological satellites, beginning with

NOAA-6 launched in 1979, provides an alternate source of satellite visible and

near-infrared measurements. With a 1.1 km nadir ground resolution and a daily

repeat cycle, the AVHRR observations are well suited for large area studies.

Several researchers have begun to use this new source of spectral measurements

in vegetation studies and the results are encouraging (Townshend & Tucker

1981, Gatlin, Tucker & Schneider 1981, Gray & McCrary 1981, Greegor & Norwine

1981, Ormsby 1982, Justice 1983, Tucker & Townshend & Goff 1984).
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The AVHRR is a multispectral imaging sensor that was designed to permit

detection and discrimination between clouds, land, water, snow and ice (Schneider

R McGinnis 1977). Spectral measurements are acquired in the visible, near

infrared, middle infrared and thermal infrared regions, with four channels on

the earlier AVHRR instruments on TIRUS-N and NUAA-b satellites and five channels

on NUAA-7 and NUAA-d (Table 1). AVHRR observations are available from the

U.S. National Oceanic and Atmospheric Administration (NUAA) in several forms

includinU High Resolution Picture TrdnS'uission (HRPT), Locdl urea Coverdye

(LAC), Global Area Coverage (GAC) and Glooal Vegetation Index (UVI) (Kidwell

1979). The HRPT data are direct transmission data to ground receiving stations.

The LAC data are the original 1.1 kin observations, which are only recurded and

placed in archives on special request. The GAC data, which dre regularly

recorded and stored, are partially resampled LAC observations. GAC data are

produced by calculating the average value of the first four pixels in a 3 x 5

array of LAC observations. The average value is then used to represent the 3 	
i

x 5 pixel area. The Global Vegetation Index data are weekly summaries of

channel 1 and channel 7 GAC data which nave h en jW)jrdpnically registered on

a polar stereographic snap projeN tiUn dn6i , , j,,cs eoI (;.	 iize :loud Cover and

atmospheric haze (Tarpley, Schneider & Morey 1983). One grid cell of the GVI

data represents approximately a lb x 15 km ground area at the equator and

increases in size with latitude to approximately a 3U x 30 km ijround area at

the poles. For each day of observations one GAC data value is randomly selected

from the 10 to 6U GAC pixels present within each of the GVI grid cells to
I

represent that GVI cell. The normalized difference vegetation index is computed

for each of the selected seven days measurements. Measurements from the day

with the largest NOVI value are selected to represent the composite weekly

value. The NDVI value for that day is recorded, along with the associated
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channel 1 and channel 2 data, as the "VI data. Selection of the maximum NOVI

value minimizes the effects of clouds and haze and tends to emphasize near

nadir rather than off nadir observations (Holben & Frazer 1983).

DATA AND METHODS

Two aspects of the North American AVHRR NOVI measurements are examined in

this study; 1) seasonal variability and 2) the area under the curve (integral)

defined by the temporal variation of the measurements over the growing season.

Given current knowledge of spectral veyetdtion index measurements, the seasonal

variations should he related to the phenology of vegetation green leaf display

and hence absorbed photosynthetically active radiation and the integral of

measurements over the growing season is expected to be related to annual net

primary productivity (Monteith 1917). However these relations have not previously

been examined at a continental scale, across the diversity of vegetation types

encountered in North America. The degree to which spectral vegetation index

measurements provide a general indicator of vegetation activity, independent of

the species or species composition observed, is unknown.

AVHRR Global Vegetation Index data were selected for this study for

convenience since considerable data processing is already accomplished and

observations of the entire North American continent are contained in a 1024 x

1024 geographically registered grid. Observations from NOAA-7 are used because

the nominal daylight overpass time is 1430 hours compared to 0730 hours for

NOAA-6 and NOAA-8. The afternoon solar illumination conditions provide more

uniform and intense radiance measurements than the low zenith angle solar

radiation observed in the parly morning overpasses. A disadvantage of the

afternoon observations is that cloud cover is usually greater at this time

because of daytime atmospheric convection. The analysis presented in this

report examines observations from April to November in 1982. Preliminary



inspection of the winter (November to March) North American observations has

revealed that low irradiance measurements near the polar terminator produce

anomalous NOVI values. Restricting the current analysis to April through

November avoids much of this problem while capturing the majority of the North

American growing season north of 35 0N latitude, with the exception of the

central west coast (i.e., California, Oreyon, and Washington). All processing

of the data was carried out on the HP-1000 minicomputer of the Sensor Evaluation

Branch at thW Goddard Space Flight Center.

Three-week Composites

Seasonal variations in the spectral vegetation measurements were extracted

from the data by forming three-week composites of the observations. ' Experience

gained in analysis of NOAA-7 AVHRR data for the African continent has shown

that at least three weeks of AVHRR . observations must be composited to effectively
i

remove cloud observations in cloudy regions of the continent (Tucker, Townshend

R Goff 1984). The compositing follows procedures previously described for the

NOAA Global Vegetation Index data; that is, for each grid cell in the data,

the vleet with t.no highest N`VI value is selected to represent the three-week

interval. The resultant composite map is taken to represent the state of

spectral vegetation index measurements across the continent during that three

week interval.

Thirty GVI weekly composites, extending from 12 April 1982 to 7 November

1982, were processed to form ten three-week composites. Examples of the three-

week composites for April, June, August and October are provided in Figure 1.

The NOVI value at each grid cell location is color-coded, dependent on its

magnitude, as shown by the color bar in Fig. 1. The same color code is used for

all the maps to permit interseasonal comparisons. A latitude-longitude coordinate

grid, national boundaries and state boundaries in the United States are



superimposed on the image to aid interpretation.

integrated NDVI Measurements

The area under the temporal curve was computed by trapezoidal integration

of the three-week interval composite values at each grid cell location on the

map. This resultant measurements are displayed in Fig. 2. "ihe same color

code used in Fig. 1 is used here with the exception that each value is multiplied

by ten. These measurements are referred to as inteyrated NDVI (:NDVI) values.

RESULTS AND DISCUSSION

Seasonal NDVI Patterns

The three-week composites (Fig. 1) show that in general the NDVI neasurements

increase to a maximum in late August and thereafter decline. 	 This Seasonality

is in agreement with the phenology of North American vegetation (Lieth 1974).

High NDVI values move northward across the continent in the spring and summer

and shift to the south in the fall. This green-wave and brown-wave phenomenon

has previously been studied for selected regions o f the ontinent with Landsat

observations where it has been related to the seasonal , p ulse of Nnnt)syhtnetic

activity in the vegetation present (Dethier 1974, 	 iaa' n

Schell 1974, Blair & Baumgardner 1977).

The seasonal variations of NDVI measurements for regions of selected natural

and cultivated vegetation types are presented in figure 3. These plots are the

average of a 3 x 3 array of GVI three-week composite measurements, centered on

the locations given. The observations are primarily from land dominated by

natural vegetation although the effects of human activities in these locations

cannot he entirely overlooked (e.g., irrigated agriculture). The plots in

figure 3a are for locations where the seven months of AVI4RR observations cover

Y



the majority of the growing season. The Lovelock, Nevada observations of
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desert conditions are provided for comparison. As pr •ev'uusly noted the

measurements increase in rAo spring and decline in the fall. The magnitude of

the summer measurements in general decreases with increasing latitude. Also,

the duration of high summer values decreases to the north. However the grassland

observations froo Nebraska peak at lower summer values than the boreal coniferous

forest but with a longer duration of elevated values. These trends in the

NOVI measurements correspond with the ubserved phenul0y1Gdl Patterns of these

vegetation formations (Lieth 1974).

The plots in figure 3b are for regions of the continent where the full

growing season is not observed in this seven month period. The NOVI plots for

both Oregon and California show high NOVI .neasureinents in April suggesting

a continuation of vegetation activity frumi the winter months. The California

observations steadily decline throughout the observation period which agrees

with the increased vegetation dormancy observed in this region through the

arid summer. The Oregon observations remain at high values until September

and thereafter decline, reflecting the inure humid character of this region as

well as the physioluyy of these. umfteruds forests (wdriny r, Franklin 1919).

The South Carolina observations, from a region of pine forests, show a spring

increase in the NUVI measurements and a small decline in the fall suggesting

continued photosynthetic activity in the winter. No simple explanation of the

mid-summer decline in NOVI values in South Carolina can be given. Several

possibilities, including drought conditions in this region during 1982, cloud

cover contamination, and atmospheric water vapor effects, may explain or

contribute to an explanation of this pattern.

Representative temporal plots of NOVI measurements from prime agricultural

regions are presented in Figure 3c. Both the corn-soybeans and spring wheat
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regions green up later and senesce (and/or are harvested) earlier than local

natural vegetation. The winter wheat observations show high values in April

with a peak in June and declining values thereafter. The California Central

Valley observations are high in April and decline until early July when they

again increase to a maximum in late August. These temporal patterns are related

to the calendar of cultivation and yrowth of crops which differs from natural

vegetation phenology. This differential timing between cultivated and natural

vegetation growth can be also be observed in the three-week composites where

the prime cropland areas display distinctive patterns in the images. For

example the winter wheat region,, extending from north central Texas through

central Oklahoma and Kansas, stands out as an island of high NUVI values in the

April image whereas the cornbelt shows up as an area of low values in this

same image.

The NOVI measurements and climatic conditions should be related if the

NUVI measurements are a sensitive indication of vegetation activity (Holdridge

1947, Mather a Yashioka 1968, Udum 1911, Box 1981). The NOVI measurements,

precipitation and temperature records fe Point Barrow, Alaska and Phoenix,

Arizona for the seven month period are ploted in Fiyure 4. At Point Barruw

the NUVI measurements only increase above O.0 after mid-June, when the temperatures

rise above 0°C, a condition essential for vegetation growth. In the Phoenix,

Arizona region temperatures are always above freezing but moisture limits

vegetation growth. NOVI measurements for Phoenix follow moisture seasonality,

showing lower values in the dry season from April to July and an increase in

late summer when rainfall increases. This interaction between the NOVI

measurements and climatic conditions is suggestive of the value of spectral

vegetation index measurements in regional- to global-scale vegetation phenology

research.
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Integration over the Growing Season

The map of integrated normalized difference veyotation index. (INUVI)

measurements (Fig. 2) displays a pattern of marked familiarity. The highest

values occur in the southeastern and central west coast regions of the continent.

The integrated measurements generally decrease to the north and west across

North America but display more heterogeneity in the western one third of the

continent. Tne north-south gradient of INUVI measurements corresponds to the

major to m^uo rature ecdcline of rorth America, whereas the east-west gradient

corresponds to the major precipitation ecocline of the continent (Whittaker

191U). The yenyraphic complexity of the measurements in western North America

is related to the mountainous terrain of the region. Note that elevation

afvects the measurements differentially dependent on latitude. North of booN

latitude the INUVI measurements decrease with increasing elevation. South of

40 ON latitude the measurements increase with increasing elevation. This geography

of INUVI measurements compares well with the known patterns of North American

natural Veyetation activity (Shelford 1963, Kuchler 1966, Whittaker 197u,

Udum 1971, R o din, 1lazilevich & Razov 197b, Lieth 1976).

Tne pattern ,,r I^iOVI Values in certain areas of the continent, particularly

in the United States, appear "anomalous" considering the natural veyeta:ion and

terrain of these locations. A region in the midwestern United States, extending

from central Ohio to Iowa and including much of Indiana and Illinois, as well

as portions of Wisconsin and Michigan, produce INOVI values that are lower than

might at first be expected. A similar area of relatively low INUVI values

extends no r th-south in the Mississippi River Valley from extreme southeastern

Missouri through Arkansas and Tennessee to northwestern Mississippi. Conversely

selected regions in the western United States, including the Columbia and Snake

river basins in the Northwest, the Central and Imperial valleys in California

i

i
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and several locations in the Great Plains, exhibit higher than expected INDVI

values. These locations correspond to the prime croplands in the United States

(Fig. 5). The relatively low INDVI values In the U.S. Midwea 	 ,ccur because

this region produces low NOV1 values both early and late in the growing season,

prior to planting and following harvest. Most agriculture in the western

portion of the U.S. depends upon irrigation to sustain plant growth which

produces greater plant cover and thus higher INDVI values than observed from

natural vegetation of this semiarid region. These patterns correspond to tho

observed impact of agriculture on regional net primary productivity (WnIttakr±r

& Likens 1975).

INDVI Measurements and Net Primary Productivity

The relation between INDVI measurements and net primary productivity (NPP)

was examined by computing the mean INDVI value for each of the major vegetation

biomes of the continent and comparing these figures to net primary productivity

figures reported in the literature. The North American biome map (Fig. 6)

from Odum (1971) was used as a means to identify the natural vegetation

formations. INDVI samples were selected from sites within each formation based

on the location of world weather observing stations ised by Worm 'iLrlooroloyir,al

Organization for global studies (NOAA 1982). These sites were selected since

they are uniformly distributed, approximately every 5° of latitude and longitude,

across the continent. 7here are an average ten stations within each major

hiome. For each station the mean of a 3 x 3 pixel array of INDVI measurements,

centered on the station location, was computed. The mean of all sites within

each biome was then computed. These biome-averaged ND"I measurements were

compared to net primary productivity figures provided by Whittaker & Likens

(1975) supplemented by NPP figures for subclimax pine and pine/oak forests

from Whittaker (1970) and values for the ecotones from Lieth (1978) and Rodin,
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Razilevich & Razov (197b). 	 The results (fig. 7) show a strong direct relation

between the NOVI measurements and net primary productivity. Excluding

agriculture the explained variance (r l ) of the relation is 0.94. With agriculture

included the r2 value drops to 0.89. further investigation is required befure

these results are fully understood. However the corresponao n ce between these

two variables is sufficient to suggest that satellite-derived spectral vegetation

index measurements will significantly improva global studies of vegetation

productivity.

CONCLUSIONS

The results from this analysis of NOAA-7 AVHRR observations of the North

American continent show that these high temporal frequency, large area spectral

measurements of the Earth provide a major new source of information

for investigations of terrestrial,vegetation characteristics.	 Seasonal variations

in the NDVI measurements agree with the known phonological patterns for natural

and cultivated vegetation and, for natural vegetation, these temporal

patterns vary in conce.t with climate conditions which limit plant growth.

Annually integrated patterns of NOVI measir m,.nrs r:orrespond to known continental

patterns of net primary productivity. The effects of human cultivation are

clearly noted and these patterns agree with the known effects of agriculture on

regional vegetation activity. Similar results have been derived other continents

(Tucker, Townshend & Goff 1984, Justice, Townshend, Holben & Tucker 1984).

Use of AVHRR observations in macroscale studies of vegetation should significantly

improve knowledge of global vegetation dynamics. Availablity of several years

of these high temporal , frequency, globally consistant measurements will permit

studies of interregional, interannual and seasonal vegetation phenomena not

previously possible.
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Much remains to he accomplished before the full value of the observations

is realized. For example, interannual analysis of the data is needed and the

effects of atmospheric conditions and sensor configuration on these measurements

requires further investigation. However, even at this early stage of investigation,

the results suggest that spectral vegetation index measurements provide a

consistent and generalized ineans to conduct global vegetation studies. The

AVHRR observations represent a major advance in realization of the promise of

remotely sensed spectral ouservdtiuns for vegetation research because they

provide the global overview of terrestrial conditions needed in multistage

analysis of land conditions. An ability to observe the global distribution

and dynamics of vegetation activity opens numerous new avenues of research for

geographers, ecologists, climatologists and other earth scientists.	 Improved

understanding of the earth's biosphere should result and at a time whe y, concern

is growing about human impact on the biosphere this new source of information

is a welcome addition to the limited means available to study global biospheric

activity.
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Table I. Characteristics of the NOAA/AVNRR System

TIROS-N - launched Oct. 1978 - Protoflight NASA funded
NOAH-6 - launched June 1979 - NOAA funded
NOAA-7 - launched June 1981 - NOAA funded
NOAA-8 - launched March 1983 - NOAA funded

Coverage Cycle	 9 days	 Orbit Inclination	 1020

Scan Angle Range	 + 56 0	Orbital Flight	 850 km

Ground Coverage	 7700 km	 Orbital Period	 102 mins

IFOV	 1.39-1.51 mr	 Equatorial Crossing

Ground Resolution	 1.1 km (nadir)
3.5 km (max off angle)

Quantization	 10 bit

Spectral Channels	 1	 2	 3	 4

Des.	 Asc.
0TH/T-39u (NOAA 688;
1430 / 0230 (NOAA 7)

5

Spectral Range (win)	 0.58-0.68*	 0.725-1.1	 3.55-3.93	 10.3-11.3	 11.5-12.5**

*	 Channel 1 range on TIROS-N 0.55-0.90
** NOT ON NOAA 6
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FIGURE CAPIION%

Fig. 1. Three-week composite maps of North American normalized difference
vegetation index measurements for April, June, August and October 1982. The
measurements are color-coded dependent on magnitude as displayed on the color
bar in the center of the figure.

Fig. 2. Map of NOVI measurements integrated over the April to November 1982
observation period. The integration was computed by trapezoidal approximation
of the area under the curve subtended by the ten three-week composite NDVI
measurements. The INDVI measurements are displayed with a color code equivalent
to that used in Fig. 1 except that the numerical valves are ten times larger.

Fig. 3. Temporal variations of the normalized difference vegetation index
measurements for selected sites of natural and 0 tivated vegetation types.
Vegetation-type identification was by means of maps presented in Fig. 5 and
Fig. 6. The ploted measurements are the mean of a 3 x 3 array of NOVI
measurements centered on the cited locations.	 (a) Natural vegetation observed
over the growing season, (b) natural vegetation with d growing season extending
into winter months (c) cultivated veyetation,

Fig. 4. Comparison of normalized difference vegetation index measurements and
climate data for Point Barrow, Alaska and Phoenix, Arizona. The NOVI measurements
were computed in the same manner as those presented in Fig. 3. The climate
observations are thirty-year averages from the NOAA world weather station
records (NOAA 1982).

Fig. 5. Percentage of land in cultivation for the United States. This map
helped to explain the "anomaluus" areas observed in the integrated NOVI map
(Fig. 2). From World Atlas of Agriculture (1968). Authorized reproduction by
Istituto Geografico De Agostini, Novara, Italy.

Fig. 6. Distribution of major Biomes in Nort h Arerica. This map was used to
determine the natural vegetation typos on tno ,on f inLnt for the JNDVI-net
primary productivity analysis. 	 Toe dutaileo rik^starn vegetation subregions were
grouped to form the woodland and scrub category ;sage subclimax, sagebrush,
coastal chaparrel and pinon-juniper) and the desert category (desert scrub and
creosote-bush desert). From Fundamentals of Ecology, 3rd ed. by Eugene P.
Odum. Copywright (c) 1971 by Saunders College Publishing. Reprinted by
permission of CBS College Publishing.

Fig. 7. Plot of biome-averaged INDVI measurements versus published mean biome
net primary productivity rates. For each biome a well -distributed sampled of
INDVI measurements ( -90 per biome) were used to compute the biome average. The
net primary productivity figures are predominantly from Whittaker and Likens
(1975), supplemented with values from Whittaker (1970), Rodin, Bazilevich and
Razov (1975) and Lieth (1978). The explained variance (r 2 ) of the relation is
0.89.	 Excluding agriculture raises the r 2 value to 0.94.
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