General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



B o ERELCT S AT R L e b

E85710066
NNASA

Technical Memorandum 86180

ALTIMETRY, ORBITS AND TIDES

(E€5-10066 NASA-TE-86180) ALT. | , i
AND TIDES (NASA) 183 p he AcgiggT%Q CRBITS N85=-17404
CSCL 05B
Unclas

G3/43 00066

by Oscar L. Colombo

November 1984

National Aeronautics and
Space Administration

- Goddard Space Flight Center
- Greenbelt, Maryland 20771




ALY TR T e el T T el B 2 3R e e e

NNASAN

Technical Memorandum 86180

ALTIMETRY, ORBITS AND TIDES

by Oscar L. Colombo

November 1984

Nationai Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771



A

ABSTRACT

3

A theory of radial orbit errors is derived from first principles; the
basic 1ideas are presented in a reasonahly self-contained way., There is
also a section about tides, their effects on cibits, and thelr possible
mapping with satellite altimetry., The theory seems to explain well the
outcomes of computer simulations made independently by this author and by
others. Orbits with precisely repeating ground tracks are considered in
detail. SEASAT was kept in an orbit like that during its last month of
operation, and future satellites with altimeters are 1ikely to be 1in
orbits of this type (TOPEX, ERS-1, POSEIDON). In this special case,

Ar(g), the part of the radial error caused by the gravitational field
model, has a component that depends only on position along the repeating

(e) is caused by deep orbital resonance

ground track; the remainder of Ar
(mostly with the zonals) and consists mainly of a slowly increasing
oscillation of one cycle per revolution (non-gravitational force models

may produce similar 'resonant'" errors). Moreover, the periodical errors

due to the zonals are functions of latitude only, and unobservable in

' ecrossover differences. Repeat .orbits, where the perigee librates very

slowly, are not the most suiltable, therefdreg' for using altimetry fo
compute the mean sea surface by the "bizs+tilt" and similar methods, or
for gaining new information -about the =zonal part of the field. These
otbits'éfe best  for studying temporal changes of the sea surface, because
the ‘etfor” éan' be filtered out =asily using colinear pass differences.
Conversely, non-repeating orbits, where thékperigeevpreCeSSés; are worse
for studying cﬁangeskbut are bettef for'&apping the ﬁean sea surface and
modelling the field, provided the ‘altime:er observaﬁions span . a

substantial part of one apsidal cycle.
PRECEDING PAGE BLANK NOT FIEMED
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1.0 INTRODUCTION

The face of the ocean has been examined with artificial satellites in
the last decade and found to be novered with remarkable features hardly
suspected before, when more than two tlitrds of the globe were still
largely unsurveyed. Among the millions of measurements made with diverse
instruments, those taken with the radar altimeters of GEO0S 3 and SEASAT
have proven of particular value for studying our planet, because of their
high and homogeneous quality, dense coverage, and range of application.
So it is not surprising that new space missions 1involving the use of
altimetexrs are being planned for the next decade: those of TOPEX (NASA),

ERS-1 (ESA) and POSEIDON (CNES), among others.

The importance- of altimetry is suggésted by the volume and variety of
the scientific literature related to it. One could mention; for example,
three special 1issues of the Journal of Geophysical Research (Vol. 84, BS,
1979 on CEOS 3; and Vols. 87, C5, 1982 and 88, C3, 1983 on SEASAT), one of
Marine Geodesy (Vol. 8, 1984), or one of the Journal of the Astronautical
Sciences (Vol. 28, Octobér-December 1980 on orbit determination for
SEASAT), és well as thg‘ proceedings of -a number " of 'international
symposia. Two 'cqmprehensive reviews of the work published in the USA
alone from 1975 to 1982 have been made by Stanley (1979) and by Marsh

(1983).
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1.1 Motivatigg

Since the earliest days of GEOS 3 it has been clear that the orbit
error constitutes a serious problem. Things have improved, but the
problem persists. While the error has its uses, too, as a source of
information on what is not known about the gravitational field (Shum,
1982, and Wagner, 1984), it remains mostly a nuisance that can be
mitigated with more or less empirical remedies, but that still limits the
usefulness of the data in many applications. For this reason, efforts to
get better models of the forces acting on the spacecraft, of which the
gravitational ones ari{f the most significant, are currently under way on

both sides of the Atlantic.

An approach to the orbit problem based on celestial mechanics can
give further insight into the way the empirical methods work and, perhaps,
into how to improve them. As the relevant literature on satellite geodesy
includes many important papers, reports and books eithér out of print or
hard to get, I have written here a rather detailed introduction to the
basic concepts. This may be of some value to those who wish to understand
the nature of the orbit error better and are not very familiar with the

subject.

The theory, as given here, 1is sléhfed towards orbits determined by
the methods now in common use for geqdetic satellites (Martin et als,

1976; Putney, '1976; Schutz et al., 1980). The orbits of GEOS 3 and SEASAT
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have been compiited by those methods, which are also the main ones
considered, at this stage, for future missions. One possible alternative
is to find the position of the spacecraft from simultaneous observations
of several GPS~NAVSTAR navigation satellites. If the =phemerides of these
satellites were sufficlently well known, this would eliminate the need to
integrate long arcs numerically with imperfect force models, thus avoiding
the orbit errors due to those models. The idea has been studied by Bender
and Larden (1982) and by Ohdrasik and Wu (1982). It may be used, on an

experimental basis, during part of the TOPEX mission.

The analytical orbit perturbation théory explained here 1is only meant
to give a ,gualitative understanding of the error, Its formulation

includes several simplifying assumptions, so it 1s quantitatively less

‘accurate than the numerical integration of the exact differential

equations involved, which 1s also much more adequate for handling
non-gravitational forces (drag, radiation pressure, etc.), and so it has
become the standard procedure in satellite geodesy today (its main
limitation complementing 'thét of "the analytical approach: - it trades
insight for numbers). Nevertheless, efforts to refine and extendk the

analytical method still continue, as shown in a review by Gaposchkin

(1978). The treatment of the radial error along a precisely repeating

ground track 1s a new version, using Keplerian elements, of part of a
complete theory develored by me for this special type of orbit while
visiting at the Department of Geodesy of the Technical University at

Delft, in the Netherlands, over the period 1982-83 (Colombo, 1984). More
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recently, a similar theory for the periodical part of that error has been

worked out independently by C.A. Wagner (ib., 1984).

While oriented towards oceanography (the main field of application of
altimetry until now) the present discussion of the orbit error is also

relevant to the uses of data taken on land, ice, etc.

The toplc of tides is intimately linked to that of altimetry. Tides
modify the gravitational field, affecting the orbits of spacecraft and
contributing to the ervors in éheir determination. They also show up as
part of the signal in the altimeter meaéuremengs. In principle, it is

possible to map them directly over the whole of the oceans using

disilmetry. Attempts have been made several times, mostly with scant

success. This must be blamed, to some extent, on the inadequate temporal
and spatial ‘sampling and limited accuracy of the GEOS 3 data; and on the
éhont life of SEASAT. But, perhaps, better results could be obtained,
even with such measurements, if one were to take full advantage of what
can be predicted from first principles about the nature of the orbit
errors. As mentioned in the section on "Tides", some of the best results

so far have come from data collected during the last useful month of

'SEASAT. At that time, the satellite had a precisely repeating ground

track which, in theory, should make the radial error particularly easy to

filter, because,of'the sérong'symmetry of the orbit,
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The literature on tides 1s very extensive. Cartwright estimated in
1977 that, over the previous 200-odd years, the number of publications had
grown almost exponentially with time (to illustrate this, he tabulated the
increment in this number at fifty years’ intervals). Hendershott and Munk
(1970), Cartwright (1977) and Schwiderski (1980) have made §0mprehensive
reviews. The basic ideas needed to consider the tides in the context of
satellite altimetry are scattered far and wide in works on astronomy,
geodesy, oceanography and geophysics. I have tried to bring these 1deas
together in a way that shows, as clearly as possible, the links between

the theory of tides and that of orbits,

Tides have always fascinated those with 1mégination: regular
movements in an otherwise unpredictable element, foliowing the rhythms of
the sky. Now they are beginning to be mapped from that same sky, with
modefn instruments whose proper use requires understandi~g the timeless
rules by which thé sea, the Sun, the Moon, the satellites énd the Earth
join together in a complex dance. In‘the end, through the combination of
techniques 0ld and new, a task formulated nearly three centuries ago shall
be fulfilled. At the very dawn of modern celestial mechanics and'tidal
theory, Newton wrote in his "Principig":

.ﬁThus have I explained the causes of the mocions'df the

Moon and the sea. Now it is fit to subjoin something
concerning the amount of those motions."



2.0 ALTIMETRY

2.1 Residual Sea Heights

The height h  of the sea surface above a reference ellipsold, or

ellipsoidal height of the surface, can be expressed as the sum

hy=N+w + ¢, +w , (1)

where N is the geoid height, w, 1s the constant part of the difference

between hw and N, or stationary sea surface topography, & _ represents the
. »

total geocentric tide (a regular movement of the sea surface towards and

away from the center of mass of the Earth, or geocenter), while W,

corresponds to all temporal variations in surface height other than tides,

The value of N can be calculated using a gravitatienal field model.
This model, fozf some ocean studies and for the computation of satellite
orbits; has usually the form of a sum of spherical harmonics.  In this
work I shall assume that the field model is of this type. The high
» frequency péft of the geoid at sea is known quite well nowadays thanks t:ov
the two altimetric missions already carried out, GEOS-3 and SEASAT.
Sphérical harmonic models up'to degree and order 180 (and even higher)
have been obtained from combinations of /alt;_tmetry with land gravimetry,
and they appear “to ‘be quite feliéblr; over the oceans, particularly in

details smaller than 1000 km (see, for 'example, Lerch et al.y. 1981, and




Rapp, 1982). As shown by calibration against independent data and each
other, existing models seem to be weakest in the frequency range between
degrees 10 and 40, Information on the low degrees comes mostly from
satellite tracking data, Recent intercomparisons of satellite-derived
nodels have been made by Reigber (1983), Lambeck and Coleman (1983), and
Lerch et al., (1984), The broadest features (below degree 8) may be quite

reliable already (Wagner, 1983).

The contemporary ocean tidal charts are believed to be reasonably
good (Schwiderski, 1ib, 1980), but direct evidence for this is limited to
data from tidal stations scattered widely along the coasts and in islands,
most of which have been used to make the charts in the first place., Solid

earth tides are thought to be known much better .than ocean tides at

present, No model for the prediction of w. exists today; though some of

tﬁe phenomena involved are understood to some extent, such as mesoscale
eddies, the piling up of water along the coast caused by wind, etc. There
is reason to believe that much of W, can bé treated, geographically,
mostly as a random variable (see Wunsch, 1980, for further details) whose
standard deviation, while changing from place to place according to how

energetic are the currents and winds that agitate the sea Surface, can be

estimated directiy from the study of overlapping altimetry passes as in

(Cheney et al., 1983), for example, Maps of the mean sea surface
topography, based on general circulation models, are also available, buﬁ
their accuracy is unclear, As examples one can mention those by Lisitzin

(1974), Levitus and Dort (1973), etc. Attempts to map w, using altimetry

it gl A ¢ A N ot g
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have been severely hampered by the orbit and geoid errors, directly linked
to the long wave uncertainties in existing gravitational field models.
This problem was recognized very long ago, as shown in a paper written by
Von Arx (1966) almost a decade before the Jlaunch of GEOS 3, Wunsch and
Gaposchkin (1980) have proposed the simultansous determination of W, and N
by analyzing a éombination of gravitational, altimetric and oceanographic
data with a suitable form of generalized linear regression estimator (see
Rao, 1965, Ch. 2, (g) and also Moritz (1980)). Extensive discussions of
the sea surface topography problem, and reviews of much of the work done

using GEOS 3 data, have been written by Rizos (1980) and Coleman (1981).

If N, is the geoid height computed from the field model, and AN the

corresponding error in N,, then

N=N - &N . - : (2a)

Similarly, if ACG

from chacts of the ocean and the Earth tide with the corresponding Love

is the error in. th, the geocentric tide calculated
numbers {expression (77) in the section "Tides"),

5. = &
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If hs is the ellipsoidal height of the altimeter satellite, and A the
shortest distance between the center of mass of the spacecraft and the sea

surface, then, as a very good approximation,

hw = hs - A (3)

After several corrections have been made to the raw data ('pre-

processing", see Hancock et al., 1980, and Tapley et al., 1982), including
those resulting from "in-flight" calibration of the altimeter
(Kolenkiewicz and Martin, 1982; Marsh and Williamson, 1982), ﬁhe radar
altimeter ranges Am can be regarded as successive values of A plus a
meaéurement error AA, where AA is mostly random noise. For GE0S-3, the
first satellite dedicated to altimetric observations, AA stood at about
75 cm; the error came down to near 10 cm for SEASAT, launched three

years later (in 1978); for future missions, a third generation of

“altimeters 1s 1likely to bring AA into the centimeters’ range (sée'

MacArthur, 1980).

The height of the satellite hs can be calculated from its computed

orbit, or ephemeris, which is obtained by adjusting the initial position,
velocity and a few other parameters in an iterative Gauss-=Newton (or
~similar) procedure to minimize the . sum of«the sqhares of the differences
between the values of the tracking data available and the corrésponding

values calculated from the estimated ephemeris (see Mar;in et al., ib.,

'1976). This fitted orbit usually spans a few days (up to one week), and

Sy BT 5



then a new orbit fit is made for the following several days, and so on.
While not unique, this 1s today a common procedure for getting accurate
ephemerides of altimeter satellites, so in this study I consider only
orbits computed in this way. At present, the error Ahs in hs is believed
to be of the order of 1.5 meters (r.m.s.) (see Marsh and Williamson, 1980;

Lerch et al., 1982),(1)

The reasons why the ephemeris are not exact are multiple: errors in
tracking data and in tracking station coordinates; the abundance and
distribution, temporal as well as geographical, of these data; imperfect
refraction corrections 1in the tracking; errors in the models for

calculating the forces that shape the orbit, etc. Of the force errors,

 the most prominent, at present, are errors in the gravitational field

model, followed at some distance by errors in the models of surface forces

such as air 'drag and solar radiation pressure. The last two are

particularly serious in satellites like SEASAT, because of the large solar

panels needed to feed their power-hungry equipment, as well as the

presencé'bf a number-of large antennas and other objects of complex shape,

‘all of which is made worse by the'éhanging attitude of the spacecraft, as

this varies the effective cross-section opposed to the surface forces.

~ Often today orbits are estimated assuming that = satellite is a

(I)Horizontal orbital errors can be disregarded. They are, at present,
of the order of less than 100 m, and because of the smoothness of the sea-
surface (averaged over the cross-section of the radar altimeter beam, or

footprint, usually 1 km or more in diameter) their effects on the accuracy

of the calculated height is negligible. Numerical integration errors in
precise ephemeris are insignificant, : ,

10
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homogeneous sphere, a '"cannonball", and then trying to compensate for the
obvious deficilencies of this model by adjusting, together with the initial
position and velocity, the coefficients that scale the drag and the sdlaf
pressure; this is usually done at intervals shorter than tﬁe total length
of the arc, such as once per day (Marsh and Williamson, ib., 1980). A
study of the consequences of using various simplistic, but practical, ways

of handling the surface forces can be found in (Colquitt et al., 1980).

If Am is the (pre-processed) altimeter meaéurement, hge the computed |
satellite ellipsoidal height, and Ahs the error in the latter, then the

calculated value h,. of hy dbtained from h, and Am is, according to (3),

h =h_~A
we sc m

PR et s o i o

= (h_ + sh)) = (A + AN) ‘ ' !
=h_ + A - A (4)

where the error A: in the computed radial geocentric distance to the
satellite has been nut ip place of the ellipsoildal Ahs,‘ both being almost
identiéal, to simplifykthe mathematical treatment. ‘Replacing N and Q;

according t6 (25) and (2b) in (1) and the resulting expression for h, in

(4) leads to

hoe = (N, = BN+ w + 5o = Mg+ w,) + A Tl (3)

11
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Let

Ahw = hwc - (Nc + ;Gc) (6)

be the residual sea height. Subtracting N, and %oe from both sides in (5)

one gets, after rearranging terms,
th = b - BN - B+ w tw - AL, (7)

wherea ACG = [ e (co + §+ §%), 6 being the yielding of the solid Earth

G
o the ocean tide ;o' and 6 the solid Earth tide.

T

On present evidence, and according to the way in which they have been
defined above, AN, Ar, A%; and w, seem to have mostly long- wavelength
spatial features (larger than 1000 km). The r.m.s. for each term in (7)
is thought to be: 2 m or less (today) for both Ar and AN; nearly 1 m for
w, and for the geocentric tide; less than 0.1 m for Wy (except over 4
small percentage of the sea surface); and 0.l m (or less) for AA, provided
there is a micro&ave‘radiometer onboard, as in SEASAT, that can measure

the amount of water vapor along the altimeter beam, to estimate accurately

ths delay due to "wet' tropospheric refraction.

12
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3.0 ORBITS

3.1 Orbital Motion and Keplerian Elements

As the orbits considered here are approximately elliptical, it is
convenient to formulate their theory i1in coordinates that make the
description of elliptical motion particularly simple. Among - several

possible choices, the most common 1is that of the six quantities known as

the osculating Keplerian elements, which can be translated into the three
Cartesian coordinates (x, y, z) for position and the three (%, y, 2) for
velocity, and vice vérsa, in an unambiguous way (see Table 1l(a-b) and Fig.
1). Keplerian elements are used in the classical analytical theory of
satellite geodesy. This theory has its origins in the old method for the
study of planetary perturbations known as "Variation of Constants" (see
Brouwer and Clemence, 1961), adapted by geodesists, in the early days of
the "Space Age" (late ‘fifties and early ’‘sixties), to the special task of

mapping the complex gravitational field of the Earth.

Before defining the "elliptical" coordinates, consider a Cartesian
system with the origin at the center of mass of the Earth, or geocenter,
the ; and ; axes on the plane occupied by the equator at the start of the
ofbit, or equator of epoch, the ; axis aligned with the Earth’s spin axis
at that épo@h, and the ;vaxis lying along the intersection of the equator
with the plane of the ecliptic, and pointing towards‘the vernal equinox.

The orientation is fixed with respect to the distant stars; in general;

13
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because the whole Earth, including its center of mass, 1is accelerated by
external gravitational forces (the pull of the Sun, the Moon and the other
planets), the system i1is quasi-inertial. The analytical theory is
developed as if it were truly inertial, by making use of the idea of tidal

potential as explained in the section "Tides".

The osculating ellipse is the two-body orbit that the satellite will

begin to follow, from the point of view of an observer fixed to the system
just defined. if, while driven only - by their mutual gravitational
attraction, both the Earth and the spacecraft were to shrink suddenly at
time t, becoming point-like particles situated at their original centers
of mass, but each retaining its velocity and momentum. The mass-center of
the satellite would still have the same position vector r with respect to

the geocenter (the modulus |r| being the geocentric distance r) and the

same velocity vector r, which means #hat the osculating ellipse is tangent
to the true orbit at time t (hence its name). Because of the nature of
Newtonian physics (which 1s the one used here) given E_and.g at t, the
trajectory after t is‘entirely'determined. so the osculating ellipse is

defined by these two vectors. Furthermore, it lies entirely in the

same plane as them, the instantaneous orbital plane, and has one

14
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focus at the geocenter.(l) The ascending node is where the satellite

would cross the equator going north if it were to continue along the

osculating ellipse, and the descending node is the point where it would

cross that plane going south. The line of nodes, determined by these

two points, 1is the trace of the instantaneous orbital plane on the
equator. The closest point to the geocenter is the perigee, the

furthest 1s the apogee; they lie at opposite ends of the major axis of

the ellipse, or line of apsides. The osculating Keplerian __elements

a, e, I, 9, wand M are: the semi-major axis a, the eccentricity

e (0 <e < 1), the 4inclination I (angle between the equator and the

orbit plane), the argument of the node (angle between the ; axis and

the line of nodes as shown in Figure 1), the argument of perigee w (angle

between the line of nodes and the major axis), and the mean anomaly M.

The latter is related to the eccentric anomaly E (shown in Figure 1)

through Kepler’s equation

M=E=~esinE , ' (8)

(I)The reason why the osculating ellipse of the satellite has a focus at
‘the geocenter 1s not the much smaller mass of the satellite, compared to
that of the Earth. Even if both bodies had the same mass, or the system
were attached to the center of mass of the satellite, rather than to the
Earth’s, the focus would still be at the origin of coordinates. This is
because the osculating ellipse describes the instantaneous relative motion
of one center of mass with respect to the other, whatever the masses
involved, as long as the relative velocity is below the escape value (see,
for example, Brouwer and Clemence (ib., Ch. I, 1961)). An example is the
"orbit" of the Sun 1in classical tidal theory (see paragraph "The tidal
forces"). . :
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a transcendental equation in E which must be solved iteratively, given
M. The mean anomaly would be the angular distance from perigee of a
satellite moving at a constant angular velocity equal to n, the mean
4 172
n= (pa ) (9)

d M(t)
dt ’

where %? M(t) 1is the rate of change of M in the osculating ellipse, 4 is
the product of G (the universal constant of gravitation) times the sum (M,
+ M,) of the masses of the Earth and the satellite., As M, >> Mg, this
reduces to H=20 Me' If the Earth and the spacecraft were ’truly
particles, (9) would be Kepler”s Third Law, and the orbital period would

be To = 27 n-l. The ground track of a satellite is the line desdribed on

the Earth”s surface by the point directly below the spacecraft, or

subsatellite point. Table lc gives the relationship between the elements

and ¢ and A at the subsatellite poiﬁt. Becausé of the rotation of the
Earth and the motion of the satellite, the ground track is a (nearly)
spherical helix wound up bet&een the parallels of latitude # I. The pitech
of this helix depehds on the ratiovbetween the terrestrial and the,drbital~
angular £req§encies. By tuning the orbit carefully, the helix canybefmade
to. close upon itself after a given number of dayé, forming a periodically
repeating ground track which is also rotationally stmetrical with respect
to the Earth”s axis. This is done sometimes in Earth-surveying missions,

including altimeter ones,

16
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satellite position 7 (Vernal Equinox)

projection of S on circle of radius a = ap
eccentric anomaly
true anomaly

GS'=QP =a

FIGURE 1. Geometry of the Osculating Ellipse

17

S ot i




TABLE 1(a)

CONVERSION FROM INERTIAL TO ELLIPTIC COORDINATES

r = )(.j__* + yi* + z_}g*
Given ;
L = Xi* + yi¥ + zk¥

where i, J*, k* are unit vectors in the directions x, y, z.

l. Compute a. Let 2 2 2,1/2
r=|r] = (x"+ y" + z%)
e 2, 2, ,2,1/2
v = B = (X% + 97+ 2%)
Then a = !"21’
2u=v-r
2., Compute e e cos E = ] —'g
esinE=r v/ Yia
e = Ve’ cos’E + ez sian
2, Compute M
- 2 (E is in the quadrant where e sin E
E = tgl (E~§£2—E and e cos E have their signs as in
e cos E the previous step.)
M=E=-e sin E M>mif ED> 7)
4. Compute
: - yz~zy (Same comment as for E, regardin
Q o= tgl (=t the signs of numeratoé'ang &
XZ=2X denominator inside the brackets.)
5« . Compute I
=1, 1 ~2X+x2 ‘ S o
T =tg ¢ ————) (I is always less than n,)

cos Xy=yx

6+ Compute W

= tg! [ 2 ] ' o
(sinI)(x cosQ + y sinfl) | ‘ ; :

oy e E (See éomments%for
2 tg '(/l-e tan 59 E gnd for Q.
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TABLE 1(b)

CONVERSION FROM ELLIPTIC TO INERTIAL COORDINATES

1. Compute the constants
P = cos  cos W~ sin w cos 1 sin Q

=cos 9 sin W = cos w cos I sin Q

O
»
H

P. = 8in @ cos w+ sin w cos I cos 9

-s5in @ sin W + cos W cos I cos 9

L
<
L}

P = sin I sinw

Q, = sin I cos

2. Compute E
Solve Kepler‘s'equacion
ESM-egiug

iteratively, starting with E(0)= M,

3. Compute xyzxyz

2
p a (cos E-e) + g a VY1-e” sin E

L =
. Yuva )
powR 8 [q Y1-e” cos E - p sin E]
where
= p 1% 4% * ; Cm * " *
p Px i f Py J* + Pz k and q Qx i +_Qy J* + Qz k
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TABLE 1(c)

CONVERSION FROM ELLIPTIC TO SPHERICAL COOKDINATES

1.

4y

PR

74
8
iy
i
i
.
4
3
-

f
f
i
i

Compute r

r = a(l-e cos E) wilere

. &3 1 2 3
E =M+ (e -5 sin M+ 5 e"sin 2M + 0(e”)

(or solve Kepler”s equation iteratively, as suggested in Table 1b).

Compute the true anomaly £ (shown in Figure 1)

£f=M+ (2e - %—e3) sin M + %-ezsin 2M + 0(63)

which is the equation of the center (for rough calculations, f=M is
acceptable if e is small).

Compute ¢
. =l
¢ = sin [sin I sin(w + £)]

where sin-l(O) =0 and ¢ i§ in the same quadrant as £ if
-2 & W <= , otherwise it is in the same quadrant as 7-(wrf).

2 2
Compiite A

A= sin-l [cos I sin (wtf)/cosd] + Q-6 ,

where 6 is ~the sidereal  angle of = Greenwich; and A-+6 idis in

the same quadrant as  (w+f) sign Pg - I] if I # -% ; when
1=z, A-Q+6=0 1f whf < T, and A=@+8 = T if wHE 2 7 (of

course, A is not defined at the poles).

These expressions for ¢ and A are the equatidné of the grouad track.

20




Knowledge of a, e, I, 2 and w determines the size, shape and
orientation of the osculating ellipse relative to the ;, ;, z axes, while
M defines the position of the satellite in that ellipse and (together with
a, e and Y) also its velocity, Consequently, these six elements are
equivalent to x,¥,z, §,§,é, and can be used instead of them. The
advantage of doing so 1s that they do not vary nearly as much along the
orbit, with the exception of M, as the Cartesian coordinates and their
derivatives do. There are other groups of six orbital variables used as
coordinates (see Giacaglia, 1977, for example), but the Keplerian elements

are sufficient for the purpose of this study.

Satellites are sizeable, complex objects, so a full theory of their
mdvements requires many more thén six state variables. They spin, tumble
(1f not properly stabilized) and even change shape. Their detailed
dynamics can be quite difficult to describe and doing so is the purpose of
attitude control theory (see, for example, Kaplan (1976)). Any spacecraft
considered here is designed to be sufficiently rigid so, once its attitude

has been determined with the help of on-board sensors, the location of its

‘center of mass relative to  the altimeter is also well known. In such a

ﬂrigid" satellite, the position and velocity of the center of mass véry in
time much like those of a material point with the same mass and driven by
the same forceé. For this reason, satellites are discussed here as if
they were particles, and expressions such as "state", "position" ahd

"velocity" actually refer to their centers of mass.
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3.2 The Mean Ellipse

Averaging the osculating elements up to time t over many revolutions

of the orbiting body gives the mean elements a, e, I, %, @ and W at this

time. These running averages describe the slow trends in the evolution of

the orbit. They define a gradually changing mean ellipse. Usually, the

main variations in this ellipse are: a steady slow turning of its plane

about the Earth’s axis (precession of the line of nodes), a rotation/of
the major axis in the mean orbit plane about the geocenter (precession of
the argument of perigee);, and a siight departure from Kepler‘s Third Law
(expression (9)) in the orbital frequency.(l) These changes occur because

the Earth is not a homogeneous sphere, but a rather flattened ellipsoid.

For an Earth=orbiting satellite, and except for equatorial orbits

(I = 0) where the line of nodes is not defined, the precession of the

nodes is given by the approximate law

i 2 =2 '
-R)z (1-e ) _cos'f § v (10)

- 31/2 '
where n = (H/a ) , R is the mean equatorial Earth radius, and CZOO is

the second zonal potential coefficient (this notation shall be explained

(104 further explanation of the behaviour of the mean ellipee is giVen

later, in the paragraphs '"The equations of motion in Keplerian elements"
"The"frozen ’ repeat orbit", et seq.
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later, see formula (26)).(1) Expression (10) shows‘that { is ruled mostly
by the gravitational pull on the satellite of the equatorial bulge
represented by Cygg. This pull adds a force normal to the orbital plane
(except when the orbit is polar), causing this plane to precess much as a
gyroscope does, and for the same reasons: to maintain the angular
momentum vector constant in inertial space, Therefore,! # 0 unless

I = g~. For soime values of.g,'Z and‘f, {i ~ 19/day and the orbital plane
completes a full revolution in one sideteal year, Such an orbit is known

as heliosynchronous because it follows the Sun, keeping the angle between

its plane and the direction Earth-Sun approximately fixed. A
heliosynchronous orbit is chosen, sometimes, so that some onboard devices
may maintain a proper orientation relative to the Sun, Poysible examples
could be the orbits of ERS-! (Dow and Klinkrad, 1982) and’POSEIDON (see

POSEIDON report, 1983).

The story for & is somewhat more complicated. If € is large enough,

b is also governed by Copp according to the expression

2 .

b u‘% n €500 (g)z (1-e ) [1-5 cos2 1, (11)

so at I = arc cos V/% = 63.40, (or = 116.60), known as  the critical

inclinations, & = 0 , changing sign as E.goes through  this  value.

However, for very low eccéntrici;iés (as those of the orbits of altimeter

(DR ~ 6378.2 knm; # ~398600.3 km?/sec?; C,,, ~ -1082.63x1076; the 3rd .

zonal C3,, ~ 2.5310f6, and C, o < C30, for all n > 3,
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satellites) and depending on a, I and e, the perigee may not precess at
all but librate (oscillate slowly) about a mean value of /2, or even stay
for a very long time at 7/2 with no significant change, as in the
so~called '"frozen orbits'" (see Cook, 1966, and Hough, 198l), which are
important for altimetry because they can have very precisely repeating
ground tracks (Cutting et al., 1980; Dow and Klinkrad, ib. 1982), In the

precessing case, the period 27/l of a complete revolution of the perigee

is known as the apsidal period.

The oblateness of the Earth also affects &, making it slightly
different from the Keplerian mean motion n:

. .2 =3/2 -
Me=n {1 -%— 500 (é)"' (1-2 ) [3 cos® T-1]} . (9°)

Values of  and & of # 3° per day, and of ﬁ,of 13-14 revolutions per day,
are typical for the satellites discussed here., For a near circular orbit

(3140_3), the orbital frequency (of successive passages through the

ascending node) fluctuates slightly in each apsidal period about M+ .,
Itself quite .close to M (as w¢<M), the angular frequency M+& appears in
many important analytical ekp:essions of orbit theory that will be seen

later on.

The gcombined, influence of 0300 and other zonals makes orbits

with € = 0  unstable, forcing them to become gradually more eccentric

(until -é'NIO-3 for altitudes of about 1000 km,  see expression (49)),.
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Otherwise, changes in a, €, and 1T are negligible, specially over the week
or 80 that 1s the normal duration of the orbit arcs considered here.
Variations in T, always very small, are somewhat more pronounced in the
heliosynchronous case; they are caused mostly by the Sun”s gravitational

attraction.

NOTE: While the time derivatives of M, W, etc, are M, U, etc., those

of the osculating elements are ﬁ(t), W(t), etc.,

An orbit .is shaped not only by gravitationm, but also by surface forces

guch as air-drag and electromagnetic radiation pressure, which tend to
change considerably the total mean energy E (kinetic + potential). With
the sign convention adopted in physics, for spacecraft moving below the

scape velocity (at which a turné infinite) this energy is

E = -u/zz . ; (12)

Clearly, the decrga‘se of E implies the decrecase of a (notice that E is
negative), which,> in turn, means the increase of the mean velocity v (for

nearly circular orbits) because

1/2 ' ,
v ~ (w/a) . : (13)

'Therefore, dissipative forces like air drag tend to bring a spacecraft

- down while accelerating it, This is true as long as the braking force

is gentle and the orbit remains close to circular, but is no longer the

}casé when a satellite re-enters the denser layers of the atmosphere.

The effect of drag on orbital mo‘tion_\‘has- been éxplained in detail by
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King-Hele (1964). As for electromagnetic radiation pressure (principally
caugsed by the 1light of the Sun, either received by the spacecraft
directly, or else reflected, or re-radiated as heat, from the Earth), its
effect can be either a loss or a gain of energy, depending on the
direction of the incoming rays, which may either push forward or brake the
satellite. A'paper by Rubincam (1982) gives a thorough description of
non-gravitational forces, besides drag and radiation pressure, and also

lists many references on this subject.

3.3 The Reference Orbit

Altimeter satellites are placed in orbits of small eccentricity to

keep the distance to the surface below always close to the optimum range
of their instruments. They are also put high enough to make air drag
small, but sufficiently low to have short orbital periods and,

sométimes, finely spaced ground tracks. The inclinations are chosen so

most of the ocean surface is scanned. These and other often conflicting

reduirementé 'result in compromise orbits that are,‘ typically, about
1000 km high  (a ~ 7300 km), nearly circular (e ~ 10-3), and. with
inclinations larger than 60°. The orbital periods are alli close to
1.7 hoprs, or some 14 revolutions per day. Departure from circularity
is of the order of # 10 kﬁ. The ephemerides are calculated, usually; ih
arcs Of up to one week invdﬁration; their position -and velocity errors

nowadays are, according to available evidence, of‘vtﬁe order of a few

meters and a few millimeters per second, respectively. These errors are
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sufficiently small to be studied using a first order orbit perturbation
theory., The one introduced in this section is atuned to the particular
characteristics of the orbits of altimeter satellites. It differs from
the more conventional formulation (Kaula, 1966) 1in the choice of the

reference orbit based on which the equations of motion and other

relationships are linearized.

In the standard treatment, the reference orbit is a precessing
ellipse of constant e, a, and I with M, @ and w varying according to
expressions (9’), (10) and (11). This orbit is governéd by the Earth’s

“central force term' M/r and the attraction of the equatorial bulge

alone, In what follows, instead, the reference orbit consists of a

— oo . .

precessing ellipse defined by the arc averages 3; e, I, 2, wand M of

the corresponding computed osculating elements and their rates, together

with starting values Qo, mo and Mo at time to’ the beginning of the arc,
that glve the best fits to 2, W and M, in the  sense
that E;+ & (t-to) ~ w(t), etc. The rate Q, in particular, is always quite
close to the value given by expression (10). Inrgeﬁeral, unless the orbit
is stabilized by on-board rocket engines, the mgan‘ elements and their

rates will be different from one arc to the next, but this change should

be very small.,

To see if the choice of the weekly reference orbit 1s reasonable, one

can look at the ‘éccual orbit of SEASAT according to the ephemeris

published by the Jet Propuision Laboratory (Bauer, 1978). During its last
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month in operation (mid~September to mid=October of 1978), the satellite
was kept in a "frozen", repeat orbit (i.e., with a repeating ground track
and & ~ 0), Over that period, a decreased some 20 m per week, or 3 parts

per million of its average value of 7169 km, while e and T changed, in

-any of the four weeks, by less than 1% of their monthly averages of 10'3

and 108°, respectively. Likewise, & fluctuated slightly each week about
a mean of less than 1° per month; also the orbital frequency

(approximately M+~ M), as 1indicated by the log of equatorial

~crossings, departed by less than 1 part in six thousand from its overall

monthly average of about one cycle every 10l minutes, while 0 was close
to 15° per week, and naérly constant, Therefore, the type of rvreference
orbit adopted here can be a reasonable approximation to the true mean

ellipse, over a weekly arc, at least for satellites like SEASAT.

The radial orbital error is, at present, of the order of a few meters’
for altimeter satellites, - The mean ellipse, on the other hand, can be
several kilometers away. from the true position of the spacecraft, mostly
because of short period perturbations dqe to the large second and third
zonals (caused by the oblateness and "pear-shape'" of the Earth)., Is it
valid to describe, at least qualitatively, the fadial errvor using a first

order perturbation theory based on such a reference orbit?

To separate the useful signal from the radial orbit error Ar it is

more important to know well the frequencies and phases of the spectral

lines of this error than the precise values of the amplitudes. From this.
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point of view, the choice of reference orbit made here i1is probably
adequate, In fact (as shown later), the corresponding perturbation theory
seems to explain quite well the results of some computer simulations, at

least qualitatively,

3.4 The Radial Orbit Error

The error that matters here 1is that in the geocentric distance r,

i.e., Ar in expression (7). In osculating Keplerian elements, this

distance is

r = a(l -~ e cos E) ,

where, expanding E as a function of M, as in Smart (Ch, V, par. 71, 1931

(6th ed., 1977)), one gets, to the order of e3‘(or o(ed)),

cos E = (1 - % e2) cos M - %je cos ZM,+‘§'e2 cos 3M
80

r = a(l - e cos M) + oce?) . S e , a4
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Because of the small eccentricity of an altimeter satellite (~10_3), the

second term in (14) can be neglected, and

r=a(l - ecos M . , (15)
This equation applies also to the mean ellipse, so the maximum radial
departure of the mean orbit from a circle is ae, or some 10 km

for e~10-3 and §~104km. Differentiating (15) gives the first order

approximation to the radial error

e —

Ar = Aa ~ (Aa e + he @) cos M+ AMaesin¥, (16)
where

M= Mt - ek + m(ek) | (17)
and tt is the time (or epoch) when the k weekly arc starts; the overbars

indicate that the partial derivatives are taken on the reference orbit

corresponding to this arc.
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3.5 Temporal Characteristics of the Error

The frequency spectra of Aa, de and & can be separated into four
parts, The first three are sets of well defined lines with frequencies
ranging: (a) from zero to a small fraction of a cycle per year; (b) from
a small fraction of a cycle per year to a cycle every few months; (c¢) from
a cycle every few months to about 50 cycles per day. Superimposed on
these 1lines there 1is (d) a continuous background, due mostly to the

inaccuracies in the modelling of the surface forces,

(a) Practically Constant Part: Over  one week or less, any

oscillation in the lowest range of ffequencies is indistinguishable from a
constant, and it will be regarded here as such, If Aa, Ae and MM in (16)
are cons:énts, the r.sulting Ar donsists of an offset betwaen the computed
and the true orbit, equal to Aa, and of an oscillation at frequency
ﬁ, which 1is close to (ﬁ+b), of' about one cycle per revolution, The

L L 1/2
amplitude of this oscillation is [(Ade + Aea)? + (MMae)?] .

(b) Nearly Secular Part: Oscillations with periods in. the second

band. ‘may show appreciable variations during one week, but their rate of

change will vary so slowly that they will resemble secular changes. If

tt is the time at the beginning of the k weekly arc, these changes can

be approximated very well byiexpressions of the form ck(t-t§)+dk(t-t§)2

(where ck and dk are constant and ck << d¥) for all the Keplerian

elements. Both ck and dK will vary slightly from one arc to the next,
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The plots of the corresponding Aa, A2, &M, etc., versus time will depart
from straight lines just enough to show that they are not truly secular,
These slow variations must be reflected in &r, according to (16), as a
slow change plus an increasing oscillation of frequency M with a slightly
bent (quadratic) envelope, As & is usually very small, M will be very

close to one cycle per revolution.

(¢) Periodical Part: Mostly caused by errors in the geopate;:ial

field model, it consists of sinewaves whose frequencies depend on the
rates {}, ® and M of the reference orbit, as well as on the spin rate of
the Earth, 8, Because these frequencies are higher than those of the
errors mentioned previously, the oscillations in this band will be called,

in what follows, '"shorter period” errors., Other periodic errors are

produced by uncertainties in the tidal models; these are smaller and have

different frequencies, in general, than those due to the field model.

(d) Other Temporal Variations: While they may also include secular

variations and oscillations, errors caused by i1nadequately modelled
surface forces, etc,, do not have sharply defined lines in their frequency

épectra. During one week, however, probably much of thelir total effect

_ on Ar not included in (a), (b), or (c) can be represented by a low dégree

polynomial (a cubic or a quartic) of the general form:
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where J 48 a small integer, (ng) denotes 'non-gravitational," and
the rgﬁg) are constants which may vary from arc to arc ("k" is' the

sequential number of the arc).

Errors in the calculated precession and nutation of the Earth modify
some of the lings in the spectrum of Ar related to the diurnal tides, The
periods of aﬁy significant effects are loﬁg enough for them to be lumped
together with the constant, secular and polynomial parts (a), (b) and (d),
and, in any case, their amplitudes are very small, Therefore, they will
not be considered here further, For detéils, see Reigber (1981) (he

considers the total effects of precession-putation on the actual orbit),

Having outlinod the features of the radial error, it is time to

consider the mechanisms that shape them,
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3.6 The Equations of Motion and Thelr Linearization

Let V be the part of ithe gravitational potential of the Earth (or

geopotential) which 1is dnvariant in an Earth-fixed system of coordinates

(the time~varying part due to the tides will be discussed in "Tides"); the
gradient VV is the corresponding gravitational acceleration. 1If f is a
vector representing both tidal and noﬁ-gravitational accelerations, then
the Newtonian equations for the motion of the center of mass of a

satellite in an inertial frame can be written in vector form as

r=9(r, t) +£f ; , (19)

"V 1is given here as a function of both position and time, because the field

is rotating along with the Earth. One interesting consequedcé of this

time dependence is that the total energy (kinetic+potential) of the

satellite in an inertial system of coordinates is not conserved, in

general. Only a central force field, or a zonal field, both of them

. ,
invariant with respect to a rotation about the z axis, are conservative;

not so the more irregular field of our blanet, except in Earth-fixed
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coordinates.<1) For a discussion of this problem, see Hotine (Ch., 28,

1969). In general, f is also a function of r, t, and L.

The accelerations in (19) are nonlinear functions of r (think, for
example, of the simple <case of thé field of a particle,
where |W| = ur-z). For the treatment that follows, (19) has to be
expressed in terms of the Keplerian elements and of 6, the sidereal angle
of Greenwich that accounts for the Earth”s rotation. Lagrange obtained
his transformation of the equations of motion by a very ingenicus and
rather laborious prc:eés described in Brouwer and Clemence (ib., 1961) and
also in Kaula (ib., 1966). The end-produét is a system of six first order
differential equations, Lagrange”s Planetary Equatidhs, one for each
osculating element

"s{" (1 = 1, 2,..6); as used in geodesy, they are of

the general form

= LS (a, e, I, @, w, 6, M, B, El;) ’ (20)

:
b i

(I)The potential part of the total energy depends, like V, on the position
of the satellite relative to each of the particles that form the Earth,
Such relative positions and the resulting V are coordinate invariant,
The kinetic energy, on the other hand, is proportional to the square of
the velocity, which depends on how the spacecraft moves with respect to
the reference frame, so it is not coordinate invariant, In any reference

‘frame, however, ‘the sum of the potential and kinetic energies of the

spacecraft and the Earth are constant. To keep the books straight, the
Earth must change its own velocity in the chosen frame, to compensate for
the variations in the kinetic energy of the satellite; our planet being,
by far, the more massive of the two bodies, such changes are
imperceptible., The only system where an orbit must have always a constant
total energy is, therefore, an Earth-fixed system which moves and rotates

- with the planet, so the velocity of the pilanet is always zero.
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where LS is a nonlinear function, B 1is a vector of parameters

o~

i
that appear in the - expressions of V and £, and §§ is the vector of
‘h the initial conditions at t = tz (the start of the k arc):

k k k _k k _k k .k
Eo © (ao' €y Io' “

o’ "o

later (expressions (36)).

M, no-eo). These equations are shown in detail

To first order, the error Aéi in §, due to small errors AB, and

i h|
k k k .
Asio in the components Bj of B and 540 of 5,0 respectively, can be

approximated by the differential of éi which, according to (20), is

: | 6 ‘
. . k !
85, = ) D, (L. )AB,+ ) D (L ) &s , (21a)
i ] 6J Sy I usl Suwo 54 uo
where the derivatives are taken at s, =8, and
oL L 3s
54 g s, u
D, (L )= + ——
BJ sy BBJ el asu BBj
38
- 881 , 4 7 (21b)
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while Duo(Lsi) has a similar expression. Equation (2la) is the general

form of the linearized equations of motion, and (21b), that of the
variational (or sensitivity) equations. The variationals, which make ﬁp
the "skeleton" of the linearized equations, are solved often by themselves
to find the values of the unknown asu/asj. Thése values, in turn? are
used to calculate the elements of the matrix of "partials" needed for
orbital adjustments, force model improvements, sensitivity studies, etc,
The sum in (21b) represents the dynamic terms, and BLSi/BBi the forcing

terms of the variationals,

3,7 The Homogeneous Linearized Equdtions

The differential equations given by (21) are thoroughly coupled to
oL
s

each other through their "interaction terms" @g—l y which multiply the
u

, 98
unknown ASB- =-§E% ABj » They are also time-dependent, in general, like

SLS J J : ‘
the‘g-s-—l themselves, These characteristics make the exact solution

u

possible only by numerical integration with electronic computers. To
obtain the analytical expressions needed for the present study it 1is
necessary to resort to some simplifications, This limits the numerical
accuracy of the solutions, but leaves virtually intact their qualitative
properties, which ‘are the ones of real interest here. ‘The usual approach

is to‘ignore the disturbing forces represented by £ in (19) (including all

;diSsipative»fOrces like drag) and also the departure of the terrestrial

field from that of a perfect sphere (or of a point—liké mass), thus
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disregarding Earth-rotation as well, This dissipation-free; spherical

approximation, can be accurate enough to describe the main characteristics

of the errors in precise ephemeris calculated with force models that take
already into account most of £ and of the "non-spherical"” part of V, so
the main- long period effects . (particularly regarding M and w) are
included 1in tne mean ellipse of the computed arc, which 1is also the
reference orbit here. The simplifications are more admissible when the
inclination I is high and the eccentricity e is small, as in the case of
altimeter satellite orbits, because most of the main terms ignoréd aré

proportional to e or to cos I (see Kaula, ib., 1966, Ch. 4, par. 4.3).

In a spherical, or central, force field, when f = 0, the orbit of a

satellite would be a simple ellipse obeying Kepler’s Laws (two-body

orbit). The elements a, e, I, w and £ would be constant for all time, and
. 1/2

only M would change according to the Third Law: M =n = (u/aB) , Where

"n'" is the mean motion. Consider a '"true" elliptical orbit and a

“computed version" of it obtained with the exact value of u, (i.e., the

field is known), and assume that they differ slightly in the initial

values of their elements. Then aM(t) = M(computed) - M(true)

= — Aa(t) = -~ g'g pa(t). Since none of the other 8y depend on
a AR ;

t, Aéi = 0 for all of them. As now the csculating ellipse must be the

1/2

3) . Theréfore, the

same as the mean ellipse, a = a and n =1 = (¥/a
effects of the initial state errors on the computed a(t), e(t) and M{t)

must satisfy

38




i wir |

3oansins o

ha(t) = 0 (21'a)

b3(t) = 0 @b

AM(t) = - —3@ pa(t) , (21%¢)
2 a

These are ﬁhree of the six homogeneous, or unforced, linearized equations
of motion (i.e., all GLSI/QBj = 0 in (21b)) for the spherical,
dissipationless case. For I, W and 2 the corresponding unforced equations
are all of the form Aéi= 0, like (Zl’a-b), but they are not relevant to
the study of Ar (see expression (16)). As the linearization is made along

the computed orbit, both a and n correspond to this orbit.

3.8 Orbit Error Due to the Estimated Initial State

Each arc of the computed orbit is fitted to the tracking data by a
least squares adjustment of the initial conditions(1) (the si:’ where "k"
is the number of the arc) and of a few other parameters, such as drag and.
(1)"As all our observations, on account of the imperfection of the
instruments and of the senses, are only approximations to the truth, an

orbit based only on the six absolutely necessary data may still be liable
to considerable errors. In order to diminish these as much as possible,

:and thus reach the greatest precision attainable, no other méthod will be

given except to accumulate  the  greatest number of the most perfect
observations, and to adjust the elements, not so as to satisfy this or
that set of observations with absolute exactness, but so as to agree with
all in the best possible manner.'

Carl Fr;édich'caqu; "Theoria Motus" (1857).
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radjation pressure coefficients, The data, the coordinates of the
tracking stations and the various force models used to integrate the orbit
are not perfect, resulting in adjusted values that are wrong to some
extent, To underztand the radial errors that an incorrect initial state
produces in the computed orbit, one can solve the approximate linearized
homogeneous equations of motion (217) for Aa, be, and MM with the

errors As?o as initial conditions:

Aa(t) = Aa‘; ' (22a)
k

hde(t) = Aeo (22b)

M(t) = -% % A a:; (t-tl;) ¥ m‘; : (22¢)

k
where to is the starting time of the arc. Kaula gives more complete

expressions (ib., Ch.4, equations 4-25) by including small "interaction
oL , . ’
terms' 3551 approximately proportiomal to Cpyg that have been neglected
o . ~20 |
in (217a-b) because they would be zero for a spherically symmetrical

Earth. As shown in (22), the adjusted initial conditions, by being

slightly wrong, can cancel some of the constant errors in a and e, and

some of the constant and secular errors in M. Replacing Aa, Ae and MM

from (22) in (16), the contribution Ar(ic) of the initial conditions to

the total radial error‘is
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1 ak ket oky_ed B ak koakye—s
2e¢3e) (ry=pa o+ - (Aa +Ae a)cos(M5-M tJ) (3--2 hag ts+AMS)ae
sin(RX-MtX)Jcos Me+[(ATKGH2eXT)s1n(AK-4 £K)-(3 1 aa¥ tkeakyze
cos(ﬂ%—ﬁt&)]sin ﬁt-[EE-% g» Aag t%sin(ﬂg-ﬁtg)]t cos Mt

- (@3

gl

Aag tgcos(ﬁg-ﬂtg)]t sin Mt
= Aa§+A§1c)cosﬁt+B§ic)sinﬁt+0£ic)tcosﬁt+Dﬁic)tsinﬁt,

(23)

A(iC) B(iC) C(iC) 4 D(iC)

where K B Tl nd D°, " are the values of the square

bfackets. In general, M will change slightly from arc to arc, due to

orbital decay.

3.9 The Free Response of the Linearized Equations_and Résonénca

Expression' (23) gives the radial component of the unforced,

homogeneous, or natural response of the linearized equations of motion.

As the “linearization has been done ignoring the term f that, in (19),
accounts for all dissipative forces, (23) describes the behaviour of an

undamped dynamic system, whose unforced response includes a non-decaying
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oscillation of angular frequency ﬁ, the natqral_ftequengy. In reality,

there is damping due to drag, etc., but for orbits higher than 200 km this
damping 1s very light. For aitimeter satellites, where e ~ 0, the system
is virtually a stable harmonic oshillator.(l) The along track and across
track free responses consist of similar oscillations, plus a slow secular
drift along track, so the complete error ducz to initial state
uncertainties makes the computed position "ecircle" the true one in an
elliptical path once in every revolution of the spacecraft, while also

moving slowly away from it along the orbit. When driven by a disturbing

force that has a periodical component at a natural frequency, the forced

response of an undamped system must contain growing oscillations of the

same frequency. This is known as resonance. In the present case, this
happens when the ephemeris crosses the -same disturbance at repeated
intervals equal to the period of ﬁ, or about once per revolution. As
shown later, certain errors in VYV and in f can produce this _effect,

which may grow into a large perturbhation over a sufficiently long time.

The resonarnt character of the linearized equations is not plain from

their formulation in Keplerian elements, but is quite clear when they are
given in terﬁs of the perturbations of the radial , along track and across

track components of the position vector, and of their first time-

(1) The "unstable" last two terms of (23) appear only in a first order

~approximation to Ar. The actual effect is an oscillation of frequency M

modulated by a periodic envelope whose fundamental frequency is 4M, the
error in M. As AM M, over a sufficLently short interval of time (in
which the perturbations remain small) the envelope seems to be expanding
very slowly, at a steady rate.
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derivatives. Written in this way, the equations are sometimes known as

Hill’s equations (see Kaplan (1976), and also Colombo (ib., 1984, Ch. 1)).

. The best known and most striking effect of resonance in the whole
solar system 1is the series of gaps that divide the rings of Saturn.
Inside each gap, any orbiting particles would have a period congruent with
that of a major moon, but the gravitationrof this moon disturbs greatly

the motion of such particles, sweeping them out and keeping the gap open.

;
K
'I

.
.
o

3.10 The Spherical Harmonic Expansion of the Geopotential in Keplerian
Elements o '

Outside any ideal geocentric sphere S that contains virtually all the
matter of the Earth, including that in the atmosphere, V (the time-
invariant part of the potential in Earth-fixed coordinates) can be treated

| as a harhonic function satlsfying Laplace’s equation

vv=0, . (24)

which expresses the conservation of the flux of lines of force'in empty

space.
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Let the spherical coordinates (r, ¢, A) correspond to the geocentric
distance, latitude and longitude in an Earth-fixed equatorial
system, A=0 being the longitude of the Greenwich Meridian. A spherical

harmonic of degree n and nrder m has the form

Yool8sN) = P (sin §) cos (mA -5 ) (25)

where an is the associated Legendre function of the first kind with the

same degree and order., The Ynma(¢,A) are orthogonal in the sense that the
, yA A

integral of Ynma(¢, ) Yn,m,a,(¢, ) over the wunit sphere 1is zero if

R n+l

n#n’, ormEn’ or a# o, The product (r) Ynma(¢,A) , known as a

solid spherical harmonic, 1is a solution of Laplace’s equation, and any

other solution, V for example, can be expanded in a series of solid

spherical hérmonics

)Y (00 (26

outside any Earth-enclosing sphere S (see Hobson, Ch. III and 1V, 1931,

and Heiskanen and Moritz, Ch. I and II, 1967). R 1s usually the mean

“equatorial radius of the Earth; Cnma is the (dimensionless) spherical

harmonic potential coefficient of degree n_and order m. By definition,

Coop = 1 and all Cn01=0,’wh11e all the Clma = 0 in a geocentric system
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(ry ¢, A).(l) The geoidal height N has a similar expansion, with both »
and MH/R  replaced by R (this spherical approximation is quite adequate

for the relatively low degree terms that dominate the geoid). The
expansion of the geold inside the sphere S (i.e., on the reference
ellipsoid) is wvalid, bhut the reason for this 1s subtle (see Moritz,

1980). The ervor 4V in V is

Y § n i R n+1
Y = = ) AC =)
R‘néz m=0 a=Q Omer Ynma

(6,2 (27)

where the Acnma are the errors in the coefficients of the field model, and

they are zero for 0 € n < 1,

To study the motion of satellites, these formulae have to be
converted to osculating Keplerian elements; the details of the

transformation are given in (Kaula, ib., 1966, Ch. 3). The variable

0 = 9-6 , | - (28)

(1)1f the Cartesian z axis were always aligned with the Earth’s main axis
of inertia, the C = 0, In the actual instantaneous fileld they are not
zero but very smafi and time-varying, depending strongly on the definition
of the "Earth-fixed" equatorial system (see Reigber; ib., 1981). Their
mean values (which enter in the erpansion of the time~invariant V) are
also very small, v
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where 6 is the Greenwich sidereal angle, must be used instead of @

to

take into account the rotation of the Earth. Introducing momentarily the

true anomaly f (Figure 1), expression (25) can be written as(l)

n
($,A) = } Fpgp(D) 08 [(n=2p) (whf) = 6]

Y
nmua p=0

n
& pEO anp(r) °nmapq-o(“’M'e ) (29)
for small e, where
(0,M,87) = cos {(n=2p+q)(wH)=quim8”) = 3 [ak(1-(~1)""™])
Cnmapg{ @2 87 0 ptq qutm 5 Loty .
' (30)

Expression (29) will be used later on to fornuliate the ocean tides in

Keplerian coordinates. Solid spherical harmonics can be written as

functions of the osculating elements of a satellite at a point (r,¢,)) as

follows (Kaula, 1961):

n+l 1

R ‘ an+ n L 0
@ YoM =() ) Fo(D ) 6 (e)

w,M, 6%) ,
0e0 nmp oo npq Cnmapq( sty )

(31)

the same period 18 du ~ 2ae (consider the simple case where I=0,

~up to degree n ~ 200, i.e., up to spatial wavelengths of some 200 km,
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(I)The approximation above would become exact 1f e=0. From the "equation
of the center" and the expressions for ¢ and A at the ground track (all
i given in Table lc, see also Smart, ib., 1931, ch. V), the maximum along

- track departure between a slightly elliptical orbit and a circular one of
in
Table lc). For e ~ 10™3 and a ~ 103km, du ~ 20 km, so (29) must hold well
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The F,_ (I) and G

nmp npq(e) are commonly known as inclination and eccentricity

functions, for obvious reasons; the anq(e) are also called '"Hansen”s

coefficients”, There are expressions for computing the Fﬁ;; and the

(e)
anq ’

1977); they are not needed here,

some of which can be found in (Kaula ib., 1966, or in Giacaglia,

For near circular orbits (small e), two important properties of the

G(e) are: that they are approximately proportional to e",q’, so they
npq

decrease very fast with increasing |q|, and that

Lim anq(,e) - 1 if q = 0
e + 0 0 otherwise

The expansion of V or AV, in Keplerian elements, takes the form

C
n+l nma n (1)

~ g 3 G M, 67,
e = bbb @ e } oLy Fomp 2 Snpq ) amapg (M €7
n= {2 } nma . .

(32)

Because of the altitude attenuation factor (R/a)(“+1>, the higher the

degree of a spherical harmonic coefficient, or of its error, the lesser

its éffect on the potential and on the gravitational acceleration acting

on the satellite, As a consequence, for computing near circular orbits,
the series for V can be truncated roughly at degree n = 27R/(a-R),

or n ~ 40 when a - R = 103 km.l Also,‘ except for a few  coefficients,
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mainly of low order (n € 10) or of "shallow resonant" order (n=13-15,
26~30, 39-45), the orbit errors due to the Acnma tend to vary in
proportion to. the attenuation factor (R/a)n+l and the size of the Acnma'

The latter ones, in today”s models, appear to increase with n and m until
they reach nearly 1004 of the cnma at n=m~30. Above this degree and
order, the combined effect of all the estimated coefficients reproduce the
data (tracking, altimetric ocean helghts, gravimetry, etc.) reasonably
well, but their individual values cannot be trusted. The size of the

actual coefficients follows the approximate law

- 5_ 1/2
)

_1/2
ICnmaI % Y (ntm)! 3

is the delta Kronecker and

where Gmo

=5

oi/z . 102 (2n+1) 172 . | (33)
) n

according to "Kaula“s rule of thumb" (Kaula, ib., 1966, Ch. 5, and Kaula,

1967); on 'is the degree variance

2
(atm)1 ()

(34)
m=0 a=0 (n—m)!(2n+1)(2-6mo)

and equals the mean square value (or "power") of the sum of'all,harmonicé
of ‘V of kdegree n over the whole of the Earth”s surface (see Kaula,

1967b). The quantity {Gn/(2n+1)};/2 is approximately the average size of
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the fully normalized coefficient Ehma (whose square is the general term of

the sum in (34)). These coefficients correspond to the fully normalized

harmonics, scaled versions of the Ynma’ the integrals of whose squares on
the unit sphere are all unity. The on deéine the spherical harmonic power
spectrum of V. '"Kaula’s rule", Based on studies of terrestrial gravity
measurements and of early field models obtained from satellite tracking
data, has been shown to be a reasonably close guess of the ac“ual power
spectrum of the gecpotential for n as high as 200, although its values for

the o, are, on the whele, vather high between degrees 8 and 60, and rather

low above 0. This conclusion 1s the result of a number of global

analyses of altimetry and gravimetry. Wagner and Colombo (1979), and Rapp
(1979) have given more accurate formulations for the O but "Kaula’s

rule" still has the convenience of its greater simplicity.

3.11 The Equation of Motion in Keplerian Elements

In Keplerian elements, the equétions of motion of the satellite are

known as Lagrange’s planétary equations. If E 1is the total energy
(kinetic + pbtential) at any giVen,time, and F=-E, then it can be shown

that

=B -
F=o-tV

lc
-

(35)
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where F, r and a are Instantaneous values., The Lagrangfan equations are

. 2 oF
a(t) = o7 o (36a)
2y 2 1/2 .
&t = _...__(1;‘* ) 3F _ .(_1:_"-5_). 3F (36b)
na‘“e oM na“e ow
. 1-e2 3F 2 F
M(t) = - === (36¢c)
na“ e 9de na oda '
. | cos I oF gl-e)l/2 oF
bt) = -—5—51/2 B e (36d)
na (l=e”) ' “sin I na’e ‘
Bey -« o2t 1 ¥ (36e)
na“(l=e”) sin I 3w na“(l=e”) sin 1 9Q
h(e) = 1 . 3E (36£)

. 2
naz(l-e)l/zsin I 09I

-3 1/2
where n = (u/a 7) .

The largest effects produced by the gravitationél‘field come from theV
central force (Cpygg) and the obla:eness (pzoo). The first gives orbits
their general elliptical shape, and the second causéS'most of the secular
variations in their’méan ellipses. Careful inspection of (32) shows tﬁat
9200‘18 associated with a term in the expansion;in Keplerian elements of V

that does ' not contain the gﬁfast changing M. This term

a

c 2 5
is vt = u —290 (By" p (1) Gyygle).  According to Kaula (ib., 1966):
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3
FZOI(I) bl Z‘Sin

and

2

Gzlo(e) = (1'82)

Replacing V with -i_]- C

I~

3/2

000

2

+ V” in (35) and the resulting F in (36),

the

equations of motion become, taking the formulae for FZOI(I) and G210(e)

into account,

a(t)
&(t)
1(t)
act)
o(t)

M(t)

il

2n
2

3

an e

n =

€00 G

3
A

B

2 cos I

2

‘(lfez)

2

n C,

~200

| R
(;)

2 [3 cos’ T = 1]

(1-e2)
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The first three expressions show that the ohlateness cannot cause secular
changes in a, e or I. Replacing instantaneous values with mean values
(which are very close to the former, in general) the last three

expressions become (10), (11) and (9’), respectively.

3.12 The Forced Linearized Equations

Clearly, Lagrange’s equations are not linear in their unknowns, the

Keplerian elements. Linearizing according to (21), but assuming that the

only errors are those in the Cnma of the field model, sc
all As:o = 0, produces equations of the fqrm:
«. n 1 aLs 6 ats
I T e A e T OIC (37)
n=2 m=0 o=0 -~ nma Coo3=1 s:j :

where the superscript (g) indicates the gravitational origin of the

).

perturbation or error (i.e., the Acnma
Notice that the sum with respect to "j" in "(37) 4is the dynamic part

AC are

of the 1linearized equations (21), while the (BLsi/BCnma) mo

forcing terms. The 1linearized equations ~are mutually coupled by

, s ‘
"interaction terms'" of the form ?E_L As(g) where the derivative can be a
. o , , j J :

52




o R e S SR L4

function of time. This time-dependence makes an analytical or
closed expression for the solution impossible in general. Fortunately,
as pointed out when deriving the approximate homogeneous form of
the equations, the terrestrial field is close to that of a spherically
symmetrical body (a poiut mass, for example) where F = p/2a
is constant and all interaction terms in (37) are zero except
;;ﬂ Aa<g)= -(Sﬁ/Qa) Aa(g) in the equation for AM, Thnse vanishing
terms are, in the dctual field, of the order of Cs00* ©F about 10™3 times
smaller than fhan rest of (37), and it is quite reasonable to ignore them

A Y

for the purposes of this study.

To arrive at the equations for Aa, Ae, and MM, which are the
ones needed to find that of Ar, replace V = u/r in (35) with its
expansion in  Keplerian elements according to (30) and (31) ‘and then
carry out the partial differentiations indicated by (36) and (37)

at the reference orbit, where ﬁ=ﬁo + ﬁ(t-to), ZFZ% + o(t-ty) and

B = Bpmgy 4 (Bt Lo @ Ly, (@)
6” = Qo"eo + (Q_-e)(t'to), ignoring all ‘S'ST' Asj except —a-a— A,

The result is:

5o
ae)®=2@3a) VT oac

R 1 T =) (n~-
nmapq (3) anP(I) anq(ef) (n=2p+q)

nma

CVOS[((n—VZp*—q) (M) - qutmd”)t + $omapqo + f"]

(38a)
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/a3 R\L  omve (mrpeioziy 2 _2.1/2
(&) PG 3 1 oao (B D6, @IO-E) (n-2pra)=(a2p) ) (15 )
nmpq o

cos[((n-2p+q)(&+ﬁ)—q&+m6’)t+¢nmnpqo+-g] (38b)

., -3 : n 1~-2 - - -
i) ®m WG oa )nm%qaacnma(g) (=20 (0,0 (8 8604204 1) g () P D

cos[((n=2p+q) (WwM)-qmb~)t+¢ ] _ig Aa<t)(g)’
nmapqo 2 a
(38c)
where
Samapqo™(Nm2P¥a) (BHM )=qu +mB] ~ ’;‘ mla+ % (1=(="™]
(39)
énd
eis ’ | | (40a) f
| [
7= (waHl/? ; | : (40b) L
Moo= M(eS) - bt ory
(o} fo)

k

and similarly for w and 8% t
o o’ o

is the starting time of the’ k arc, ‘A‘ ‘ 4
different choice of starting time can be made in the case of "frozen",
repeat orbits (as explained in the comments following equation (52)),‘to £

show. more clearly the main properties of both Ar and the tidal signal in
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integration respect to time in the interval to <t <t

altimeter measurements taken along such orbits, which have precisely

repeating ground tracks.,

Expressions (38a-c) are the forced or unhomogeneous linearized

equations., Notice that if all the Acnma are zero, the (38) become
identical to the unforced or homogeneous equations (21°a=-c). While the
former are based on a precessing reference ellipse, as shown by
ﬁ, % and B” in the arguments of the cosines of their forcing terms, the
(21°) are not. However, both sets of equations agree perfectly with each
other because both involve the same 'spherical approximation" that
neglects among tﬁeir dynamic terms those proportional to Cpnq linking
Agg), Aég), AM(g) to A&g), Aﬂ(g) and, thus, to any secular variations
in w and 2 whatsoever., The term -f%-(ﬁ/E)Aa(t)(g) is often ignored in
the formulation of ‘these equations, because the factor (n/a) 1is very
small, so énly very large perturbations in the semimajor axis would have
an effect on AM(g), an! leaving it out makes the integration of the

equations immediate. Here thisyterm hdas been retained mostly for the sake

of consistency.

To. solve (38a-c) the first two equations . are solved by  direct

kt+1
o

Aa(g)(t) = Itk Aé(g)(t‘>dt’
: t
. o

t c
(o]
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Next, Aa(g>(t) is replaced in (38c) and this is, then, integrated to
obtain a8 (),

Clearly, all solutions Asig)(t) obtained in this way satisfy the

condition
(8) . ky _
Asi (to) 0. (41)

This 1s physically meaningful, because, due to inertia, the finite change

in the driving force due to the AC ., cannot affect the ephemeris

instantly,

3.13 Orbit Error Due to Inaurrect Potential Coefficients Cnma

When integrating the various terms in (38), there are two situations

that must be considered separately.

(a) (n=2ptq) (i) =qimd” ¢ 0

This is the normal case: = the corresponding part As, of the

solution,for M and Ae is of the form
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A, = ) c s ~2p+q) (Hf)-qlrm Bt
. ) e sinmpqcosu(n 2p+q) (i) -qikmB”)
nmapq(nonres)
~k
* ¢nmapqo] * A‘sio
(42)
with
~ ;0 @ . Iy "'l
8 =g [(n=2p+q) (wtM)-quwtme“) , (43)
inmpq inmpq
where the s are the functions of.; '; and E.in (38) and the Agk
Ne Sinmpq i io
satisfy the inertia condition (41). The symbol oo . denotes
nmapq(nonres)

the sum of all terms where the frequency is not zero., As for MM g), after
replacing A;(g> in (38c) according to (42) and (43) and integrating, one

gets

Iz

Aﬁk

A8 o oa -3
v 2 0

k
(t'to) ’

j R

~ < ~k
= AM7 4+ Mt + AM
0

where AM” is of the form (42), except that it now includes an extra

o o . » -2 ~
term proportional to [(2n=-p+q) (wHM)~qutm 6~} in the coefficient Mnmpq

(corresponding to s

4nmpq in- (43)), because of the double integration

of Aé(g), while Aﬁt is such that the inertia condition Aﬁ(g)(tt) =0

, <
is fulfilled. The term M“t .can be included in the secular component of M

(explained in part (b) of this]paragfaph), §o only the periodical part
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Agf(8)<c) = cos[((n=2p+q) ( wHM) - qum )¢,

5 AC ~
nm%pq(nonres)“““”“mpq

(427)

~

shall be considered here., The coefficients 84
nmpq

proportional to the dnverse of the frequency. Accordingly, the closer

in (42) and (42°) are

~

this frequency - is to. zero, the  larger sinmpq a

At about 1000 km height

nd, thus, the

contribution AC of AC_to the AS

mo sinmpq © TTnm it

an orbiting spacecraft completes between 13 and 14 revolutions in one

"nodal day'", which is the time TD = |2n/6”] it takes the Earth to do a

full turn with respect to the precessing orbital plane, I1f this number
were exactly 13 or 14 then, calling it Np and assuming that b = 0, there
would be always some  combination = of n, F and q  such

that (n-2p+q)ﬁ + mé’ = 0 for all potential coefficients of order

m=kNp, wherek =0, 1, 2, 3, see

~

When the frequency is =zero, Sinmpq

the linearized equations given by (42) and (42°) does not apply ‘any

becomes infinite and the solution of

ionger; This case, to be discussed in the next paragraph, is known as a

perfect resguiiance, In. practice, b is quite small for altimeter

satellites, but not zero, If the number Nz for one "nodal day" is still
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very close to an integer, the effgct must be very similar to that just
described, at least over a period of time of a week or so, which 1s much
smaller than the period of W, The perturbations, though very large, become
periodical, in agreement with (42) and (427), even if their periods are

very long. This is a case of deep resonance, and the resulting

perturbations, 1if given enough time to grow, may have peak amplitudes of
the order of a kilometer or mare; in that case, a linear theory is no
longer adequate and one has to use a nonlinear approach. This is not the
case for the errors of weekly altimeter satellite arcs, which never reach
MOre than a few meters in size., In reality, Np differs considerably from
an -integer, though those AE;na errors whose orders come closest to

4

satisfying the resonance condition given above, or resonant orders, still

can produce long period effects much larger than those of the other

orders, This 1s known as shallowrresonance, and altimeter satellites have

orbits with such resonances at orders close to whole multiples of 13 or

14., In particular, when k = 1,2,3 one has the so-called rimary,
secondary and tertiary shallow resonances, respectively. Orbits

where W = 0 and there is an integer number 9f turn5 Ng over a whole number

of '"nodal days" ND, are known as "frozen'", repeat orbits., The same
'argument used when Np = 1 applies now: these orbits must experience

 perfect resonances with those Acnma that satisfy the condition m = k Ng,

which includes the zonals for k = 0., This type of orbit turns out to be

.qhite important in satellite altimetry, and more shall be said about it

presently,
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Next in dimportance to perfect, deep or shallow resonances are the
effects of those terms in (42) and (427) where (n-2p+q) = 0, as the
frequency then 1is reduced to -qW + mb°, For the  orbits under
consideration, this sum 1s quite small compared to the '"once per
revolution" frequency, approximately equal to (M+w) ~M, so it must be
much smaller than any other where (n-2p+q) # 0, provided that q and m are
small integers. At altitudes of 1000 km, |q] < 2 for all terms of any
real account, and the perturbations are substantial only if m < 10, Given
the prevalence of m&" over qb, these frequencies and the corresponding
terms are usually known as '"m=dailies'". Because of the size of their
effects, which show quite clearly in data from satellite tracking, deep
resonanées, shallow resonances and '"m-dailies" are quite useful for
estimating the Acnmd from this type of data, as they comprise most of the
signal, For the same reason they are quite important in understanding the

nature of orbital errois, which 1s the subject of this work.

The total amplitude of the oscillation associated with any particular

frequency in (42) and (42°) is

ngq Acnma Sinmpq" where (n-2p), q and m must be all constantf

so only Acnma of the same order m and degree n of the same parity (even,

odd) can contribute, This amplitude, being a weighted shm of AChmu,/is

known as a "lumped coefficient", The weights in the sum are functions

~of inclination and of eccentricity through the anp(T) and G pq(za

n
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functions in expression (38); which Acnma dominates the sum will depend on
both T and ‘@ Thus, modelling the gravitational field with tracking
data requires satellites with a wide variety of inclinations and
eccentricities, to disentangle better the various Acnma; also for a given
order m, coefficient errors of e en degree n produce perturbations most of
whose frequencies differ only in 4+ q& from those of odd degree (the main
ones having |q| € 2), so it is desirable that the interval between the
first and the last observation of a satellite be at least a substantial

part of its apsidal period 2n/d.

0f all the Cnma’ the zonals afe the best known at present; their
determination involved most of the early work done in the field of mapping
gravitation with artificial satellites. It was the ‘analyats of the
tracking of one of the first USA orbiting spacecraft, a VANGUARD, that
fevealed the existance of a strong third zoaal indicating that the Earth
is rather "pear-shaped", with the southern hemispheré slightly larger than

the northern one (Eckels et al., 1959).

(b) (n-2p+q) (M) - q&+mé’ = 0 (Resonance)

As already explained, this case 1is known as a perfect resonance: it

cccuzs whenever the angular ffequencies* ﬁ; ® and 8’ are locked in step

with each other, which is a rare case, but quite relevant to the study of -

"the orbits of altimeter - satellites. Then, : the orbit crosses the
gravitational perturbations associated with some of the ACnma at
61
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intervals equal to the period of ﬁ, the natural frequency of the
linearized system that, forced in this Qay, resonates., One example is tche

"frozen", repeat orbit, whose ground track repeats with a period of Ny

"nodal days" which is an exact multiple of that of M. An extreme case of
this 1is the orbit of a geosynchronous satellite (often used to relay
communications) whose ground track, ideally, is on a fixed point on the
equator where it '"repeats" for ever, Here the main resonant coefficients
are Cyoy, and Cpj;, related to the "triaxiality", or lack of rotational

symmetry, of the best fitting ellipsoid for the Earth,

As given here, the resonant condition recuires an excitation of
0 frequency, instead of M. This - apparent contradiction with the
pt,5ical explanation given just now 1s resolved by noticing that whenever

(n=-2p+q) (M+®) - qmb”=0  then (n~2p+q%l) (M+w) - (qzl) WhmO*= & ﬁ, 80

any Acnma that produées a zero frequency term must produce also forecing

terms - of frequencies M and -M (either of which makes the linearized
system resonate).' Moreover, the amplitudes of the 0 and % M forcing

terms are implicit functions of each other, as both depend explicitly only

on the parameter q (in all of them, a, I,'E, n, m and p are the same).

As before, the linearized equations for A and Ae can be solved

‘independently by ‘direct 1integration with respect fo time. . Adding up all

resonant terms and symbolizing their sums by ‘A§i(g),
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«(eg) . , | Iyt (emtk
As { { ) Acnmasinmpqcos(¢nmapqo+ 2)} (t th)
nmapq(res)
- § e+ aSB (44)
where " 2 " indicates the sum over all the resonant combinations of

nmapq(res) k. N
n,m,p,q, while §<g) gito (so inertia is not violated at the start

of an arc), and éi is the expression in curly brackets. The equation for

AM, on the other hand, has a solution that depends on Aa  because of

the not negligible "interaction term" -~ 3 ha:

2a

@[T ac M cos(s ) (et

nma nmpq - Omapqo
nmapq(res)

-32 £§<c-co> + 08Bty f 45)
— fate

In practice,:the quadratic term in (45) is unlikely to become large enough:
to matter within any Qeekly afc.’ However, quadratic terms have to be .
included not only in AM, but in Aa and Ae as well, because true
resonances are gggp rather than perfect, with frequencies that are very -

small but never zero. The corresponding terms have, therefore, very 1ong
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periods, which over a much shorter interval, such as one week, can be
approximated by quadrics:

. o
Ag(g) & sk t” + §kc + sk
i i i io

Including both periodical and deep resonant terms (if there are any),
the complete solutions of the three linearized equations of motion (38)

corresponding to gravitational model errors can be written as

Aa(g) = A;(g) + ath + gkt + a: (46a)
2e’®) = a(8) L JR 2, & e: (46b)
av(8) - Aﬁ(g) P RS L :»1: (46c)

where the constant terms a:, es and Mg are such that, at the start of any

weekly arc, Aa(g)(CS) = Ae(g)(tg) = AM<g)(t§) = 0. The second degree

terms in (46) are likely to be considerably smaller than the linear onmes,

so - the non-periodic parts. of  the As§g> may  depart only slightly from

straight lines,

Errors in drag, etc., can also have very long period effects
resembling weekly quadrics, as well as others looking rather like higher

degfee polynomials (éxpressidn (18)).
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3.14 Orbit Error Due to Incorrect GM

At present, 4  (often referred to as '"GM", where "G" is the

universal constant of gravitation and '"M" is the mass of the Earth) is

known to better than six significant places, According to (26), the
effect of an error Ay is equivalent to an error -SE Cnma in each
potential coefficient, or about Cnma X 10_6. This means that the only

Ay

appreciable effect is that of — COOO’ as the zero degree (or '"central

force'") zonal (which has a unit value by definition) 4is almost three
orders of magnitude larger than Cpgg, and five or more than all the
rest, Therefore, to understand the influence of Ap on the computed
orbit, it is sufficient to consider the case where the field consists of
the zero harmonic alone. In this field the orbit obeys Kepler’s laws,

3,172

so its frequency 1is M= (y/a « For a nearly  circular orbit of

mean ~ radius ¥, a ~ T, so M ~v(u/?3)l/2. An . error Ay in J requires a

compensating bias Aru in’? to keep the frequencies of the true and the
computed orbits very close; accordingly, Aru =-%-A%E o« Otherwise, the
élong track errors may become very large after several days. While Ay,

through its influence on the adjusted initial state, causes more than a
bias in Ar (see expressioh (23)), - here Aru is, nonetheless, its most
distinctive and impbrtant’effect. This bias is virtually the same for all
the arcs, as long as T does not chahge much, Such is the case throughout

most of the mission of an altimeter satellite, where the efiect of drag is

relatively small  because of  the height, so Ay will '~ cause the

altimetrically determined wean sea'surface~F; , for ‘instance, to appear

(o]
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higher or lower by the constant offset Aru. Likewise, there may be an
error in the size of the reference ellipsoid, approximately equal
to AR (which may be partly related to Au), so the estimate of the mean sea
surface topography w°c - will be biased as well by Awo o ;/B(Au/u)—AR'.

However, for any meaningful oceanographic application, what matters 1is the

slope between the sea surface and the best fitting equipotential; the non-

zero global mean value (bias) of the computed topography can be ignored.

3.15 Expression of the Radial Error Excluding its Tidal Part

Going back to (16), one can see ﬁhat Aa appears in - Ar directly,
whilae Aa, Ae and AM modulate cogether an oscillation of frequency M.,
This causes the frequencies present ’in (42) t§ appear in Ar both
unchanged and shifted by # M. Because of the -M shift; terms whose

original frequenéies are very close to M produce very long period

oscillations in Ar, resembling, for a weekly arc, quadrics that can be

lumped with that from the direct contribution of Aa. The +M shift,

on the other hand, converts the sum of the deep resonant terms
in Aa, Ae and AM into an oscillation of frequency M modulated by .a

quadric.,

Putting together the various barté that make up the radial error, one
can get an approximate "weekly" expression for Ar. To this effect,
replace (46) in (16) while taking into account (18), (23), (42), (43),
(45) and the usual trigonometric‘identities for the sine and cosine of the

sum -and the product 6f two angles. The result is:
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Ar(t)(N ) = ) ac  Ar cos[((n=2p+q) (WFM)=quimO°)t+¢ ]
nma  nmpq nmapqo
nmapq(nonres)

- . U - L] .6‘
+rnmp(q+l)cos[((n 2p+q+1) (wkM)=(q+1) wim >t+¢nmap(q+1)o]

r cos[((n-2p+q~1)(&*ﬁ)"(Q'1)a%mb’)t+¢ 1}
nmp(q-1) nmap(g-1)o

+A cos Mt+B sin Mt+t+C t cos Mt+D  t sin Mt
k k k k

2 . 2 .
+E t cos Mt + F t sin Mt
k k

+
N

Il

ECREE (47)

where J is a small integer, t: is such that E; =0 in (40c) (to

eliminate a term (q * ?) MO in the arguments of the cosines and simplify

the formulae) and the r 0 depend on the AC . . Notice that the
nmp(q * 1) nmo

subscripts "(g)" and "(ng)" 'have been replaced by "(NT)" (for "none

tidal"), as Ar<NT) has here both gravitational fénd non-gravitational

causes, but excludes the effect of ‘tides (to be discussed later). The

coefficients ryn,nq are

~

r _=a
nmpq _ “nmpg

T
rnmp(q+1) ~’§'(Mnmpq 2 € " %hmpq ¥ Cnmpq ?)
r o o=-i@  FT4+a T+e D)
nmp(q-1) 2

nmpq nmpq nmpq
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so they are functions of a, e and I (through the anp(I), anq(e), etc.,
in (38a-c)), but not of M, w or . For a satellite like GEO0S-3, where the
mean ellipse changes appreciably over the mission due to uncontrolled
orbital decay caused mostly by air drag, thev Tnmpq* rnmp(qil) and

¢ » ¢

are also arc dependent, although the former are not
nmapqo’ Tnmap(qxl)o °

likely to vary appreciably from week to week. This decay was prevented by
orbital corrections in SEASAT and shall be prevented likewise in most
future altiﬁecer satellites, so expression (47) applies best to them, For
arcs of up to one month (47) is still likely to be valid if the envelope
of the increasing M oscillation is approximated by a cubic or a quartic

instead of a parabola.

The resonant part Cpt cos Mt + Dt sin Mt + Ekczcos Mt + Fktzsin Mt
caused by gravitational field errors is only impoftant in deéply resonant
orbits like those discussed in the next chapter where, as shown by
cohputer simulations, vii thiey Acnmq were of the order of the published
accuracies for the ccefficients of GEM 9 (Lerch et al., 1977), these
increasing oscillatiuns could build up at a rate of several meters per
week, As for the puriodical kterms, the power in the spectrunl'of that
part of Ar caused !y errors like those in GEM 9 would be distributed as
follows, in the cr#se of SEASAT: wup to 1 cycle/revolution, 3m (r.m.s.);

from 1 to 10 cy.: vev., 2m; 10-20 cy./reve., 1lm; 20-30 cy./rev., O.lm; 30-

40 cy./reve, 0.05m; above 40 cy./rev., less than 0.05m.  More recent

',gravity fiel¢ models, such as PGS-S4 (Lerch et al., 1982),1are thought to

reduce conuiderably all the components of Ar associated with them.
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4,0 ORBITS WITH RHPEATING GROUND TRACKS

4.1 The "frozen", Repeat Orbit

For many applications of altimetry it 1is desirable to choose the
orbit so fkeé satellite passes over the same places on Earth every few
days, repeziing its ground track periodically. This was done,
experimentally, during the last month of operation of SEASAT (Cutting et
@ley ibu, 1978), and is planmed for all civilian altimeter missions now
beimeg considered. Because of the disruption of the chosen orbit by drag;
Tad.z*ion préssure, and other disturbing forces, the ground track cannot
be rerp-ated exactly, but it is sufficient to keep it within a band a few
kilome «ts wide (about %5 km for SEASAT (Bauer, ib. 1978), and probably
about #] %km for the satellites that will follow over the next decade).
This can be achieved by firing small rocket engines to correct the orbit

every so often, for example less than once per month for ERS-1 (Dow and

Klinkrad, ib., 1982), so as to turn the drift back towards the ideal

orbit. The maneuvers must be brief, as the thrust of the rockets cannot
be modeled accurately enough - for precise orbit determination, so
measurements tsken while they are operating are hard to interpret, For
this reason, the precisely estimated ephemeris cannot run through eneeof
these maneuvers; an arc must end just before and another one begin just

after it. To get the desired repetition, it is sufficient that the

maneuvers keep the mean ellipse of the estimated orbit so that, if this

,ellipse' were the actual trajectory of the spacecraft, the ground track

- would repeat perfectly. For this, such mean trajectory should start and

end at the same point (in Earth-fixed coordinates) in each repeat cycle.
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ERS—-1: Projected 3—day repeat groundtrack
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This is possible only 1f &, M and b = { = & are all exact multiples of
the fundamental  angulavr  frequency u%c = 2n/Trc, where Trc is the
repeat period, For altimeter missions T.. has been chosen, up to now, of
the order of a few days (three days for SEASAT, nine for TOPEX, three for
ERS-1; Figure 2 shows the ground tracks of these satellites). The
approximate expression (l1) for & would require a very large mean
eccentricity of the orbit (close to e = 1) for the perigee to precess in a
few days, making &Trc = k271 (k=0,1,2...), except when b is zero.
Unfortunately, such an eccentric orbit would have its perigee deep
underground. This leaves & = 0 as the only practical choice. The
question is: can one have both a small eécentrigity and an b that is
virtually 0? All =zonals can produce secular perturbations in w; formula
(11) gives only the effect of the largest of the zonals, Cynp. However,
when e is very small, the position of the argument of perigee can be
rotated through a large angie by very slight changes in the shape of the
orbit, like those produced by the other zonals, particularly the second
largest, C300. As these perturbations are of different signs, their
combined effect on the mean ellipse may cancei out that of R alone,
thus making @ = 0  regardless of the inclinétion. Cook (1966) developed
a theory ‘for the mean ellipse to take inﬁo account the effect of ai
arbitrary number N of zonals. From Cook”s theory one can get the values
of @ and & that "freeze" the mean orbit aséuming thét a,I and the first

N zonals are known:

(48)

Noj=2 ’

w =
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N(odd) !
— 1 % n (n"l) e, ) -.-5- o—
e == Lo Cho0 (%) YY) P (0P (cos T)[Cyy, (-g) (1-784n"1))
= 1182 x 107 (%) sin T+ 0 (Cgo0) » (49)

where the summation in (49) is over odd values of n. Notice that (48)
fixes the mean perigee at the highest latitude reached by the ground
tracke This theory involves a number of approximations and breaks down
for I close to the critical inclinations (f~63.4° and ~116.6°); in this
special case, the theory of Hough (1981) shows the existence of "ftozen"
crbits with small @ and heights of about l0OOkm where @ = »g- as in (98),
although the equilibrium value of e is not given by (49), but by another
expression that also depends on the #irst N zonals. TOPEX”s orbit is

likely to have an inclination near the critical value of 63.4°,

Cook”s formulas are used to this day (for example, see Dow and
Klinkrad, ib. 1982), It is important to notice that expression (49) is a
continuous function of @ and T, so whenever a "frozen" orbit is possible
at a given height and 1nclina£ion, there are infinitely many others at
heights and inclinations close to that one. SEASAT is a clear indication
that this is the case at typical heights for altimeter satellites. - How
well can one "freeze" an orbit in a low degree zonal field? Recently I
integrated numerically "frozen'" orbits at various inclinations, using as
the only driving force that of‘the field of the 9‘fi.’rst: zonals of the

GEM 9 model (Lerch et al., 1977)s The initial conditions were adjusted

~ iteratively, starting with the values given by (49), wuntil, making

allowances for the precession of the orbital plane, they 'returned" tn
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their starting positions and velocities within 10~% meters and 1076 meters
per second, respectively (Colombo, ib., 1984). Of course, a real orbit is
subject to numerous perturbations that prevent it from being that "frozen"
and, 1in any case, the accuracy with which a satellite can be put in a
particular orbit (and kept there) is also limited. Fortunately, the kind
of accuracy that can be achieved 1s enough for altiméter missions.
Moreover, as any large perturbations are also likely to be slow in growing
(i.e., have long periods), they can be kept in check by occasional orbit

maneuvers,

4,2 Periodicity and Resonance

A complete first order perturbation theory for '"frozen'", repeat
orbits is given in (Colombo, ib., 1984). What follows explains the part

of this theory relevant to radial orbit errors.

When l'ﬂ’-'-Oand the satellite completes a whole number Np of

revolutions in an exact number Np of "nodal days", (1) the frequencies of

the trigonometric functions in (38 a~b) and in (47) are all of the form

_ ] o’ - _ . Lo ‘ ‘
(n-2p+q) M + mb ((n-2p+q) ;JR m ND) mrc ’ ‘(50)

(g tnodal", day (lepgth equal to 27T/|0|) is very closn to one sidereal
day becauseQ in §'=82-6 1s much smaller than 6, :
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where Ve is the angular repeat frequency of the orbit. The numbers Ny

and Np must be relative primes, i.e., have no integer factor in common

other than l. Otherwise, if the largest of such integers is N’p»s there
will be a repeat every Né days as well as every N, days, with‘N’D < ND.
The minus sign of ~mN, comes from b = i = B ~-b, 50 B2 ¢ 0, while
here mrc is chosen positive, and M is always positive, according to (9)
and (9'). As before, terms in the analytical expressions of the

gravitational errors can be separated into two classes: non-resonant and

resonant.

The most important characteristic of the non-resonant part of the
orbit error is that 1t is now a Fourier series whose terms are harmonics
of the repeat frequency wrc' Therefore, this part, which is the most

complex component of the error caused by the field model, is a periodical

function of time, and its fundamental period  is theksame as the repeat

period of the orbit.

This strong property reflects the rotational symmetries of vthe mean
repeat orbit and 1its ground track, each coiled around the Earth in a

spherical helix that closes on itself,

Resonances in a "frozen", repeat orbit occur when the frequency in

(50) is zero. This happens for all Acnma whose order satisfy

mek N, (k=0,1,2, w0 . | (51)
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The corresponding force errors are 'encountered" by the computed
satellite position at repeated intervals of exactly one revolution, which
for a "frozen" orbit is also the period of M, so the linearized equations
of motion are driven by these errors at their natural frequency M and have
resonant solutions. For repeat periods of three days or longer (those of
all satellites considered here), the lowest degree n of a Acnma that
causes resonance must be n > m =k NR > 43 (= 43 for SEASAT, with a 3-day
period). Expressions (32) and (33) show that, as n increases, the
strength of the harmonics in the expansion of V must eventually fall
off. At 1000 km, even resonant coefficient errors with n ~ 43 should have
a very small effect on Ar. So the only case where resonance is likely to
be impoftant is wheﬁ k = 0 and, thus, m =10 (zonals).(l) Expression (38a)
shows that Aa cannot have a secular part produced by =zonal errors,
because Ay is proportional to (n-2p+q) and must be zéro at resonance
if =m=0,. Therefore, field model errors may cause significant seculc.

departures from the true values of all the elements but the seini-major

“axis, in contrast with surface model errors that can chaage this element

as well.

(D The wain errors are due to the odd zonals, mostiy because the term
proportional to el aanq(e)/ae in (38c) Js very large when e is small
and q =l (Banq(e)/8e~1), and causes the effect of AM to prevail
in Ar over those" of Aa and Ae.,  If q=1, the resonant condition for m=0,

~i.e., (n-2p+q)=0, requires n to be odd.
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4.3 The Stability of a "Frozen" Orbit

In a '"frozen" orbit, zonal resonances will occur regardless of
whether the ground track repeats itself or not, because the condition for
resonance (n-2p+q)=0 does not involve M or é’; zonal resonance is
inherent in any "frozen" orbit. Zonal force errors are not affected by
the rotation of the Earth, which shapes the grbund track. Since the known
valﬁes of a, I and the zonal coefficients used in formula ’(49) may be
accurate but not perfect, and the effects of higher degree and order
potential coefficiénts, as well as those of non-graQitational forces (drag
in particular) are not considered in (48) and (49), the supposedly

fixed & and ® will, in fact, change very gradually from their starting

values,

At any time, the mean orbit defines a point in a six-dimensional
Euclidean space with Cartesian coordinates a, e, I, w, 9 and M. As the
orbit evolves, the point follows a slow trajectory in this space. Let Q

be the point”s projection on the plane of the axes g and 3. If Q is

initially identical with the "frozen point"” P defined by (48) and (49), it

will remain there  indefinitely. Otherwise, as is shown in Figdre 3,

Cook”s theory predicts that it will follow either a closed trajectory
~around P (libration) or else an open cne where M eventually ranges from

0° to 360° (precession), Similar predictions are made by Hough”s theory

(ib, 1981) for near circular orbits close to the criticél inclination.

The trajectory wili be closed if Q is initially near enough to P, open

otherwise; in either case (taking ® modulus 360°) Q returns to the same
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starting position after the same length of time, which is the period

corresponding to & as given by (l1). Therefore, the closer Q is to P,
the smaller 1its tangential velocity along 1its own trajectory, and the
smaller, in general, the projectivn of this velocity on t:hg b axis, or,
approximately, the weekly average & (for SEASAT & was always very

close to 19 per year).

Since the values of the zonals used to calculate the coordinates of P

~with (48) and (49) are only those of the N first C,oo and are subject to

errors AC the true "frozen point" is P” and not P. As (48) does not

n00’ »
depend on any parameter, both P and P° are on the same line, parallel to
the é’axis, where W = n/2, Even if Q is placed exactly at P, it cannot

stay there, being forced by the zonal errors Acn to move instead along a

00
trajectory that encircles P”, as shown in Figure 3, Initially, this
trajectory will be very close to the local tangent, which is a straight
line, so the variation in both e and W will appear to be secular when

observed over a sufficiently 'short time. As P and P are likely to ba

quite close, the movement of Q can be very slow and one week can be

~regarded as a '"short time". Because of drag, the semimajor axis will

decrease gradually, so P will khift upwards along the line & =-g (see

(49)), and Q will follow a slowly widening spiral instead of a closed

curve.,.

In the event of the mean ellipse becoming too different from the
chosen one, the rockéts in the spacec;&ft -can be ‘used to correct the
orbit, bringing it back to the right altitude and also shifting Q

to Q° (Figure 3), on a path leading back (approximayte.ly) to P.
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ey =1.182x 1073 (R/a) sinT

FIGURE 3. Long period evolution of the “frozen’ orbit in the €, w plane. P’ is the true

-~ “frozen” point, P the computed ‘‘frozen’ point; the line from Q to Q'
indicates a corrective maneuver after Q has moved too far away from P,
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4,4 The Repeating Ground Track

As

repeat

2.

4.

5.

clearly shown in Figures 2a-b, the ground track of a "frozen',

orbit is a curve of strong symmetries, including:
rotational symmetry about. the ; axis;
periodicity (or self-closing, or time symmetry);
equatorial symmetry of its crossover points (approximate, the
same as (5) below, because .of the slight eccentricity of the

orbit);

mirror symmetry about each of a set of ZNR equally spaced

meridians;

equatorial antisymmetry of the values of the At (the intervrvals

between ascending and descending passes at the crossovers).

- (a) Geome;;z

As 'a consequence of (1), (3)  and (4),,;the crossovers are arranged

along

i s

parallels; there are Np equally spaced._crossoveré along each

parallel; these parallels come in pairs equidistant from the equator

(which 1is one of them only ‘if Np and N, are both odd numbers), All
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crossovers are aligned along the 2Np meridiuns of symmetry and their
connecting arcs form diamond-shaped partitions, each with the left and
right vertices on two alternate meridians and the north and south vertices

on the intermediate one,

Regarding the points of extreme north and south latitudes as
"crossovers' where At=0, there are at most NR + 2 parallels with
crossovers, Over the nortliernmost, perigee is reached, apogee over the
southernmost; there ascending passes end and descending onescl) begin,
or v;ce versa. At each parallel, the intervals at (Modulus Trc) have
two - different values of opposite - signs: Ata and Atb, wherz

lAtal + ]Atbl = T _; this is a consequence of (2). If Ny and N, are
both odd, the equatorial crossovers have ]Ata] = ]Atbl = NpTo/2 = NpTp/2
= TrC/Z'(where T, is the orbital period, and Ty the length of the nodal
day). If either NR or ND is even (both cannot be eveﬁ simultaneously, as
they must be relative primés) the equator cuts through the middle of the
lower half of One‘diamond, the top half of the next, and so on. If Nj 1§
even and Np ls odd, there are at most Ngp + 1 pérallels with cfossovers.
The mirror symmetries about meridians with crossovers can be understood by
imagining that, as the ‘satellite reaches a crossover along an ascending
pass, the North-South component of - its  velocity Qector is suddenly
reversed: In Eﬁrth-fixed coordinates theiéatel]ite (and its ground track)
wili follow a course symmetrical to the one that brought it to that

crossover; this new course (when w = %b is that of the‘,descending pass

(D% < 0 and B > 0, respectively,
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over the crossover. The equal spacing in longitude between meridians with

crossovers 1s a consequence of both this mirror symmetry and of the

overall rotational symmetry. The equatorial antisymmetry of the

intervals At follows from the approximate antisymmetry (respect to the
geocenter) of the Earth and the slightly eccentric orbit when they are
orientated according to their respective senses of rotation and

revolution.

From the figures 1t is clear that the crossovers tend to crowd
together towards the northern and southern edges of the band covered by

the ground track. The ovérall pattern is that of a fishing net with its

stitches aligned vertically and stretched in that direction towards the

middle, without horizontal shrinking.

(b) Finding the Crossovers

For a crossover to take place, both the Earth and the satellite must
come together twice: first during an ascending (or descending) pass, and
again during a descending (or ascending) one. This .means that, at the end

of an interval equal to At, both the latitude  and longitude of’ the

subsatellite point must be the séme as they were at the beginning. Ie

m
E’
the orbit must follow a path symmetrical to the meridian plami of the

also means that, since the argument of perigee is "frozen" at =

perigee in a system of coordinates where this plane is f£ixed. The

beginning and end of this'path occur at the same latitude ¢ both in this

system and in the Earth-fixed one, and the time it takes the satellite to’
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complete it is At, Therefore At is a function of ¢; it also depends on T,

‘and on the orbital inclination T, so At = f (¢, T, To)' This relationship

and the two ground track equations for ¢ and X (Table le) provide a set of
three equaticns 1in the unknowns At, ¢ and A. Unfortunately, these are
transcendental equations and have, as far as I know, no closed-form
solution, Without this, to find the crossovers and their At it is
necessary to search for approximate solutlons, exploiting the symmetrieé

of the ground track to save effort,

Starting at the highest latitude ¢=I, choose a point in the ground
track (¢0,Ao) directly under the perigee (i.e., ¢o¥f),so the corresponding
trﬁe anomaly is f=0, Assume that the time of passage of the satellite
over this point was t0=0, and shift the origin of loﬁgitude S0 Xo=0, which
makes 6 = § = -,% (in this paragraph A is defined, for conVenience, in the
interval -7w<A<m); select a small time-step T << Tg. The line A = Ao is
oné of the ZNR meridians -~ with crossovers. ' To find ' the others, use the
equation of the center to calculate fT at t=T (see Table lc) knowing that
Mp = ET, where n is the mean motion; and obtain ¢T and AT with the ground
track equations, Repeat this process at t=2T, 3T,..., kT, continuing
along the éame descending pass until reaching a‘point-(¢kf,'AkT) just past
the fifst meridian where lk[ > ﬂ/NR. Estimate the location of this

meridian and the time t; of passage through it by assuming that the

satellite was moving with uniform velocity relative to the ground . between

points k-1 and - k. If necessary, refine this estimate by starting from

point k-1 with a time-step smaller than T. ~ Once the location of the
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intersection with the meridian is sufficiently well established, the
coordinates (¢1,X1) of this intersectlon correspond to a crossover point,
and the other crossovers along the same parallel have coordinates

(¢l, Al + 3 H/NR), 3=1,2,00eNp_ . Find next the coordinates of the
ground track points at times t)+T, t)42T,...,t +kT, until [ > 2m/Np, and
repeat the search procedure just described, to locate the meridian where

|A2| = 2n/NR and the corresponding t,, ¢2, Az of a second crossover,
This determines, once more, the positions of all crossovers of
latitude ¢2. Continuing in this way, it is clear how Cthe remaining
crossovers (¢i, Ai) and their corresponding times t;y are to be found.
When this is done, the positions of all the other crossovers in the ground
track are also known. To. obtain the crossover intervals between the
ascending and the descending passes, for each value of i take Ati = 2t1
if the satellite motion is prograde (same sense as the Earth”s rotation)
and At = —Zti 1f it is retrograde. Next, find Npy, the smallest positive

i
integer for which

Z!Ai"= {2n N, (NRi/NR)} (Modulus’2w).

The values of the two crossover intervals common to all crossovers at

latitude ¢, are |Atai| = Npy

B < 0, 1f retrograde), and lAtbil»= T.." | At

ail' the sign. of Atbi

being opposite to that of Atai. When. great.  accuracy is not needed, one
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may find the crossovers in the northern hemisphere, down to the equator,
and then take advantage of the near equatorial symmetry of the ground
track to locate the southern ones approximately, as the mirror images of

their northern counterparts, using then the expression

C(N‘R_i.*l) ¥ T0/2 . ti

to finish the procedure in half the time.

Finally, to put the crossovers in the Greenwich. longitude coovrdinate
system, add the actual geographical 1longitude of the ‘starting

point, A, to each of the A,.
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4,5 Orbit Error in a "Frozen", Repeat Orbit; its Geographical
Characteristics

Neglecting, for the time being, the gravitational effect of the
tides, the expression for Ar of gravitational and non-gravitational origin

is the same as (47), except for the frequencies in the cosine terms:

(NT)

ey e L 00 (x cosl((aedpra) Ny )on €+ ]

nmapq(Ronres) PO nmapqo

cos[((n—2p+q+1)NR-m ND)mfct + ¢ ]

+ rnmp(q+1) nmap(g+1)o°

+ cos[((n-2p+q-l)NR-m ND)wrct + ¢

Tamp(q-1) nmup(q-l)o]}

L ] . [ ] L ] 2 L] 2 .
+ A cosMt+B sinMt+C tcosMt+D tsinMt+E t cosMt+F t sinMt
K k k k k k

B

J
+ ) r

o ke d . '
o jk_(t"to) S ; (52)

[P

Here, in the ¢ olc o+ the term s (1-(=D"™)" of (39)
nmop(q * {1}) o
can be replaced with-E (1=-(~1)

71984,' Ch. 2, par. 2.2). The veryy,small & due to the libration of the

™y, because now Bo =-% (Colombo, ib.,

orbit about the "frozen  point" has been ignored in the arguments
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((n-2p+(q&?))NR~mND)wrcc. because its effect on the true value of these
arguments must remain negligible over weeks and even months, as explained

later.,

Since the mean orbit is "frozen", and kept so by corrective maneuvers

wherever necessary, the r , which depend only on a, e and I

amp(qfx §}) o |

among the elements, are virtually constant. S0 it is now both possible

and convenient, as shall be seen when discussing altimetry in connection

with ocean tides, to choose a time origin for the phase angles

¢ o

~ “nmap(q + {#1}) o |
start of the arc tg (which still appaars in the arc-dependent part at the

(expression (39)) that i1s different from that of tkhe

end of (52), either implicitly or explicitly). Instead, in the periodic

terms of a "frozen", repeat orbit, "t," is the first time when M =0 at

the beginning of the repeat part of the mission.

The periodical part of the orbit errors, according to (52), must look
"frozen" to an observer who occupies the same geographical position every
time the satellite passes by, as both the errors and the sightings occur
with the same fundamental repeat period. The linearized equations of
motion (including those for I, w and 2 not given in (38)) show that
peribdiCai parts - are present in all Asi, and therefore ‘1n all
comhinations of  them besides'Ar, like the along and the acrcss track

errors. So‘the differences {(or residuals) between tracking data and the

corresponding computed values of the;'ranges or range-rates (computed

according to ‘the positions and velocities of the estimated orbits) may
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exhibit also periodical parts as they are, to first order, linear

combinations of the orbit errors.

After subtracting altimetric heights determined at about the same
locations along overlapping passes, temporal variations in the sea surface
must be observable unless they are synchronous with the repeat period of
the orbit, but the periodical part of Ar must vanish, This is, of course,
very convenient when one wishes to study such changes in height as tides,
etc,, because a wubstantial part of the oirbit error can be "filtered-out"

in a simple way.

Baecause of the existence of a large periodical component that depends
only oi position along the ground track, Ar must show a strong spatial
correlaticn, This correlation was found, ewpirically, by Anderle and
Hoskin (1977) when they analyzed computer-simulated values of Ar.
Inspection of (52) also shows that, 1if A;a and A;; are the values of the
periodicalvéomponent aiong ascehding and descending passes, respectively,

then A;; and A;; depend on ¢ and A along. Moreover, A;; and A;A are

différenc functions ©of position, so their differences at the crossing

polnts of ascehding and descending passes are not zero (except for some
components of zonal origin, as explained later). In the more general case
(expression (47)) of satellites 1like GE0S-3, a smaller part of Ar

(corresponding to terms where q=m=0, for example) has these periodical

-characteristics exactly, but still a considerable degree of geographical

correlation can be expected for errors within passes separated in time by

less than 1/4 of the apsidal period 2%/ W (i1.e., less than a month apart ).
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How "frozen" an orbit must be for the effective cancellation of
the periodical part of Ar in the differences between overlapping
passes to take place? All significant components of the orbit error
due to the field model, at a height of about 1000 km, are produced
by Acnm with n,m < 40, so they must have wavelengths Vv longer than

vMIN ~ 3600/40 = 00. The time T between orbit corrections should be
short enough to prevent an excessive departure firom eiact periodicity when
o # 0, The unwanted phase-shift due to b; according to (47), is
q&T, where ]q]_s 2 for any terms big enough to matter., Therefore,

qWT must be less than (because a sinewave may reach its full

1
% “MIN

amplitude in a quarter-cycle), so

T < -,%0 L. (53)
26

In the case of SEASAT, b ~ 1o per month, so T < 1.13 months. Orbit decay,
mostly produced by air drag, changes a and, ’consequently, &, and 8°

through Q (see expressions (97), (IO) and (40a)); This causes a growing
misclosure cof the ground track that can reach several kilometers within T
months. This 1Is much’less than'vMIﬁ, and the effects of variations in*tﬁe
other mean elements are smaller still, so the motion of the perigee is the
main factor éffectiﬁg the repetition of Ar, While T is not going Eo be
the same. for all satellites,'it is 1likely that a maneuver a mqnth, at

most; will be enough to keep the orbit satisfactorily "frozen" in all

cases.

&
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4.6 Observability of Zonal, Initial State and Other Errors in
Differences of Altimetric Heights

As the time origin has been chosen when the "frozen'" mean orbit
reaches perigee, so M, = 0 and §-= Mt, then ¢nmdpqo = 0 4in (39) for any
periodical terms in (38) which are assoeciated with a zonal coefficient
error (m = a = O). Accordingly; expressions (47) and (50) show that, for
the zonals, the periodical radial errors in the "frozen" orbit are sums of
nasines qf j Mt = jg.(j =1, 2, 3, eee), so they are even functions

of M. With the perigee fixed at @ = —~ , M is uniquely related to the

2 ’
latitude of the subsatellite. point; therefore, the periodical components

of Ar due to the zonals depend on latitude alone, This conclusion is not

affected by the choice of time origin, as it might appear at first,
because the periodical terms under consideration belong to the "steady

state" response of the linearized equations, which does not depend on

either the time origin or on the initial conditions. It is easy to show

that this latitude-dependence is true of all periodical errors associated
with ACnma that are even functions ofrﬁ and whose order satisfy the
resonant condition (51), although those coming from the zonals are by far

the largest, as alréady explained.

A simiiar conclusion Vapplieé to the cos Mt term (in 47), so this

component.of:the "once per revolution" part of Ar, due to the initial

state errors (expression (23)), must be also a function of latitude oniy,

at least within the same arc. Therefore, 1in height differences along

overlapping passes and in crossover differences, observability is nil for
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periodical errors of 2zonal origin, and very restricted for any other
errors whose periodical components have frequencies that are harmonics

of M (Wagner, ib. 1984),

The observability problems considered so far affect only those
components of Ar in (52) of - frequency kM (k=0,1,2,...) and where
{a+[1-(-1)“"‘]}n/2=0 (i,e., sine terms are observable, cosine ones are
not)., For total lack of observability i1in crossover differences, the
necessary and sufficient condition dis  that :the intervals At between
ascending and descending passes at all crossovers must be exact multiples

of some '"basic'" interval At_< At (where At . is the shortest of
\ B - min min

i

= At , then all At are exact multiples of At The
min m

B in®

unobservable components of Ar, if the general condition were satisfied,

the At); if At

would be w‘u=,2ﬂ/AtB and its harmonics kwu (where k=0,1,2,040) Assuniing
that there 1is at least one repeat bground track where the condition is met,
and that for it Np and Np are both odd numbers, this grid must have
cfossovers at the equator with AtE= NDTD/2, as  explained in a previous

paragraph, where Tp is the length of the nodal day. This AtE must be a

multiple of AtB, the same as Atmin' If the inclination of the orbit is

~increased, and the semimajor axis adjusted . slightly to maintain a

repeating ground track with the same Np and Np, then AtE must remain

constant, in nodal days, but Atmiﬁ must increase,  Otherwise, as can be

shown quite easily from purely geometrical considerations, Atmin would not
be long enough for the satellite to pass over the same point of the
Earth”s surface twice wi.thih 'oné orbital period, So  the  new value

{n’ measured  in nodal days, must be longer than before, while

9]
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.and'ND= 3 in (52), The non-periodical part of Ar (same expression) has

AtE stays the same: the congruence needed to have totally unobservable
frequencies no longer holds, In consequence, total unobservability is not
an invariant property of the repeating ground track. This does not
preclude the existence of tracks where the At arve close to meeting the
necessary and sufficient condition, In fact, as reported by Douglas
et al, (1984), that of SEASAT came c¢lose to having At that were all
multiples of Atmin’ Because Np and Np are both odd in this case and thé
satellite is retrograde (it moves contrary to the rotation of the Earth)
one can show, on the basis of the geometrical properties of its ground
track, that if all At, including AtE, were exact multiples of Atmfn’ then

At = ’NR/(NRfl) Tos where T, is the orbital period. As NR=43 fo;

min

SEASAT, At = 43/446 T =0,977 T, so w = 27/At = 1,023 M, which is
m o o u m ¥

in in
the value of wu given by Douglas et al. (ib). In reality, each At missed

being an exact multiple of Atm n by a small margin, according to the

i
diagrams in their paper. In any case, all periodical components of Ar
assoclated with the ACnma have frequencies (in the case of SEASAT) rather

different from wu or its harmonics, as can be verified by making NR= 43

most. of its spectral - power .concentrated within two narrow bands, one

containing w=0, which 1is always unobservable, and the other centered at

the partly unobservable Mo and, thus, also near wu = 1;023‘ﬁ.

Nevertheless, as simulation studies i1ndicate very clearly, there is mno

problem in observing part of this component as a gradual, cumulative

change in the size of the crossover differences over a succession of

repeats of the ground track.k On the other hand, if one Were to treat the
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lines within these bands a$ independent from each other and to estimate
their amplitudes and phaées from those same differences by least squares,
it is highly 1likely that the solution may turn out to be unstable. The
way around this difficulty 1is to acknowledge that the lines are not
independent, but strongly related to each other through the few arc¢
parameters Ay, By, etc. in (52), on which they all depend. In other
words, this part of the error should be modelled, not as a sum of a large
number of steady oscillations, but as the sum of the few aperiodic terms
of (52), instead. The bias ry, and the oscillation Ay cos Mt, both
discontinuous from arc to arc; are not fully observable in crossover
differences. Thelr changes in amplitude can be detected, if ascending and
descending passes belong to different ares, but not their individual

values.,

There may be furthef limitations to ;he observability of Ar in
crossover’differences because work with thesé is restricted, in essence,
to oceanic crossovers. Over land, the rougbness of thé terrain makes the
iﬁterpolation of heights between consecutive measurements unreliable, and
crossover differences are always ﬁade out of interbolated heights, as it
is most unlikely that two measurements would be taken exactly on the ssme

spot.

4,7 Numerical Simulations of the Error in a "Frozen'", Repeat Orbit

Table 2 presents the results of a computer sensitivity study of the
effects of zonal resonances on the envelope of the "once per revolution"

oscillation in Ar. Shown are the values of: the "ACnma"’ which are
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really the differences between zonal potential coefficients of two
gravitational field models (PGS-S3 and PGS-S4, Lerch et al., ib. (1982))
from n=2 to n=9; the published standard deviation for the errors of the
same zonals in a well known model (GEM 10, Lerch et al., ib. 1977); the
contribution of each zonal to the increase of the '"once per revolution'
oscillation expressed as an average weekly rate; the sum of these rates,
or total rate., The results correspond to the "frozen", repeat orbit of
SEASAT over an interval equal to its repeat period, or 3 days. They were
obtained by first integrating numerically the orbit with one of the. two
field models, and then solving (also numerically) the exact (i.e, coupled
and time varying) variational equations (21b) to get the individual radial
effects of = the ACnOO as  accurately as possible, As expected, the
contributions of the odd zonals to the errors were the  largest (see
footnote after equation (51)). Since the size of the actual Acnma should

be much the same up to degree 29 (if one believes the published standard

deviations for the coefficients of GEM 10 to be both true and

‘representative of the '"state of the art"), the overall effect of zonal

errors may be several times larger than the total given in the table. As
the pelagic tides are supposed to be onl} a few decimeﬁers in amplitude,
this error cannot be ignored when studying'suéh aceanographic phenomena,
Regarding the secular changes in a, e‘and M (not shown in the table) the
Calculationsfindicated'thaﬁ Aé “was, by far, the one that influenced Ar

the most.
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TABLE 2

Increasing radial oscillations caused by gravitational zonal errors
AC

n00°*
| OCHOQ(GEM9) ACDOO(PGS-S3/PGS‘S4) Rate in
Degree n meters/weelt
x 1079 x 1079
2 ll _Oobsl -0002
3 la -1065 ) "'1.40
4 1. 1.00 =0,02
5 2. 0-50 -0017
6 2, -2.68 0.05
7 2. 1-16 -1084
8 2. -3.80 ; -0.06
9 20 _2n65, 5.41
Total Rate: 1.95

These results correspond to a sensitivity study of SEASAT”s repeat orbit
where the zonal errors have been taken as equal to the differences between
the zonal coefficiente of field models PGS—-S3 and PGS-S54, The published
standard deviations of GEM 9 for the same coefficients are given for
comparison.. The coefficients are fully normalized and dimensionless.

~ A fully normélized coefficient is: C = | (ntm) ! 12 o) »
: S " “nma V(f;ﬁmo)(2n+l)(n-m)! nmo °
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The theory has been tested also by full simulations of Ar, done by
F.J. Lerch and his assyistant. N. Weiss, at Goddard Space Flight Center,
whose help is greatly apprcciated, "True" orbits, based on the ephemeris
of SEASAT, were integrated numerically using the program GEODYN (Martin et
al., ib., 1976) with a given field model (the "true field") and used to

create '"range data" hetween "tarrestriil stations" (whose coordinates were

specified) and the "spacecraft', With a field model (the '"incorrect :

model"”) different from the "true" one used before, "computed" orbits were
fitted to the '"data" by adjusting their initial states, The "radial
errors' were the differences between the "computed" and the "true'" radial
positions. These simulated errors, over a period of six days, exhibited
the characteristics ‘chat one would expect from expression (52): the
presence of resonant terms with linear and quadratic parts, the former
exceeding the Jlatter by 4n order of magnitude, and shorter period
perturbations repeating themselves with the same frequency as the‘ground
track, every three days. For these perturbations, the departure ‘from
perfect repetition did not exceed l cm in any of the cases studied: Carl
A. Wagner at NOAA has obtained similar results (personal communication).
The repe;ition of the shorter period cdmponents was  checked by studying
the differences between errors at passes of the "spacecraft" over the same
points along = the ground tfack at 3 day intervéls. The results suggest
thaﬁ expression (52) represents quite faithfully the main qualitative
characteristics of Ar due to the imperfections of the field model
alone. Figure 4a sho&s what a typical plot of the reéonantkpart looks
like ovér,six days, or two cohsecutive repeat cycles of SEASAT. The error

caused by the field model has a cdmponenﬁ at frequency M that is cancelled
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FIGURE 4. Simulated radial differences between “‘true’” and ‘“‘computed’’ orbits
(with adjusted initial state).

(a)  Tyical “bow—tie” pattern produced by GEM 9-like zonal errors.
SEASAT, 6—day arc (two 3—day repeats).

(b) Error caused by the drag model (Jacchia 1965—Jacchia 1971).
(c) Error caused by wrong reflectivity coefficient (set equal to zero)

in the presence of radiation pressure. ERS—1, one full 3—day repeat,
heliosynchronous arc (from Wakker et al. (1983)).
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by an oscillation of the same frequency and opposite sign produced by thg
error in the adjusted initial state which, in this way (see expression
(23)), "absorbs" part of the gravitational error. This gives the envelope
of the resonance its "bow-tie' shape, a name suggested to me by Richard

Eanes.

The distribution of air density at satellite altitudes has two main

large scale components: a zonal one (atmospheric oblateness) and a bulge

that follows the Sun and thus turns once pei year around the Earth’s axis

in inertial space. The atmospheric models used to calculate drag

represent mainly these characteristics. Since they do so imperfectly,

- their errors have also a zonal part and a residual bulge that turns with a

very slow angular velocity. The levels of the heating and ionizing solar
radiation and of the magnetic f£lux do influence the air density;
therefore, the density models are in error tc the extent that they do not
account properly for these and other variables. If these factors remained
constant, both the 1argé scale density and the model errors would be
invariant in inertiai space, except’for the slow rotation of the bulge, so
the "frozen'" orbit would cross them with a frequency very close to M and
the density errors would set off resonances. Ih reality, both solar and
magnetic activities fluctuate.‘moduléting the density. However, if one
followed the practice of adjuéting the drag coefficient once every day
when estiﬁating the orbit, the effect of all thesé fluctuations could be
greatly red@ced; as suggested by‘one of the simulations of Ar done with a
"trué"‘atmqspheric density and an "incorrect @odel"‘(the mddels,in Jacchia

(1965) ‘and Jacchia . (1971), respectively), both wused with the actual
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recorded changes in solar and magnetic activitieés that took place in the
second week of September of 1978. The gravitational field was assumed to
be perfectly known, and the true drag coefficient of the satellite to be
constant, like that of a "cannonball"”. Figure 4b shows the sort of radial
error that was observed. In it there is also an oscillation of frequency
M with an envelope somewhat resembling a "bow-tie", superimposed to which
there is a fluctuation of much longer period, that can be tepresencéd by a
low degree polynomial. While the envelope of the oscillation 1s more
complex than in Figure 2a, the "secular" trend still dominates. Without a

daily adjustment of the drag coefficient, the "polynomial"” part was much

‘more pronounced. Therelare, expression (52) describes quite well the

radial errors observed in all the simulations (as long ag the drag

coefficient was adjusted once a day when non-gravitational forces were

present).,

Like the distribution of atmospheric density in the case of drag, fhe
main sources of radiation pressure (direct sunlight, albedo reflection and
re-radiation in tﬁe infrared from the Earth) are '"static'" in inertial
space, following the slow, apparent annual motion of the Sun. Therefore,
one would expect part of the error in é model of this force to '"set off
resonances" in Ar, much as the errors in atmospheric drag do. For a
heliosynchronous satellite in a repeat orbit, the resonénces must be moét’

pronounced, because the angle between the orbit plane and the~diréction to

~the Sun 1s "frozen". This effect seems to be present in Figure 4c, taken

from Wakker et al. (1983), which shows the differences over a 3-day repeat
of ERS-~1 between two simulated brbits, one with radiation pressure'applied

and the other without it.
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5.0 TIDES

5.1 ’rhe Tidal Forces

The attraction at a point x on the Earth”s surface by a "disturbing
body" (Sun, Moon, etc.) whose center of mass is at another point r* can be

discussed in terms of the gravitational potential of this body at x

L]
VE(x) = T;%:;T

IR n+l
L B0 B (cos W), (54)
n= '

whete W: is the geocentric zenith distance of the disturbing body at x, r*
is the distance between the body and the geocenter, u* is the mass of the

body times the universal constant of gravitation G, and R is the mean

‘radius of the Earth., Here our planet is considered to be a sphere and the

disturbing body, because of its great distance, a point-like object with
ail its matter concentrated at’thercentep of mass, These approximations
ave sufficient for the present discussion. The ellipticity of thg_ﬁoon
may also have ﬁo be taken into account when eéstimating the ‘orbics of

artificial satellites over very long arcs (several months).
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As the system of coordinates 1is geocentric, it falls along with the

Earth towards the attracting body with an acceleration

gg = Total attraction of body on the Earth / Mass of the Earth (Me)

=G MY (r*) '3£f

(55)

which 1s also an approximation, as the Earth i1s a sizable body of nearly
ellipsoidal shape and not a particle, so its center of mass 1is not quite
the same as 1its center of gravity in the field of the disturbing body
(Wahr,’l9?9, Ch. 2). For an Earth~fixed observer, §: cancels out the
avtrgssion of the disturbing body at the geocenter. Away from this point,
tha observer notices an increasing force. In an inertial coordinates”
system, the explanation for this is that the observer only perceives the
difference between W* - and the acceleration of his own quasi-inertial
system E;. To use Néﬁton’s equations of motion in the observer”s system

in- a simple way, jgg is treated as the gradient of a fictitious

gravitational potential

: X e . o 2
u* (R R
* = - E = - 4o By (R
Va<5) g:ocenteg Ea Yok R {r* ’ (r* o W;}
. 1 o - 0+l ' R
* . ' . . .
- = ;ngﬁ D Py (cos ), ~ (56)
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where "ﬁﬁ_}; . dr" indicates the line-integral between points A and B of
the scalar product of y and the oriented line element dr. By doing this
with the force exerted by each individual body and then adding the
respective va’s in the right hand side of the equations of motion (19),
these becnme formally like the equations of an inertial system and can be
integrated accordingly. This 1is ofcen doue when computing orbits in
"inertial space" (as the saying goes, though this is not to be taken
literally). Expression (56) is the line integral of 15; along a path
from the geocenter to x with p*/r* as the constant of integration (a
constant in space, not in time). Adding (54) and (56) gives the

expression of V%, the ﬁidal potential as observed in the geocentric

system,

VE(X) = VX(x) + VA(x)

n+l

=w§$ n§2 (%; P Lo (cos y*) . (57)

According to the addition theorem for spherical harmonics

PHO(COS ¢;?=2 mgo(;fﬁmo) 1 %ﬁ;ﬁ%% an(sin ¢)an(sin ¢*)cos m (A*=A)

»—1 = A i
=2 zo(u-amo) -g;—;;}:—;—’,- P (sin 0) Y o(%, M-d) (58)
x m
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where (¢, A) are the geographical latitude and longitude of x, while
(¢*, M*) are those of the point on Earth from where the disturbing body
can be seen at the zenith (so ¢* is the declination and M the right

ascension minus 8 of the body). Replacing (-g-;)n+1

- Pno(cos Q;) with its
expression according to (31) 4in terms of the osculating Keplerian

elements a*, e*, I*, wk, M¥ of the disturbing body in the quasi inertial

equatorial system, while truncating the expansion at<l) n =2 and |q[ = 2

because r* is very large compared to R and e* is small for both the Sun

and the Moon (other bodies do not mattar here), (57) becomes (see Kaula,

1964)

o u 2 R 2 (Z-m)' 2 : /
) =4 I G (176 3 (2#m)] Pom(sin ¢)pgon&5*)qz_202p$e*)

cos [(2-2p+q) (Wh+¥)=quitm(¥=6-1) - 7 (1-(-1)2™.

(59)

Traditionally, tidal theéty has been formulated in ecliptical rather

than equatorial coordinates, because 1in this system the inclinations of

the disturbing bodies are very stable, which simplifies the mathematical
ktreatment of their motions. The transformation of (59) to the ecliptical

system 1is expiained in (Ma:sh et al,, 1983). If Si(Sun) and Si(Modn)'“

stand for. the various ecliptical Keplerian elements of the Sun and the

Moon, respectively, then E(Sun) and Q(Suﬂ) are both zero, by definition;

(I)To study some very minor tides, degrzes 3 and 4 are included.
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and the origin of 9@ is the direction of the vernal equinox, as in the
equatorial system. Instead of Keplerian elements, it is common practice,

in tidal work, to use the following linear combinations of them:

L = O+A-g-m/2 ’ the mean local lunar time (expressed as an
angle);
= (i) 1 ;
s ( )(Moon) ’ the lunar mean 1ongitu§e,
= (WY the s ‘ :
h ( )(Sun) ’ the solar mean longitude;
N = 'Q(Moon) , ’the mean longitude of the luna: ascending
node with a minus sign;
p = w(Moon) , the mean longitude of the lynar perigee;
p” ='m(Sun) - the mean longitude of the solar perigee.

Here the word "longitude" refers to the 'dog-legged" astronomical

longitudes (9+w+M); etc., which are very close to the ordinary longitudes
in- the ecliptical sYstem’ because of  the‘ small inclinations of the
orBits. . Like the- mean argﬁments ;; g andlg of artificial satellites, the
mean vafiables s, h; N, p, and p; cﬁange Aalmost linearly over-:long
intervals, . in thiS'cése of the order of a century (ghus the expression,

>

"secular‘Variations", so they are represented quite accurately by cubics,
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like s = s, + st + 32t2 + s3t3. etc. (see The "Explanations" to the
American Ephemeris and Nautical Almanac) where the '"rate" s, is orders of
magnitude larger than 8y and s3. The departures from linear change
represented by s and s3 are mostly due to the gravitational forces
exerted on the Earth and the Moon by the other planets. All the variables

defined above, including the Earth’s Greenwich angle 6, have mean speeds

or frequencies that remain virtually constant over decades.

The Keplerian elements a*, e* and I* are nearly constant in the
ecliptical system, the Sun-Earth=Moon system being a very stable one,
while wk, M* and Q% change at approximately constant rates, as in the
orbit of a satellite. This is particuiarly true of the Sun; in the case
of the Moon, whose mass is much smaller, the pull of solar gravitation
alters the orbit to the extent that, in the same way as the temporal
variations (in dinertial space) of the non-zonal part of the Earth’s
spinning field requires the introduction of the angular velocity'é
(through -mé) in the theory of the motion of a spacecraft, the mean

angular velocities of the "orbit" of the "moving">Sun must be included in

the formulation of the motion ‘of the Moon (Brown, 1905, Brouwer and

Clemence, ib. 1966, Ch, 12). So the expansion of VéMOOh) must contain

both lunar and solar frequencies, at léast when the perturbations of the

lunar elemehts are formulated using a first order analytical theory; only

solar frequencies appear in VT(S““),' For this reason some tides are known
as "lunisolar", others as "lunar', and yet others as ''solar", on account

of the 3origins of their fféquencies. Instead of analytical
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approximations, one could use direct estimates of the osculating Keplerian
elements; these elementé are available (in ecliptical coordinates) from
precise astronomical ephemerides based on long series of observations (see
Seidelmann, 1982). This last approach is adopted sometimes for the very
accurate calculation of satellite orbits (Williamson and Chfistodoulidis,

private communications).

Regardless of the body of origin, r*, ¢* and A* in (58) can be
expanded 1in trigonometric functions of the ecliptical wvariables
L,s,h,p,N,p” (Brown, ib. 1905), Considering only the second harmonic of
V*, as in (59), and replacing V*,¢* and A\* with their expansions, the

result has the general form at the Earth”s surface (I§J=R):

2
* '+ \3
Vo(x) = ) P_(sin¢g) ) v ,
T = nm A B,B,B,B, BB,

m=0 Brm%%%%% 17273%475%6

cos [BL + Bss + Bzh + Bp + BN + BZp” + (m-n) 31,
' (60)

where the integers B”; are related to the B, as follows:
ST
B, = B{ +5 . (1=2,3,4,5,6)
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The Bi are always positive or zero, except in some unimpoctant

8, = m, The

cases where the amplitude V is very small; moreover, 1

6110686
number D whose digits are the Bi:

D = 318283848586

1s the Doodson number, which identifies uniquely each line in the tidal

spectrum, or .tidal constituent, besides providing complete information

- (once the various mean rates are known) on the value of its frequency

w, and on the phase angle Xe?

wg,...8,= Bl + B35 + 85h + 87D + B N + 5p” (61a)
- u_

g v, Filo * 3% ¥ B+ 8pg + BN, + BZRD (61b)
- x, -

Because of the choice of L as a variable, the speed of'thebﬁbon orbit
seems to .appear in all tidal frequencies, but it cancels out with B£§' for
Ter " . qu R 1 v

the '"solar tides!.  The number Bl 82 83 84 BS 86 and the amplitude VBl o 86
were computed and tabulated by Doodson (1921) for virtually all the

important tidal constituents. The first digit Bl’ which is also '"m" in

S e Y

N St
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(58), ranges between 0 and 2 according to (59).  Because it multiplies
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6, which 1is part of L, and 8 s ruch larger than the other rates

involved, BI represents the separation of the tidal spectrum into three

wide~apart maln bands or speécies: long period (Bl= m=0), diurnal

(Blu 1) and semi-~diurnal (Bl= 2). In turn, each species is divided
into finer bands or groups, separéted by intervals of (Béé + Bjﬁ) or,
approximately, by multiples of one cycle per lunar month, Within each
band, the individual lines are separated by multiples of one cycle every
8.85 years (Bgﬁ), 18.61 years (55&), and 25800 years Bgﬁ‘). (1)
respectively, Usually, it 4is sufficient ¢to add together all 1lines
separated by less than one cycle per year from each other, and to consider
fhese sums as the actual tidal coastituents; if great’precision over very
long periods 1is neede&, the hyperfine structure of the spectrum must be
considered in full detail, The dominant constituents are far larger than

the rest, and correspond to the principal tides M2, S2, Kl, Ol, etc., in

the classical notation introduced by Darwin in the 1880"s, Some of them,
together with their Doodson numbers, are shown in Table’3. The

: SR . 2
equilibrium amplitude g=1 v P ., (sin¢) (where = u/R7) is the
q p g BleonSG nsl : g /

size of the oscillation in the equilibriumkfigure of a perfectly fluid
Earth that the tidal constituent would produce on its own (sométimes this
is khown as the "geoid tide'"), and varies with latitude. - Because of the
continental boundaries, the submarine topography and the rotation of the
Earth, ocean :tides with periods of less than several years are not "in

equilibrium", and have rather complex spatial structures.

(1)5"18, in fact, the rate of precession of the Earth”s axis, treated

here as a movement of the Sun”s "perigee" because of the way in which the

ecliptical coordinates are defined (ji(Sun)=0).
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TABLE 3

Principal Constituents of the Tidal Potential(a)

Caused by Bpth the Sun and the Moon

Peak Amplitude

of the
Equilibrium
Darwin”s Doodson Period Tide
Name Number (hours) (meters)
M, 255,555 12.42 0.,2523
S, 273.555 12,00 0.1128
N, 245,655 12.66 0.0464
K, 275,555 11,97 - 0,0307
K 165,555 23.93 0.1416
0, 145,555 25.82 ~0.1005 |
P 163,555 24,07 0.,0468
Q 135,655 24.86 0.0193
. © 055.555% @ 0.1356
So | 055.555% © 0.0629
My, 065,455 661.31 0.0222
(a) | “*tie periods are those of the main constituents of the semi-

diurnal, diurnal and long period bands. "Equilibrium tides" of
semi-diurnal period peak at the equator, diurnal ones, at mean
- latitudes, ‘and long period ones, at the poles. - :

(*)

"Frozen" lunar and solar tides (respectively).

‘ i ; :
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In what follows, expression (60) will be written in the following

simplified way:
* . ) b
Vo(x) = Z Vo Ppp(sing) cos(u t + x4mA + (u-n) )], (62a)

where "2" indicates the sum of all significant tidal constituents, and"*"
has bee; dropped from the right ﬁand side, as the solar or lunar origin
of a particular constituent 1is of no further interest here, Now,
according to (6la) and to the definition of L, m=61 is a function of wT:

m = Int [élléTl + 1/4], "Int [.]" meaning "the integer part of". In the

*
new expression of Vp(x),

V.=V : ~(62b)
T By ByByR, B |

(B) = m)

is the amplitude,

= BI(B-s) + 325 + 635 + 84p f ﬁskN + ggﬁ‘ ~ (62¢)
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is the (angular) frequency and

Xe ™ Bl(eo-so-n/Z) +‘6280 + Bsho + 64p0'+'85No + B6p°
(62d)

is the astronomical phase, It is a useful and universal convention

that Xy is the phase at t; = 0.00 hours, Greenwich mean time, of the day
in which the instant "t" falls (so "t", in fact, is t—t;). But in the
discussion that follows, in order to make the ¢treatment of tides

consistent with that of the radial orbit error, xT is defined as

X, = % (t) -wt, (62d°)
T T % tas in (62d)) *°

where "t " is t: for the general case corresponding to (47), but (as
explained in the comments that follow (52)) for "frozen", repeat orbits t

is such that M(t,) = 0 at the start of the "repeat" part of the'mission.

This choice is preferable for writing formulas: for actual calculations,

the conventional one is more accurate and freer of numerical round-off

problems.
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The change 1in the geographical coordinates of the point where the

spin axis iIntersects the Earth’s surface, or polar motion, reflects mostly

the free wobble of the Earth (Chandler Wobble). Polar motion produces a
fluctuation in the centrifugal force experienced by objects fixed to the
planet, so it changes the acceleration of gravity acting on them, and
causes deformations and movements in the body, oceans and atmosphere
similar to chosé due to the tidal potential (but much smaller). This
response 1s koown as the pole tide. Since 1ts‘ period 1is completely
unrelated to the lunar and solar frequencies (about 1.18 years), it can be
detected in sensitive gravimetric tidal records as a separate and very
weak oscillation, particularly at high latitudes. Precession and nutation
also affect gravity, but they are themselves parts of the overall tidal
response to the pull of the Sun and the Moon, and their effects on the
solid Earth, oceans and atmosphere are incorporated into the diurnal tides

(see Wahr, 1982).

The tidal potential V*, according to (57), is rotationally
symmetrical about theyline from the Earth to the disturbing body. its
equipotential surfaces have an interesting geometry: the surface V* = 0
is a double cone with 1its vertex a; the geocenter (opening bdch towards

and away from the body). This cone, which gets broader as the body gets

closer, 1is the asymptotic surface of a family of revdlution hyperbolbids

of two sheets, which are the other equipotentials. The tidal acteleration’

VVv*  has the same rotational symﬁetry and is also equal in magnitude and

t

opposite in sign at points equidistant from the' geoceqter about - the

112




Dol e e e

SR e S ney  wEESG T sn cdadad b

Earth-body line. This description holds provided that terms in (57) of
degree n > 2 can be neglected and one does not get so close to the
disturbing body that it no longer can be treated as point-like. In the
case of a satellite free-falling around the Earth, the field of "residual
gravity'" measured in a system fixed to the spacecraft has also this
configuration (with the Earth as the du.turbing body)., Detailed and
charming discussions of this geometry can be found in two papers (1977 and
1982) by the late A, Marussi. At the Earth”s surface, the combination of
the geopotential V with V¥ creates, in the uearly spherical equipotential
surfaces of V, a slight deformation shaped as a symmetrical ellipsoidal
buige pointing towards the disturbing body: this bulge 1s the ;g;al
"equilibrium tide", Since the Sun and the Moon lie at or near the
celiptic, this bulge is tilted with respect to the Earth s spin axis, so
the rotation of the latter carries the points of its own surface through
the bulge. At mid~ and low-latitudes the points cut through both "lobes"
of the bulge, experiencing a twice-daily variation in V¥, Closer to the
poles, only one lobe is cut (most of the time) so the diurnal species
prevails far from the equator, and the twice-diurnal closer to it. As the
mean value of V* is not zero along parallels, there is a component that
changes only as the body moves slowly along its orbit: this 1s the long
period species, The ellipticity and precession of the orbit modulates
both the -bulge and the specles, splitting these into bands and those, in

turn, into lines.
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It is interesting to notice that, according to (57), the tidal
potential increases as r* decreases, Imagine that the system of
coordinates 1s chosen at the center of mass of a body which, like the
Moon, orbits a more massive one, like the Earth, and that the two bodies
get closer, until the attraction of the main one exceeds the self~
gravitational force that pulls the other together, and breaks it up. The
distance at which this catastrophe occurs is known as the '"Roche limit",
Maybe this is the process that once created the rings of Jupiter, Saturn
and Uranus out of the disintegration of icy moons, and now keeps those
rings from coalescing again into larger bodies. In the case of Io, the
innermost of the large moons of Jupiter, the tidal forces are sufficiently
vigorous to heat the interior by continuous friction, probably keeping it
partially molten and causing the spectacular vulcanism for which this
world is now famous, Terrestrial tides, though much less energetic, play

a significant role in the deceleration of the Earth-Moon system.

5.2 . The Tidal Response

The attractions of the Sun and the Moon torque the slightly

elliptical spinning Earth, causing the precessipd of its figure axis, cne

cycle of which takes about 25800 years. The relative positions of’the
Earth and the‘ disturbing bodies vary as they move, so the torque is

modulated at the orbitalyfrequencies both in intensity and in direction.

The result 1is a '"nodding" motion of the Earth’s axis, or nutation (see

Leick, 1978). Precesslon and nutation are movements of the Earth as a
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whole., Because the planet 1is not perfectly rigid, the changes in the
attractions of the disturbing bodies also produce small movements, or
tides, which vary from place to place, as well as slight variations in the
spin rate d (not considered here any further). These tides are the
subject of the rest of this section; the reader can find a very clear and
up~to-date discussion of the (somewhat arbitrarily separated) components
of the tidal response of the Earth: precession, nutation and tides, in

(Wahr, ib. 1982).

5.3 Linearity and Time=-Invariance

The joint attractions of the Sun and the Moon cause displacements of
the matter in the interior, oceans and atmosphere of the Earth that are
very small compared to the size of the planet; Lhat joint pull itself is
quite small when compared to the gravitational force cﬁe whole planet
exerts on each of its parts. It is, therefore, not surprising that those
displacéments, their interactions, énd the resulting fluctuations in the
gravitational‘field can all be described accurately by first ordetr, or
linear, approximations t6 the response of a noﬁlinear system (the Earth)
to the disturbing forces. Over an interval of a few centuries, the iarge
scale mechanical charac:eristiés of the Earth are likely to stay virtually
constant, so it seemsvréaéonable to expect those linear approximations to

be also ,timefiQVariant, perhaps after making 'some minor simplifying

assumptions. If such is the case, the spectra of the various components
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of the tidal response (ocean tides, body tides, etc.) should have thejr
lines situated at precisely the same frequencies as their driving forces,
which ave those given by expression (62¢). This 1is 1in wvery close
agreement with observation (except for some small anomalies in shallow
geas that suggést some nonlinear frequency mixing), which means also that
both the disturbing forces and the frequencies of the resulting tides.can

be calculated very accurately from purely astronomical data.

The formulation of a realistic nonlinear model for the Earth, and its
1inearization with respect to some reasonable and convenient undisturbed
state to obtain a good time-invariant approximation, are quite complex
matters, as 1is the solution of the resulting linear partial differential
equations. Nevertheless, bhecause  of their time-iﬁvariance, and of the

nearly sphe;ical symmetry of the Earth, the linearized equations have

soluticns with strikingly simple and helpful properties, summed up in the

ideas of Madmittance function" and "Love numbers".

5.4 The Admittance Function

A long record of observations of f , the "surface-bottom' ocean

tide, at a station of latitude and longitude (¢, A)ycan bé approximated

quite accurately by a trigonometric series:
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, 1
Co(¢”>‘tt) = ?; B=2"0 aBT((#'A) COS(th + XT - B '2“)

‘H

=15 (000, (63)
T

where W, is the tidal frequency and Xy the astronomical argument, as per

(62 c~d), of the ocean tidal component 601. Now, according to (62a)

Vp(8,2,8) = V.P, (sin §) cos [wt + X, + mh + (m=n) 7]
(64)

(with m = Int [8/|uw_| +'%]>

is the constituent of frequency W, of the tidal potential at (¢,A)., Over -

the Earth’s surface VTT consists only of second degree spherical

harﬁonics, under the approximations made in its derivation, The

admittance fuuction relating ﬁoT to VTT is the complex quantity

2 (6,0 de (4,0

Y(o,h0) = —L T (65a)
- "VTT(¢’A)I ' )
whefe
or(®h) = [ 2 BT(¢ M2 sign v.i - (65n)
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and
e () = =tg™! [a; (4,1)/25,($, )] = m = (a=nm) & (65¢)

are the amplitude of the constituert of’co of frequency wr, and 1ts
phase shift relative to the corresponding constituent of V¥, The
accumulated evidence (Hendershott and Munk, 1ib., 1970) suggests that
Y(¢,A,wT) is a smooth function of W, 8O it varies very little 1in
modulus and phase across each of the narrow bands that muke up the tidal

spectrum, For this reason, if is the frequency of a line

w
T(central)
within one of thesevbands situated near the center, it i1s valid to assume

that
eT(¢,A) = gT(central)(¢’A) (662)
and
z ($,3) 5 {,A)
0T = ot(central) ' k (66b)
Vo(9,A)  V ($,0) '
Tt ~Tt(central)
‘S0

a (¢’A)k a (¢,1)
0t

- .Ot(central) : (67)
a (4,2) a (¢,M) ‘ '
17 ;T(central)

for 0 € B <1 and all wT in that band. From the last felationship ‘and

(63) follows that
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1
L ($yh,t) = ). a (9,A) Z

y . / ) )) COS(U’T + X,r_" B %) »
o(band) f=0 Br(central) T(band)

(Vt/vr(cehttal

(68)

where "2" indicates that the sum 1s over the constituents in the band
T(band) :

¢enly. To speed up calculations at the price of a slight loss of accuracy,

one can make use of the relationships

T T T
cos(wrt + X~ B 50 = cos X, cos(th - 6-5) - sin X, sin(th - B 5)

and, to first order in (W wt ,

T(central)- T

w )t{ Sin}(w

cos a2y [cos gl -
{ }(wrt_gi) - { }'w t:'62).,*'(m”f(cent:ral) 1/~ t=cos T(central)

{ t-83)
sin sin’® T(central)” 27°

So, instead of (68),

. 1 ’ .
, & : X
o(band) (HHE) = L a (9,0 {A (1) cos(u B 3)

, B
B=0 Bt(central) T(band) T(cenﬁral)

| ‘ ' v Ty
¥ Brcbaﬁﬁg éin ‘wT(CenFtal) f f D

(€9)

119




T

i
H
i
i

where

A ()= ) (VY

wT)t sin X, + cos xT]
T(band)  71(band)

r(central)[(wr(central)'

(70a)

and

Boo(e) = ) (Vv [(w

w )t cos X~ sin X ]
T(band)  1(band)

t(cencral)) t(central)

(70b)

provided that [(w ~wtl << ¢ t 3 XJ+ In actual

T(éentral) w'r(central)

caléulations this condition can be met by updating the phases xT in the
above expressions sufficiently often (for a given band), and using these

new values with "t" counting from the time of the last resetting, until

‘the next update. This saves the effort of having to compute one sine and

one cosine value at every instani where (68) has to be evaluated, for

every frequency in the band.. For solar tides, the VT must be corrected to

account for the "radiational tide potential' (Cartwright and Tayler

"(1971)). Radiational tides are caused mostly by the periddical heating of

the atmosphere by the Sun, which modifies the air pressure at the sea
surface, forcing the ocean at the same frequencies as the solar tides.

This thermélly driven variation of the atmosphere accoun:s‘for most of the

’atméspberic "tides", with the gravitation of the Sun and the Moon piaying

a lesser role.
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5,5 Love Numbers

go can be regarded as a function defined foi all ¢ and X but which
is identically zero over Jland. Such a function must have an infinite
spherjcal harmonic expansion because, although very smooth over the
oceans, 1t 1is discontinuous across the coastal boundaries. Furthermore,
co i1s at each point a sum of trigonometric functions of time, as in (63),
so 1ts complete expénsionvin space and time is
n

] 1
C (o, h,t) = ) ) { Z A N - (45 M)cos(w L Xy B-I)}
T =0 m=0 a=0 B=0 nmaft nma 3

=} Z t (9,0t , (71)

T
T =0 °0

where the ¢ are the spherical harmonic coefficients of aBT(¢,X)

nmoBT
(8=0,1) in (63).(1) Putting (70) and (71) together:.

n 1

@ n 1 1
Co(band)(¢’k’t),= ngo mEO aEO BEO ;nmaBT(central)Ynma(¢’A)
{a (t) cos(mr( tral) t -8B gb + B (t) sin(w ( ral)t ~ Bfg)}.
(band) centra (band) " t(central
(72)

‘ (1>T1de-1ands not withstanding, in a global scale it is reasonable to
regard the coasts, as well as the ocean floor, as impermeable and well
defined  boundaries. Under this' assumption, the: conservation of mass
requires that { =0 in (71) et seq., so {ggog+ =0 for all Band all T
(i1f w4 #0). However, the same notation shall be used later for the
spherical harmonic expansions of tidal models and their errors; some of
them do not satisfy the conservation constraint, so the zero harmonic has

. been kept in (71) et seq.

121



The altimeter measures the total tide, not individual components,
and the concept of admittance makes it easier to take into account the
"sidebands" when estimating the "main tides" from altimetry (such as M2,

S2, Kl, etc.). In what follows, conT(¢,A,t) (the expression between

| curly brackets in (71)) shall be called, for short, the '"n spherical

harmonic' of g, (at frequency wT).

The tidal displacement of water changes the forces acting,én the body
of the Earth, which yields because this body is not rigid. These related
movements of water and solid matter modify the gravitational potential,
Since the responses are nearly linear and the Earth is close to having
spherical symmetry, the spherical harmonic expansion of & is related to
those of the vertical displacement §° of the bottom and of the tildal-

(z))

induced change in potential V ©  as foilows:

6"(.¢)>‘,t) - 2. 2 an hl’n’l’ conT(’ehA’t) (73)
o1 n=0 ,
and
(g.) o @ n+17‘
) V 0 (¢’)\’t) = g l Z an(l + k‘n'r) Con'l'( ¢’ }\,t) (-]_RT) v "
- T n=0 =

(74)
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Here

n po(2nt1)

g = u/R2 is the mean acceleration of gravity on the Earth’s surface, Py

the mean density of water and pe the mean density of the Earth. h‘nT

and k;T_ are known as load love numbers (Munk and McDonald, 1960;

Farrell, 1972) because &”  and V(C°> are the result of the lecading of

the body of the planet by the ocean tide on its surface. Their dependence

on w; as well as on n 1s stressed here to bring the formulation in line

-with that of Wahr (ib., 1979) for ordinary Love numbers, which probably is

the most realistic one at present; the extension to load Love numbers can
be found in (Sasao and Wahr, 1981). In the past this dependence has been
largely ignored, =~ because the theory was restricted mostly to the

spherical, non-rotating case, where the main free oscillatory modes have a

frequency considerably higher than any tidal component. Wahr has included

the effect of both rotation and oblatenéss in his computations. The

latter requires the use. of functions slightly different - from
A
. MLy

s however, the difference in the results is less than 1% and
nmo . ,

can be ignored here..

The tidal potential has an expansion on the Earth’s surface given by
(62a), V* causes a deformation of the body of the Earth, or  body tide,
resulting in a vertical displacement V6  and a change in potential V(ﬁ)

which are, approximately,v
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8(o,\,t) = i 21 Vpoa (2 t) (75)
(here VTT2(¢,A,t) is the same as VTT(¢,A,t) in (64)),
and
vt 8, R, |
VSIS = L by Vg (8he) D . (76)

The contribution of co to the geocentric tide ;G of expression (1) is

e T § = g, t §

-1 1 G o hr) g (4 he) . (77)
T n=0
The hZT and sz are known simply as Love numbers, after the man who

first wrote about them (Love, 1909), In the interval 2 < n < 25, which

includes most spatial frequencies of interest, the approximate sizes of

these various numbers change monotonically from

hZT = 0.612, sz = 0,302, h2T = ~1.,007, k21 = ~0,310, a, = 0.11,

to

hZST = 0,047, k25 = 0,002, h25 -2, 194 k25 = ~-0,046, Gye 0,011

(from Table 1 in Hendershott, 1972). The largest departures from these

values occur within the diurnal band,
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The values of h21’ sz, héi and ké (1) can be calculated by using a
simplified linear model for the departures of the particles that made up
the body of the Earth from their undisturbed state, selecting a plausible
set of physical parameters for the matter of the planetary interior, and
integrating numerically a set of ordinary differential equations related
to the linear model., The integration variable is depth, in the interval
from the geocenter to the surface, and the Love numbers are the integrated
values - at the surface. Usual approximations include a spherical or
elliptical body where density, elastic parameters, eté. vary only with
depth and viscosity is zero, so there is no energy dissipated by the tidal
motions. The mechanical parameters are discontinuous at the boundaries
separating the core (divided in solid inner core and liquid outer core),
the mantle and the crust, sometimes with an additional change between
upper and lower mantle. ' In consequence, the published values of the Love
numbers vary aCcordihg to the linear Earth models wused for their
computation. Wahr (ib., 1979) has assumed an elliptical, vertically

stratified, dissipationless Earth with no oceans. A slightly more

accurate formulation, including dissipation, would require the

| introduction of small additional phase shifts €, ©On top of the X in

(I)There is a component Vp of the total tidal potential, 1n the long

period species (m=0), which is actually constant in time (and virtually a

second zonal 1in space, see expression (62)). It produces an. equally

~constant change in the Earth’s equatorial bulge and, thus, in the value of

020 compared to what it would be if our planet were alone in space. The
Lové numbers for the resulting stationary body tide are probably those of
a "1liquid Earth", as our planet is supposed to have been "flowing" towards
its actual figure of hydrostatic equilibrium over the eons that this
"frozen tide" has been acting on it. There is also a slight discrepancy
between the "bulge" of the mean ocean surface and that of the geoid, equal
to the "frozen" component of the ocean tide Vp/g (S, and M, in Table 3).
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the arguments of the tidal functions. This appears unnecessary here, The
main variation of the Love numbers with w_ ocecurs when the frequency 1sg
close to one cycle per day (diurnal tides) and is caused by a resonance in
the fluid core (Wahr, ib,, 1979 and Wahr and Sasao, 1981). For semi-
diurnal tides the Love numbers are virtually independent of w .

Horizontal changes in density, etc., further complicate the picture, but
they do not have to be considered here; they would only matter in highly

accurate or local studies of tides,

5.6 Representing The Ocean Tides

The mathematical model for the ocean tides is derived from the
nonlinear Navier-Stoke”s equations of hydrodynamics, linearized by
ignoring smallk quadratic terms in the unknowns and using first order
formulations for the forces related to turbulence, bottom friction,
crustal bending (6°) and self gravitation (V(C°)) « In Cartwright
(ib., 1977), Hendershott (1972), Schwiderski (ib. (19805)) and Parke and

Hendershott (1980) one can find information on the historical development

“of the 1linear theory and of the methods for integratiﬁg/ the -tidal

equations.} Alternatively, the use of nonlinear terms to represent bottom
friction yields a system of equations that is overall nonlinear and can
only be solved by numerical integration in ;épace and in‘ timéz (Estes,
1980). On the other hand, a purely linear system requires nuherical
integration in space alone, the time'variable being eliminated by working

with the Fourier transform. of % (as in Pekeris and Accad, 1969)., The
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simplest linear equations are those of Laplace. Usual assumptions made in
obtaining tidal equations are that the Earth is spherical, the depth z of
the ocean is nowhere significant compared to the planetary radius and to
the horizontal size of the tidal waves, that the small meridional
component of the Coriolis force can be ignored, and that the velocity of
the horizontal tidal current 1s dindependent of depth. In fact, the
velocity does change from the surface down, but because the density of
ocean water 1is well straﬁified there are twd main ﬁypes of waves: those
described by the tidal equations, which move the surface up and down to
produce ;o’ creating horizontal currents that are virtually independent of
depth, and those that do not move the surface appreciably (also known as

internal waves) but cause currents that vary with depth. Clearly, only

waves of the first type can be mapped with an altimeter or with

" conventional tidal gauges.,

Figures 5 and 6 show the charts of the M2 constituent obtained by
Schwiderski (1979). The lines in Figures 5 and 6 present the amplitude
;or(¢,k) in ém and the phase in degrees., The lines of equal phase (or
cotidal lines) in Figure 6 show, successively, where the tidai waves crest
at about half an hour intervals. Looking at these lines in their proper
sequence makes an “animated picture" of the waves as they tufn about their
fixad nodal points or amphidromes (where the amplitude'is always zero).

Notice how smooth the waves are.
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Goad (1980) has computed the power spectrum of Schwiderski”s M2.tide
up to degree n=180, showing a fast rise up to degree n=8 and then a fall
of more than an order of magnitude at n=20; from there on the spectrum
trails off to zero slowly, reflecting the discontinuities of % along the
coasts, For the other semi-diurnal components the general shape of the
maps, including the approximate location of the amphidromes, is quite
similar as for M2, The same 1is true for the diurnal components, although
their pétterns are quite different concerning the locations of the

amphidromes, etc¢.,, from those of the semi~diurnals.
While the waves of individual constituents are virtually periodical,
the total tide 1is not, because the orbital frequencies of the Moon are not

harmonics of those of the Sun. 1herefore ;o néver repeats itself exactly,

A fluid motlon can be described in terms of a velocity potential ¢

'and a stream function ¢ (see Lamb (1932)), and both ;o and Aco can be

expanded into what can be a fast converging series of velocity potential

y o |

base functions ¢, (Proudmar, 1916; Rao and Schwab, 1976):

& ey
{A%E}(¢’A’t),n %12—.'0 B-Zo '{Aég:} 0 ($sNeoso 4 x = B, (78)

where the ;1BT and Acist are real numbers.v
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The 01 are specific to a given ocean basin, as they depend on the
bathymetry and the coastal outline, and form a complete set of orthogonal

functions over that basin, in the sense that

jj(basin) ¥ 03 da =Dy (79)

where the positive constants Dy are zero if 1 ¢ j,

and

ff(basin) by 8o 40 0 (80)

for at least one value of 1, unless ;o is identically zerp. Integration
here is confined to the oceanic regions, and do 1is the spherical element

of area
do = R® cosé dé dA . (81)

Notice that the 01 are independent of w.; in fact, they can be

used to describe a wide variety of vertical motions of the sea surface

within a given occean, besides tides. These functions do not have

analytical closed expressions except when the shape of the ocean is

“unrealistically simple. To compute ¢i(¢,l) one must solve numerically an

eigenvalué—eigenfunntion problem involving a differential operator related
to the unforced linearized tidal equations, with the boundary condition

that, along the coast,
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z2 == () [} (82)

Here, "z" 1is the depth of the ocean, and '"3/8n" represents partial
differentiation in the direction normal to the coast., The calculations
can be done only with a digital computer, but, once the ¢i have been
obtained, this disadvantage can be offset by the speed with which the
expgnsion (78) of ;, converges and by si@veral benefits associated with
orthogonality. Rao and Schwab (ib., 1976) and Sanchez et al, (1984) have
gtudied the use of these interesting functions for parameterizing tides
and other oscillatory motions of large bodies of open water without having
to make assumptions on the amount of internal dissipation and bottom
friction, usually poorly Kknown. The ¢ cgn represent any Jlong-wave

i
vertical displacements of water, even when ‘the energy dissipation is

unknown, 1in  much the same way as spherizal harmonics can be used to-

represent any gravitational potential, even when there is no knowledge of

the mass distribution that generates the field.

If the bottom of the ocean is replaced with ‘a horiznntal surface
lyihg at a dépth of "no motion'", the o, calculated with this new boundary
can be used to parameterize the stationary sea surface topography W

corresponding to the global circuiation.
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at amphidromes (dark dots inside closed contours, for their locations see also Figure 6). Original chart

FIiGURE 5. M2 equal amplitude (corange) lines. Absolute values shown at intervals of 10 cm; amplit-ides are zero anly
taken from Schwiderski (1979).
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5.7 The Tidal Part of the Orbit Error

The attractions of the Sun and the Moon, together with the tidal
changes they induce in the gravitational field of the Earth (expressions
(74) and (76)), affect the orbit of a satellite and must be consideréd
when computing its position and velocity, The direct influence of the

celestial bodies can be calculated with such accuracy that the results

can be regarded as exact. The solid Earth and ocean tides are less well

known, so there may be significant errors in the calculated values
of V(co) and v(6>. The body tide 6 has a limited frequency range, mostly
below two cycles per revolution, because only the second’harmonic V% has
an important effect (expression (76)). As the existing models of ¢ are
quite accurate,; only the léng period effects of their small errors A§ are

likely to matter, adding to the polynomial terms and to the 'quadratic"

oscillations in Ar (expressions (47) and (52)). Therefore, shorter

period =2rrors related to tides are ‘probably due mostly to Aco, the

uncertainty in the ocean tidal charts. The perturbations of spacecraft

 these coefficients. Replacing Y

orbits have been used to learn about the broader features of tides, and to
try to estimate directly Love numbers and other important geophysical
parameters (Lambeck et al. (1974), Felsentreger et al. (1979), Marsh et

al. ib. (1983)).

The error Aqor can be represented by an expansion like (71) for Co,

~substituted by the errors Ag in

. nmaBT
(‘b »A)
nmo

with the 'coefficients CnmdBT

with its equivalent in Keplerian
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elements (expressions (29-30)) and wusing the relationships for the

sxoducts of sines and cosines,

cos [((n-2p) (WHI) + mB” & Wt + duuono, * (X B P,
- (83)

where ¢ = (n~2p)(m(t§) +‘ﬁ(t§)) + me’(tg); the osculating w, M and

nmopOo ‘
8” have been approximated by Ot +'E(t2), etc.; and X, is as in (62d7).

kS

Because of the nearly linear relationships between tidal phenomena,
rewriting ~expression (74). with the harmonics 6f Az, 1instead of those
of Co gives the effect EV(Aco) of Aco along ~the orbit, So,
replacing Q%)n+1‘Ynma(¢,A) in (74) with its equivalent in Keplerian

elements according to (31), gives (Lambeck et al., ib., 1974):

CE! . e @
W)’ === 1w () (%)“‘ b or P L6
2R . nmaBT' ! : p=-n q=_m

cos[((n42p+q)(;WQ):- qu + mé” + mT)‘t+¢nmapqo* (x=B Nl .
| (84)
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Neglecting the contribution of the error in §, the sum of the shorter
period perturbations that form the "periodical’ part A;<T) of the tidal
radial error is given by

1 .

N(T) ) \ » 0
Ar 7 (e) = o L O (+k” BT gt {rnmp(fl*{*l})T
nmnpqoBT

cos [((n=2ptq) (HN) = qb + m8” & W)t + dunancqrfad)yor (X8 DI},

(85)

where "(q+{t?}") stands for "q", "(g+1)" and (q-1)", respectively, and
"(T)" for "tidai". The frequencies present in A;(T) .differ from those
in Ar<NT) (expressions (47) or (52)) by £ W, so the actual values of
the coéfficients rnmp(q&{?})oT are glso ‘different (see (16), (38) and
(43)), thus ﬁhe subscripts "nmpqt'. Tefms wheie the w, are substracted
are prograde; the others are retrograde (the change in the argument has
the same or opposite sense to that caused by the rotation of the Earth).
(NT)

“As in expression (47) for Ar , the mean elements and their rates

generally change, very slowly, as the orbit decays, though they may. be

cbnsidered as constants during each weekly arc; the fnﬁp(q+{£?}) ~change

accordingly 1in (85).
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5.8 The Case of the "Frozen", Repeat Orbit

When & = 0 and exactly Np revolutions take place in precisely N
nodal days, .the ground track repeats itself with a frequency
W, = ZN/Trc, where T.. = Nj x (length of the nodal day). Then the

frequencies in the arguments of the cosines in (85) are, with the possible

exception of wT. multiples of mrc' so A;‘T) becomes

A?(T)(t:), "zl'iz‘ ) o (I+k° ) AL

< fo)
. L *l
nmpqaBT(nonres) maf T nmp(qt {£1}) T

cos[(((n=2p+(q+{£1}))Ngm NDOrc0) tHdunan(gr (21))o * X8 P
(86)
When dealing with this type of orbit, the time origin t, for the
¢nmap(q£{?})o‘and X, is as in  expression (52) and in  (62’c),

so E‘(to) = 0 early in the repeat part of the mission.

The error AcG in the geocentric tide is present in the residual

altimetric s=za surface heights according to (7). Assuming that the error

“in. ‘the body tide is small enough compared to ACO to. be neglected,

| expréssions (29); (30) and (77) imply that
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M}G(ﬁ) vy nmgﬁ’r (L+ophg o) AL mast pz_nFHmP (1)

COS[((!‘I"‘ZP)(E‘H'&) 'hn.e’ * L\)T)t + “’nmapOo * <X1'-s Eﬂ)]'

(87)
In the case of the "frozen", repeat orbit this formula becomes
Boeey %3 b () B2 gt IR
nmafT ) napg p=-n nmp
; » , .
cos [(((n-ZP)NR T, ND> wrc * w'r> t+ q’nmdeo * (x'r"B -2')]'
| (88)

Comparing (86) and (88) one sees that the periodical terms in both
A?(T) and ACG have the same frequencies when these errors are treated
as time Qeries. Consequently, A#(T) and Ag, are "lum_ped together" ’i'n
the residual sea heights and can be seﬁaratéd Vor'lly by using t:hek'Lo‘rJe

numbers k‘m, so  these must be  known reasonably well, The same comment

can be made regarding the hr;'r needed, in furn, to obtain At from Ag,.
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The "strobed" frequency

5.9 The . lasing of Ocean Ties With the Mean Sea Surface and With
Each (ther

When observed with an altimeter from a "frozen', repeat orbit, a
tidal constituent of frequency w, would appear, at the same points along
the repeating ground track, to rise and fall between consecutive

overflights at the slower frequency

wT(strobed) = O e Int [wT/wrc + 1/2]. (89)

(Int [x] = integer part of x). This phenomenon is analogous to the

apparent slowing down of & rotating wheel, or the plate of a record

player, when illuminated at regular intervals by short flashes of light,
“1(strobed) would be zero i1f W . were an exact

multiple ~of . the repeat frequency mrc. The corresponding tidal
constituent would appear '"frozen" in time and inseparable from static
features of the sea surface such as the geoid undulations or ’the
stationary sea surface topography. This  may happen with éome tides
depending on the inclinaﬁi§n, eccentricity and height of the orbit

(wrc = (é—h)/ Ny, and ! depends on a, € and-; according ﬁp (10)).

Moreover, two different tides of frequencies le and wTZ may - appear

" "lumped" together if their 'strobed" frequencies are the same., For

small e and altitudes of about 1000 km this is possible when the

inclination is somewhere between 70° and 110°, which is one reason why the
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projected orbit of TOPEX has been chosen with an I ~ 64°, In the case of
SEASAT, where T~ 108°, some tides (like Ol and N2) were aliased with
each other and some (like Pl) with the mean sea surface, as mentioned by
Mazzega (1984), Details of this problem are discussed at some length in
two reports: one by NASA”s TOPEX Science Working Group (1981, Appendix
B.2), and the othér by a similar group organized by CNES in France to

discuss POSEIDON (ib,, 1983).
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5.10 The Complete Expression of the Radial Orbit Error

A
IR e EXRNTNN -

The total error Ar is the sum of the tidal and non~tidal components

Ar(T) and Ar(NT) (expressions (47) and (85)):

aece) = arT ey + ae Ve

) B e ¥ +{e]
1
nmapq (nonres) nma “nmp(q { b

cos[((n=2p+(q {£1})) (HD) = (q+{41}) bimb)e + tamap(q+{+1})o]

1 \d . > [o]
— 1+ A .
i nma%qr(nonres) s “at ) "amagr r“mp<9*{*1})7 :

cos[((n-2p+(q+{£] })) (oH)~(q+ {£1 ) itmd )t & wt

S . ] :
* ¢nmozp(q+{:k1})o * (XT”B 591 + Akcos Mt

+ Bysin Mt + Cpt cos Mt + Dkt sin;ﬂt

+ B, t2 Mt + F t2 in Mt + ) (t-t )j
e cos tsin ik , ‘
(90)

where the terms that modulate the sih Mt and the cos ﬁt, and thOSe‘in
tﬁe polynomial at the end, are the agregate of all the very long period
and resonant contributions from errors in‘the models of both gravitational
aﬁd non-gravitational forces, as well as uncertainties in the initial
/ Expression (90)vdescribes éll‘significant elements of‘Af ovef a

weekly arc.
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The non-tidal part of the error in (90) has the same structure as a

sum of additional tidal components of frequencies O, &, 2&,...,

(corresponding to ¢=0,1,2,.,.., with their amplitudes becoming negligible

above 2), one of whinh is "static" (q=0).

The corresponding expression for the especial case of the "frozen",
repeat orbit 1s, from (52) and (86),

Ae(e) = )

AC r (o)
+1kl
nmapq(nonres) "M% nmp(q+{£1 })

0
cos[((n“29+(9+{*L}))NR+mND)wrct+¢nm°P(q+{*T})QJ
1

- ) o (1+k”_ )AL r o
2 nmafqt(nonres) M PT maBt amp(q+{#1})T

cos{(((n-2p+(q+{t?})) Np+ mNp) ., * W)t

-0 X
* ¢nmap(q+{&1})o * (XT-B 2>]
+ Akcos ﬁt + Bk sin ﬁt + th éos ﬁt

+ Dk t sin ﬁt + Ekt2 cos ﬁt + kaz sin ﬁt
J 3
k
+ ) (t=t")
g0 3k "o 91)

Here, because the orbitvis stabilized by occasional maneuvers, the

.rnmb<q+{*?}) and - w, M, %‘, can be regarded as constants over the whole

mission.
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6.0 IMPLICATIONS FOR THE ANALYSIS OF ALTIMETRY

6.1 General

Expression (7) shows that the residual sea height Ahw contains,

besides the orbit error (Ar), information on the unknown parts of the
geold (AN) and the tides (Ags), the non-tidal variations (wt) and the

mean sea surface topography (wo) of the general circulation,

The fine details of the geoid can be determined very clearly by
mapping the mean sea surface with altimetry, because the orbit error Ar
and the topography W, introduce distortions at much longer wavelengths,
Thqse details often outline quite well the submerged trenches, ridges and
mountains that produce them because of incomplgte isostatic compensation.
This was recognized soon after the first use of an altimeter in SKYLAB
(Leitao and McGoogan, 1975; McGoogan et al., 1975), Today, high
resolution maps of the sea surface, like those produced by Marsh and
Martin (1982), reveal aspects ofy the ocean crust of great interest to

geologists and geophysicists (Watts, 1979).

In additibn to being useful over the séa for studying the
gravitational field and oceanographic phenomena, altimetry is valuable to
’some extent over land (Broéks, 1981) and p@rticularly over ice (Brooks et
al., 1978)5 The main problem'on.land is the roughnesé of the surface

observed; a normal sampling,'tace of one measurement per second (about

Ed
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every eight kilometers along track) would be insufficient for mapping
mountain areas, for example. Other applications, such as the study of
wave height, surface winds, etc. (Mognard et al., 1984), based on the
shape and intensity of the returning radar pulses, rather than on their

timing, are not affected by the orbit error.

6.2 Croasover Points and Overlapping Arcs

The difference between two heights measured on the same spot at times

t) and t, is, according to (7),
GhW(tl,cz) = Ahw(cl) - Ahw(tz)
= Ar(t1> - Ar(tz) + A;G(cz) - Acc(tl) + wt(nl) - wc(tz>

+ AA(tz) - AA(tl) .

(92)

The permanent part AN + wo is totally absent, and only Ar, the
tides and other time-varying features are observable tu some extent. Of
course, measurements very rarely happen to be taken so close to each other

that the cancellation of AN + v, is complete. Normally it is necessary

to interpolate Ahw(tl) and Ahw(tz) from megsu:éments just preceding

‘and just following passage over the point in question. There are two

types of point: 'a;c:OSSover point is the intersection of an ascending and
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a descending arc of the ground track (each named after the nearest

equatorial crossing), while an overlap point lies where two or more

parallel arecs (or colinear arcs) run on top of each other; the height

difference in (92) shall be called a crossover difference, or an overlap

difference, accordingly. In a "frozen", repeat orbit, all points are

overlap points, but only some are also crossover points.

Over arcs of a few thousand kilometers Ar can be represented
closely by a constant and a linear terms, or "hiag+tilt". For many years
now the "bias+tilt" model has been used for estimatirng Ar from crossover
differences, by least squares adjustment, in order to correct the data
(Rummel and Rapp, 1977, Mather et al.,'1977). Extensions of this idea,
involving either polynomials or Fouriler series, are explained in Goad
ét‘al. (1980), Similar procedures for correcting 6vet1ap differences were
also developed in the early days (Mather ef al., 1978), A system of

observation equations for estimating biases and tilts out of differences

of either type is rank-deficient, and to solve it is nécessary to "fix"

~ first some carefully selected '"master arcs", or to minimize the

discrepancies along each arc between h, and'Nc using some model of  the
: c .

geoid (see Rowlands, 1981).

‘As explained earlier, in a "frozen", repeat o#bit‘gbe*fadial error
jCOntains a significant component that is a function of latitude alone, and
‘ unobservable in crossover ‘differences. Thefefore, application of ‘the'

v;"bias%tilt" method may leave zonal "wrinkles" in the estimated mean sea
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surface. Fortunacely, most of the data available today were obtained with
GE0S~=3 and SEASAT in non-repeaﬁ, or "general" orbits. This situation is
likely to be reversed by future missions, where most satellites will be in
repeéting orbits. Howéver, after the fuel of the stabilizing engines is
exhausted, the satellites will gradually drift towards more "general
orbits under Qarioms disturbing influences (or may be maneuvered towards
them while there is still some fuel left) yielding moré suitable "master
arcs" to rectify the mean sea surface, as long as their altimeters
continue to operate for a suﬁstantial part of 6ne apsidal period (27/ ).

In such orbits, most of the radial error of gravitational origin is

observable in the crossover differences over that interval.

According to (47) and (52), Ar(t])-Ar(tz) in (92) is a function of
the Acnma’ so these may be estimated frum crossover differences (Shum,

1982). The shorter period effects of the zonal‘errors'are unobservable

when the - ground track repeats, and one would expeCt that also those

produced by low order Acnmé might be hard to observe (Wagner, 1ib.,
1984). The situation is somewhat bhetter in non-repeating orbits, where
all Acnma are estimable, in principle. In any case, the usé of crossover
differences“can be"én interesting Way'of employing altimetry to imprcve or
calibrate existing grévity field models, in combinécion with ordinary

satelite tracking data, terrestrial gravity meaSurements, etc.
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6.3 Direct Mapping of Ocean Tides

Because of the convenient structure of the orbit error, "frozen",
repeat orbits proVide the best data for studying tides, particularly in

the form of overlap differences, According to expressions (85), (86),

~(87) and (88), the tide-related signal is the sum of ACG and Ar(T), both

of which, in the case of a repeating ground track, have exactly the same
temporal frequencies. The overlap differences can be modelled using the

obgervation equation

, .
Shyltypty) = L 1 Brygr By(0, M) {-A (ty) cos(uycanera1)t=8 )
v=1 iRt(central 1(band) ‘

;. ‘ T s s
- B(tY) Sl"(wr(central)tY-B'f) + Achoth:Y + BkY51thY
T(band)

+ Ck thosb.h:Y + Dy t:Ysinb.‘lt:Y + Ep t%cosﬁtY
Y Y Y

J ’ .
2 i 0 yJ (y-1)
+ Fp t<sinMey, + ) ry (t.~ty )} (=1)
ky ¥ YUl Py Y Ry ! '

j
(93)

where Y=1 cortesponds to t, and Y=2 to t5; The terms of the sum ")"
iy (m o L
"1 : " A : d' B
pepresent the '"lumped tlde AcG+Ar , with (band) an B (bana) given

by (70). 1In what follows, regardless of t,, the instant t, always belongs

to the first repeat of the ground track, thus Ak1=A1, Bk1=31» etc. So all

the overlap differences are with respect to the'fi:st arc, which should

- not be shorter than one repeat period Trc' The base functions By for

146

e

e g

RS NG SR S

femists

srsing
_—



parameterizing the "lumped tide" in space can be anything convenient,
including spherical harmonics if the estimate is world-wide. The velocity
potential functions ¢i (see expression (78) et seq.) are orthogonal and
complete over the ocean basins, so they can represent the "lumped tide".

Solving a redundant system of observation equations based on (93) by
the least squares method, one can separate the non-periodical part
of Ar from the "lumped tide". Then, this "lumped tide" may be corrected
iteratively (for example) to obtain A;o. To start with, one can guess

£ (D)

that + AcG is identical to Aco, making in this way a first

estimate of the yielding of the solid Earth §8° and the perturbation of
- (b5)
()

~ the potential V « This requires a numerical spherical harmonic

(1) o¢
analysis of that guess of Ago and then use of the resulting AcnmaBT

according to (73) and (86) to get the corresponding values of 6° and

Ar(T). Correcting the '"lumped tide" by substracting these values will

result in a new estimate of Aco, which can be corrected likewise in turn,

(T)

etc, Because Ar and §° are probably small compared . to A;o, the

(I)It is possible to do this numerical analysis, to very high degree and
order, using . fast algorithms 1like those described (including program
listings) in (Colombo, 1981). Recently Tscherning et al.  (1983) have
compared the efficiency of these and other algorithms, all of which
approximate integration over the sphere with numerical quadratures on
grided data., For sufficiently fine grids, computing the coefficients in
this way, reconstituting .the data from the computed coefficients, finding
the differences between the reconstituted and the original data, and
iterating this procedure, can be shown to be equivalent, in the limit, to
a full least squares adjustment of the coefficients. The first iteration
corresponds to the well-known practice of '"pre-whitening" in ordinary
Fourier analysis, and ‘may increase the number of significant figures

recovered considerably, To -avoid numerical problems, the coefficients

calculated in these large analyses are always fully normalized.
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iterations are likely to converge, As anh‘n < 0.1, ¢&” is one order of

(ag )
°" on the

magnitude less than Lo and so is the radial effect of AV
adjusted orbit, or ephemeris (5 cm at most for STARLETTE (iOOO m altitude)
according to Marsh et al. ib., (1983)). The terms in Ar(T) can be
separated in two groups: those with pe;iods of the orde:‘of months, which
are filtered out together with the non-tidal orbit error, and those with
periods of less than T,., that vremain in the "lumped tide". Of the
latter, only terms whose frequencies are less than one cycle per day may

have to be corrected for, as their amplitudes decrease quickly with the

period. The process described here assumes that the Love numbers are

- adequately known, the same as the solid Earth tide 6,  Moreover, the

contribution to §° and Ar(T) of the tides in the polar regions not
spanned by the ground track would have to be estimated relying on pre-
existing tidal charts. The use of the ¢i for parameterizing the

successive approximations to Aco, starting with AqG,.may be advantageous

because of their '"tide-like" nature, and their orthogonality over  the

oceans,

Once Ar and &7  have been separated from Q;in a global way, a method

like that of Cartwright -and Alcock (1981) can be used for the regional
refinement of the tidal map. Estes (ib;, 1980) has simulated a global
eStimation of tidés from altimetry (with a somewhat simplistic etrof
mode1) and his work suggests that a faithful picturé may be obtéined from

a few months” worth of data. A satellite with a coverage as dense as the
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one projectéed for POSEIDON (Figure 2) should help greatly to obtain very
detailed charts.

If the geocentric tide %_ can be mapped reliably with altimetry, it

G
may be possible to use the measurements of ;o taken with deep-sea
pressure gauges (Zetler, 1980), to estimate & + § directly at the
locations of those gauges. This may be helpful in studying ocean loading

effects, the body tide, and the rheology of the Earth’s interior.

A quite conservative sufficient condition for separating the

(T)

non-tidal orbital error Ar(NT) from the tidal signal AcG+ Ar is that

their respective spectra should have no frequency in common. In a

(NT) present in the overlap

"frozen", repeat orbit the portion of Ar
differences consists of the '"quadratic once per revolution" oscillation
and the polynomial terms in (52). Itskspectrum is confined te two bands:
the first .extends, approximately, from O to 25 and the second from
M=20 to M20 (% ~ one cycle every 30 years for SEASAT). The tidal
signal, .as seen from the saﬁellite according ﬁo (86), (88) aqd (89) has

all its components at frequencies that differ from the harmonics of ;wrcby

As 0 and M are harmonics of , ~the sufficient

*vmr(strobed)" ' re

condition requires that

2'”'<‘wr(strobed)' , (94)
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so all the spectral 1lines of ae(T) fall outside the two main bands
of Ar(NT), However, this guarantees good separability only if the

duration Ty, of the data stream analyzed satisfies

Tar ? '2"/(le(strobed)i'zlhl)]' | (95)

For all past altimeter missions, aﬁd for any contemplated future oues,
Tdr‘ < 4 years, so the tidal components that can be resolved from the
measurements of & single satellite must have "strobed" periods not much
longer than 4 years, atsuming that the data were free from errors. As the
period of 20 must be of the order of one decade, all those "resolvable"
componenté should satisfy (95) and be, therefore, separable from the
resonant terms in (93).

In the case of ordinary non-repeating orbits where the perigee
precesses once or more per yeér,vexpressibn (90) shows that the orbit
error. must resemble a periodical up aﬁd down motion with its main
components at frequencies 0, & and 20, and with spatial wavelengths as
small as 1000 km. These components can be seen as additional "tides",
which would have to be included in the model, greatly increasing the

number of parameters to be adjusted; otherwise, they may bias the

estimates of the real tides.
All attempts at mapping ¢, with GEO0S-3 data, originally thought to

be a reasonably straightforward operation (Zetler and Maul, 1971), have

turned out rather disappointing ;esults. The poor distribution in time
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and in space of these measurements (collected over disjoint intervals of
no more than 20 minutes, because of the lack of an onboard data storage
device), the somewhat low accuracy of the instrument and the non~repeating
nature of the orbit, all have conspired to frustrate those efforts (Maul
and Yanaway (1978), Bretreger (1979), Won and Miller (1979), Masters et
al. (1979) and Coleman (ib,, 1981))., The first estimates of the M2 tide
showing clear agreement with the amplitudes and phases observed at
maritime stations or plotted in existing tidal maps have been those of
Cartwright and Alcock (ib., 1981) for the northeastern Atléntic, of
Mazzega (1983) for the indian Ocean, and of Mazzega (1984, ib) for the
whole world, all based on measurements from the last month of SEASAT,
Although these workers have taken no advantage of the structure of the
orbit error (treated by them like white noise), their results are better
probably because of the special nature of Ar along the repeating gfuund
track, while the accuracy and the spatial coverage of the data must have

helped also, even when the total observing period was short,
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7.0 CONCLUSIONS

The nature of the orbit determines that of the radial orbit error{

There is a geographical component in this error, due to the gravitational
field model, that is largest in the case of "frozen", repeat orbits.
Because of the precise repetition of the ground track every few days, this
is the kind of orbit 1likely to be used in most future missions, and has

been used already for SEASAT,

In the differences in altimetric heights along the colinear passes of
a repeating ground  track, the radial error 1left consists of a slowly
increasing oscillation plus a low degree polynomial (if the arc is about a
week long). This error, produced mostly By resonances of zonal origin, is
easy to model  and to separate from oceanic variations because it has a
much 1oqger wavelength. Its main contribution to ﬁhe power spectrum of
the total error should be confined to very low frequencies and to a narrow
p&ak at about one cycle per revolution; this seems to agree well with
experience (Marsh and Williamson, 1b., 1980). It 1is -important to have
accurate and dense tracking and also good models of the non-gravitational
forces.  The ;QSe éf incorrect ﬁodeis of‘ these forces may  increase
significantly ﬁhe‘resoﬁanf part of the radial errof.. It is easy té déél
with the long period effects of the errors in non-gravitational models,
because they belong’ mostiy to the '"resonant! part of Ar. The shorter
peri§d effects of thgse errors, on the ‘other‘ hand; cannot be treated

adequately with the type of analytical‘thgofy,used here. ' Therefore, the
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present conclusions (insofar as they are based on that theory) are
reliable only if the models are good enough to make such effects quite

small,

To separate the main tidal components from each other and from the
mean sea surface, heliosynchronous and high inclination orbits should be
avoided. However, for studying other time~varying features, using repeat
heliosynchronous orbits could make the effects of non~gravitational force
model errors more tractable, particularly those caused by the complex and
often‘changing shapes of the spacecraft. If the attitudes of the various
parts of the satellite (particularly the solar panels on which most of
those forces act) are stabilized with respect to the Sun by making their
orientations in 1nertial space functions only of the spacecraft”s position
relative to the plane of the ecliptic, then the pressures of solar
radiation and of Earth”s re-radiation, and the errors in their models,
will be functions of that position as weil (except for small variations in
the Earth*s albedo, the slow ennual ehanges in solet‘declination and in
apparent luminosity of the Sun with distance as theanrth moves in its 

elliptical orbit, etc.) Under the assumptions, over long perlods of time,

~ the errors in the computed values of these forces will repeat themselves

ajmost exactly once per teVolution. Their contributions to the radial

error will consist of a resonant part (an extreme example of which seems

‘to be present in one of the graphs in Figure 4), and of a part that

repeats along the ground track and thus largely disappears from overlap

differences. As the atmospheric ‘helium bulge follows the Sun, similar
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considerations would apply to drag model errors, Departures from this
well-behaved pattern due to changes in solar radiation intensity and
magnetic flux could be reduced by such a simple procedure as the daily
adjustment of the drag and reflectivity coefficlents (reality, of course,
can be wonderfully messy, so these idess are to be taken with a grain of

Balt)o

In a "frozen", repeat orbit, part of the radial error is "lumped
together', in the altimeter measurements, with the error in the geocentric

tide, but they can be separated using Love numbers,

"Frozen'", repeat orbits are best for studying temporal variations
(like tides) by analyzing colinear pass'differences, because the radial
error left in them 1s easy to filter out; however, since a significant
part of Ar 1is also unobservable in crossover differences, these orbits are

worst for modelling the mean sea surface by the "bias + tilt" method.

In the crossover differences of ordinary, non-repeating orbits, where
the mean perigee is not "frozen", the radial eiror can be'obserVed and

corrected better than in the repeating case, by the "bias + tilt" method,

provided the times of the ascending and descending passes at the

‘crossovers are digstributed over a substantial part of oune apsidal cycle.

In this sense, non-repeat orbits are best for mapping the mean sea
surface, The same applies to the use of -crossover differences for

calibrating or correcting existing gravity field models,
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Improving the force models, the gravifational one in particular, is
essential to the determination of the stationary sea surface topography

Wo» Which requires both precise knowledge of the orbit and of the geoid.

The difference between the geocentric tide (observed with satellite-
borne altimeters) and the 'surface-bottom" tide’ (sensed with deep-sea
pressure gauges) is the sum of the body tide § and the crustal
bending 6f. Once long series of accurate measurements from altimeters and
pressure gauges are available, it may become possible to map these

vertical movements directly, across the oceans.
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