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ABSTRACT a

A theory

r

of radial orbit errors is derived from first principles; the

basic	 ideas are presented in a reasonably self-contained way.	 There is

r' also	 a section about	 tides,	 their effects	 on orbits,	 and	 their possible

e ' mapping with satellite altimetry.	 The	 theory seems	 to explain well the

outcomes of computer simulations made independently by this author and by

others. Orbits with precisely repeating ground tracks are considered in

	

K	 detail. SEASAT was kept, in an orbit like that during its last month of

operation, and future satellites with altimeters are likely to be in

r, orbits of this type (TOPEX, ERS-1, POSEIDON).	 In this special case,

	

Ar ( 8 ) , the part of the radial error caused by the gravitational field	 }

model, has a component that depends only on position along the repeating

ground track; the remainder of Ar (g) is caused by deep orbital resonance
6.

(mostly with the zonals) and consists mainly of a slowly increasing

oscillation of one cycle per revolution (non-gravitational force models

may produce similar "resonant" errors). Moreover, the periodical errors

	

x	

due to the zonals are functions of latitude only, and unobservable in

	

a	 crossover differences.	 Repeat orbits,, where the perigee librates very 	 0

slowly, are not the most suitable, therefore, for using altimetry to

	

V	 compute the dean sea surface by the "bie,s+tilt" and similar methods, or

for gaining new information about the zonal part of the field. These

G orbits are best for studying temporal changes of the sea surface_, because

the ,error can be filtered out easily using colinear pass differences.

Conversely, non-repeating orbits, where the perigee precesses, are worse-
t i

	for studying changes but are better for mapping the mean sea surface and	 g

modelling the field, provided the altimeter observations span a

substantial part of one apsidal cycle.

f
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1.0 INTRODUCTION

The face of the ocean has been examined with artificial satellites in

- the last decade and found to be hovered with remarkable features hardly

suspected before, when more than two thirds of the globe were still
off

€4	
largely unsurveyed. Among the millions of measurements made with diverse

` instruments ) those- taken with the radar altimeters of GEOS 3 and SEASAT

have proven of particular value for studying our plant, because of their

high and homogeneous quality, dense coverage, and range of application.

s	 So it is not surprising that new space missions involving the use of

% f	 altimeters are being planned for the next decade; those of TOPER (NASA),

ERS-1 (ESA) and POSEIDON (ONES), among others.)

The importance .stance • of altimetry is suggested by the volume and variety of
r* i	

xthe scientific literature related to it. One could mention, for example,

three special issues of the :Journal of Geophysical Research (Vol. 84, B8,

1979 on GEOS 3; and Vols. 87, C5, 1982 and 88, C3, 1983 on SEASAT), one of

Marine _Geodesy (Vol. 8, 1984), or one of the Journal of the Astronautical

t Sciences (Vol. 28, October-December 19$0 on orbit determination for

SEASAT), as well as the proceedings of a number of international

symposia. Two comprehensive reviews of the work 'published in the USA

alone from 1975 to 1982 have been made by Stanley (1979) and by Marsh

.'	 (1983).

1
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1.1 Motivation

a

Since the earliest days of GEOS 3 it hao been clear that the orbit

(^.	 error constitutes a. serious problem..	 Things have improved, but the

	

a	 problem persists.	 While the error has its uses, too, as a source of

information on what is not known about the gravitational field ('Shum,

1982, and Wagner, 1984), it remains mostly a nuisance that can be

mitigated with more or less empirical remedies, but that still limits the

usefulness of the data in many applications. For this reason, efforts to

get better models of the forces acting on the spacecraft, of which the

gravitational ones art! the most significant, are currently under way on

both sides of the Atlantic.

t

An approach to the orbit problem based on celestial mechanics can

give further insight into the way the empirical methods work and, perhaps,

into how to improve them. As the relevant literature on satellite geodesy,

r

	

=	 includes many important papers, reports and books either out of print or 	
y	

x
g)

hard to get, I have written here a rather detailed introduction to the

basic concepts. This may be of some value to those who wish to understand
i

the nature of the orbit error better and are not very familiar with the

subject.'	 i

r	 The theory, as given here, is slanted towards orbits determined by

the methods now in common use for geodetic satellites (Martin et al.,

197.6, Putney, 1976; Schutz et al., 1980). The orbits of GEOS 3 and SEASAT

2
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have	 been	 compgfsed	 by	 those	 methods,	 which	 are	 also	 the	 main	 ones

considered,	 at	 this stage-,	 for future missions. 	 One possible alternative

Is	 to find the position of the spacecraft from simul taneous observations

^a
of several GPS-NAVSTAR navigation satellites. 	 If the ephemerides of these

satellites were sufficiently well known, this would eliminate the need to

integrate long arcs numerically with imperfect force models, thus avoiding

the orbit errors due to those models.	 The idea has been studied by Bender

and	 Larden	 (1982)	 and by Ondrasik and Wu (1982).	 It may be used, on an

s	 '' experimental basis, during part of the TOPEX mission.

The analytical orbit perturbation theory explained here is only meant

to	 give	 a	 qualitative	 understanding	 of	 the	 error.	 Its	 formulation

includes	 several	 simplifying	 assumptions,	 so	 it	 is ,quantitatively	 less

r accurate	 than	 the	 numerical	 integration	 of	 the	 exact	 differential

equations	 involved,	 which	 is	 also	 much	 more	 adequate	 for	 handling

non-gravitational	 forces	 (drag,	 radiation pressure, 	 etc.),	 and so it has
is

become	 the	 standard	 procedure	 in	 satellite	 geodesy 	 today	 (its	 main

limitation	 complementing	 that	 of	 the	 analytical	 approach:	 it	 trade's ^M

E
t

r
insight	 for	 numbers);.	 Nevertheless,	 efforts	 to	 refine	 and	 extend	 tho

analytical	 method	 still	 continue,	 as	 shown	 in	 a	 review	 by	 Gaposchkin

(1978).	 The	 treatment	 of	 the	 radial	 error along	 a	 precisely	 repeating

i' ground	 track	 is	 a new version,	 using JKeplerian elements, 	 of	 part	 of -a

complete	 theory' developed	 by me	 for	 this	 special type of	 orbit	 while

visiting	 at	 the	 Department	 of 	 Geodesy	 of	 the	 Technical	 University	 at

Delft,	 in the Netherlands,' over the period 1982-83 (Colombo,	 1984).'	 More

P^

_ 3

w

Al



recently, a similar theory for the periodical part of that error has been

worked out independently by C.A. Wagner (ib, 1984).

While oriented towards oceanography (the main field of application of
r

altimetry until now)	 the	 present discussion of	 the orbit error	 is also

relevant to the uses of data taken on land, ice, etc.

Y The topic of tides is intimately linked to that of altimetry. 	 Tides

modify the	 gravitational	 field, 	 affecting	 the	 orbits	 of	 spacecraft and

contributing to the errors in their determination.	 They also show up as

'. part	 of	 the	 signal	 in the altimeter measuremecit$.	 In principle,	 it	 is
x

L
	 i' f

possible	 to	 map	 them	 directly	 over	 the	 whole	 of	 the	 oceans	 using

;.imetxy. Attempts	 have	 been	 made	 several	 times,	 mostly	 with	 scant

success.	 This must be blamed,	 to some extent, on the inadequate temporal

and spatial sampling and limited accuracy of 	 the GEOS 3 data, and on the
r, , y

5

short	 life	 of	 SEASAT.	 But,	 perhaps,	 better	 results	 could	 be	 obtained,
t

even with such measurements, 	 if one were to take full advantage of what

can	 be	 predicted	 from	 first	 principles	 about	 the	 nature	 of	 the	 orbit

errors.	 As mentioned in the 'section on "Tides", some of the best results

so	 £ar	 have	 come	 from	 data	 collected	 during	 the	 last	 useful	 month of

SEASAT.	 At	 that	 time,	 the	 satellite had	 a	 precisely	 repeating ground

track which,	 in theory, should make the radial error particularly easy to

filter, because of the strong symmetry of the orbit.

4
.
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The literature on tides is very extensive, Cartwright estimated in

1977 that, over the previous 200-odd years, the number of ;publications had

grown almost exponentially with time (to illustrate this, he tabulated the

increment in this number at fifty years' inter n als).	 Hendershott and Munk

{

(1970),	 Cartwright	 (1977)	 and	 Schwiderski	 ( 1980)	 have made	 comprehensive

reviews.	 The basic ideas needed 	 to consider the tides in the context of

'. satellite	 altimetry	 are	 scattered	 far	 and	 wide	 in 	 works	 on	 astronomy,

geodesy,	 oceanography and geophysics. 	 I have tried	 to bring these ideas

'	 w together in a way	 that	 shows,	 as	 clearly as	 posstle,	 the links between

rf the theory of tides and that of orbits.

Tides	 have	 always	 fascinated	 those	 with	 imagination:	 regular

movements in an otherwise unpredictable element, following the rhythms of

the	 sky''.	 Now they are	 beginning	 to be mapped from that	 same	 sky,	 with

z modern	 instruments	 whose	 proper	 use	 requires	 understand{-g	 the	 timeless

t} rules	 by which	 the	 sea,	 the Sun,	 the Moon,	 the satellites and	 the Earth

join together in a complex dance. 	 In the end, through the combination of

x techniques old and new, a task formulated nearly three centuries ago shall

be	 fulfilled.	 At	 the very dawn of modern celestial mechanics and tidal

;. theory, Newton wrote in his "Principia":

"Thus have I explained the causes of the motions of the
Moon and	 the	 sea.	 Now it	 is	 fit	 to subjoin something
concerning the amount of those motions:"

h
a

5

f



2.0 ALTIMETRY

2.1 Residual Sea Heights

The height hw of the sea surface above a reference ellipsoid, or

ellipsoidal height of the surface, can be expressed as the sum

h  w N + w  + 4G, + W t	 ,	 (1)

where	 N is	 the	 geoid	 height,	 wo is	 the	 constant 	 part	 of	 the	 difference
s^

between hw and N, or stationary sea surface topograa2hy, 4, represents the

total geocentric	 tide (a regular movement of	 the sea surface towards and }'

away	 from	 the	 center	 of	 mass	 of	 the	 Earth,	 or	 &eocenrer),	 while	 wt

corresponds to all temporal variations in surface height other than tides.

The value	 of N can be calculated using a gravitational field model,. K	 M.

This	 model,	 for	 some ocean studies and	 for	 the computation of satellite

_
orbits,	 has	 usually	 the	 form of a sum of spherical	 harmonics.	 In this

work	 I	 shall	 assume that the	 field model	 is	 of	 this	 type.	 The	 high

frequency part of the geoid at sea is known quite well nowadays thanks to

the	 two	 altimetric	 missions	 already	 carried	 out,	 GEOS-3	 and	 SEASAT.

Spherical	 harmonic models	 up to	 degree and 'order	 180	 (and	 even higher)

have	 been obtained	 from combinations	 of	 altimetry with _land gravimetry,

and	 they	 appear	 to	 be	 quite	 reliable_	 over	 the	 oceans,	 particularly	 in

details	 smaller	 than	 1000 km	 (see,	 for example,	 Lerch et al.,	 1981,	 and

_	
6

tJ

NEU 4,

1
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Rapp, 1982). As shown by calibration against inde pendent data and each

other, existing models seem to be weakest in the frequency range between

degrees 10 and 40.	 Information on the low degrees comes mostly. from

satellite tracking data.	 Recent inte rcompari sons of satell1te-derived

itiodels have been made by Reigber (1983), Lambeck and Coleman (1983), and

Lerrh et al ( ORIA)	 Tha hrnaAaaf- fmaf-""na	 A-	 11	 4

reliable already (Wagner, 	 1983).

L The	 contemporary	 ocean	 tidal	 charts	 are	 believed	 to	 be	 reasonably

k`j good	 (Schwiderski,	 ib.	 1980),	 but direct evidence for 	 this	 is	 limited to

data from tidal stations scattered widely along the coasts and in islands

most of which have been used to make the charts in the first place.	 Solid

earth
	

tides	 are	 thought	 to	 be	 known	 much	 better	 than	 ocean	 tides	 at

present.	 No model	 for the prediction of w	 exists	 today,	 though some oft

the	 phenomena	 involved	 are	 understood	 to some extent,	 such as	 mesoscale

r
eddies,	 the piling up of water along the coast caused by wind, etc. 	 There

is	 reason	 to	 believe	 that	 much	 of	 wt	can	 be	 treated,	 geographically,

mostly as a random variable	 (see Wunsch,	 1980,	 for further details) whose

standard	 deviation,	 while changing from place to place according to how

energetic are the currents and winds that agitate the aea sur.face, can be

estimated	 directly	 from	 the	 study of	 overlapping altimetry passes 	 as	 in

(Cheney	 et	 al.,	 1983),	 for	 example.	 Maps	 of	 the	 mean	 sea	 surface

topography,	 bazed on general circulation	 models,	 are also available,	 but

their accuracy is unclear.	 As examples one can mention those by Lisitzin

(1974),	 Levitus	 and Dort (1977),	 etc.	 Attempts	 to map wo using altimetry

7
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have been severely hampered by the orbit and geoid errors, directly linked

to the long wave uncertainties in existing gravitational field models.

This problem was recognized very long ago, as shown in a paper written by

Von Arx (1966) almost a decade before the launch of GEQS 3. Wunsch and

Gaposchkin (1980) have proposed the simultaneous determination of wo and N

'by analyzing a combination of gravitational, altimetric and oceanographic

data with a suitable form of generalized linear regression estimator (see'

Rao 1965 Ch. 2 (g) and also Moritz (1980)). Extensive discussions of

the sea surface topography problem, and reviews of much of the work done

using GEQS 3 data, have been written by Rizos (1980) and Coleman (1981).

t

a

ri
If Nc is the geoid height computed from the field model, and M the

corresponding error in N c , then

N - Nc 	AN	 (2a)	
g

'a

Similarly, if 
AEG 

is the error in .4G , the geocentric tide calculated

cfrom charts cif the ocean and the Earth tide with the corresponding Love

numbers (expression (77) in the section "Tides"),

G = Gc - ,O^G	 (2b)

H

t
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. If hs is the ellipsoidal height of the altimeter satellite, and A the

shortest distance between the center of mass of the spacecraft and the sea

surface, then, as a very good approximation, .

h	 _h	 —A	 (3)
-w	 s

a

A. After	 corrections	 have	 been	 made	 to	 the	 raw	 data	 ("pre-_several

processing", see Hancock et al., 1980, and Tapley et al.,	 1982), including

those	 resulting	 from	 "in-flight"	 calibration	 of	 the 	 altimeter
x

(Kole.nkiewicz	 and	 Martin,	 1982;	 Marsh	 and	 Williamson,,	 1982),	 the	 radar

is altimeter	 ranges	 A	 can	 be	 regarded	 as	 successive	 values	 of A plus	 a

'

m
n

measurement	 error AA, where AA is	 mostly	 random	 noise.	 For	 GEOS-3,	 the

i ' first	 satellite	 dedicated	 to	 altimetric	 observations,	 AA stood at	 about

75	 cm;	 the	 error came	 down	 to	 near	 10 cm for	 SEASAT,	 launched	 three !

years	 later	 (in	 1978);	 for	 future	 missions,	 a	 third-	 generation	 of

x
altimeters	 is	 likely	 to	 bring AA into	 the	 centimeters'	 range	 .(see

MacArthur,	 1980),

S

The	 height	 of	 the	 satellite hs can be calculated	 from its	 computed;

orbit,	 or ephemeris,	 which is obtained by adjusting the initial position,
r

` velocity	 and	 a	 few other	 parameters	 in	 an	 iterative	 Gauss-Newton	 (or

similar)	 procedure to 'minimize the .sum of the squares of the differences

between	 the values	 of	 the tracking data available and	 the corresponding ' g

values	 calculated	 from the	 estimated ephemeris	 (see Martin et	 al.,	 ib.,

1976).	 This fitted orbit usually; spans a few days	 (up to one week), and

9
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then a new orbit fit is made for the following several days, and so on.

While not unique, this is today a common procedure for getting accurate

ephemerides of altimeter satellites, so in this study I consider only

1'
orbits computed in this way. At present, the error Ahs in h s is believed

r,
to be of the order of 195 meters (rem.s.) (see Marsh and Williamson, 1980;

Lerch et al., 1982)•(1)
s	 ,

The reasons why the .ephemeris are not exact are multiple: errors in

tracking data and in tracking station coordinates; the abundance and

^ 	 distribution, temporal as well as geographical, of these data; imperfect'

refraction corrections in the tracking; errors in the models for

	

EF	
calculating the forces that shape the orbit_, etc. 	 Of the force errors,

the most prominent, at resent are errors in the

	

^ rs	 P	 ^	 present, gravitational fieldg

model, followed at some distance by errors in the models of surface forces

such as air drag and solar radiation pressure.	 The last two are	 a	 F

particularly- serious in satellites like SEASAT, because of the large solar 	 k

panels needed to feed their power-hungry equipment, as well. as the

presence of a number of large antennas and other objects of complex shape, r

all of which is made worse by the changing attitude of the spacecraft, as
t

F
this varies the effective cross-section opposed to the surface forces.

Often today orbits are estimated assuming that	 satellite is a	 -

(1) Horizontal orbital errors can be disregarded.	 They are, at present,
of the order of less than 100 m, and because of the smoothness of the sea-
surface (averaged over the cross-section of the radar altimeter beam, or 	 r

footprint, usually 1 km or more in diameter) their effects on the accuracy	 g
of the calculated height is negligible. Numerical integration errors in
precise ephemeris are insignificant.

T

	

h	
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homogeneous sphere, a "cannonball", and then trying to compensate for the

obvious deficiencies of this model by adjusting, together with the initial

position and velocity, the coefficients that scale the drag and the solar

pressure; this is usually done at intervals shorter than the total length

"	 of the arc, such as once per day (Marsh and Williamson, ib, 1980). A

'	 study of the consequences of using various simplistic, but practical, ways

of handling the surface forces can be found in (Colquitt et al., 1980).

If A is the (pre-processed) altimeter measurement, hsc the computedx	 m

satellite ellipsoidal height, and Ah s the error in the latter, then the

calculated value hwc of hw obtained from he and Am is, according to (3),

	

hwe hsc Am	 l

(h + Ah) - (A + AA)

	

S	 s	
r

w	 hw + Ar - AA t
t

where the error Ar in the computed radial- geocentric distance to the

;.	 satellite has been ; gut ip place of the ellipsoidal Ahs , both being almost

identical, to simplify the mathematical treatment. Replacing N and 4G

according to (2a) and (2b) in (1) and the resulting expression for h w in	 y
>	 r

t

(4) leads to
t

. s

	hwe _ ((Nc
	AN) '+ wo + Gc - AEG + w t) + Ar -- AA..	 (5)

11 }



Let

Ahw hwc	 (Nc + 
sGc)
	

(b)

be the residual sea height• .	 Subtracting Nc and r,Gc from both- sides in (5)

one gets, after rearranging terms,

i

Ah	 Ar —AN — A	 +w	 +w	 —AA	 -	 ^7)w	 c	 t-

. akhere AE(	 + 6 + d') ,	 d' being	 the yielding of	 the solid Eartho

L to the ocean tideand d the solid Earth tide.
a

On present evidence, and according to the way in which they have been

defined above,	 AN, Ar, A'G
	

and wo seem to have mostly Long- wavelength

spatial features	 (larger	 than 1000 km).	 The	 r.m.s.	 for each term in (7)

' is	 thought to be:,	 2 m or less (today) for both Ar and AN; 	 nearly 1 m for

wo	 and	 For	 the	 geocentric	 tide;	 less	 than	 0.1 ,m	 for wt	 (except	 over a

small percentage of the sea surface); and 0.1 m (or less) for AA, provided

there	 is a microwave radiometer onboard,	 as	 in SEASAT,	 that can measure

the amount of water vapor along the altimeter beam, to estimate accurately

tN,; delay due to "wet" tropospheric refraction.
k

z
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3.0 ORBITS

3.1 Orbital Motion and Keplerian Elements

F As	 the 	 orbits	 considered	 here	 are	 approximately	 elliptical,	 it	 is

convenient	 to	 formulate	 their	 theory	 in	 coordinates	 that	 make	 the
i

' description	 of	 elliptical	 motion	 particularly	 simple.	 Among	 Several

possible choices,	 the most common is that of the six quantities known as x

r the osculating Keplerian elements, which can be translated into the three
DR

Cartesian coordinates (x, y,	 z) for position and the three 	 (x, y, z)	 for

velocity, and vice versa, in an unambiguous way (see Table 1(a-b) and Fig.

1).	 Keplerian	 elements	 are	 used	 in	 the	 classical	 analytical	 theory of

satellite geodesy. 	 This -theory has its origins in the old method for the

study of planetary perturbations 	 known as "Variation	 of Constants"	 (see

Brouwer and	 Clemence,	 1961), adapted by geodesists,	 in the early days of

the "Space Age" (late	 'fifties and early 'sixties), to the special task of

i	 C
mapping the complex gravitational field of the Earth.

a

Before	 defining	 the	 "elliptical"	 coordinates,	 consider	 a	 Cartesian

system with the _origin at the center of mass of the Earth, or geocenter,

the x ,and y axes on the plane occupied by the equator at the start of the
44

11

orbit,	 or equator of epoch, the x axis aligned with the Earth's spin axis
1

F +

at that epoch, and the x axis lying along the intersection of -the"equator

I with	 the plane of the ecliptic, and pointing towards the vernal equinox.

The	 orientation is	 fixed with	 respect	 to	 the distant	 stars;	 in general,

? 13 R
fr
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because the whole Earth, including its center of mass, is accelerated by

external gravitational forces (the pull of the Sun, the Moon and the other

planets), the system is quasi-inertial. 	 The analytical theory is

developed as if it were truly inertial, by making use of the idea of tidal

Potential as explained in the section "Tides".

'. The osculating ellipse is the two-body orbit that the satellite will

begin to follow, from the point of view of an observer fixed to the system 4

just	 defined,	 if,	 while	 driven	 only	 by	 their	 mutual	 gravitational

` attraction,	 both the Earth and the spacecraft were to shrink suddenly at

time t,	 becoming point-like particles 	 situated at	 their original centers s

of mass, but each retaining its velocity and momentum. 	 The mass-center of }

the satellite would still have the same position vector r with respect to

the geocenter (the modulus Irl 	 being the geocentric distance r) and the i

a* 	% same velocity vector r, which means that the osculating ellipse is tangent

to the true orbit at 	 time t (hence its name). 	 Because of	 the nature of

"
V Newtonian	 physics	 (which is	 the one used	 here)	 given r and r at	 t,	 the

ellipse istrajectory	 after	 t	 is	 entirely determined,	 so	 the osculating ^1
W !
5

defined	 by	 these two vectors.	 Furthermore,	 it lies	 entirely	 in the

'• same	 plane	 as	 them,	 the	 instantaneous orbital plane, 	 and	 has one

x

}

Ij
M	 ;

z
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focus at the geocenter. (1) 	The ascending node is where the satellite

would cross the equator going north if it, were to continue along the

osculating ellipse, and the descending node is the point where it would

cross that plane going south.	 The line of nodes, determined by these

two points, is the trace of the instantaneous orbital plane on the

.̀ equator.	 The	 closest	 point	 to	 theq	 p	 geocenter	 is	 theerp	 igee,	 the

furthest is	 the apogee;	 they lie at opposite ends of the major axis of

rf the	 ellipse,	 or	 line	 of	 aPsides.	 The	 osculating	 Keplerian	 elements

a, e,	 1, St,	 and	 M	 are:	 the	 semi-major	 axis	 a,	 the	 eccentricity
r

e (0 4 e < 1), the	 inclination l 	 (angle	 between	 the equator	 and the
1

orbit	 plane),	 the argument of the node S2 	 (angle between the x axis and
R

the line of nodes as shown in Figure 1), the argument of perigee w 	 (angle

between	 the	 line	 of	 nodes	 and	 the major axis),	 and	 the mean anomaly M.

;. The	 latter	 is	 related	 to the	 eccentric	 anomaly	 E	 (shoran	 In	 Figure	 1)

through Kepler's equation

M	 E - e sin E ,	 (g)
a

F

(')The reason why the osculating -ellipse of 	 the satellite has a focus at
the geocenter is not the much smaller mass of 	 the satellite,	 compared to
that of the Earth.	 Even if both bodies had the same mass, or the system
were attached to the center of mass of the satellite, 	 rather than to the
Earth's,	 the focus would still be at the origin of coordina tes. 	 This is
because the osculating ellipse describes the instantaneous relative motion
of	 one	 center	 of	 mass	 with	 respect	 to	 the	 other,	 whatever	 the	 masses
involved, as long as the relative velocity is below the escape value (see,
for example, Brouwer and Clemence (ib., Ch.	 1,	 1961)).	 An example is the
"orbit"	 of	 the	 Sun in classical	 tidal	 theory	 ( see paragraph	 "The	 tidal

forces").

P ^
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I

a	 transcendental	 equation	 in E which must	 be	 solved	 iteratively,	 given

M.	 The	 mean anomaly would be	 the	 angular distance	 f rom	 perigee	 of a

satellite	 moving	 at	 a	 constant	 angular	 velocity	 equal	 to	 n,	 the	 mean

motion,
t

1/2

n	 ( pa- )	 (9)

dtc
.4 M(t)

dt
k

where ar M(t) is the rate of change of M in the osculating ellipse,	 u is
r

the product of G (the universal constant of gravitation) times the sum (Me

' + Ms	-s	 e.	 » M)	 of	 the masses	 of	 the Earth and	 the satellite.	 As M	 s,	 this

L
_r

^`
reduces	 to	 u = -G M .	 If	 the	 Earth	 and	 the	 spacecraft	 were	 trulya
particles,	 (9) would be Kepler's Third Law, 	 and the orbital period would

be To = 2n n_l.
	

The ground	 track of a satellite is the line described on

the	 Earth's	 surface	 by	 the	 point	 directly	 below	 the	 spacecraft,	 or

-1
subsatellite point.	 Table	 lc gives the relationship between the elements

and ¢ and X at	 the	 subsatellite	 point.	 Because	 of	 the	 rotation of	 the .

Earth	 and	 the	 motion	 of	 the	 satellite,	 the	 ground	 track is	 a	 (nearly)

spherical helix wound up between the parallels of latitude t I. 	 The pitch

of this helix depends on the ratio between the terrestrial and the orbital

angular frequencies.	 By tuning the orbit carefully, the helix can be made

to close upon itself after a given number of days, forming a periodically
I

repeating ground track which is also rotationally symmetrical with respect`

to the Earth's axis. 	 This is done sometimes in Earth-surveying missions, !`i

including altimeter ones,
s

r 16
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A : ascending node
D : descending node
P : perigee
O: ,geocenter
II ; center of symmetry of the ellipse
OP	 4 the sernimajor axis
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S satellite position
(Verna Equinox)

S': projection of S on circle of radius a = 41R
E : eccentric anomaly
f : true anomaly	 ='
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' e i FIGURE 1. Geometr 	 of the Osculating EllipseY	 g	 _ p

17



A

A U:

TABLE I (a)

CONVERSION FROM INERTIAL TO ELLIPTIC COORDINATES

r a xi* + yt* + zk*
Given

i - k* + ^J.* + ik*

where Oo t*, ^* are unit vectors In the directions x t y, Ze

1. Compute a. Let	
2	 2	 2 

1/2

and	

V	 jfj	 (^2 + 
2 + 

2 1/2

Then	 a n r v

r2. Compute e	 e cos E
a

L

	e sin E	 r

	

2	 2	 2	 2e	 Ve cos E + e sin E

%iompute M
I e sin E	 (E is in the quadrant where e sin E

E	 t	 09	 and e c s E have their signs as in
e cos E	 the previous step.)

	

M E e sin E	 (M > V if E > 7)

Compute 9
(Same comment as for E, regardingt	

Z±S1	 g	 the signs of numerator and
denominator inside the brackets.)XZ-ZX

5. Compute I
-Z^+X;

(I is always less than n.)tg	 (	 0	 0	 1
Cos S1 xy-yx

6. Compute W
zt

g	 (sinl)(x cos^2 + -Y sin^2)

R	 (See comment4 fjr
E and f or 2.I	 I+e	 E2 tg	 tan-e

18
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TABLE 1(b)

CONVERSION FROM ELLIPTIC TO INERTIAL COORDINATES
M-

1.	 Compute the constants

Px	 cos 2 cos w - sin w cos I sin 0 3

t Q
x	

—cos R sin w- cos w cos I sin S2

r
Py 	sin 2 cos w + sin w cos I cos	 St g

t

Q 	 _ —sin Q sin w + cos w cos I cos 0

Pz	 sin I sin w ".

Q	 sin I cos w
z

L	 s^
A'.

7,	 Compute. E

Solve Kepler's equation

E_M —e R in E

iteratively, starting with E( 0)= M.

tt

3.	 Compute xyzxyz
f	 L

r =	 a (cos 'E—e) +	 a 3 1 —e^P	 q_
sin E^

--

r	 [q 3 1—e	 cos E — p sin Ej
r

where

p	 P	 ik+P	 j* +P 	 k*y- and q	 Qx	 *+Qy j*+Q	 k*
-	 -	 - Z-

r

.

x-	 z-

Y^Ok.

R

•
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TABLE 1(c)

CONVERSION FROM ELLIPTIC TO SPHERICAL COORDINATES

1 Compute r
t

r	 a(l-e cos E)	 where
u

M + (e - 8:) sin M + 2 e2 sin2M + 0(e3)

(or so,Iue Kep],er's equation iteratively, as suggested in Table lb).

t 2. Compute the true anomaly f (shown in Figure 1)

2f = M + (2e -	 e 3) sin M + 1 e sin 2M + 0(e)_
wr

which	 is	 the equation of	 the center	 (for	 rough calculations, 	 f=M is
i

acceptable if e is small).

3. Compute ¢^

1
[sin¢ =sin	 I sin(w + f)]

k where	 sin-1 (0) ='0-	 and	 is	 in	 the	 same	 quadrant	 as	 w*f	 if

- 2 4 U+f < 7 	 otherwise it is in the same quadrant as tr-(u+f). 1

" 4. Compute

i;

X

	

sin
_1	

[cos I sin (W+f)/cos¢J + 2-6

where	 6 is	 the	 sidereal	 angle of	 Greenwich,	 and	 ;k-Q+6	 is in

the	 same	 quadrant	 as	 (w+f) sign [2 - IJ if 	 I	 #	
2	

when

i I = 2	 a- !S +6=0 if w+f < tr, and	 X-R+ 6 = 7r	 if	 u+f > 7r	 (of

iI course,	 is not defined at the poles).

These expressions for	 and X are the equations of `the &round track.

rr'r
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Knowledge of a, e, x, P and w determines the sizes shape and

orientation of the osculating ellipse relative to the x, y, x axes, while

M defines the ;position of the satellite in that ellipse and (together with

a, a and u) also its velocity. 	 Consequently, these six elements are

equivalent to x,y,z, k,y,z, and can be used instead of them.	 The

advantage of doing so is that they do not 'vary nearly as much along the

orbit, with the exception of M, as the Cartesian coordinates and their

derivatives do. There are -other eroaDs of six orbital variables used as

coordinates (see Giacaglia, 1977, for example), but the Keplerian elements

are sufficient for the purpose of this study.

Satellites are sizeable, complex objects, so a full theory of their

movements requires many- more than six state variables. They spin, tumble

(if not properly stabilized) and even change shape. Their detailed

dynamics can be quite difficult to describe-and doing so is the purpose of

attitude control theory (see, for example, Kaplan (1976)). Any spacecraft

considered here is designed to be sufficiently rigid so, once its attitude

has been determined with the help of on-board sensors, the location of its

center of mass relative to the altimeter is also well known. In such a

x
"rigid" satellite, the position and velocity of the center of mass vary in

w	 time much like those of a material point with the same mass and driven by

the same forces.	 For this reason, satellites. are discussed here as if

they were particles, and expressions such as "state", "position" and

"velocity" actually refer to their centers of_mass.

21
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3.2 The Mean. Ellipse

Averaging the osculating elements up to time t over many revolutions

of the orbiting body gives the mean elements 	 a, ee, I, S1, w and	 M at this

time.	 These running averages describe the slow trends in the evolution of
t

the orbit.	 They define a gradually changing mean ellipse. 	 Usually, the

a
main variations in this ellipse are: 	 a steady, slow turning of its plane

about the	 Earth's axis (precession of	 the line of	 nodes),	 a rotation of
r

F

the maJor axis in the mean orbit plane about the geocenter (precession of ;<

the argument	 of	 perigee),	 and a slight departure from Kepler's Third Law

(expression ,(9)) in the orbital frequency. 0)	These changes occur because y

'r
the Earth is not a homogeneous sphere, but a, rather flattened ellipsoid.

K

I
^

For	 an	 Earth-orbiting	 satellite,	 and	 except	 for	 equatorial	 orbits

' (L = 0)	 where	 the	 line	 of	 nodes	 is	 not 	 defined,	 the	 precession	 of	 the

nodes is given by the approximate law
u

`
_	 _2 -2

S1 = 3 n C	 (4 )2 (1-e -)	 cos	 I
2	 200	 a

r

3	 1/2

where n _ (U/a )	 , R is	 the mean equatorial Earth radius, and C200 is
f

the second	 zonal	 potential	 coefficient	 (this	 notation shall be explained-
a

MA further explanation of	 the behaviour of	 the mean ellipse is given
t

paragraphs	 The equations of motion in 'Ke lerian elementslater, in the"	 p	 ", 1j
'. "The 'frozen_`, repeat orbit", et seq.

F'
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later,	 see formula (26)). (1)	 Expression (10) shows that h is ruled mostly

by	 the	 gravitational	 pull	 on	 the	 satellite	 of	 the	 equatorial	 bulge

represented by C200•	 This pull adds a force normal to the orbital plane

(except when the orbit is polar), causing this plane to precess touch as a
q

gyroscope	 does,	 and	 for	 the	 same	 reasons:	 to	 maintain	 the	 angular

Ez
momentum	 vector	 constant	 in	 inertial	 space.	 Therefore,n ^	 0	 unless

I _	 For some values of a,, a and I,	 to/day and	 the orbital plane2 A

completes a full. revolution in one si.der.eal, year. 	 Such an orbit is knolan

as heliosynchronous because it follows the Son, keeping the angle between

t ., its	 plane	 and	 the	 direction	 Earth-Sun	 approximately	 fixed.	 A

heliosynchronous orbit is chosen, sometimes, 	 so that some onboard devices

may maintain a proper orientation relative to the Sun. 	 Passible examples
-E

could	 be	 the orbits	 of ERS-1	 (Dow and Klinkrad,	 1982)	 and POSEIDON (see

POSEIDON report,	 1983).

The story for to is somewhat more complicated. 	 If a is large enough,

w is also governed by C200 according to the expression

k	 '.

'	 G'

2 -2

= 4 n C200 rB 2 (1-e)	
^1-5 cos t I),,	 (11)

1	 )
i

a

f
so	 at I	 arc cos	 ^5	 = 63.4 0 , (or = 116.6 0 ),- known	 as 	 the	 critical

Inclinations, iu - 0 , changing	 sign	 as I goes	 through	 this	 value.

However,	 for very low eccentricities(as those of the orbits of altimeter r`

(1,)R ^- 6378.2	 km; k 6398600.3	 km3/sec2;	 C2oo "'	 -10$2.63x10-6;	 the.	 3rd
zonal C.3oo -	 2.5x10	 , and Cnoo' < C3oo for all n > 3.

C, W 23
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satellites) and depending on a, I and e, the perigee may not precess at

all but librate (oscillate slowly) about a mean value of n/2 or even stay

for a very long time at it/2 with no significant change, as in the

C	 so-called "frozen orbits" (see Cook, 1966 0 and Hough, 1981), which are	 x	 °̀

„ .	 important for altimetry because they can have very precisely repeating

ground tracks (Cutting et al., 1980; Dow and Klinkrad, ib. 1,982). In the

precessing case, the period 27r/w of a complete revolution of the perigee

a	 is known as the ,ansidal _ period.

`

	

	 The oblateness of the Earth also affects M, making it slightly

different from the Keplerian mean emotion n

( 1	 _2 -3/2
M	 n {1	 4 C200 1/2 (1-e )	 [3 cos t 1-1) }	 ^g-)

Values of 2 and w of t 30 per day, and of M of 13-14 revolutions per da y,

are typical for the satellites discussed here. For a near circular orbit 	 3

(e^^10_),	 the orbital frequency (of successive passages through ther.	 _

ascending node) fluctuates slightly in each apsidal period about M + w 	 aj

Itself quite -close to M (as w«M), the angular frequency -M+w appears in

many important analytical expressions of orbit theory that will be seen

later on.'	
4

,

The __combined, influence of C 300 and other zonals " amake s orbits

with a =. 0 unstable, forcing them to become gradually more eccentric
_3

(until a-1:0	 for altitudes of about 1000 km, see expression (49`)).

ds
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Otherwise, changes in a, e, and I are negligible, specially over the week
or so that is the normal duration of the orbit arcs considered here.

Variations in T, always very small, are. somewhat more pronounced in the

heliosynchronous case; they are caused mostly by the Sun's gravitational

attraction.

NOTE:	 While the time derivatives of M,	 w, etc.	 are M, w, eta.,	 those

of the osculating elements are A(t),	 ia(t), etc.

9t An orbit is shaped not only by gravitation, but also by surface forces 'z

'a
such	 as	 air-drag	 and	 electromagnetic	 radiation	 pressure,	 which	 tend	 to i

change considerably the total mean energy E (kinetic + potential).	 With

in	 for spacecraft	 below thethe sign	 convention adopted	 physics,	 moving

scape velocity (at which 7i turns infinite) this energy is

- u /27a	 .	 (12)

Clearly,	 the decrease of E implies	 the decrease of	 a (notice that ff	 is x

negative),	 which,	 in turn,	 means ' the increase of the mean velocity v (for

nearly circular orbits) because

/ 2
v ^' (U/a)1	 (13)

s
f

Therefore,	 dissipative	 forces	 like air drag	 tend	 to bring a	 Spacecraft
t

down while	 accelerating it.	 This is true aslong as the braking force ;#

is gentle	 and	 the orbit	 remains	 close to circular,	 but is no longer the

case when a	 satellite re-enters	 the	 denser	 layers of	 the atmosphere. #,

The	 effect	 of	 drag	 on	 orbital	 motion has	 been explained	 in	 detail	 by

25
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King-Hele (1964).. As for electromagnetic radiation pressure (principally

caused	 by	 the	 light	 of	 the	 Sun,	 either	 received	 by	 the	 spacecraft

directly, or else reflected, 	 or re-radiated as heat, from the Earth), its

effect	 can	 be	 either	 a	 loss	 or	 a	 gain	 of	 energy,	 depending	 on	 the t

direction of the incoming rays, which may either push forward or brake the
f

z satellite.	 A paper by Rubincam	 (1982)	 gives	 a	 thorough description	 of

kl: non-gravitational	 forces,	 besides	 drag	 and	 radiation	 pressure,	 and	 also

lists many references on this subject.  r

3.3 The Reference Orbitx

Altimeter	 satellites	 are	 placed	 in	 orbits	 of	 small	 eccentricity	 to

keep the distance to the surface below always close to the optimum range

of	 their	 instruments.	 They are also	 put high enough to make air drag

small,	 but	 sufficiently	 low	 to	 have	 short	 orbital,	 periods	 and,

sometimes,	 finely	 spaced	 ground	 tracks.	 The inclinations are chosen so

ymost of the ocean surface is scanned. 	 These and other often conflicting

requirements	 result	 in	 compromise	 orbits	 that	 are,	 typically,	 about ^I

1000 km	 high	 (a	 7300 km),,	 nearly	 circular	 ( e - 10- ),
	

and 	 with

inclinations	 larger	 than	 600 .	 The	 orbital	 periods	 are	 all	 close	 to

17 hours, or some 14 revolutions per day.	 Departure from circularity

is of the order of f 10 km.	 The ephemerides are calculated, usually, 	 in fi
r

arcs	 of up	 to	 one week in duration;	 their position and velocity errors

;r nowadays	 are,	 according	 to	 available	 evidence,	 of	 the	 order	 of	 a	 few f

meters	 and a few millimeters per second, respectively.	 These errors are ^	
^I

t .f
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sufficiently small to be studied using a first order orbit perturbation

theory.	 The one introduced in this section is atuned to . the particular

characteristics	 of	 the	 orbits of	 altimeter	 satellites.	 It differs	 from

the	 more	 conventional	 formulation	 (Kaula,	 1966)	 in	 the	 choice	 of	 the

reference	 orbit	 based	 on	 which	 the	 equations	 of	 motion	 and	 other

relationships are linearized.

`	 In	 the	 standard	 treatment,	 the	 reference	 orbit	 Is	 a	 precessi.ng F

ellipse	 of	 constant	 e,	 a,	 and	 I	 with	 M, 2 and w varying	 according	 to

expressions (9'), 	 (10) and (11).	 This orbit is governed 	 by the	 Earth's

'central	 force	 term" P/r and	 the	 attraction	 of	 the	 equatorial	 bulge
M

alone.	 In	 what	 follows,	 instead,	 the	 reference	 orbit	 consists	 of	 a =`

precessing ellipse	 defined	 by the arc averages a, e, I, 2, W-and M	 of

'	 the corresponding computed osculating elements and 	 their rates,	 together

with starting values, w	 and M	 at time t , the beginning of the arc,0	 0	 0	 0
that	 give	 the	 best	 fits	 to	 0, w and	 M,	 in	 the	 sense

f +

3
that w + G^ (t-t	 )	 (t),	 ,	 p	 ,

N W	
etc.	 The rate SZ	 in	 articular, is always quite

_o	 o

close to the value given by expression (10). 	 In general., unless the orbit

is	 stabilized	 by	 on-board	 rocket	 engines,	 the mean	 elements	 and	 their

rates will be different from one arc to the next, but	 this change should

be very small. f

f

To see if the choice of the weekly reference orbit is reasonable, one

SEASATcan	 look	 at	 the	 actual	 orbit	 of	 according	 to	 the	 ephemeris

published by the Jet Propulsion Laboratory (Bauer, 1978). 	 During its last`

27
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month in operation (mid-September to mid-October of 1978), the satellite

was kept in a "frozen", repeat orbit (i.e., with a repeating ground track

and 0). Over that period, W decreased some 20 m per week, or 3 parts

per million of its average value of '7169 km, while wand T changed, in

any of the .four  weeks, by less than 1% of their monthly averages of 10-3

and 108 0 , respectively. Likewise, &) fluctuated slightly each week about

a mean of less than 1 0 per month; also the orbital frequency

(approximately M + as indicated by the log of equatorial

crossings, departed by less than, I part in six thousand from its overall

monthly average of about one cycle every 101 minutes, while S was close

to 15 0 per week, and nearly constant. Therefore, the type of reference

orbit adopted here can be a reasonable approximation to the true mean

ellipse, over a weekly arc, at least for satellites like SEASAT.

The radial orbital error is, at present, of the order of a few meters

for altimeter satellites. The mean ellipse, on the other hand, can be

several kilometers away from the true position of the spacecraft, mostly

because, of short period perturbations due to the large second and third

zonals (caused by the oblateness and "pear-shape" of the Earth). Is it

valid to describe, at least qualitatively, the radial error using a first

order perturbation theory based on such a reference orbit?

To separate the useful signal from the radial. orbit error Or it is
aj

more important to know well the frequencies and , phases of the spectral

lines of this error than the precise values of the amplitudes. From this

R
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point of view, the choice of reference orbit made here is probably

adequate. In fact (as shown later), the corresponding perturbation theory

seems to explain quite well the results of some computer simulations, at

r	 least qualitatively.

^G z

a•
3.4 The Radial Orbit Error

The error	 that	 matters	 here is	 that	 in the geocentric distance 	 r, r

i.e.,	 pr in	 expression	 (7).	 In osculating Keplerian	 elements,	 this

distance is

C

r	 all - e cos E)

7

where,	 expanding E as a function of M,	 as in Smart	 (Ch.	 V,	 par.	 71,	 1931

(6th ed.,	 1977)), 	 gets,	 to the order of e3 (or 0(e3)),
({kk

z
cos E _ (1 - 8 e 2 ) ` cos M - 2 e cos 2M + S e2 cos 3M

so 

i

y	 `. r = a(l-- a cos M) < + 0(e2 ) (14)

i
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Because of the small eccentricity of an altimeter satellite ( N10-3), the

k	 second term in (14) can be neglected, and

I

r	 a(,1	 - e cos M) (15)

This	 equation applies 	 also	 to	 the	 mean ellipse,	 so the	 maximum radial

Y

" departure	 of the	 mean	 orbit	 From	 a circle	 is ae, or	 some	 to km

1 for ew10^3 and a-10
4
 km.	 Differentiating (15)	 gives the	 first	 order

approximation to the radial error
3

Ar _ Aa - (Aa e + Ae a) cos M + AM a e sin M (16)

where

f TT = `M(t - to) + M(to) (17)

and tk is	 the time (or epoch) when the k weekly arc starts;	 the overbarso ,
indicate	 that the	 partial	 derivatives- are	 taken on the	 reference	 orbit

corresponding to this arc. {

sf

,x
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3.5 Temporal Characteristics of the Error

The frequency spectra of Aa, ee and QM can be separated Into fouir

parts. The first three are sets of well defined lines with frequencies

rangingt (a) from zero to a small fraction of a cycle per year, (b) from

a small fraction of a cycle per year to a cycle every few months; (c) from

a cycle every few months to about 50 cycles per day, Superimposed on

these lines there is (d) a_ continuous background, due mostly to the

inaccuracies in the modelling of the surface forces. 	
s

(a)	 Practically	 Constant	 Part:	 Over	 one	 week	 or	 less,	 any
1

oscillation in the lowest range of frequencies is indistinguishable from a

constant,	 and it	 will be regarded here as such.	 If Aa,	 Ae and AM in (16)

are constants, the resulting Ar consists of an offset beta?en the computed ;{

and	 the	 true	 orbit,	 equal	 to Aa, and 	 of	 an	 oscillsition	 at	 frequency

M, which	 is	 close	 to	 (M+w), or	 about	 onecycle	 per	 revolution.	 The ,}

._ 2	 2	 1/2
amplitude of this oscillation is 	 [(Aae + Aea)	 + (AMae)

(b)	 Nearly Secular Part	 Oscillations with periods in the second

band may show appreciable variations during one week, 	 but	 their rate of

change will vary so slowly that	 they will resemble secular changes.	 If

to	is the time at the beginning of the k weekly arc,	 these changes can

be approximated very well by expressions of the form 	 ck(t-to) +dk(t-to)2
F

(where	 ck 	and	 dk	are	 constant	 and	 ek <C dk )	 for	 all	 the	 Keplerian

elements.	 Both ck and dk will vary slightly from one arc to the next.
;
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' The plots	 of	 the corresponding Aa, &',	 bM ► etc.,	 veraus	 time will depart

from straight linus Just enough to show that they are not truly secular.

These slow variations must	 be	 reflected in	 Dr,	 according to (16),	 as a

slow change plus an increasing oscillation of frequency M with a slightly

bent	 (quadratic)	 envelope.	 As w is	 usually	 very	 small, M will	 be	 very

close to one cycle per revolution. k

k

r (c)	 Periodical	 Part:	 Mostly	 caused	 by	 errors	 in the geopote^.:.ial

,v
field	 model,	 it	 consists	 of	 si'newaves	 whose	 frequencies	 depend	 on	 the

rates ' w and M of	 the	 reference orbit,	 as	 well	 as on	 the spin	 rate of a

the	 Earth,	 Because	 these	 frequencies	 are	 higher	 than	 those	 of	 the

errors mentioned previously, 	 the oscillations in this band will be called,

in	 what	 follows,	 "shorter ep riod!'	 errors.	 Other	 periodic	 errors	 are
r

produced by uncertainties in the tidal models;	 these are smaller and have
,

different frequencies, in general, than those due to the field model.

w

(d)	 Other Temporal Variations:	 While they may also include secular_

sl
}I

variations	 and	 oscillations,	 errors	 caused	 by	 inadequately	 modelled

r surface forces, etc., do not have sharply defined lines in their frequency

k spectra.	 During one week,	 however,	 probably much of	 their	 total effect{{

on Ar not included in (a),	 (b), or (c) can be represented by a low degree y

polynomial (a cubic or a quartic) of the general form.

t
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GA 1

+	
Ar(ng) 	

r (ng) (t_tk)i
=0 k	 oJ

E'

where	 J	 is	 a	 small	 integer,	 (ng)	 denotes	 "non-gravitational,"	 and

the r(kg) are	 constants	 which	 may	 vary	 from	 arc	 to	 arc	 ( ,k"	 is' the

sequential number of the arc).
w,

} Errors in the calculated precession and nutation of th e Earth modify

some of the sines in the spectrum of ar related to the diurnal tides, 	 The

periods of any significant effects are long enough for them to be lumped

together with the constant,	 secular and polynomial parts (a), (b) and (d),

and,	 in any case,	 their amplitudes are very small.	 Therefore,, they will
x

not	 be	 considered	 here	 further.	 For 'details,	 see	 Reigber	 (1981)	 (he
r

considers the total effects of precession-nutation'on the actual orbit).

Having	 ovtlinod	 the	 features	 of	 the	 radial	 error,	 it	 is	 timeto

consider the mechanisms that shape them, }^

i

(18)
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3.6 The Equations of Motion and Thei r Linearization

Let	 V be	 the part of	 the gravitational potential of	 the Earth (or

geopotential)	 which is invariant in an Earth-fixed system of coordinates

(the time-varying part due to the tides will be discussed in "Tides"); 	 the

gradient	 VV is	 the corresponding	 gravitational, acceleration. 	 If f is a

vector	 representing both	 tidal and non-gravitational accelerations,	 then

' the	 Newtonian	 equations	 for	 the	 motion	 of	 the	 center	 of	 mass	 of ,a

satellite in an inertial frame can be written in vector form as a.
3

a

f
N

r VV (r,	 t) + f	 (19)
ILI

D

V is given here as a function of both position and time, because the field

is	 ,rotating	 along	 with	 the	 Earth.	 One	 interesting	 consequence	 of	 this

time	 dependence	 is	 that	 the	 total	 ener y^(kinetic+potential) 	 of	 the

s^

satellite	 in	 an	 inertial	 system	 of	 coordinates	 is	 not	 conserved,	 in i

F`	 = general.	 Only a	 central	 force field,	 or	 a	 zonal	 field,	 both	 of	 them

A -	 invariant	 with	 respect	 to a	 rotation about	 the z axis,_ are conservative;

not so the more irregular field of our planet, except in Earth-fixed

^ q
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coordinates.0)	 For a discussion of	 this	 problem,	 see Holtine	 (Ch,	 28,

1969).	 In general, f is also a function of r, 	 t, and r.

The	 accelerations	 in	 (19)	 are nonlinear functions	 of	 r	 (think,	 for

example,	 of	 the	 simple	 case	 of	 the	 field	 of	 a	 particle,
2where	 1VV1	 - pr-	For	 the	 treatment	 that	 follows,	 (19)	 has	 to	 be

expressed in terms of	 the Keplerian elements and of 6, the sidereal angle

of	 Greenwich	 that	 accounts	 for	 the Earth's	 rotation.	 Lagrange obtained

^7 his	 transformation	 of	 the	 equations	 of	 motion	 by	 a	 very	 ingenious	 and

rather laborious process described in Brouwer and Clemence (ib.,	 1961) and

also in Kaula (ib.,	 1966).	 The end-product is a system of six first order

differential	 equations,	 Lagrange's	 Planetary	 Equatiobs,	 one	 for	 each

osculating	 element	 11 s i "	 (1	 11	 2 ... 6);	 as	 used	 in geodesy,	 they are	 of

the general form

kL	 (a,	 e,	 1,	 Op	 o p 	 O p	 M^	 ^ j	1	 (20)
s	 0

( ' )'The potential part of the total energy depends, like V, on the position
of	 the	 satellite	 relative	 to each of	 the	 particles	 that	 form the Earth.
Such	 relative	 positions	 and	 the	 resulting	 V	 are	 coordinate	 invariant.

L
The kinetic eneUL,	 on	 the other hand,	 is	 proportional	 to	 the square of
the	 velocity,	 which depends	 on how the spacecraft moves with respect 	 to
the	 reference frame, so it is not coordinate invariant ..	 In 2nL reference
frame,	 however,	 the	 sum	 of	 the	 potential	 and	 kinetic	 energies	 of	 the
spacecraft	 and	 the Earth are	 constant.	 To keep	 the	 books straight,	 the
Earth must change its own velocity in the chosen frame,	 to compensate for
the	 variations	 in the kinetic energy of	 the satellite;	 our planet being,
by	 far,	 the	 more	 massive	 of	 the	 two	 bodies,	 such	 changes	 are
imperceptible.	 The only system where an orbit must have always a constant
total. energy is,	 therefore	 an Earth-fixed system which moves and rotates
with the planet, so the veiocity of the planet is always zero.
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where Ls 	is a nonlinear function, 	 is a vector of parameters

that appear in the expressions of Vand f, and sk
o 

is the vector of

	

—	 -

'	 the initial conditions at	 t	 tk 	(the start of the k_ arc):
o

sk - (a k , ek , Ik , wk , Mk , SZ 6 k 	 These equations are shown in detail
-o 	 0 0 0 0 0 0

0-0

later (expressions (34)).

To first order, the error As i in s i due to small errors d6^ and

A kk	 k
re	

sio in the components P^ of B and s io of so , respectively, can be

approximated by the differential of s i which, according to (20), is

,	 i	
s

6
a

V

	

D6 ( LS ) AS. + I Ds (Ls ) 6suo
	 (21a)

u=1	 uo	 i	 a

where the derivatives are taken at s i si and	 v

}

aLs	
6 8L  a u

	

i	 i .. _ti.	
Da (

Ls )	
as . 

+	 as as

	

J	 u=1	 u

6

x,.	
as	 1{asi	

(21b)	
1

r

a.
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while Duo(Ls has a similar expression. Equation (21a) is the general

form of the linearized equations of motion, and (21b), that of the

variational 6r sens
i
tivity) equations. The variationals, which make up

the "skeleton" of the linearized equations, are solved often by thems elves

to find the values of the unknown as 
u 
/96 

J	
These values, in turn, are

used	 to
	
calculate	 the	 elements	 of	 the	 matrix	 of	 "partials"	 needed	 for

orbital	 adjustments ',	 force	 model	 improvements,	 sensitivity	 studies,	 etc.

V The sum in (21b)	 represents	 the dynamic terms, 	 and	 9L Si/aai	 the forcing

terms of the variationals.

Pik
3.7 The Homogeneous Linearized Equdtions

The	 differential equations 	 given by (21)	 are thoroughly coupled	 to
KSi

each	 other	 through	 their	 "interaction	 terms	 ys—	 which multiply	 the

as	
u

unknown	 As	 AO	 They are also time-dependent, 	 in general,	 like
K

^AlS i
the	 themselves.	 These	 characteristics	 make	 the	 exact	 solution

u

possible	 only	 by	 numerical	 integration	 with	 electronic	 computf^rs.	 To

obtain	 the	 analytical	 expressions	 needed	 for	 the	 present	 stu6y	 it	 is

necessary	 to	 resort	 to	 some	 simplifications. 	 This	 limits	 the	 numerical

accuracy	 of	 the	 solutions,	 but	 leaves	 virtually intact	 their qualitative

properties, which are the ones of real interest here.	 The usual approach

is to ignore the disturbing forces represented by f in (19) (including all

dissipative	 forces	 like	 drag)	 and	 also	 the departure of	 the	 terrestrial

field	 from	 that	 of	 a	 perfect	 sphere	 (or	 of	 a	 point-like	 mass),	 thus

37
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F
R disregarding	 Earth-rotation	 as	 well.	 This 	 dissipation-free,	 spherical

e approximation, can be accurate enough to describe the main characteristics .

of	 the errors	 in precise ephemeris calculated with force models that take

already into account most of 	 f and of the "non-spherical" part of V,	 so

the	 main	 long	 period	 effects	 (part-icularly	 regarding	 and w)	 are

included	 in	 tree	 mean	 ellipse	 of	 the	 computed	 arc,	 which	 is	 also	 the

reference orbit here.	 The	 simplifications are more admissible when the t

t inclination I is high and the eccentricity a is small,	 as in the case of

r altimeter	 satellite	 orbits,	 because	 most	 of	 the	 main	 terms	 ignored are

.^ proportional to a or to cos I (see'Kaula, ib.,	 1966, Ch. 4,	 par. 4.3).

^ 3

In a spherical,	 or central	 force field	 when f - 0	 the orbit of a

satellite	 would	 be	 a	 simple	 ellipse	 obeying	 Kepler's	 Laws	 ( two-body

orbit).	 The elements a, e, I, w and 0 would be constant for all time, and s
t1/2

only M would change according to the Third Law:	 M	 n 
= (u/a3 	

where
r

"n"	 is	 the	 mean	 motion.	 Consider	 a	 "true"	 elliptical	 orbit	 and	 as

"computed	 version"	 of	 it	 obtained with	 the exact value	 of U, (i.e.,	 the

field 	 is	 known),	 and	 assume	 that	 they	 differ	 slightly	 in	 the	 initial r

values	 of	 their	 elements.	 Then	 A(t) = M(computed)	 M(true)
aM

Aa(t) _	 - 2Aa(t).	 Since	 none	 of	 the	 other	 s i	depend	 on
as

t, As	 = 0 for all	 of	 them.	 As	 now	 the	 osculating ellipse must	 be	 the
• 1/?'

same	 as	 the	 mean	 ellipse, a _ a and	 n = n = { u/—a3)	 Therefore,	 the

effects	 of	 the	 initial	 state 'errors on the	 computed	 a(t),	 e(t) and M(t)

must satisfy

p,F^

38

^^
a



0	 (21 'a)

A;(t)	 0	 21 'b)

3	
Aa(t)	 (21'c)

2

These are	 three of	 the six homogeneous ., or unforced, linearized equations

of	 motion	 (i.e.,	 all	 9L Si 
/90	 0	 in	 (21b))	 for	 the	 spherical,

L dissipationless case.	 For I, W and S1 the corresponding unforced equations

are	 all	 of	 the	 form A9	 0, like	 (21'a-b),	 but	 they are	 not	 relevant	 to

the study of Ar (see expression (16))!.	 As the linearization is made'along

the computed orbit, both a and n correspond to this orbit.

3.8 Orbit Error Due to the Estimated Initial State

Each arc of	 the computed 6rbit	 is	 fitted	 to the tracking data by a

k
least squares adjustment of the initial conditions (l) (the s i	where IWI

0

is the number of the. arc) and of a few other parameters, 	 such as drag and
d

( ' ) "As	 all	 our	 observations,	 on	 account	 of	 the	 imperfection	 of	 the
instruments	 and of	 the	 senses,	 are	 only approximations	 to	 the	 truth,	 an
orbit based only on the six absolutely necessary data may still be liable
to considerable errors.	 In order to dimirif,sh these as much as possible,
and thus	 reach the greatest precision attainable, no other method will be
given	 except	 to	 accumulate	 the	 greatest	 number	 of	 the	 most	 perfect
observations,	 and	 to	 adjust	 the	 elements,	 not	 so	 as	 to	 satisfy	 this	 or
that set	 of observations with absolute exactness, but so as to agree with

if all in the best possible mannerell

Carl Friedich Gauss, "Theoria Motus" (1857).
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radiation pressure coefficients.	 The data, the coordinates of the

tracking stations and the various force models used to integrate the orbit

are not perfect, resulting in adjusted values that are wrong to some

extent, To undet3tand the radial errors that an incorrect initial state

` produces	 in the computed orbit, one can solve the approximate linearized

homogeneous equations	 of	 motion	 (21')	 for	 Aa	 be, and AM with	 the

errors 
Aso

as initial conditions: }

s

i

Aa(t)	 _ Qao (22a)

r

Ae(t) = neo (22b)

AM(t) ffi _ 3	 n d ak (t-tk) + AM 	 , (220
2	 a	 o	 0	 0

x k
where t	 is the	 starting	 time	 of	 the	 arc.	 Kaula	 gives	 more	 complete

s o

expressions (ib.,	 Ch.4,	 equations	 4-25)- by	 including	 small	 "interaction s
BLsi

terms"	
8s

approximately proportional to C200 that have been neglected
.{ uo

in	 (21'a-b) because	 they	 would	 be	 zero	 for 	 a	 spherically symmetrical

-' Earth.	 As shown,	 in	 (22),	 the	 adjusted	 initial	 conditions, by being

slightly wrong, can cancel some	 of the constant errors 	 in a and e,	 and

some	 of	 the constant and secular errors in M.	 Replacing	 Zia,
`f

pe and AH	 P

from (22)	 in ('16),	 the contribution	 Ar ( 'ic)	 of the initial -conditions ` to	 }

? the total radial error is

.: t 40
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Zvi F{^ Ts 3Lj? i^ k3+', fi
h ,.1:.eW w +^

4

"R•

e^
e^	

Ij

E

r{

'	 er(is)(t)-Aao+[-(Aaoke+eoa)cos(Mo-r! to)-( 	 Sao to+pMo)ae

r _

sin(1Rk-Mtk)]cos Mt+[(Qa kej•Ae k- )sin(Ak-M tk)-(	 n Aak tk+AMk)aeo 0	 0	 0
k-

0	 o	 a	 o o- o

.	 cas(nk_*tk) ] sin Mt-[ae j _ a Aao tosin(Fio_)]tMto  	 cos MC

r
a^

[aeAao tocos(F10-Mto)]t sin Mt
a

,_^ Aao+Akic)cosMt+Bkic)sinMt+Cki.c)tcosMt+Dkc)tsinMt,

(23)

rte., itkP

(ic)	 (ic)
;r1;

R (ic) C(ic) 
and 

D	
qwhere	 are	 the	 values	 of	 the	 s uarek	 '	 k	 k	 k

,i' brackets.	 In general,,	 M will	 change	 slightly	 from arc	 to arc,	 due	 to

ILI
orbital decay• is

wk a

^` t

3.9 The Free Responseof the Linearized Equations and Resonance

N

Expression	 (23)	 gives	 the	 radial	 component	 of	 the	 unforced,
r

homogeneous,	 or 'natural	 response	 of	 the	 linearized	 equations of motion.

r As	 the	 linearization has	 been	 done	 ignoring	 the	 term f	 that,	 in (19),_

accounts	 for all	 dissipative 	 forces,	 (23)	 describes the behaviour of	 an

undamped dynamic system, whose unforced response includes a non'-decaying

41
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oscillation of angular frequency M, 	 the natural frequency.	 In reality,

there is damping due to drag, etc., but for orbits higher than 200 km this

damping is very light. 	 For altimeter satellites, where 	 c N 0, the system

is virtually a stable harmonic oscillstor. (l) 	The along track and across
M

track free responses consist of similar oscillations, plus a slow secular

t
drift	 along	 track,	 so	 the	 complete	 error	 due: 	to	 initial	 state

uncertainties makes	 the	 computed	 position	 "circle"	 the	 true	 one	 in	 an

^. elliptical	 path once in every	 revolution of the spacecraft, 	 while also

t
moving slowly away from it along the orbic	 Mien driven by a disturbing

force	 that	 has a periodical component at a natural frequency,	 the forced

response of	 an undamped	 system must contain growing oscillations of the

e same	 frequency.	 This	 is known as	 resonance.	 In the present case, 	 this

happens	 when	 the	 ephemeris	 crosses	 the	 same	 disturbance	 at	 repeated

r
~ x intervals	 equal	 to	 the	 period	 of 'M, or	 about	 once	 per	 revolution.	 Asr

shown	 later,	 certain	 errors	 in PV and	 in	 f	 can	 produce	 this effect,

which may grow into a large perturbation over a sufficiently long time.

The resonant character of	 the linearized equations is not plain from-

"r their formulation in Keplerian elements, but is quite clear when they are

given in terms of the perturbations of the radial , along track and across

track	 components	 of	 the	 position	 vector,	 and	 of	 their	 first	 time-`

r ;:

^1)	 The	 "unstable"	 last	 two terms of	 (23) appear only in a first order
approximation to Br.	 The actual 'effect is an oscillation of frequency M'
modulated by a_ periodic envelope whose fundamental frequency is AM,	 the
error in M.	 As AA < M, over a sufficiently short interval of time (in

' which the perturbations	 remain small)	 the envelope seems to be expanding
`.. very slowly, at a steady rate.

x
y `
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derivatives. Written in this way, the equations are sometimes known as

Hill's equations (see Kaplan (1976), and also Colombo (ib., 198 11, Ch. M.

.The best known and most striking effect of resonance in the whole

solar system is the series of gaps that divide the rings of Saturn.

Inside each gap, any orbiting particles would have a period congruent with

that of a major moon, but the gravitation of this moon disturbs greatly

the motion of such particles, sweeping them out and keeping the gap open.
1

3.10	 The Spherical Harmonic Expansion of.the Geopotential in Keplerian
Elements

n r	
$:

Outside any ideal geocentric sphere S that contains virtually all the

matter	 of	 the	 Earth, including that	 in	 the	 atmosphere, V	 (the	 time-

invariant part of the potential in Earth-fixed coordinates) can be treated

as a harmonic function satisfying Laplace's equation
e

?.E
b	 }

V2V	 p (24)
v	 9

k

which expresses	 the conservation of	 the flux of _lines	 of force_ in empty

space.
k

YY

t

y

[rM1

}
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Let the spherical coordinates (r, ^, a) correspond to the geocentric

distance,	 latitude and longitude in an	 Earth-.fixed equatorial

system, X-0 tieing the longitude of the Greenwich Meridian. A spherical:

harmonic of degree n and order m has the form

Ynma($, 	 " Pnm(sin ^) cos (mX	 2 
a) ,	 (25)

where Pnm is	 the associated Legendre function of	 the first kind with the

N
same degree and order. 	 The Ynma( ^,X;) are orthoSonal in the sense that the

integral	 of X	 Y	 over	 the	 unit	 sphere	 is	 zero	 if
z nma	 rt, m a	

n+1

n ^ n',, or m ^ m' or a ^ a'.	 The product	 (r)	 Ynma ( 0,X)	 ,	
known as a

solid	 spherical	 harmonic,	 is	 a	 solution	 of	 Laplace ' s	 equation,	 and	 any

other	 solution,	 V	 for	 example,	 can	 be	 expanded	 in	 a	 series	 of	 solid
z

spherical harmonics

4

4e.

t
m n	 1	 n+l

U =
Cnma ( r)	 Ynma(^,^)

	 ( 26)'
u

n=0_m=0 a=0 ti

outside	 any Earth-enclosing	 sphere S	 (see	 Hobson,	 Ch.	 III	 and	 IV,	 1931,.`

n and	 Heiskanen	 and	 Moritz,	 Ch.	 I and	 II,	 1967).	 R is	 usually	 the mean

equatorial ' radius	 of	 the	 Earth; C	 is	 the	 (dimensionless)	 spherical
^. nm a g

harmonic	 potential	 coefficient of degree n and 	 order m.-'	 By definition,

X000	 1	 and	 all	 Cn01=0,	 while all	 the Clma = 
0 in a $eocentric system

s A.
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`' (r,	 7^) (1)	 The geoidal. height N has a similar expansion,	 with both r

and	 p/R	 replaced by R (this spherical approximation is quite adequate

for	 the	 relatively	 low	 degree	 terms	 that	 dominate	 the	 geoid).	 The

expansion	 of	 the	 geoid	 inside	 the	 sphere	 S	 (i.e.,	 on	 the	 reference

M ellipsoid)	 is	 valid,	 but	 the	 reason	 for	 this	 is	 subtle	 ( see	 Moritz,

1980).	 The error AV in V is

{

t,
u00	 n	 1	 R n+1

AVa	 L	 ACnma ( ar) 	 Ynma ( ^ , X)	
,	 (27)R

n-2 m-*0 a=0

where the ACnma are the errors in the coefficients of the field model, and

they are zero for 0 < n 

s`

To	 study	 the	 -motion	 of -satellites,	 these - formulae	 have	 to	 be

converted	 to	 osculating	 Keplerian	 elements;	 the	 details	 of	 the

transformation are given in (Kaula, ib. ,	 1966 0 Ch.	 3).	 The variable

c

' (' ) If the Cartesian z axis were always aligned with the Earth 's main axis

J

of inertia,	 the C 22 Pf	 0.	 In the actual instantaneous field they are not
i zero but very small and time-varying, depending strongly on the definition

_ of	 the	 "Earth-fixed" -equatorial	 system	 ( see	 Reigber,	 ib.,	 1981).	 Their
. mean values	 (which enter	 in	 the expansion of	 the time-invariant V)	 are

P also very small.

n
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where 9 is	 the Greenwich	 sidereal angle,	 must	 be	 used instead of n	 to

take into account the rotation of the Earth.	 Introducing momentarily the

true anomaly f (Figure 1), expression (25) can be written as(1)

n

m Ynma(O,X)	 ^	 Fnmp (I) cos [(n-2p) (m+f) - -,V)
P"0

P

n
F	 (I) c	 (w, M, e')	 (29') }.

P.0	 nmp	
nmopq-0

for small e, where

9') _ cos ((n-2p+q)(U*M)-g4*me') - 2 [ +-2(1-(.,1)n-
m)^ 
M.cnmapq(w'M,	 a s

(30)
s

Expression	 (29)	 will be	 used	 later	 on	 to	 formulate- the	 ocean	 tides in

a Keplerian	 coordinates.	 Solid	 spherical	 harmonics	 can	 be	 written	 as

s functions of the osculating elemeni:s of a satellite at a point (r, ¢,X) as =

_ follows (Kaula,	 1961)

5j
n+1	 n+1	 n	 00

ems) Y	 F	 I)	 O	 (e) c
	 (W)MV(r)	 nme( $ ^)	 (a) O nmP(`_^	 npqnm apq

P	 q

:
(31)

O)The approximation above would become exact if e=0. 	 From the "equation
¥ of the center" and the expressions for 0 and	 X'at the ground track (all =

given	 in Table	 1c,	 see also	 Smart,	 ib.,	 1931,	 ch.	 V),	 the maximum 'along
track departure between_a slightly elliptical orbit and a circular one of
the	 same period	 is	 du	 ^- 2ae	 (consider	 the	 simple_' case ` where 	 I=0,	 in

x Table 10.	 For e — 10-3 and a — 103km, du - 20 km, so (29) must hold well
up to degree n	 200, i.e., up to spatial wavelengths of some 200 km.

a.

rc
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The Fnmp ( I) and Gnpq (e) are commonly known as inclination and eccentricity

'	 n functions,	 for	 obvious	 reasons;	 the	 Gnpq (e)	 are	 also	 called	 "Hansen's

coefficients".	 There	 are	 expressions	 for	 computing	 the	 F(I) and	 the
nmp

a Gnpq	 , some of which care be found in (Kaula ib.,	 1966,	 or in Giacaglia,

1977);	 they are not needed here.
x

"x For near circular orbits	 (small e),	 two important properties of the

r , G(e) are:	 that	 they are	 approximately	 proportional	 to	 a-jqj ,	 so	 they
npq

decrease very fast with increasing jqj, and that

F

Lim Gnpq(e) = 1	 if q	 0

c

{0e + 0	 otherwise

The expansion of V or AV, in Keplerian elements, takes the form

S

GnmaV	 n	 1	 n+1	 n
{or}	 _ u	 {R)	 { or	

}	 Z	 F (I)G	 (e)c	 ( w,M, e l).
R	 a	 nmp	 _	 npq	 nm apq

0V	 n {0 } m=0 a=0	 aCnma	 p-0	 q=
2

s
(32)

41

r
_

Because of the altitude attenuation factor	 (R/a)(n+l),	 the higher the

G
degree of a spherical harmonic 	 coefficient,	 or of its error,	 the lesser j

its effect on	 the potential and on the gravitational acceleration acting

on	 the	 satellite.	 As a consequence,	 for computing near circular orbits,

the series for V can be 	 truncated	 roughly	 at	 degree	 n = 27rR/(a-R),

or n	 40 when a - ,R = 10 3 km.	 Also,	 except for a few	 coefficients,

6
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,r	 mainly of low order (n < 10) or of "shallow resonant" order (n=13--15,

26--30, 39-45), the orbit errors due to the 
Wnma 

tend to vary in

proportion to the attenuation factor (R/a) n*l and the size of the AC
nma'

The latter ones, in today's models, appear to increase with n and m until

they reach nearly 100% of the 
Cnma 

at n=m-30	 Above this degree and

order, the combined effect of all the estimated coefficients reproduce the

data (tracking, altimetric ocean heights, gravimetry, etc.) reasonably

well,	 but	 their	 individual values	 cannot	 be	 trusted.	 The size	 of	 the

actual coefficients follows the approximate law

7

(n-m) 1(2-amo)	

1/2
a1/2	 IIC	

- nnma l	(n+m)S

where 8m0 is the delta Kronecker and

al/2	 ~ 10_5	 2n+1 1/2-	 (	 ) 33(	 )n	 2
n

according to "Kaula's rule of thumb" (Kaula, 	 ib.,	 1966, Ch. 5, and Kaula,

1967);	
an	

is the degree variance

r nCc	
1	 (n+m)S	

(Cnma)2a	 G 34(	 )n	 ,
m=0 cr--0	 (n-m)!(2n+1)(2-6m0)

r and equals the mean square value (or "power") of the sum of:all,harmonics F

of	 V	 of	 degree	 n	 over	 the	 whole	 of	 the Earth's	 surface (see	 Kaula,

1967b).	 The quantity {an/(2n+1)} 12 is approximately the average size of

L
F^
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rte:

the fully normalized coefficient 
Cnma 

(whose square is the general term of

the sum in (34))'. 	 These coefficients correspond	 to	 the fully normalized

harmonics,	 scaled versions of the 
Ynma, 

the integrals of whose squares on

the unit sphere are all unity.	 The on define the spherical harmonic power

^ spectrum of V.	 "Kaula's	 rule",	 based on studies of	 terrestrial gravity i

measurements	 and	 of	 early _ field models	 obtained from satellite tracking

data,	 has been shown to be a reasonably close guess of the actual power

spectrum of the $eopotential for n as high as 200, although its values for

<!	 the on axe, on the wholes, ratter iugh 'between degrees 8 arid 60, and rather

low	 above -60.	 This	 conclusion	 is	 the	 result	 of	 a	 number	 of	 global

.analyses of altimetry and gravimetry. Wagner and Colombo ( 1979), and Rapp

(1979)	 havc given more	 accurate	 formulations for	 the Qn, but	 "Kaula's

rule" still -has-the convenience of its greater simplicity.

3.11	 The Equation of Motion in Keplerian Elements

`se
tr

a, In Keplerian elements,	 the 	 equations of motion of the satellite are

known	 as	 Lagrange's	 planetary	 equations. If	 E	 is	 the total	 energy

(kinetic + potential)	 at any given time,	 and F=-E,	 then it can be ,shown

that

F -_	 ,
2a

+V (35) 1

`	 It

s

1
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where F, r and a are instantaneous values. The LagrangLan equations are

2 DF
(36a)na am

1/2
2

(I-e	 DF	 (I-e
2
	DF

(36b)
2	 2

na e	 am	 na e	 Dw

- 1-e
2
 DF	 2	 DF

(36c)
2

na e De	 na as
0,

cos	 I	 DF	 I-e)1/2
	
9F

+ (36d)
2	 2	 1/2	 ai	 2	 De

na (1-e	 sin I	 na e

cos I	 DF	 I	 aF
36e)

nag{
	 2	 2	 1/2

na	 I-e
2
	sin I BW	 na	 1-^	 sin I 82

r 9FW. 1
(36f

2	 1/2
na	 1-e)	 sin I DI

if 1/2
3)-where n	 (III/a

The largest effects produced by the gravitational field come from the

central	 force	 (Coo () )	 and	 the oblateness	 ( C2 0 0).'	 The first gives orbits

their general elliptical shape, and the second causes most of the secular

variations in their moan ellipses.	 Careful inspection of (32) shows that

C200 is associated with a term in the expansion in Ke plerian elements of V

that	 does	 not	 contain	 the	 fast	 changing M.	 This	 term
C	 2

is V ,	0	 200 4	 F	 G201")	 210(e).	 According to Kaula (ib. ,	 1966):a	 a
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"e,^_

s	

^

a
I

^L	 I:

ta M	 ^'

F201(I)	 4 sin g I	
2

}

and

-3/2

G210(e)	 (1-e
2 )	 j.

I
i

Replacing V with u
r 000C + V' in (35) and the resulting F in (36), the

equations of motion become, taking the formulae for F 201 (I) and G210(e)

into account,

J

e

A(t)	 0

e( t ) = 0

n	
I(t) _	 t

2

SZ(t)	
2 n C	

cos
200 (a>

	

	
2I2

(1-e

2
w(t) 

= 4` 
n C200 (a) [1 - 5 cos t Ij

r	 M t = n- 3 n C	 (,R)2 D cos t I- 1]
^( )	

a	 2 3/2

(1-e )

z N
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The first three expressions shown that the oblateness cannot cause secular

changes in a, a or I	 Replacing instantaneous values with mean values

(which are very close to the former, in general.) the last three

expressions become (10), (11) and (9'), respectively.

3.12	 The Forced Linearized Equations

Clearly, Lagrange ' s equations are not linear in their unknowns, the
F*

Keplerian elements. Linearizing according to (21), but assuming that the

r
only errors are those in the Cnma	 of the field model, sc

all Ask	0,	 produces equations of the form:
io

c

^•(g>w	

n	 1 aLsi nc

	

6 ai
	

(g)	 37si	
n=2 m=0' a=p

 ac 	 coma 
+ 

^_ 1 as	 )

where the superscript (g) indicates the gravitational origin of the

	

F	 perturbation or error (i.e., the ACnma).

Notice that the sum with respect to "j" in (37) is the dynamic part

of the linearized equations (21), while the ,(aLs i /aCnma) aCnma are s

forcing terms.	 The linearized equations are mutually coupled by
DL s

	a	 "interaction terms" of the form	 As(g) where the derivative can be a

	

L	
52

f

i
1



r

1

a

r.

f

function of	 time.	 This time-dependence makes an analytical or

closed expressiota for the solution impossible in general. Fortunately,

as	 pointed	 out when	 deriving	 the approximate	 homogeneous	 form	 of

the equations,	 the terrestrial	 field is close to that of a spherically

symmetrical	 body	 (a	 point	 mass,	 for	 example)	 where	 F - N/2a

I
is	 constant	 and	 all	 interaction	 terms	 in	 (37)	 are	 zero	 except

^a (g) = -(3n/2a) L►a^ g) 	in	 the	 equation	 for QM.	 These	 vanishing8aM

r

" terms are,	 in the actual field,	 of the order of C200 ,	 or about	 10°3 times
s

' smaller than, than rest: of (37), 	 and it is quite reasonable to ignore them

for the purpooes of this study.

^
s

To	 arrive	 at	 the	 equations	 for	 da,	 de, and	 &I,	 which	 are the

ones	 needed	 to	 find	 that	 of	 Ar, replace	 V - p/r in	 (35)	 with	 its

expansion in	 Keplerian	 elements	 according	 to	 (30)	 and	 (31)	 and	 then P/

carry	 out	 the	 partial	 differentiations	 indicated	 by	 (36)	 and	 (37)

IL + Wt-t o ),	 two + &(t-to)	 andat	 the	 reference	 orbit,	 where	 M=Mo 	-
- aL

e. = S2o_eo	 +	 (St-A)(t-to)^ ignoring	 all	 a-^ i	 As (g) except	 M '(g).
J	 8a

The result is:^

c

_2
1a(t) (g) = 2U/(n a )	 AC	

(I
)nGnpq(e)	

(n-2p+q)
nma Fnmp (I)

nmap9

cos[((n-2p+q) (w+M) - gi+mb').t +
^nm apgo + 2^

i (38a)
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,.......,..^'-^"-'nn _-^ .—..e' F 	,.^-...v;'av,...... 	 ®.

Y

t^

_3	
R n	 2 1/2	 2 1/2

M(t)	 .y /(n a )	 pCnmaCa) ^nmp(z)0npq(e)[(1-e ) (n-2p+q)- ( n-2p)J(1se
nmpq cx

I

cos [( ( n-2p+q) (6)+A)-q&+m8')t+¢nmapgo + 2J 	 (38b)

_2

	

^':	 Ohl(t)(g): u/(n a3)	 QCnmaCa,n[-(1_e )(DG ( e)/ae)+2 ( n+I)Gnpq ( e)JFnmp(I)nmpq a	 e

	

a	
cob[((n-2p+q) ( wA)-gw+m6')t+^	 J _ 3 n Aa(t)(g) ^

	

n	 nmapqo	 2 a
(38c)

whe re

=( n-2P+q)( o+Mo)-q o+m 8o — 2 x [ a + 2 (1=(-1)n-m)^ntnapgo

(39)
F
?r and

8' = 51-6 (40a)

' n =	 -a3 1/2 (40b)

h
M (400

i .
•	 S

0	 0 0

and	 similarly	 for wo and eo;	 to is the	 starting	 time	 of	 the	 k arc.	 A
4

F different _ choice of	 starting	 time can	 be	 made	 in the	 case.. of "frozen",
f

repeat	 orbits	 ( as explained in the comments following equation (52)),	 to

show. more clearly the main properties of both Gr and the tidal signal in ¢

^ F
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altimeter measurements taken along such orbits, which have precisely

repeating ground tracks.

Expressions (38a-c) are the forced or unhomogeneous linearized

	

equations.	 Notice that if all the AC 
nma 

are zero, the (38) become

identical to the unforced or homogeneous equations (21'a-c). While the

former are based on a precessing reference ellipse, as shown by

	

and	 in the argumenta of the cosines of their forcing terms, the

(21') are not. However, both sets of equations agree perfectly with each

other because both involve the same "spherical approximation" that

neglects among their _^y	
to 

C200_gamic terms those proportional 	 linking
(g)	 (g)	 (g)	 (g)	 (g)

Aa	 Ae	 AM	 to AW , AQ	 and, thus, to any secular variatione
3	 (g)

in w and SI whatsoever. The term - -f (n/a) Aa(t)	 is of ten ignored in

is verythe formulation of these equations, because the factor (n

small, so only very large perturbations in the semimajor axis would have

(g)
an ef f ect on AM	 and. leaving it out makes the integration of the

equations immediate. Here this term has been retained mostly for the sake

of consistency.

To solve (38a-c) the first two equations are solved by direct
k	 k+I

tintegration respect to time in the interval t 4 t <
0	 0

	

(g)	 (g)
Aa	 (t)	 ft A^	 (t')dt'

k
t 
0

	

(g)	 (g)
Ae	 (t)	 ft AA	 (t)dt'

k
t 
0
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y	 Next, ea (g) (t) is replaced in (38c) and this is, then, integrated to

obtain AM(g)(t)

I	
Cleanly, all solutions Asig) (t) obtained in this way satisfy the

condition

3

^ As(g)(tk)	 0 (41)-
1	 o

{

This is physically meaningful, 	 because,	 due to inertia,	 the finite change

in	 the	 driving	 force	 due	 to	 the AChma cannot	 affect	 the ephemeris

instantly.

Y

3.13	 Orbit Error Due to InR.t:rrect Potential Coefficients C
nma u

4

1

When integrating the various 	 terms	 in (38),	 there are two situations

that must be considered separately.

r	 s

(a)	 (n-2Pfq)	 (art M) -q^+m0' # 0

N
t

4 a This	 is	 the	 normal	 case:	 the	 corresponding	 part As 	 of	 the

i solution,for Aa and Ae is of the form

F
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AC nma 
S
inm cosM
	 L+n-2p+q)(L+A)-q

pq

nmopq(nonres)

++ As
nmapqo	 io

(42)

with

	

S	 [(n-2p+q)(w*A)-qu*m2"j-1	 (43)
inmpq	 inmpq

-k
where theare the functions of a, e and I in (38) and the hssinmpq	 io

satisfy the inertia condition (41). 	 The symbol denotes
(nonres)

the sum of all terms where the frequency is not zero. As for AM W , after

replacing Aa in (38c) according to (42) and (43) and integrating, one

gets

3 n a-1,- t_tk)

	

AM	
2

a

	

<	 -k
AM' + Mt + AM

0

where AiZ" is of the form (42), except that it now includes an extra

-2
term proportional to [(2n-p+q)(u*A)-qw+me"I 	 in the coefficient Mnmpq

(corresponding to 
sLnmpq 

in (43)), because of the double integration

of AA(g) ) while AR
k 

is such that the inertia condition Am 	 (t
k	0

0	 0
<

is fulfilled. The term M't can be included in the secular component of M

(explained in part (b) of this paragraph), so only the periodical part

57
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OV

dtrj'(g)(t)	 nmaMnmpgcos((,(n-2p+q)(t+A) - gw+mb')t
nmapq(nonres)

^nmapgo 2 * QMo '	
(42')

shall be considered here. The coefficients s
inmpq 

in (42) and (42') are
*

proportional to the inverse of the frequency. 	 Accordingly, the closer

this	 frequency	 is	 to zero,	 the	 larger ai 	and,	 thus,	 the
inmpq

contribution AG	 S	 of A4	 to the do . At about 1000 km heightnma inmpq
	

nma	 i
an orbiting spacecraft completes between 13 and 14 revolutions in one

"nodal day", which is the time T.D = 127r/ Vj it takes the Earth to do a

full turn with respect to the precessing orbital plane. If this number

were exactly 13 or 14 then, calling it NR and assuming that	 0, there

would	 be	 always	 some	 combination	 of	 n,	 F	 and	 q	 such

that (n-2p+q)M + mb- 	 0 for all potential coefficients of order

m	 k NR, where k	 0,_1, 2, 3, .,.

i

When the-frequency is zero, 
sinmp9 

becomes infinite and the solution of

the linearized equations given by (42) and (42') .does not apply any

longer. This case, to be discussed in the ;next paragraph, is known as a

perfect resohance.	 In practice, tb is quite small for altimeter 	 +

satellites, but not zero. If the number N R for one "nodal day" is still
r4

k ,.	 R	

of

, 	 e

a
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very	 close	 to	 an	 integer,	 the effect must be very similar to	 that just

described,	 at least over a period of time of a week or so, which is much
x

smaller than the period of fa. The perturbations, though very large, become

periodical,	 in agreement with (42)	 and	 (42`),	 even if	 their periods	 are

very	 long.	 This	 is	 a	 case	 of	 deep	 resnnance-,	 and	 the	 resulting

perturbations,	 if given, enough time to grow, 	 may have peak amplitudes of

the	 order	 of	 a	 kilometer	 or	 mere;	 in	 that	 case,	 a	 linear	 theory is	 no

longer adequate and one has to use a nonlinear approach. 	 This is not the

case for the errors of weekly altimeter satellite arcs, which never reach

more	 than a few meters in size.	 In reality, NR differs considerably from

an	 integer,	 though	 those	 AC	 errors	 whose	 orders	 come	 closest	 tonn a

satisfying the	 resonance condition given above,	 or resonant orders, still

canroduce	 long	 period	 largereffects	 much	 la	 er	 than	 those	 of	 the	 otherP	 g	 P _$ ^

t

orders.	 This is known as shallow resonance, and altimeter satellites have

orbits	 with such	 resonances	 at orders	 close	 to whole multiples 	 of 13 or

14.	 In	 particular,	 when	 k - 1,2,3	 one	 has	 the	 so-calledrp imary,

secondary	 and	 tertiary	 shallow	 resonances,	 respectively.	 Orbits

where tv = 0.and there is an integer number of turns ,NR over a whole number

of	 "nodal	 days"	 ND ,	 are	 known as	 "frozen",	 repeat	 orbits.	 The	 same

9

argument	 used	 when	 N^ = 1	 applies	 now:	 these	 orbits	 must	 experience

perfect	 resonances with those	 AC	 that satisfy the condition m	 k N 
R,nm a

which includes	 the zonals for k = 0.	 This type of orbit turns out to be

.Y quite	 important in satellite altimetry,	 and more shall	 be said about	 it ;r	 #1

presently.'

VV'

f yt}
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Next	 in	 importance	 to	 perfect,	 deep	 or	 shallow	 resonances	 are	 the

effects	 ot,	 those	 terms	 in	 (42)	 and	 (42")	 where	 (n-2p+q) - 0,	 as	 the

frequency	 then	 is	 reduced	 to -qta + mV.	 For	 the	 orbits	 under

consideration	 this	 sum	 is	 quite	 small	 compared	 to	 the	 "once	 per

revolution"	 frequencyp	 approximately	 equal	 to (A4)	 A t	 so	 it	 must	 be

much smaller than any other where (n-2p+q) * 0,	 provided that q and m are

small	 integers.	 At	 altitudes	 of	 1000	 km,	 JqJ	 < 2 for	 all	 terms	 of,	any

real account,	 and the perturbations are substantial only if m < 10.	 Given

the	 prevalence	 of mb' over q&), these	 frequencies	 and	 the	 corresponding

terms	 are	 usually	 known	 as	 I'm-dailies".	 Because	 of	 the	 size	 of	 their

effects,	 which	 show quite	 clearly in data from satellite	 tracking,	 deep

resonances,	 shallow	 resonances	 and	 "m-dailies"	 are	 quite	 useful	 for

estimating the AC	 f rom this	 type of data, as	 they comprise most of thenma

signal.	 For the same. reason they are quite important in understanding tile

nature of orbital errois, which is the subject of this work.

The total amplitude of the oscillation associated with any particular

frequency in (42) and (42') is

AC	 8	 where (n-2p), q and m must be all constant,nma	 nmpqnpq

SO only AC	 of the same order m and degree n of	 the same parity (even,nma
odd)	 can contribute.	 This amplitude,	 being a weighted sum of 	 AC	 isnmu

known as a	 "lumped coefficient". 	 '^he weights	 in tile sum are functions

of	 inclination	 and	 of	 eccentricity	 through	 the F	 M	 and	 G	 6T),nmP	 npq
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functions in expression (38); which 
ACnma 

dominates the sum will depend on

both? and W, Thus, modelling the gravitational field with tracking

data requires satellites with a wide variety of inclinations and

eccentricities, to disentangle better the various AC nma also for a given

as e order m, coefficient errors of een degree n produce perturbations most of

whose frequencies differ only in f qw from those of odd degree (the main

ones having jqj 4 2), so it is desirable that the interval between the

first and the last observation of a satellite be at least a substantial 	 >

part of its apsidal period' 27r/w.
1•_	

I

Of	 all	 the	 C	 , the	 zonals	 are	 the	 best	 known	 at	 present;	 their
nma

determination involved most of the early work done in the field of mapping

-  with	 artificial	 satellites.	 It	 was	 the	 anal nis	 of	 thegravitation.a	 y

tracking of	 one	 of	 the	 first	 USA orbiting	 spacecraft,	 a VANGUARD,	 that

revealed the exi,- ronice of a strong third zonal ,indicating that the Earth

is rather "pear-shaped", with the southern hemisphere slightly larger than

the northern one (Ecke'ls et al., 1959).

'. (b)	 (n-2p+q) (M+w) - gw+m8"	 0 (Resonance)

L

` As already explained,	 this case is known as a perfect resonance: 	 it

occurs	 whenever	 the	 angular	 frequencies	 M, w and g ' are	 locked	 in	 step +

with each other, which is a rare case, but quite relevant to the study of

rG the	 orbits	 of	 altimeter	 satellites.	 Then,	 the	 orbit	 crosses	 the

j4

gravitational	 perturbations	 associated	 with	 some	 of	 the	
ACnma	

at

L
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intervals equal to the period of M, the natural frequency of, the

linearized system that, forced in this way, resonates. One example is the

"frozen", repeat orbit, whose ground track repeats with a period of ND

"nodal days" which is an exact multiple of that of M.	 An extreme case of
e

r
this is the orbit of a geosynchronous satellite (often used to relay

communications) whose ground track, ideally, is on a fixed point on the
^	 3

equator where it "repeats" for ever. Here the main resonant coefficients

are C220, and 0221, related to the "triaxiality", or lack of rotational

r
symmetry, of the best fitting ellipsoid for the Earth.^	 k	 .3

As given here, the resonant condition requires an excitation of 7

0 frequency, instead of	 M.	 This apparent contradiction with, the

p,•',rica explanation given just n-)w is resolved by noticing that whenever

(n-2p+q)	 (M+w) - g^+m6'=0	 then (n-2p+qfl) (M+w) - (qtl) Wf•at.B'= f M, so	 ^{

any 
ACnma 

that produces a zero frequency, term must produce also forcing

terms of frequencies M and -M (either of which makes the linearized

system resonate).	 Moreover, the amplitudes of the 0 and f M forcing 	
r

terms are implicit functions of each other, as both depend explicitly only

on the parameter q (in all of them, a, I, e, n, m and p are the same).

As before, the linearized equations for Aa and he can be solved

independently by direct integration with respect to time. Adding up all

resonant terms and symbolizing their sums by Asig),

i

V;

ti	
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R	 ^t
s	 ^	 ,

E

S	 pC	 s	 cos(	 + '^) }	 (t-tk>Ds	 {	 inmpq	 2i	 nma	 nmopgo

nmapq(res)

j =sit + esio )k 	 (44)

where	 "	 "	 indicates the sum over all the resonant combinations of
nmapq(res)

n,m,p,q,	 while	 e ^(g) k= -	 ito	 (so	 in ertia	 is	 not violated at	 the s°tart
^.	 u

io

of an arc), and s 	is the expression in curly brackets. 	 The equation for

AM,	 on the other hand,	 has a solution that depends on	 ea	 because of

the not negligible "interaction term"	 _ 3n ea;

t

p( g )_	 {
k

AC	 M	 cos(	 )} (t - t

3`

nma nmpq	 nmapgo	 o

nmapq(res)

z

2
- 3 

n 
f a(t-tk) + ea(g)k ( t - t k)^	 (45)

a2 a	 o	 0	 0

In practice,	 the quadratic term in (45) is unlikely to become large enough

° to	 matter	 within	 any weekly	 arc.	 However,	 quadratic	 terms	 have	 to be .
1

included	 not	 only	 in	 QM, but	 in	 ea and ee as	 well,	 because	 true

resonances	 are deep_ rather	 than perfect, with frequencies	 that are very ^>

" small but never zero.	 The corresponding terms have, therefore, very long

s^.
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periods,	 which	 over	 a	 much	 shorter	 interval, 	 such	 as	 one	 week,	 can	 be

approximated by quadrics:

As 	 M ,k t2 + s kt + sk
i	 i	 i	 io

n

Including both periodical and deep resonant terms (if there are any),

the	 complete 'solutions	 of	 the	 three	 linearized	 equations	 of motion	 (38)

corresponding to gravitational model errors can be written as

(g)_	
-(g)	 ^k 2	 <k	 kGa	 = Ga	 + a t	 + a t + a	 (46a)

o ?

(g)
ek t6e= Ge

(S) 
+ ek t2 +	 + ek	 (46b)

o

^t

^'i(g) =
	

C
+ ik t 2 +	 k t +^^1

(g) 	 Mk	 (46c)r

where the constant terms 	 a k , ek and Mk are such that, at the start of any P

o
r

weekly	 arc,	 Ga(g) (t k ) _ pe (g) (t k ) =	 GM(8) (t k) = 0.	 The	 second	 degree

w

p	 p	 p

terms	 in	 (46) are likely to be considerably smaller than the linear ones,

so the non-periodic parts of the As(g)may depart only slightly from

'+. straight lines.
w

Errors	 in	 drag;,	 etc.,	 can	 also	 have	 very_	 long	 period	 effects

resembling weekly quadrics,	 as well as others looking rather like higher
E

degree polynomials (expression (18)).
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3'-14	 Orbit Error Due to Incorrect GM

At present,	 u	 (often referred to as "GM ' s , where "G" is the

universal constant of gravitation and "M" is the mass of the Earth) is

known to better than six significant places. 	 According to (26) the

effect of an error Au is equivalent to an errorNu 
Cnma 

in each	 i

potential coefficient, or about Cnm x 10 6.	 This means that the only

'	 appreciable effect is that of û C, as the zero degree (or "central
u	 000

t force") zonal (which has a unit value by definition) is almost three

orders of magnitude larger than C200, and five or more than all the

rest.	 Therefore
' 	 pto understand the influence of du on the computed	

1^

'	 orbit, it is sufficient to consider the case where the field consists of

the zero harmonic alone.	 In this field the orbit obeys Kepler's laws,

K	 3 1/2
so its	 frequency is M = (p /a )	 For a nearly circular orbit of

mean radius r, a N r, so M	 (u^3)1/2.	 An, error- AV in p requires a
^^	

1

compensating bias Ar u in r to keep the frequencies of the true and the

^	 1 fur{	 computed' orbits very close; accordingly, Aru = 3 u	 Otherwise, the

along track errors may become very large after several days. While Du,

through its influence on the adjusted initial state, causes more than a

bias in Ar (see expression (23)), here Ar u is 	 nonetheless, its most

distinctive and important effect. This bias is virtually the same for all

the arcs, as long as r_does not change much. Such is the case throughout

most of the mission of an altimeter satellite, where the ef fect of drag is

1
relatively small because of the height, so Ap 	 will cause the

v.	 altimetrically determined mean sea surface h , for instance, to appear
wc
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" higher or lower by the constant offset Ar,,. Likewise, there may be an

error in the size of the reference ellipsoid, approximately equal

to AR (which may be partly related to Ali), so the estimate of the mean sea

surface topography wo	 will be biased as well by Awo	r/3(Ap/p)-ARc

However, for any meaningful oceanographic application, what matters is the

slope between the sea surface and the best fitting equipotential; the non-

zero global mean value (bias) of the computed topography can be ignored.

3.15	 Expression of the Radial Error Excluding its Tidal Part
yr	 '.i

'	 Going back to (16) , one can see that Aa appears in Ar 	 directly,	 F

while. Aa 	 tie	 and AM modulate	 togetheroscillation an 	 of	 frequency	 M. ^

This	 causes	 the	 frequencies	 present	 in	 (42)	 to	 appear	 in	 Ar both

unchanged	 and	 shifted	 by	 + M.	 Because	 of	 the 	 -+i	 shift;	 terms whose
f^

original	 frequencies	 are	 very	 close	 to	 M	 produce	 very	 long period

oscillations	 in	 Ar,	 resembling,	 for a weekly arc,	 quadrics	 that can be

lumped	 with	 that from the ' direct contribution of 	 Aa.	 The	 +M shift,

on	 the	 other	 hand,	 converts	 the	 sum	 of	 the	 deep	 resonant terms]

in Aa, Ae and &M into	 an	 oscillation	 of	 frequency	 M	 modulated by	 a

quadric,

Putting together the various parts that make-up the radial error, one

can	 get	 an approximate	 "weekly"	 expression	 for	 Ar.	 To	 this effect,

replace	 (46)	 in	 (16)	 while	 taking	 into	 account	 (18),	 (23),	 (42), (43),

(45) and the usual trigonometric identities for the sine and cosine of the
j

sum and the product of two angles.	 The result is:
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Ar(t) (NT) _ }'	 AC	 {r	 cos[((n-2p+q)(wA)-q;-me')t+^
nmapq(nonres) nma nmpq

	 nmapgo

+rcos[((n-2p+q+1)(w+M)-(q+l);*ma-)t+
ump(q+1)	 ^'mmap(q+l)o

}

s +r	 cos[((n-2p+q-'1)(4► 	 )-(q-1)UFme-)t+^	 ] }
nmpq-1)	 nmap(q-1)o

^? r

. +A	 cos Mt+B	 sin Mt+t+C	 t cos Mt+D	 t sin Mt
'k k	 k	 k

a

2	 2 i

r. +E t	 cos Mt + F t	 sin Mt
k	 k

T

+	 rk (t-to) 	 (47)
j=0 r

where	 J	 is	 a	 small	 integer,	 to
	

is	 such	 that	 Mo = Q in	 (HOc)	 (to

eliminate' a	 term (q + ^) Mo in	 the arguments of	 the cosines and simplify

the formulae)	 and the	 r 0 __depend on the	 ACa.	 Notice that thenm
• nmp(q f1)

"	 n	 ee	 ee	 h	 et	 ersubscripts	 (g)	 and	 (ng)	 have	 been	 replaced	 by	 (NT)	 (for	 non't-
a

tidal"),	 as	
Ar(NT) 

has	 here	 both	 gravitational and	 non-gravitational.

F° causes,	 but	 excludes	 the	 effect	 of	 tides	 (to	 be	 discussed	 'later):	 The
_ i

coefficients rnmpq are

rnmpq	 anmpq

n
r	 1

 (Mnmpq
	 a-e	 a)

nmpq+l)	 2	 nmpq	 nmpq	 nmpq

1

R ^.

1
, r{M	 a e'+ a	 e+ e	 a)

nmp(q-1)	 - 2	 nmpq	 nmpq	 nmpq s

K	
^^s 

13
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so they are functions of a, a and I (through the Fnmp(I), Gnpq (e), etc.,

in (38a-c)), but not of M, w or $1. For a satellite Like GEOS-3, where the

mean ellipse changes appreciably over the mission due to uncontrolled

orbital decay caused mostly by air drag, the r 	 , r	 and
nmpq	nmp(gfl) x

^nmapgo' ^nmap(gt1)o are also arc dependent, although the former are not

likely tovary appreciably from week to week. This decay was prevented by
F

orbital corrections in SEASAT aiid shall be prevented likewise in most

future altimeter satellites, so expression (47) applies best to them. For	 F

arcs of up to one month (47) is still likely to be valid if the envelope

of the increasing M oscillation is approximated by a cubic or a quartic

instead of a parabola.

The resonant part Ckt cos At + Dkt sin At + Ek t2 cos At + Fkt 2 sin At

Oil caused by gravitational field errors is only important in deeply resonant

orbits	 like	 those	 discusse4;	 in	 the	 next	 chapter	 where,	 as	 shown	 by

computer simulations,	 El'' tht,,,	 AGnma Were of	 the order of	 the published
^

accuracies	 for	 the	 coefficients	 of	 GEM 9	 (Lerch	 et	 al.,	 1977),	 these tr

increasing	 oscillati4tns could	 build	 up at a	 rate	 of	 several meters per

week.	 As	 for	 the	 i'P.,.x•iodical	 terms,,	 the	 power	 in	 the -spectrum	 of	 that

_ part	 of - Ar	 caused ;;y errors like those in GEM 9 would be distributed as

:r
follows,	 in the	 c,.^,-,e	 of	 SEASAT:	 up	 to	 1 cycle/revolution,	 3m	 (r m.s.);

s from	 1	 to	 10 cy^ ,jev.	 2m	 10-20 cy./rev.,	 lm;	 20-30 cy./rev.,	 0. m;	 30-
s

40 cy./rev.,'0,'05m;	 above 	 40 cy./rev.,	 less	 than	 0.05m.	 More	 recent K

gravity fielc models, 	 such as PGS-S4 (Lerch et al.,	 1982),	 are thought to

- reduce con xiderably all the components of Ar associated with them.
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4.0 O ' TS WITH REZEx1T'INO .GROUND TRACKS

4.1 TTY " tozeW", ElLeaft, (Orbit

For -ma_ay Appliciatl.ons of altimetry it is desirable to choose the

t

	 nor it so the sstellitit! passes over the same places on Earth every few
i

	

	
,dayr O repetti-ag its griouatd, track 'periodically.	 This was done,

*xpe_ri ntall7,,: du-ring t^Lbe last,  month of operation of SEASAT (,Gutting et

^ b	 1978Y p and is pl.,anmed for all civilian altimeter missions now

ei	 ^aDts 4ered. Because of the disruption of the chosen orbit by drag,

d ,lion. r vsure,, and lother disturbing forces, the ground track cannot

be 	 -atesd exactly, but it is sufficient to keep it within a band a few

kllome	 s vdde	 (.about f5 km for	 SEASAT (Bauer,	 ib.	 1978),	 and probably
a^ {

about *1 km for	 the satellites	 that will	 follow over the next decade)`,

This can be achieved by :firing small rocket 	 engines to correct the orbit

every go often,	 for example	 less	 than once	 per month for ERS-1	 (Dow and l

Klinkrad,	 ib.,	 1982),	 so	 as	 to	 turn	 the	 drift	 back	 towards	 the	 ideal

_ orbit.	 The ,maneuvers must 	 be brief, as	 the	 thrust of the rockets cannot

be	 modeled	 accurately	 enough	 for	 precise	 orbit	 determination,	 so

measurements	 taken while	 they are operating are hard	 to interpret.	 For

his	 reason,	 the	 precisely estimated ephemeris cannot run through one of

these	 maneuvers;, an arc must end just	 before	 and another one -begin just

f
after	 it.	 To	 get	 the	 desired	 repetition,	 it	 is	 sufficient	 that	 the

maneuvers keep	 the mean ellipse of	 the estimated orbit so	 that,	 if	 this if

ellipse	 were the	 actual	 trajectory	 of	 the	 spacecraft,	 the	 ground	 track

1
would	 repeat perfectly.	 For this,	 such mean trajectory should start and

end at the same point (in Earth-fixed coordinates) in each repeat cycle. F

r s,^
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SEASAT: Actual 3—day repeat grouncitrack
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TOPER: Projected 10--day repeat groundtrack
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FIGURE 2(a). Repeating Groundtracks of SEASAT and TOPEX
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ERS-1: Projected 3-dlY r.pelt groundtrlck 
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This is possible only if 	 M and b' - ^ - b are all exact multiples of

the fundamentnl	 angular	 frequency	 wrc = 2tt/Trc , where Trc is the

repeat period. For altimeter missions Trc has been chosen., up to now, of

the order of a few days (three days for SEASAT, nine for TOPEX, three for

ERS-1; Figure 2 shows the ground tracks of these satellites). The
E

approximate	 expression	 (11)	 for w would	 require	 a	 very	 large	 mean

eccentricity of the orbit (close to 	 1) for the perigee to precess in a

few	 days,	 making wT	 k27r (k-0,1,2...),	 except	 when to is	 zero.rc

Unfortunately;,	 such	 an	 eccentric	 orbit	 would	 have	 its	 perigee	 deep

f underground.	 This	 leaves W - 0 as	 the	 only	 practical	 choice.	 The

question	 is`	 can	 one	 have	 both	 a	 small	 eccentricity	 and	 an &) that	 is

virtually 0?	 All	 zonals	 can produce secular perturbations in w; formula

(11)	 gives	 only	 the effect	 of	 the largest	 of	 the	 zonals,	 C200•	 However,	 r ,

when a is	 very	 small,	 the	 position	 of	 the	 argument	 of	 perigee	 can	 be

r~ rotated through a large angle by very slight changes in the shape of the

orbit,	 like	 those	 produced	 by	 the other zonals,	 particularly	 the	 second

largest,	 C800 .	 As	 these	 perturbations	 are	 of	 different	 signs,	 their

`I: combined	 effect	 on	 the	 mean ellipse	 may	 cancel	 out	 that	 of	 C	 alone,2J0

thus making' h = 0	 regardless of the inclination.	 Cook (1966) developed
r

a	 theory	 for	 the	 mean	 ellipse	 to	 take	 into	 account	 the	 effect	 of	 an

arbitrary number N of zonals.	 From Cook's	 theory` one can get the values

r
of a and w that "freeze" the mean orbit assuming that 	 a,I_	 and the first

N zonals are known:

7rr _ _	 (48)2

k
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^ N(odd)	 `1
e .	 i	

Cnpp

 O)n
Y rit (0) ^n1 (cos I^ r^ C200
 (.9)'(1

  
'sin' )) n(n+l)

n3

1.182 x 10-3 (^ sin I + 0 (C500)
	

(49)

where the	 summation in (49)	 is over odd values of n.	 Notice that	 (48)

fixes	 the mean	 perigee	 at	 the	 highest	 latitude	 reached	 by	 the	 ground

track.	 This theory involves a number of	 approximat ions 	and breaks down

` for I close	 to	 the	 critical	 inclinations (^43.40 and -116.6 0); in	 this

special	 case,	 the	 theory of Hough (1981)	 shows	 the existence of "frozen"

orbits with small a	 and heights of about	 100pkm where w	 2 as in (98)`,

although the equilibrium value of a is not given by (49), but by another

expression	 that	 also	 depends	 on	 the	 first	 N zonals.	 TOPEX's 	 orbit	 is

likely to have an inclination near the critical value of 63.40.

Cook's	 formulas	 are	 used	 to	 this	 day	 (for	 example,	 see	 Dow	 and

Klinkrad,	 ib.	 1982).	 It is important to notice that expression (49) is a

continuous function of 	 a and I,- so whenever a "frozen" orbit is possible

at	 a	 given 'height	 and	 inclination,	 there	 are	 infinitely	 many	 others	 at

heights and inclinations close to that one. 	 SEASAT is a clear indication

that	 this is	 the case at	 typical heights	 for -altimeter satellites.	 How

well	 can one "freeze" an orbit in a low degree zonal field?	 Recently I

integrated numerically "frozen" orbits at 	 various	 inclinations,	 using as

the	 only driving force 	 that	 of	 the field	 of	 the	 9	 first	 zonals	 of	 the 1

` GEM 9	 model	 (Lerch et	 al.,	 1977).	 The initial conditions were adjusted
/

z iteratively,	 starting	 with	 the	 values	 given 	 b	 (49),	 until,	 Makiny,	 g	 g	 y	 g

allowances	 for	 the	 precession	 of	 the orbital	 plane,	 they	 "returned"	 to

r

a
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their starting positions and velocities within 10 -5 meters and 10-6 meters

per second, respectively (Colombo, ib. ) 1984). Of course, a real orbit is

subject to numerous perturbations that prevent it from being that "frozen"

and, in any case, the accuracy with which a satellite can be put in a Y

particular orbit: (nnd kept there) is also limited. Fortunately, the kind

of accuracy that can be achieved is enough for altimeter missions.

Moreover, as any large perturbations are also likely to be slow in growing

(i.e, have long periods), they can be kept in che ck by occasional orbit

a	 maneuvers.

n
4.2 Periodicity and Resonance

H	 A complete first order perturbation theory for "frozen", repeat

= a 	orbits is given in (Colombo, ib., 1984). What follows explains the partEll

of this theory relevant to radial orbit errors.'

,s

When	 0 and the satellite completes a whole number N R^	 R	
,

f
revolutions in an exact number ND of "nodal days" , " ) the frequencies of

the trigonometric functions in (38 a-b)' and in ( 47) are all of the form

4

(n-2p+q) M + m;' = ((n-2p+q) NR	 m ND) 
wrc '	

(50)	 f{

4

MA "nodal" day . (lepgth equal to 27/191) is ,very ' close to one sidereal
day because 42 in 8 =Sl - is much smaller than 0.
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M

a	 where	 wrc is	 the angular repeat frequency of	 the orbit. The numbers NR

and ND must be	 relative primes, i. e.,	 have no integer factor in common

other than
x

1.	 Otherwise ) if	 the largest of such integers is N'p, there

will be a repeat every N' days as well as every ND days, with ^'0 < Np.

w	 The	 minus sign	 of	 --mND comas from so G 0, while
a	 s

1

here 'wrc is chosen positive, and M is always positive, according to (9)
a

and (9').	 As before, terms in the analytical expressions of the

gravitational errors can be separated into two classes: non-resonant and

resonant.
to

The most	 important characteristic	 of	 the	 non-resonant part	 of	 the

orbit error is that it is now a Fourier series whose terms are harmonics

of	 the	 repeat	 frequency wrc .	 Therefore,	 this	 part,	 which is	 the	 most

complex component of the error caused by the field model, is a periodical'

function of	 time,	 and, 	its	 fundamental	 period	 is	 the same as	 the	 repeat

of the orbit..period

.. N

t

This	 strong property reflects	 the	 rotational symmetries of Lhe mean
r

r repeat	 orbit	 and	 its	 ground	 track,	 each	 coiled	 around	 the Earth	 in	 a

y
spherical helix that closes on itself.
r.
¢ a

it

i	 g Resonances	 in a	 "froeen ,, repeat orbit occur when	 the frequency in {
j

(50) is zero. 	 This happens for all 	 ACnma whose order satisfy Li

m	 k NR	 (k = 0,	 1,	 2,	 ...) (51) It

i'
V
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The corresponding force errors are "encountered" by the computed

satellite position at repeated intervals of exactly one revolutY.on, which

for a "frozen" orbit is also the period of M, so the linearized equations

of motion are driven by these errors at their natural frequency M and have
4

resonant solutions. For repeat periods of three days or longer (those of

all satellites considered here),	 the lowest degree n of a 
ACnma 

that

causes resonance must be n > m = k N R > 43 (= 43 for SEASAT, with a 3-day

period).	 Expressions (32) and (33) show that, as n increases, the
1

strength of the harmonics in . the expansion of V must eventually fall

off. At 1000 km, even resonant coefficient errors with n-- 43 should have
41

a very small effect on Or. So the only case where resonance is likely to

be important	 is when k = 0 and	 thus	 m = D (zona s). ( 1 ) 	Expression (38a)p	
, ,

shows	 that Aa cannot	 have	 a	 secular	 part	 produced	 by	 zonal	 errors,

because ^a is	 proportional	 to	 (n-2p+q)'	 and	 must	 be	 zero	 at	 resonance

} if 6=m=0.	 Therefore,	 field model errors may cause significant secula-

departures	 from	 the	 true	 values	 of	 all	 the elements	 but	 the	 semi—major

axis,	 in contrast with surface model errors that can charge this element

as well.

r -

(1)	 The main	 errors	 are	 due	 to	 the odd zonals,	 mostly because the	 term
r; proportional	 to	 e -1 8G	 (e)/ae	 in	 (38c)	 is	 very, large when	 a	 is	 smallpq

and	 q =1	 (aG	 (e) /8e - 1), -	 and causes	 the effect of AM to	 prevail
in !fir over those of Aa and de. - 	 If q=1,	 the resonant condition for m=0,
i.e.,	 (n-2p+q)=0,	 requires nto be odd.

.	 tr
1
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4.3 The Stability of a "Frozen" Orbit

In	 a	 "frozen"	 orbit,	 zonal	 resonances	 will	 occur	 regardless	 of

whether the ground track repeats itself or not, because the condition for

 t resonance	 (n-2p+q)=0	 does	 not	 involve	 M or	 6';	 zonal	 resonance	 is

inherent	 in any "frozen" orbit. 	 Zonal force errors 	 are not affected by

the rotation of the Earth, which shapes the ground track. 	 Since the known

values	 of a, I and	 the	 zonal	 coefficients	 used	 in	 formula	 (49)	 may	 be f

accurate	 but	 not	 perfect,	 and	 the	 effects	 of	 higher	 degree	 and	 order

`r potential coefficients, as well as those of non-gravitational forces (drag

in	 particular)	 are	 not	 considered	 in	 (48)	 and	 (49),	 the	 supposedly

fixed a and W will,	 in	 fact,	 change	 very	 gradually	 from their	 starting

values.

At	 any	 time,	 the	 mean	 orbit	 defines	 a	 point	 in	 a	 six-dimensional
f

Euclidean	 space	 with	 Cartesian	 coordinates a, e, I, m,	 P and M.	 As	 the

_ j orbit evolves,	 the point	 follows a slow trajectory in this space. 	 Let Q k
t

be	 the	 point's	 projection	 on	 the	 plane	 of	 the	 axes	 a and w. 	 If	 Q	 is

initially identical with the "frozen point" P defined by (48) and (49), it
-

will	 remain	 there	 indefinitely.	 Otherwise,	 as	 is	 shown	 ii lL	 Figure 3,

Cook's	 theory	 predicts	 that	 it will	 follow	 either	 a	 closed	 trajectory

around P (libration) or else an open one where 	 w	 eventually ranges from

00 	to	 3600
 (precession).	 Similar predictions are made by Houg! ,i's theory ^

m.
(ib,	 1981)	 for	 near	 circular	 orbits	 close	 to	 the	 critical	 inclination.

` The	 trajectory will	 be	 closed	 if Q is	 initially near enough to P,	 open

r	 ' totherwise;	 in either case (`taking	 w'modulus 3600 ) Q returns	 to the same

-

7.

t
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starting	 position	 after	 the	 same	 length	 of	 time,	 which	 is	 the	 period

corresponding	 to	 a)	 as given by	 (11).	 Therefore,	 the	 closer Q is	 to P,

the	 smaller	 Its	 tangential	 velocity	 along	 its	 own	 trajectory,	 and	 the

smaller,	 in general,	 the projection of this velocity on the	 W+ 	 axis,	 or,

approximately,	 the	 weekly	 average	 (f or	 SEASAT	 was	 always	 very

close to 1 0 per year).

Since	 the values of the zonals used 	 to calculate the coordinates of P

with	 (48)	 and	 (49)	 are only those of 	 the N first CnOO and are subject to

errors AC	 the	 true "frozen point" is P' a-rid not P. 	 As (48) does not
nOO'

depend on any parameter, 	 both P and P'	 are on	 the same line,	 parallel to

the	 + axis,	 where	 7T/2.	 Even if Q is placed exactl	 at P,	 it	 cannote	 y

stay Lhere,	 being forced by the zonal errors W	 to move instead along a
nOO

trajectory	 that	 encircles	 P,	 as	 shown	 in	 Figure	 3.	 Initially,	 this

trajectory will	 be	 very close	 to	 the	 local	 tangent,	 which	 is	 a straight

line,	 so	 the	 variation	 in	 both	 Te and 'W	 will	 appear	 to	 be seculiie when

observed	 over	 a sufficiently	 short	 time.	 As	 P and P'	 are	 likely	 to	 be

quite	 close,	 the	 movement	 of	 Q	 can	 be	 very	 slow	 and	 one	 week	 can	 be

regarded	 as	 a	 "short	 time".	 Because	 of	 drag,	 the	 semimajor	 axis	 will

decrease	 gradually,	 so	 P	 will	 ^hift	 upwards	 along	 the	 line W	 (see
2

(49)),	 and	 Q	 will	 follow	 a	 slowly	 widening , spiral	 instead	 of	 a	 closed.

curve*

In	 the	 event	 of	 the	 mean	 ellipse	 becoming	 too	 different	 from	 the

chosen	 one,	 the	 rockets	 in	 the	 spacecraft	 can	 be	 used	 to	 correct	 the

orbit,	 bringing	 it	 back	 to	 the	 right	 altitude	 and	 also	 shifting	 Q

to Q1' (Figure 3), on a path leading back (approximately) to P.
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FIGURE 3. -	 Long period evolution of the "frozen" orbit in the e,w plane. P' is the true

"frozen" point, P the computed "frozen point; the line from Q to Q' 	 }
; E	 indicates a corrective maneuver after Q has moved too far away from P.
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4.4 The Repeating Ground Track
k . is

As clearly	 shown	 in	 Figures	 2a-b,	 the	 ground	 track	 of	 a	 "frozen",

repeat orbit is a curve of strong symmetries, including:
r	 .

1. rotational symmetry about the z axis;

2. periodicity ( or self-closing, or time symmetry);

^R

3. equatorial	 symmetry of	 its	 crossover	 points	 ( approximate,	 the

same	 as	 ( 5)	 below,	 because	 of	 the	 slight	 eccentricity	 of	 the

orbit);	 i

4. mirror	 symmetry	 about	 each	 of	 a	 set	 of	 2NR	equally	 spaced

meridians;

N

5. equatorial	 antisymmetry of	 the	 values	 of	 the At (the	 intervals

between ascending and descending passes at the crossovers).

`. (a) Geometry

As a	 consequence	 of	 (1),	 (3)	 and	 (4),	 the	 crossovers	 are arranged	 #

{ along parallels; -there are NR equally spaced crossovers along each

parallel;	 these	 parallels	 come	 in	 pairs	 equidistant	 from	 the	 equator

` (which is	 one	 of	 them only ' if	 NR and 	 ND are	 both odd	 numbers).	 All

A.

a
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crossovers are aligned along the 2NR meridians of symmetry and their
i,

connecting arcs form diamond-shaped partitions, each with the left and

right vertices on two alternate meridians and the north and south vertices

E on the intermediate one.

Regarding	 the	 points	 of	 extreme	 north	 and	 south	 latitudes	 as

"crossovers"	 where At =0, there	 are	 at	 most	 NR	+	 2	 parallels	 with

crossovers.	 Over	 the	 northernmost,	 perigee	 is	 reached,	 apogee over	 the

Southernmost;	 there	 ascending	 passes end and descending	 ones (l) begin,

or vice versa.	 At each	 parallel,	 the intervals	 At (Modulus T	 ) haver rc

two	 different	 values	 of	 opposite	 signs:	 eta and	 Atb, where
_ 3

At a f 
+	 Qt b l	 Trc ;	 this is	 a	 consequence	 of	 (2).	 If	 NR and	 ND are

both	 odd,	 the	 equatorial	 crossovers	 have IAt a '	 _ JAtb^	 NRTo/2 = NDTllf2
i

Trc/2- (where To	is the	 orbital period,	 and	 TD the	 length of	 the nodal

day).	 If either NR
or ND is even (both cannot be even simultaneously, 	 as

they must be relative primes) the equator cuts 	 through the middle of the

lower half of one diamond,	 the top half of the next,	 and so on.	 If ND is

even and	 NR is	 odd,	 there	 are at most N R + 1	 parallels with crossovers. }
p,

The mirror symmetries about meridians with crossovers can be understood by

imagining	 that,	 as	 the	 satellite	 reaches a	 crossover along an ascending

pass,	 the	 North-South	 component	 of	 its	 velocity	 vector	 is	 suddenly

reversed:	 In Earth-fixed coordinates the satellite (and its ground track) j

will	 follow	 a	 course	 symmetrical	 to	 the	 one	 that	 brought	 it	 to	 that

s
t+	

C

crossover;	 this	 new	 course	 (when w =-2) is	 that	 of	 the	 descending 	 pass

{
MR < 0 and F1 > 0, respectively.
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t

over the crossover.	 The equal spacing in longitude between meridians with

crossovers	 is	 a 	 consequence	 of	 both	 this	 mirror	 symmetry	 and	 of the

overall	 rotational	 symmetry.	 The	 equatorial	 antisymmetry	 of the

;y intervals At follows 	 from	 the	 approximate	 antisymmetry	 (respect	 to the
1,a

geocenter)	 of	 the Earth	 and	 the	 slightly	 eccentric	 orbit	 when	 they are

orientated	 according	 to	 their	 respective	 senses	 of	 rotation and

' revolution. r

` From	 the	 figures	 it	 is	 clear	 that	 the	 crossovers	 tend	 to	 crowd

' together	 towards	 the northern and southern edges 	 of	 the band covered by

the ground track. 	 The overall, pattern is that of a fishing net with its

stitches	 aligned, vertically	 and	 stretched	 in	 that	 direction towards the

middle, without horizontal shrinking. r

(b) Finding the Crossovers

} For a crossover to take place, 	 both the Earth and the satellite must a

come together	 twice:	 first during an ascending (or descending) pass, and

`t again during a-descending (or ascending) one. 	 This means that, at the end

of	 an	 interval	 equal	 to At, both	 the	 latitude	 and	 longitude	 of the

subsatellite	 point	 must	 be	 the	 same as	 they were at	 the beginning. It

` also means 'that, 	 since	 the	 argument of perigee	 is	 "frozen" at	 w =
Tr,
2'

y

the	 orbit	 must	 follow	 a	 path" symmetrical	 to	 the	 meridian	 plan;',	 of the f

r.

2
aa

perigee	 in	 a	 system	 of	 coordinates	 where	 this	 plane	 is	 fixed. The .;

n beginning and end of this path	 occur at the same	 latitude ^ both in this

system and in the Earth-fixed one, 	 and the time it takes the satellite to

,t
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complete it is At.	 Therefore At is a function of ¢; it also depends on To

and on the orbital inclination T, so At = f (	 , L, To ).	 This relationship

and	 the two ground track equations for and a (Table 1c) provide a set of

three	 equations	 in	 the	 unknowns At, and	 X. Unfortunately,	 these	 are

transcendental	 equations	 and	 have, as	 far	 as	 I	 know,	 no	 closed-form

F solution.	 Without	 this,	 to	 find the	 crossovers	 and	 their At it	 is

necessary to search for approximate solutions, exploiting the	 symmetries

of the groun6 track to save effort.

a

Starting	 at	 the	 highest	 latitude 4=Z, choose	 a	 point	 in	 the ground

-

track(¢o,ao } directly under the perigee (i.e., 	 $o=I),so the corresponding

true	 anomaly	 is	 f=0.	 Assume	 that	 the time	 of passageof	 the	 satellite

over this point was t =0, and shift the origin of longitude so a =0, whicho 0

makes	 b _ n = - 2 (in this paragraph X is defined, for convenience, in the

interval —7<a«); select	 a	 small	 time—step	 T <<'T o .	 The	 line a = Ao is

_ one	 of	 the 2NR meridians,'	 with crossovers.	 To find	 the others,	 use the
eti f

equation of the center to calculate f T at t=T ( see Table lc) knowing that

" MT = nT, where n is the mean motion, and obtain T
 and X

T
 with the ground

track	 equations.	 Repeat	 this	 process	 at	 t=2T,	 3T,..9,	 U,	 continuing 

along	 he same descending 	until reaching a point (	 a	 ) justg	 g P	 $	 P	 ^kT'	 kT	
past

the	 first	 meridian	 where JXJ	 > Tr/NR .	 Estimate	 the	 location	 of	 this

meridian	 and	 the	 time	 t 1	of	 passage	 through	 it	 by	 assuming	 that	 the

satellite was moving with uniform velocity relative to the ground between

points	 k-1.	 and	 k.	 If	 necessary,	 refine	 this	 estimate	 by starting from

4	 f, point	 k-1	 with 	 a time—ste	 smaller	 than T.	 Once	 the 	 of	 theP	 P ;

r
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a

'	 intersection with the meridian is sufficiently well established, tle

coordinates ( [ ,a l ) of this intersection correspond to a crossover point,
'	

Ir and the other crossovers along the same parallel have coordinates
Yj

($1, X1 + j	 7/NR),	 J=1,2,o,.NR_	 Find	 next	 the	 coordinates	 of	 the
4

° ground	 track points at	 times	 t 1+T,	 tl+2T,.:..,ti+kT,	 until	 J ),l	 > 27r/N R ,, and

F1 repeat	 the search procedure gust describfd, 	 to locate the meridian Where

Ia21	 - 27r/NR 	and	 the	 corresponding,	 2 ,	$2,	 a2 of	 a	 second	 crossover.
,b

This	 determines,	 once	 more,	 the	 positions 	 of	 all	 crossovers	 of

latitude¢2 .	 Continuing	 in	 this	 way,	 it	 is	 clear	 how	 the	 remaining

crossovers (	 it	 a) and	 their	 corresponding	 times	 ti	 are	 to	 be	 found.i
When this is done,	 the positions of all the other crossovers in th e ground

track	 are	 also	 known.-	 To	 obtain	 the	 crossover	 intervals	 between	 the

ascending and	 the descending passes, for each value of i take	 Bto = 2ti

if the satellite motion is prograde (same sense as 	 the Earth's rotation)

and ati - -2t i if it is retrograde.	 Next,	 find 'NRi ,	 the smallest positive

integer for which

2 1 ai ( 	 {27r ND (NRi/NR) }	 (Modulus 27r).

` The	 values	 of	 the	 two	 crossover	 intervals	 common	 to	 all	 crossovers	 at

^I
z

latitudeare	 , At ai ! _ NRi TO+ At 	 ( Ata i> 0,, if	 the	 motion is	 prograde, i
i

At	 < 0,	 if	 retrograde),	 and	 lAt	 '= T	 -	 Atthe	 sign. of Atai	 rc	 ai l'
1bi	 bii

being opposite to that of Ata i .	 When great accuracy is not needed,	 one
.Y
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may ftnd the crossovers in the northern hemisphere, down to the equator,

and then take advantage of the near equatorial symmetry of the ground

track to locate the southern ones approximately, as the mirror images of

their northern counterparts, using then the expression

t(NR7i+l) TO /2 - tj

to finish the procedure in half the time.

Finally, to	 ptit the crossovers	 i n the Greenwich longitude cpordinate

system,	 add the actual	 geographical	 longitude	 of	 the	 starting

point,	 Xo ,	 to each of the	 Xi.
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4.5 Orbit Error in a "Frozen", Repeat Orbit; its Geographical
Characteristics

Neglecting_, for the time being, the gravitational effect of the

tides, the expression for At of gravitational and non-gravitational. origin

is the same as (47), except for the frequencies in the cosine terms:

ar(NT) =	 CSC	 {r	 cosC((n-2p+q)N -mN ')w t + ^ 	 )
(t)

	

	 nma	 nmpq	 R D rc	 nmapgo
nmaPq nonres)

a

rcosC((n-2p+q+1)N -m N)w t +
nmp(q+l)	 R	 p rc	 nmap(q+l)o

tit

or

+ r	 cosC((	 +-)'ci-2	 1 N m N )w t+
nmp(q-1)	 p g	 R D rc	 ^nmap(q-1)o,

2	
2	 1

+ A cosMt+B sinMt+C tcosMt+D ktsinMt+E ktcosMt+F kt sinMt
K	 k	 k

o

t	 +	 r.k ( t—tn) J .	 (52)	 i

j=U

N

Here, in the ^nmap(4
	 {o}) 

a
^ the term "2 (1-(^l)n-m)^^ o f (39)

1	 _

can	 be	 replaced with-! (1-(-1) m), because now w = ^t (Colombo, ib,
s
9

	1484, Ch. 2, par. 2.2).	 The very small 1 due to the libration of the

orbit about the "frozen point" has been ignored in the arguments

w
;s
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((n-2p+(q*o))N^-mNO)wrGt', because Its effect on the	 true value of	 these

arguments must remain negligible over weeks and even months, as explained

later.

Since the mean orbit is ' Ifrozen"p and kept so by corrective maneuvers

` wherever	 necessary,	 the c	 zo ^ )	 ' which	 depend	 only	 on a, a andnm (gf^
p	 t	 1

among the elements,	 are virtually constant. 	 So it is now both possible
s

- and convenient,	 as shall	 be seen when discussing alti;metry in connection

with	 ocean	 tides,	 to	 choose	 a	 time	 origin	 for	 the	 phase	 angles

o	 (expression	 (39))	 that	 is	 different	 from	 that	 of	 the+ {fl }) onm ap (q

start of the are	 to (which still app pars In they arc-dependent part at the

end of	 (52),	 either, implicitly or explicitly). 	 Instead,	 in the periodic

terms	 of a	 "frozen"-,	 repeat orbit,	 "t 0" is	 the first	 time when M = 0 at

the beginning of the repeat part of the mission.

The periodical past of the orbit errors, according to (52), must look s`

k "frozen" to an observer who occupies the same geographical position every

time the satellite	 by,	 both the errors	 the	 occurpasses	 as	 and	 sightings

with	 the	 same	 fundamental	 repeat	 period.	 The	 linearized	 equations	 of

motion	 (including	 those	 for	 I, w and 2 not	 given	 in	 (38))	 show	 that

periodical	 parts	 are	 present	 in	 all	 As ia and	 therefore	 in 	 all

'. combinations	 of	 them	 besides Ar, like	 the	 along	 and	 the	 across	 track-

' errors.	 So the differences, (or residuals) 	 between tracking data and the

corresponding	 computed' values	 of	 the	 ranges	 or	 range-rates- (computed

according	 to	 the	 positions	 and	 velocities	 of	 the	 estimated orbits)	 may

87`
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}
exhibit	 also	 periodical	 parts	 as	 they	 are,	 to	 first	 order,	 linear

combinations of the orbit errors.

After	 subtracting	 altimetric	 heights	 determined	 at	 about	 the	 same

locations along overlapping passes, 	 temporal variations in the sea surface

must be observable unless they are synchronous with the repeat period of

.c . the orbit,	 but the periodical part of Ar must vanish. 	 This is, of courses

very convenient when one wishes to study such changes in height as tides,

etc,,	 because a substantial part of the orbit error can be "filtered-out"

a. r in a simple way.

Because of the existence of a large periodical component that depends

only tw, position along the ground 	 track,	 Ar must	 show a strong spatial,

correlation.	 This	 correlation	 was	 found,	 empirically,	 by	 Anderle	 and

Hoskin	 (1977)	 when	 they	 analyzed	 computer-simulated	 values	 of Ar.
yj

Inspection of (52) also shows that, if Ara and Ar d	are the values of the

"- periodical .component along ascending and descending passes, 	 respectively,

then Ar	 and Ar	 depend	 on Q, ;rind X	 alone4	Moreover,	 Ar	 and Ar	 are
d-	 dsr a	 a

A
different	 functions	 of	 paift .on,	 so	 their	 differences	 at	 the	 crossing }

points	 of	 ascending and descending passes are not 'zero	 (except	 for some

F
components of zonal origin, as explained later).	 In the more general case

(expression 	 (47))	 of	 satellites	 like	 GEOS-3,	 a-	 smaller	 part	 of Ar	 -

(corresponding	 to	 terms	 where	 q=m=0,	 for	 example)	 has	 these	 periodical

characteristics exactly,	 but still a considerable degree of geographical

correlation can be expected for errors within passes separated in time by

less than 1/4 of the apsidal period 27r/w (i.e.,	 ess'than a month apart ).
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How "frozen"	 an orbit must be for the effective cancellation of

8
the periodical	 part of	 Ar in the differences 	 between overlapping

+!	 passes to take place?	 All significant components of the orbit error

due to the field model	 at a height of about 1000 km are producedg	
^	

P

'	 by ACnma with n,m < 40, so they must have wavelengths v ,longer than 	
i

MIN N 360o /'a0 s '°. The time T between orbit corrections should be

4 .	 short enough to prevent an excessive departure from exact periodicity when

w $ 0.	 The unwanted phase-shift due to w, according to (47), is
t

qk, where jqJ < 2 for any terms big enough to matter. Therefore

`.	 qwT must be less than v 	(because a sinewave may reach its full4 MIN

W	 amplitude in a quarter-cycle), so

90 1

T < T	 (53)
w	

21^

In the case of SEASAT,	 to per month, so T < 1.13 months. Orbit decay,	 b

mostly produced b	 air drag, changes a and	 consequently, M and 9'Y P	 Y	 g,	 g-	 ,	 q	 Y,	 ,	 ,

through S (see expressions (9'), (10) and (40a)). This causes a growing'

misclosure of the ground track that can reach several kilometers within T

_months.- This is much less than vMIN , and the effects of variations in the

other mean elements are smaller still, so the motion of the perigee is ther.

main factor affecting the	 repetition of Ar. While T is not going to be

the	 same	 for	 all	 satellites,	 it	 is	 likely that	 a maneuver a month, at

d
most,	 will	 be	 enough	 to	 keep 	 the	 orbit satisfactorily	 "frozen" in

€

all

xr,
r

_
cases,

t

gypK:(,
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6 Obsery
Differ

X of Zonal, I
of Altimetric

al State. and Other Errors in
ghts

As the time origin has been chosen when the "frozen" mean orbit

reaches perigee, so MO =-0 and M = Mt, 
then4nmapQo 

0 in (39) for any

periodical terms in (38) which are associated with a zonal coefficient

error	 (m = a = 0).	 Accordingly, expressions (47) and (50) show that, for

the zonals,	 the periodical radial errors in the "frozen" orbit are sums of

i o,)sines	 of i	 Mt = jM'(j	 _ 1,	 2, 3,	 .),	 so	 they	 are	 even	 functions

of M	 With	 the	 per:gee	 fixed at	 w = 2 	 M is	 uniquely	 related	 to	 the
5

latitude	 of	 the subsatellite	 point;	 therefore,	 the	 periodical	 components

of Ar due- to	 the zonals de2end 'on latitude alone. This	 conclusion is	 not
.x

affected	 by	 the	 choice	 of	 time	 origin,	 as	 it	 might	 appear	 at	 first,

because	 the	 periodical	 terms	 under	 consideration -belong 	 to	 the	 "steady R

state"	 response	 of	 the	 linearized	 equations,	 which	 does	 not	 depend	 on

either the time origin or on the initial conditions. 	 It is easy to show

i`
that	 this latitude—dependence is	 true of all periodical errors associated

- _

with AC	 that	 are	 even	 functions-	 of M and	 whose	 order	 satisfy	 the
R
x

nm a

resonant condition (51),	 although those coming from the zonals are by far
t

the largest, as already explained.
-,
• sr.

a
A	 similar	 conclusion	 applies	 to	 the	 cos At term	 (in	 47),	 so	 this ,

component	 of	 the	 "once	 per	 revolution"	 part of	 Or, due	 to	 the	 initial

state errors (expression (23)), _must be also a function. of latitude only,_

x4	 at least within the same arc.	 Therefore, in height differences along

overlapping passes and in crossover differences, observability is nil for

P .	&

r
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periodieal	 errors	 of	 zonal	 origin,	 and	 very	 restricted	 for	 any	 other

errors	 whose	 periodical	 components	 have	 frequencie3	 that	 are	 harmonics

of A (Wagner,	 ib.	 1984).

The	 observability	 problems	 considered	 so	 far	 affect	 only	 those

components	 of Ar in	 (52)	 of	 frequency A (k=0,1,2,*o@)	 and	 where

1 0,+[ _(_I)n-mj )Tr/2
=0 (i.e.,	 sine	 terms	 are	 observable,	 cosine	 ones	 are

not).	 For	 total	 lack	 of	 observability	 in	 crossover	 differences,	 the

necessary	 and	 sufficient	 condition	 is	 that	 the	 intervals	 At between

ascending and descending passes at all crossovers must be exact multiples

of	 some	 "basic"	 interval At < At	 (where At	 is	 the	 shortest	 of
B	 min	 min

L the At);	 if At	 At	 then	 all At are	 exact	 multiples	 of At	 TheB=	 min'	 min'

unobservable	 components	 of Ar, if	 the	 general	 condition	 were	 satisfied,

would	 be w = 2Tr/ At	 and	 its	 harmonics kw	 (where	 k=O, 1 2,. .	 Assuming
u	 B	 u

that there is at least one repeat ground track where the condition is met,

and	 that	 for	 it	 N 
R	 and	 N D	 are	 both	 odd	 numbers,	 this	 grid	 must	 have

crossovers	 at	 the	 equator	 with At 
= N 

T /2, as	 explained	 in	 a	 previous
E	 D D

paragraph,	 where	 T	 is	 the	 length of	 the nodal day.	 This	 At	 must be aD	 E

multiple	 of At	 the	 same	 as At	 If	 the	 inclination of	 the	 orbit	 is
B'	 min'

increased,	 and	 the	 semimajor	 axis	 adjusted	 slightly	 to	 maintain	 a

repeating	 ground	 track	 with	 the	 same	 N R	 and	 ND ,	 then At	 must	 remainE

constant,	 in	 nodal	 days,	 but At	 must	 increase.	 Otherwise,	 as	 can	 be
min

shown quite easily from purely geometrical considerations,	 At	 would not
min

be	 long	 enough	 for	 the	 satellite	 to	 pass	 over	 the	 same	 point	 of	 the

Earth's	 surface	 twice	 within	 one	 orbital	 period,	 So	 the	 new	 value

of At	 measured	 in	 nodal	 days,	 must	 be	 longer	 than	 before,	 while
min'

91,
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AtE stays the same: the congruence needed to have totally unobservable

frequencies no longer holds. In consequence, tonal unobservability is not

an invariant property of the repeating ground track. 	 This does not

preclude the existence of tracks where the At are close to meeting the

necessary	 and	 sufficient	 condition.	 In	 fact,	 as	 reported	 by	 Douglas

et al.	 ( 1984),	 tha t.	 of	 SEASAT	 came	 close	 to	 having At that	 were	 all

;
multiples of At

min•anBecause NR and ND are both odd in thin case 	 d the

`
s

satellite is	 retrogt+ade tit moves .contrary to the rotation 	 of the Earth)

one	 can show,	 on the basis of the geometrical properties of its ground l:.

track,	 that if all At,	 including At., were exact multiples of 
Atmin' 

then

At	 =	 NR/(NR+1)	 To,	 where	 To 	is	 the	 orbital	 period.	 As N	 43	 formin

SEASAT, 
Atmin - 43 /44 To = 0 . 977 To ,	 so u	 211/ Atmin	 - 1.023 M, which is

the value of w	 given by Douglas et al. 	 ( ib).	 In reality,	 each At missed
s

'
u ^

being	 an	 exact	 multiple	 of 
Atmin 

by	 a	 small	 margin,	 according	 to	 the

diagrams in their paper.	 In any case,	 all periodical components of	 Ar

associated with the 
ACnma	

have frequencies ( in the case of SEASAT) rather

different from w 	 or its harmonics,	 as can be verified by making N R= 43

and	 N = 3 in	 (52).	 The non-periodical	 part of Ar ( same expression)	 hasD

most	 of	 its 	 spectral	 power	 concentrated	 within	 two -narrow	 bands,	 one

r containing	 co-0,	 which is always unobservable, and the other centered at

the	 partly	 unobservable	 M	 and,	 thus,	 also	 near wu =	 1.023
r

Nevertheless,- as	 simulation	 studies	 indicate	 very	 clearly,	 there	 is	 no

problem	 in	 observing	 part	 of	 this	 component	 as	 a	 gradual,	 cumulative

change	 in	 the	 size	 of	 the	 crossover -differences	 over	 a	 succession of V

.repeats of the ground track. 	 On the other hand,	 if one were to treat the

92
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7 lines	 within	 these b$nds-:a5 independent	 from each other and	 to estimate

their amplitudes and phases from those same differences by least squares,

it is	 highly	 likely that the solution may turn out to be unstable.	 The

u
s, way	 around	 this	 difficulty	 is	 to	 acknowledge	 that	 the	 lines	 are	 not

independent,	 but	 strongly	 related	 to	 each	 other	 through	 the	 few	 are

parameters	 Ak,	 Bk,	 etc.	 in	 (52),	 on which	 they	 all	 depend.	 In	 other

words,	 this pert of the error should be modelled, not as a sum of -a large

number of steady oscillations,	 but as the sum of	 the few aperiodir_ terms

of	 M0 ,	 instead.	 The	 bias	 rOk	 and	 the	 oscillation	 Ak	cos	 It 	 both

discontinuous	 from	 are	 to	 arc,	 are	 not	 fully	 observable	 in	 crossover

differences.	 Their changes in amplitude can be detected, if ascending and a'

descending	 passes	 belong	 to	 different	 arcs,	 but	 not	 their	 individual

values.

4There	 may	 be	 further	 limitations	 to	 the	 observability	 of Or in

s crossover differences	 because work with these is restricted, 	 in essence,

to oceanic crossovers. 	 Over land,	 the roughness of the terrain makes the ,`

interpolation of heights between consecutive measurements unreliable, and

#	 crossover differences	 are always 'made out of 'interpolated heights, 	 as	 it

t	

is most unlikely that two measurements would be taken exactly on the same

spot.

' 4.7 Numerical -Simulations of the Error in a "Frozen", Repeat Orbit
1

Table 2 presents the results of a computer sensitivity, study of the

effects of zonal resonances on the. envelope of the "once per revolution" }

= oscillation in	 4r.	 Shown are the values of 	
theAOnma 	

which are

r
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really the differences between zonal potential coefficients of two

gravitational field models (PGS-S3 and PGS-S4 t Lerch et al., ib. (19$2))

from n=2 to n=9 the published standard deviation for the errors of the

same zonals in a well known model (GEM 10, Lerch et al., i,b. 1977); the

contribution of each zonal to the increase of the "once per revolution"

oscillation expressed as an average weekly rate;	 the sum of these rates,

or	 total	 rate.	 The results	 correspond to	 the	 "frozen",	 repeat orbit of
t

' p SEASAT over an interval equal to its repeat period, or 3 days.	 They were t

obtained	 by first integrating numerically the orbit with one of	 the	 two

field ,models,	 and then solving (also numerically) 	 the exact (i.e,	 coupled

and time varying) variational equations (21b) to get the individual radial

effects	 of	 the AG
	 as	 accurately	 as	 possible.	 As	 expected,	 the
n00

contributions	 of	 the	 odd- zonals	 to	 the	 errors 	 were	 the	 largest	 (see -

s" footnote after equation (51)).	 Since the size of the actual	
AGnma 

should

be much the same up to degree 29 (if one believes the published standard

deviations	 fQr	 the	 coefficients	 of	 GEM	 10	 to	 be	 both	 true	 and
s

representative	 of	 the "state	 of	 the	 art"),	 the	 overall effect	 of	 zonal

s errors may be several times larger than the total given in the table. 	 As
t

i' the pelagic tides are supposed to be only a few decimeters in amplitude,

this	 error cannot be ignored when studying such oceanographic phenomena.

'

k,

=
1.

Regarding the ' secular changes in 'a, a and M (not shown in 	 he table). the
C

• calculations indicated that	 tM	 was, by far, the one that influenced 	 Or
f

the most. b

f i
R'

t

c
- ?

:.,
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TABLE 2'

Increasing radial oscillations caused by gravitational zonal errors

ACn00.

r

. CC	 (GEM9) 0C	 (PGS-S3jPGS-S4)	 Rate in
^?

u
Degree n

n00 n00	
meters/weel.

is x 10-9 x 10-9

^w

2 1. -0.51	 -0.02
3 1. -1.65	 -1.40 F
4 1. 1600	 -0.02

r

5 2. 0.50	 -0.17
6 2. -2.68	 0.05
7 2. 1.16	 -1.84
8 2. -3.80	 -0.06
9 2. -2.65	 5.41

wd

Rate:	 1.95_Total

S^
F

r These	 results correspond	 to a sensitivity study of SEASAT's repeat orbit
h

s
where the zonal errors have been taken as equal_ to the differences between

n the zonal coefficients of field models PGS-S3 and PGS-S4. 	 The published:
standard deviations	 of	 GEM 9	 for	 the	 same	 coefficients	 are given for
comparison.' The coefficients are fully normalized and dimensionless.

(n+m)!	 1/2
4	 3 A fully normalized coefficient is:C

nma = [ '2-d	 )	 C	 •+1)(n-m)!	 nma
mo)(2n

°

^d
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The theory has been tested also by full simulations of Ar, done by

F. J. Lerch and his assistant, N. Weiss, at Goddard Space Flight Center,

whose help is greatly appreciated. "True" orbits, based on the ephemeris

of SEASAT, were integrated numerically using the program GEODYN (Martin et

al, ib., 1976) with a given field model (the "true field") and used to

create "range data" between "'tarreetriAl stations" (whose coordinates were

specified) and the "spacecraft". With a field model (the "incorrect

model") different from the "true" one used before, "computed" orbits were

fitted to the "data" by adjusting their initial states,	 The "radial	 ti'

	

;n	 errors" were the differences between the "computed" and the "true" radial
«a,

positions. These simulated errors, over a period of six days, exhibited

the characteristics that one would expect from expression (52);	 the

presence of resonant terms with linear and quadratic parts, the former

exceeding the latter by an order of magnitude, and shorter period

t, perturbations repeating themselves with the same frequency as the ground 	 L

x track, every three days. 	 For these perturbations, the departure from

perfect repetition did not exceed 1 cm in any of the cases studied. Carl

A. Wagner at NOAA has obtained similar results (personal communication). 	 1

The repetition of the shorter period components was checked by studying

the differences between errors at passes of the "spacecraft" over the same

points along the ground track at 3 day intervals. 	 The results suggest

	

;" r	 that expression (52) represents quite faithfully the main qualitative

characteristics of Ar due to the imperfections of the field model

alone. Figure 4a shows what a typical plot of the resonant part looks

like over six days, or two consecutive repeat cycles of SEASAT The error

caused by the field model haa a component at frequency M < that is cancelled

H.JI
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(a) 1.

(m)

—1.

(b) 0.2
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(c ► 	 10..
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—10. .

	FIGURE 4.	 Simulated radial differences between "true" and "computed" orbits
(with adjusted initial state).

(a) Tyical "bow—tie" pattern produced by GEM 9—like zonal errors.
SEASAT, ft—day arc (two 3—day repeats).

(b) Error caused by the drag model (Jacchia 1965—Jacchia 1971).

(c) Error caused by wrong -effectivity coefficient (set equal to zero)
in the presence of radiation pressure. ERS-1, one full 3—day repeat,
heliosynchronous arc (froin Wakker et al. (1983) ► .
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by an oscillation of the same frequency and opposite sign produced by the

error in the adjusted initial state which, in this way (see expression

(23)), "absorbs" part of the gravitational error. This gives the envelope

of the resonance its "bow-tieQ; shape, a name suggested to me by Richard

Eanes.

The distribution of air density at satellite altitudes has two main

large scale components: a zonal one (atmospheric oblateness) and a bulge

that follows the Sun and thus turns once per year around the Earth's axis

in inertial space.	 The atmospheric models used to calculate drag

Irepresent mainly these characteristics.	 Since they do so imperfe6'Jy,

their errors have also a zonal part and a residual bulge that turns with a

A,
very slow angular velocity. The levels of the heating and ionizing solar

radiation and of the magnetic flux do influence the air density;

therefore, the density models are in error to the extent that they do not

account properly for these and other variables. If these factors remained

constant, both the large scale density and the model errors would be

invariant in inertial space, except for the slow rotation of the bulge, so

the "frozen" orbit- would cross them with a frequency very close to 	 and

the density errors would set off resonances. In reality, both solar and

magnetic activities fluctuate, modulating the density. 	 However, if one

followed the practice of adjusting the drag coefficient once every day

when estimating the orbit, the effect of all these fluctuations could be

greatly reduced ' as suggested by one of the simulations of Ar done with a

"true" atmospheric density and an "incorrect model" (the models in Jacchia

(1965) and Jacchia (1971), respectively), both used with the actual
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recorded changes in solar and magnetic activities that took place in the

second week of September of 1978. 	 The gravitational field was assumed to

•'; be perfectly known, and the true drag coefficient of the satellite to be

constant, like that of a "cannonball".	 Figure 4b shows the sort of radial

x° ?; error that was observed,	 In it there is also an oscillation of frequency

M with an envelope somewhat resembling a "bow-tie", superimposed to which^

there is a ,fluctuation of much longer period, that can be represented by a

' low degree	 polynomial.	 While	 the	 envelope	 of	 the	 oscillation	 is more

complex than in Figure 2a, the "secular" trend still dominates.	 Without a£

daily adjustment of	 the drag coefficient, 	 the "polynomial" part was much

more	 pronounced.	 There e)te,	 expression 	 (52)	 describes	 quite	 well	 the

radial	 errors	 observed	 in	 all	 the	 simulations	 (as	 long	 as	 the	 drag

' coefficient	 was	 adjusted once a	 day when	 non-gravitational	 forces were

" present).	
r

' Like the distribution of atmospheric density in the case of drag, 	 the

main sources of radiation _pressure (direct sunlight, albedo reflection and

re-radiation	 in	 the	 infrared	 from	 the	 Earth)	 are	 "static"	 in	 inertial

space,	 following the slow, apparent annual motion of the Sun. 	 Therefore,

one would expect	 part	 of the error in a model of this force to "set off

resonances"	 in	 ar,, much	 as	 the	 errors	 in atmospheric	 drag	 do.	 For	 a

heliosynchronous satellite in a repeat orbit, the resonances must be most

pronounced, because the angle between the orbit plane and the direction to

the Sun is "frozen".	 This effect seems to be present in Figure 4c, taken

from Wakker et al. (1983), which shows the differences over a 3-day repeat	 {
,x

sif ERS-1 between twoof	 simulated orbits, one with radiation pressure applied

and the other without it.
m.
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5.0 TIDES

5.1 The Tidal :Forces

The attraction at a point x on the 'Earth's surface by a "disturbing

body'! (Sun, Moon, etc.) whose center of mass is at another point r* can be

discussed in terms of the gravitational potential of this body at x
t.

i	 r

V*(x)**
t	 f,

r x

i
* ^'	 n+ i

^'R	
^r**)	 Pn0(cos *X) ,	 (54)

n°0

where	 is the geocentric zenith distance of the disturbing body at x, r*

is the distance between the body and the geocenter, u* is the mass of the

body times the universal constant of gravitation G, and R is the mean	 ,M

radius of the Earth. Here our planet is considered to be a sphere and the

.:	
pp

disturbing body, because of its great distance, a point-like object with

all its'matter concentrated at the center of mass. These approximations

are sufficient for the present discussion. The ellipticity of the Morn

may also have to be taken into account when estimating the orbits of

artificial satellites over very long arcs (several months).

z
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	 As the system of coordinates is geocentric, it falls along with the

Earth towards the attracting body with •an acceleration

k E* Total attraction of body on the Earth'/ Mass of the Earth (M^)

G M* (r*) -fir*

^ Y. (5g)
:r

which is also an approximation, 	as the Earth is a sizable body of nearly

ellipsoidal shape and not a particle,	 so its center of mass	 is not quite

` the	 same as	 its	 center of	 gravity in	 the	 field	 of	 the	 disturbing	 body

L
(Water,	 1979,	 Ch.	 2).	 For	 an Earth-fixed	 observer,	 E* 	cancels out	 the

ra
aul-rai,̂ ;^on of	 the disturbing body at the geocenter. 	 Away from this point,'

kk r.

the	 observer	 notices	 an	 increasing	 force.	 In	 an inertial coordinates`

system,	 the explanation for this 	 is	 that the observer only perceives	 the

}
difference	 between W*	 and the	 acceleration	 of	 his	 own	 quasi-inertial

system E*.	 To	 use Newton's	 equations of motion in the observer's system
a

in	 a	 simple	 way, -Ea* is -treated	 as	 the	 gradient	 of	 a	 fictitious`

b
`

f

gravitational potential

1.!rS-*-V* x) a	 x	 (- E* ) . dr	 _ o	
u*	

R. t (R ) 2 cos fir*
a	

geocenter	
a	 R	 x

t u*	 1	
R	

n+l

R	 (r**) 	 Pn0 (cos X) ',	 (56)

.rt
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where	 "#A	 dr" indicates	 the line-integral between points A and B of

the scalar product of y and the oriented lino element dr.	 By doing this

with	 the	 force	 exerted	 by	 each	 individual booty	 and	 then	 adding	 the

respective VV*a's in	 the	 right hand side of the equations of motion (19),

these become formally like the equations of an inertial system and can be

integrated	 accordingly.	 This	 is	 often	 done when	 computing	 orbits	 in 3

"inertial	 space"	 (as	 the	 saying	 goes,	 though this	 is	 not	 to	 be	 taken

literally).	 Expression	 (56)	 is	 the	 line	 integral	 of	 -8*	 along a path—a

..	 I from	 the	 geocen ter 	to	 x	 with	 µ*/r* as	 the	 constant	 of	 integration	 (a

constant	 in	 space,	 not	 in	 time).	 Adding (54)	 and	 (56)	 gives	 the 

expression	 of V*	 the	 tidal	 potential	 as	 observedp	
T'

in	 the	 geocentric

system,

k= *(x) _ V*(x) + V*(x)
s

*` n+1
= R**	

{*)	 Pn0 (cos 'VX) (57)
a

r n=2

AccordingAccording to the addition theorem for'spherical harmonics .

n	 1n-m` i
P	 (cos &*)=2	 (1+6	 )	 P	 (sin ^)P
n0	 x	 mo	 (n+m)1	 nm

(sin ¢*)cos m O -A)
m_0	 nm

_

2	 ^ (1416	 )
-1	 (n-m)'	 P	 (sin $) Y	 (^

mo	 (n+m).	 nm	 nm0
*,	 a*-a)	 ,	 (58)

t

M=O

e

z —
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u'
where A) are	 the	 geographical latitude	 and	 longitude	 of	 x, while

(¢*, *) are those of the point on Earth from where	 the disturbing_ body

can	 be	 seen	 at	 the	 zenith	 (so 0 is	 the	 declination	 and X* the	 right

R	 n+1
ascension	 minus 6	 of	 the	 body).	 Re	 (--)	 Placin	 with itsp	 g	 (cos*;' nor
expression	 according	 to	 (31)	 in	 terms	 of	 the	 osculating	 Keplerian

elements a*,	 a*,	 I*, w*, M* of	 the disturbing body in the quasi inertial

equatorial system,	 while truncating the expansion at (1) n = 2 and jqj = 2

because	 r* is	 very large compared to R and e* is small for both the Sun

g; and	 the Moon (other bodies do not matter here),	 (57)	 becomes	 (see Kaula,

1964)

.
I	 (R

2	 3	 2	 2
V* (x)	

m)	 2	 2-	 P((I*) 	 G....	 !) = u*	 *	 (sin	 ^)	 ^ F^e*)T	 (2+m) !	 nm	 2	 2p-	 _-a	 =0	 a	 (1+dm0)	
P^0	

thp	
q	

2

cos	 ((2-2p+q)(w*+M*)-quj*+m(sl*-9-X)- 	 )) •e
4

(59)
-

Traditionally,	 tidal	 theory has	 been formulated	 in ecliptical rather`.
s

than equatorial	 coordinates,	 because	 in	 this	 system	 the inclinations	 of
x

r
the disturbing	 bodies	 are very	 stable,	 which simplifies 	 the mathematical' a

treatment of their motions. 	 The transformation of (59) to the ecliptical

system	 is	 explained	 in	 (Marsh	 et	 al.,	 1983).If	 s	 and	 s i(Moon)i(Sun) 

stand	 for	 the	 various ecliptical	 Keplerian elements_ of	 the	 Sun and	 the

Moon,	 respectively,	 then I(Sun) and O( Suz`) are	 both _zero,	 by "definition,

:.^ (1)To study some very minor tides, degrees 3 and 4 are included.
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r and	 the	 origin	 of R is	 the	 direction	 of	 the	 vernal	 equinox,	 as	 in	 the

equatorial system. Instead of Keplerian elements, it is common practice_,

j in tidal work, to use the following linear combinations of them:

t` L	 6+a-s-7/2 ,	 the mean	 local	 lunar	 time	 (expressed	 as	 an

angle);

fp

J
s	 (w+M+o)

(Moon)
the ;lunar mean longitude;

h	 (w+M)
( Sun )

the solar mean longitude,.
r

i
N	

( Moon)
the	 mean	 longitude	 of	 the	 lunar	 ascending

. node with a minus sign;;

p	 W
(Moon)

,	 the mean :longitude of the lunar perigee;
t

p^	
W( Sun)

the mean longitude of the solar perigee.

r Here	 the	 word" "longitude'	 refers	 to	 the	 "dog-legged"	 astronomical

l	 i'tudes (Q+w+M), etc.,` which are very` close	 to the ordinary longitudes

t in	 the	 ecliptical system	 because	 of	 the	 small	 inclinations of	 the

3
orbits.	 Like	 themean arguments w, M and n of artificial satellites, the

mean	 variables	 s, h,	 N,	 po	 and	 p i	 change 	almost	 linearly	 over	 long

intervals,	 in	 this case of	 the order of a century ( thus the expression,

"secular variations ") so they are represented quite accurately by cubics,

R
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like s	 so + s lt + s 2t 2 + s 3 t 3 , etc. (see The "Explanations" to the
{

American Ephemeris and Nautical Almanac) where the "rate" s l is orders of	 4.

	

'	 magnitude larger thans 2 and s.	 The departures from linear change
t

f

	3E	 represented by s2 and s3 are mostly due to the gravitational forces 	 w

	

j	 exerted on the Earth and the Moon by the other planets. All the variables
3

defined above, including the Earth's Greenwich angle 6, have mean speeds 	 c

or frequencies that remain virtually constant over decades.

.f

The Keplerian elements a*, e* and I* are nearly constant in the

ecliptical system, the Sun-Earth--Moon 'system being a very stable one,
x
R

while w*, M* and Q* change at approximately constant rates,- as in the

orbit of a satellite. This is particularly true of the Sun; in the case

of the Moon, whose mass is much smaller, the pull of solar gravitation
i

alters the orbit to the extent that, in the same way as the temporal 	 E.

variations (in inertial space) of the non-zonal part of the Earth's

spinning field requires the introduction of the angular velocity 6

(through -m6) in the theory of the motion of _a spacecraft, the mean

i
angular velocities of the "orbit" of the "moving" Sun must be included in

the formulation of the motion of the 'Moon (Brown, 1905, Brouwer and
s

Clemence, ib. 1966, Ch. 12). So the expansion r, V(
Moon) 

must containT
ff	

both lunar and solar frequencies, at least when the perturbations of the
t

lunar elements are formulated using a first order analytical theory; only

€
(Sun)

	

13	
solar frequencies•	 1	 q	 appear in V T	For this reason some tides are known

as "lunisolar", others as "lunar", and yet others as "solar", on account

	

r	 of the origins of their frequencies.	 Instead of analytical
r_
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approximations, one could use direct estimates of the osculating Keplerian

elements; these elements are available (in ecliptical, coordinates) from

precise astronomical ephemerides based on long series of observations (see

Seidelmann, 1982). This last approach is adopted sometimes for the very

accurate calculation of satellite orbits (Williamson and Christ odoulidis,

private communications).

<

	

	
Regardless of the body of origin, r*,	 and 1* in (58) can be

expanded in trigonometric functions of the ecliptical variables
x.

L,s,h,p,N,p' (Brown, ib. 1905). Considering only the second harmonic of

V*,as in	 (59),	 and replacing V *,^	 and X* with	 their	 expansions,	 the

result has the general form at the Earth's surface	 -R):

x
,r V*(x)

T

2

_	 P	 (sink)

m=0	 nm
61=m

V

a2 63 R4 s5 ^6	
S1 ^2 S3 S4 S5 S6

X

r	 F

a

cos	 O'L + KU + ^3h + S4p + $5'N + a6p' + (m-n) Z)

.	
5 (60)

where the integers S'i are related to the B i as follows:

p

r
= '+5	 i=23 456
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The a	 are	 always	 positive	 or	 zero,	 except	 in	 some	 unimpoctant
i

cases where the amplitude ,	V	 is very small; moreover,	 me	 The
6

number D whose digits are the a

D
1 2 3 4 5 6

is	 the	 Doodson	 numbeE,	 which identifies uniquely each line	 in	 the	 tidal

spectrum,	 or	 tidal	 constituent,	 besides	 providing	 complete	 information

(once	 the	 various	 mean	 rate8	 are	 known)	 on	 tha	 value	 of	 its	 frequency

W	 and on the phase angle X
TT

L Wa	 alL +	 + 0 -; + a-^ + a-	 + 0'r	 (61a)
06	 2	 3	 4	 5	 6

W
T

X	 6 L	 + O's	 Kh	 + ap	 + O'N	 + ap ,	 (61b)
1	 2	 3	 4	 5	 60	 0	 0	 0	 0	 o

1	 6

X
T

Because	 of	 the	 choice	 of	 L	 as	 a	 variable,	 the	 speed	 of	 the Moon orbit

seems	 to appear in all tidal frequencies, buE it cancels out with KA	 for
2

7 the	 "solar	 tides'	 The	 number 0 0 0 a ^ 0	 and	 the	 amplitude	 V
1	 2 3	 4 5	 6	 61.0*0

6

were	 computed	 and	 tabulated	 by	 Doodson	 (1921)	 for	 virtually	 all	 the

important	 tidal	 constituents.	 The	 first digit 01 , which	 is	 also	 "m"	 in

(58),	 ranges	 between	 0	 and	 2	 according	 to	 (59).	 Because	 it	 multiplies
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6, which is part; of G, and 8 is much larger than the other rates

r

involved, 
1 
represents the separation of the tidal spectrum into three

wide-apart main bands or species long period (AC m = 0), diurnal

(^ 1 # 1) and	 semi-diurnal (6 1 = 2).	 In turn, each species is dividedI

into	 finer	 bands	 or	 groups,	 separated	 by	 intervals	 of (02s + 0"h) or,

approximately,	 by multiples of one cycle	 per lunar month.	 Within each

band,	 the	 individual lines are separated by multiples of one cycle every

8.85	 years (a*	 18.61	 years (S5N),	 and	 25800	 years Bbp'), (1) t

respectively.	 Usually,	 it	 is	 sufficient	 to	 add	 together	 all	 lines

separated by less than one cycle per year from each other, and to consider

these sums as	 the actual tidal constituents;	 if great precision over very

long	 periods	 is	 needed,	 the	 hyperfine	 structure of	 the spectrum must	 be

considered in full detail.	 The dominant constituents are far larger than
^ r

the,	 rest,	 and correspond	 to	 the	 principal	 tides M2,	 S2,	 Kl ,	 01,	 etc.,	 in x

the	 classical- notation introduced by Darwin in the 1880's._ Some of them,
k

Table 3.	 Thetogether	 with	 their	 Doodson	 numbers,	 are	 shown	 ina tt	 ,x

,f equilibrium	 amplitude g- 1 V	 Pn	 (sink)	 (where	 g = u/RZ ) is	 the►̂ 1 ..	 S6	 S1

size	 of	 the	 oscillation	 in	 the	 equilibrium	 figure	 of	 a perfectly fluid
tE

Earth that	 the	 tidal constituent- would produce on its own (sometimes this

is known as	 the ";eoid tide"),	 and varies with latitude.	 Because of the

P` continental boundaries,	 the .submarine	 topography and	 the rotation of the

Earth,	 ocean	 tides	 with	 periods	 of	 less	 than	 several, years	 are not "in

equilibrium", 'and have rather complex spatial structures.

(1)p'	 is,	 in facts	 the	 rate	 of	 precession	 of	 the	 Earth's 	 axis,	 treated x

here as 'a movement of the Sun's "perigee" because of the way in which the
'.. ecliptical coordinates are defined (	 =0).(:Sun)
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TABLE 3

Principal Constituents of the Tidal Potential (a)

Caused by Both the Sun and the Moon

Freak Amplitude
of the

Equilibrium
Darwin ' s	 Doodson	 Period	 Tide

	

`F	 Name	 Number	 (hours)	 ( meters)

M2 	 255.555	 12.42	 0.2423

S2	 273.5.55	 12.00	 0.1128
r

N2	 245.655	 12.66	 0.0464

K2	 275.555	 11.97	 0.0307

K1	 165.555	 23.93	 0.1416
,M	 ^

0 1	 145.555	 25.82	 0.1005

P 1	 163.555	 24.07	 0.0468

Q 1	 135.655	 24.86	 0.0193

Mo	 055 . 555*	 CO	 0 . 1356

S	 055.555*	 000.0629 r

	

'	 o
M@	 065.455	 661.31	 0.0222 -

r

K

'	 (a)	 '..viie periods are those of the main 'constituents of the semi-
diurnal, diurnal and long period bands. 	 "Equilibrium tides" of

°

	

	 semi-diurnal period peak at the equator, diurnal ones, at mean 	 {

:latitudes, and long period ones, at the poles.

"Frozen" lunar and solar tides ( res,pectively)
:-	 1

^`	
1
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In what follows, expression (60) will be written in the following

simplified way:

is
q

a	
vTO	 v  P2m(sinO cos(W t + X-HnX + Of%-n) z)3► 	 (62a)

T
i

where " "' indicates the sum of all significant tidal constituents, and'W'T	 y
has been dropped from the right hand side, as the solar or lunar origin

f	 of a particular constituent is of no further interest here. 	 Now,

t	 according to (61a) and to the definition of L, m=$ 1 is a function of w T:

m = Int [b/j w I + 1/41, "Int [.]" meaning "the integer part of". In the

new expression of vT(L0r	 y,

VI

v 	 vQ 
6 6N	

(62b)
1 2 3 4 5 6

f;

M	 i

(^I	
m)'

is the amplitude,

t

Y,	 wT, = S 1 { s) + 62 s + al + S4 p + S5 N + g6p'	 (62c)	
I
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T:,- ,

is the (angular) frequency and

m X	 _ 6 ( e -s -?r/2) + 8's	 + P'h	 + Vp	 + 6 'N	 + 0'p'r	 1	 0	 0	 2 0	 3	 4	 5	 60	 0	 0	 o
(62d)

t

t is	 the	 astronomicalphase.	 It	 is	 a	 useful	 and	 universal	 convention

that X T is the phase at to	 01.00 hours, Greenwich mean time, of the day

in which	 the	 instant	 "t"	 falls	 (so "t",	 in fact,	 is t-t').	 But in	 the
°	 E	 )

- discussion	 that	 follows,	 in	 order	 to	 make	 the	 treatment	 of	 tides
{

consistent with that of the radial orbit error, X T	is defined as	 '_t

X	 X (t )	 - w t	 (62d')
T	 Tw

o (as in (62d))'	 T °^

F

'
x

where	 "t°"	 is to for	 the	 general	 case	 corresponding	 to	 (47),	 but	 (as
r

° explained in the comments that follow ( 52)_) for "frozen", repeat orbits to

` is	 such that M(t ° ) 	 0 at the start of the "repeat" part of the mission.

This	 choice is ,preferable for writing formulas: 	 for actual calculations,

the	 conventional' one	 is	 more accurate and	 freer of	 numerical	 round-off

problems.

F.	 {
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The change in the geographical coordinates of the point where the

spin axis intersects the Earth's surface, or polar motion, reflects mostly
E

#	 the free wobble of the Earth (Chandler Wobble). Polar motion produces a

fluctuation in the centrifugal force experienced by objects fixed to the

planet,	 so	 it	 changes	 the	 acceleration of	 gravity acting on	 them,	 And

causes	 deformations	 and	 movements	 in	 the	 body,	 oceans	 and	 atmosphere

similar to	 those	 due	 to	 the	 tidal	 potential	 (but	 much smaller).	 This

f response	 is	 known	 as	 the mole	 tide.	 Since	 its	 period	 is	 completely

unrelated to the lunar and solar frequencies (about 1.18 years), it can be
,r

detected	 in sensitive	 gravimetric	 tidal records	 as	 a	 separate and very $.

weak oscillation, particularly at high latitudes. 	 Precession and nuta.tion

also	 affect gravity,	 but they are themselves parts of	 the overall tidal

response	 to	 the pull of	 the	 Sun and	 the Moon, and	 their effects on the

solid Earth, oceans and atmosphere are incorporated into the diurnal tides

(see Wahr,	 1982).

• The	 tidal	 potential	 V*,	 according	 to	 (57),	 is	 rotationally

&f	
} symmetrical	 about	 the	 line	 from the	 Earth to	 the disturbing body.	 Its
F

equipotential	 surfaces have an interesting geometry:	 the ,surface V* rf 0
.	 l

ik is a double cone with its vertgy, at the geocenter (opening both towards

r

and away from the body).	 This cone, which gets broader as the body gets

closer, is	 the asymptotic surface' of a family of revolution hyperboloids

of two sheets, which are the other equipotentials.	 The tidal acceleration r

VV*	 has the same rotational symmetry and is also equal in magnitude and

opposite	 in	 sign	 at	 points	 equidistant	 from	 the _geocenter	 about	 the
!j

t
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Eartb-body	 line.	 This description holds	 provided	 that	 terms	 in	 (57)	 of

degree	 n	 >	 2	 can	 be	 neglected	 and	 one	 does	 not	 get	 so	 close	 to	 the

disturbing body	 that It	 no longer can be	 treated as point-like.	 In the

case of a satellite free-falling around the Earth, 	 the field of "residual

gravity"	 measured	 in	 a	 system	 fixed	 to	 the.	 spacecraft	 has	 also	 this

configuration	 (with	 the	 Earth	 as	 the	 d4l ,̂ turbing	 body).	 Detailed	 and

charming discussions of this geometry can be found in two papers (1977 and

1982)	 by the late A. Marussi.	 At the Earth's surface,	 the combination of

the geopotential	 V with V* creates,, In the ituarly spherical equipotential

surfaces	 of V,	 a	 slight	 deformation shaped	 as a	 symmetrical	 ellipsoidal

bulge	 pointing	 towards	 the	 disturbing	 body;	 this	 bulge	 is	 the	 total

equilibrium	 tide".	 Since	 the	 Sun	 and	 the	 Moon	 lie	 at	 or	 near	 the

c(,Iiptic,	 this	 bulge	 is	 tilted with	 respect	 to	 the Earth s	 spin axis,	 so

the rotation of	 the latter carries	 the points of its own surface through

the bulge.	 At mid- and low-latitudes the points cut through both "lobes"

of the	 bulge,	 experiencing a twice-daily variation in V*.	 Closer to the

poles,	 only	 one	 lobe	 is	 cut	 (most	 of	 the	 time)	 so	 the	 diurnal	 species

prevails far from the equator, and the twIce-diurnal closer to It. 	 As the

mean value of V*	 is	 not	 zero along parallels,	 there is a component 	 that

changes	 only as	 the body moves	 slowly along its orbit:	 this is the long

period	 species.	 The	 ellipticity	 and	 precession	 of	 the	 orbit	 modulates

both the bulge and 	 the species,	 splitting these into bands and	 those,	 in

turn,	 into lines.
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It is interesting to notice that, according to (57), the tidal

potential increases as r* decreases. Imagine that the system of

coordinates is chosen at the center of mass of a body which, like the

Moon, orbits a more massive one, like the Earth, and that the two bodies

get	 closer,	 until	 the	 attraction	 of	 the	 main	 one	 exceeds	 the	 self-

gravitational force that pulls the other to$ether, and breaks it up.	 The
a

= distance at which this -catastrophe occurs is known as 	 the "Roche limit".

Maybe this is	 the process that once created	 the rings of Jupiter,	 Saturn

^x and Uranus out	 of	 the disintegration of 	 icy moons,	 and now keeps	 those
r

rings from coalescing again into larger bodies.	 In the case of Io,	 the

innermost of the large moons of .Jupiter, the tidal forces are sufficiently ?

vigorous to heat the interior by continuous friction, probably keeping it

partially	 molten	 and	 causing	 the	 spectacular	 vulcanism	 for	 which	 this

world is now famous. 	 Terrestrial tides,	 though much less energetic, 	 play -

a significant role in the deceleration of the Earth-Moon system.

5.2	 The Vidal Response

r

The	 attractions	 of	 the	 Sun	 and	 the	 Moon	 torque	 the	 slightly
r

F
elliptical spinning Earth, causing the precession of its figure axis, one

;

b

cycle	 of	 which	 takes	 about 25800	 years.	 The relative positions of the

Earth	 and	 the	 disturbing	 bodies	 vary	 as	 they	 move,	 so	 the	 torque	 is

modulated at	 the orbital frequencies both in intensity and in direction.

{
The	 result	 is	 a	 "nodding" motion of	 the Earth 's axis,	 or nutation_ (see

J Leick,	 1978).	 Precession and	 nutation are	 movements	 of	 the Earth as	 a

:w
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whole.	 Because the planet is not perfectly rigid, the changes in the

attractions of the disturbing bodies also produce small movements, or

tides, which vary from place to place, as well as slight variations in the

spin rate 6 (not considered here any further). 	 These; tides are the
F

subject of the rest of this section; the reader can find a very clear and

up-to-date discussion of the (somewhat arbitrarily separated) components

F:	 of the tidal response of the Earth; precession, nutation and tides, in

(wahr,	 ib.	 1982).

w	 5.3 	 LinearitX and Time-Invariance

The jIoint attractions of the Sun and the Moon cause displacements of ¢^

the matter in the interior, oceans and atmosphere of	 the Earth that are

very small compared	 to the size of	 the planet;	 ghat joint pull itself is

quite	 small	 when	 compared	 to	 the gravitational	 force	 the whole	 planet

exerts	 on each of its parts.	 It is,	 therefore,	 not surprising that those

displacements,	 their	 interactions,	 and	 the resulting fluctuations	 in the

gravitational	 field	 can	 all	 be	 described accurately' by 	 first	 order,	 or

linear,	 approximations	 to	 the response of a; nonlinear system (the Earth)

to the disturbing forces.	 Over an interval of ,,a few centuries, 	 the large

scale mechanical characteristics of the Earth are likely to stay virtually }
z

'	 constant,	 so it seems reasonable to expect those linear approximations to
t ,

be	 also	 time-invariant,	 perhaps	 after	 making	 some,, minor	 simplifying

"	 assumptions.	 If such is the case,	 the spectra of the various comp onents
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t

of the tidal response (ocean tides, body tides, etc.) should have their

lines situated at precisely the same frequencies as their driving forces,

which are those given by expression (62c)	 This is in very, close

agreement with observation (except for some small anomalies in shallow

seas that suggest some nonlinear frequency mixing), which means also that,

both the disturbing forces and the frequencies of the resulting tides can

be calculated very accurately from purely astronomical data.

Y

The formulation of a realistic nonlinear model for the Earth
'
 and its l

e

linearization with respect to some reasonable and convenient undisturbed

state	 to	 obtain	 a	 good	 time-invariant	 approximation,	 are	 quite	 complex

matters,	 as	 is	 the	 solution of	 the resulting linear partial differential

equations.	 Nevertheless,	 because	 of	 their	 time-invariance,	 and	 of	 the o

'w nearly	 spherical	 symmetry	 of	 the	 Earth,	 the	 linearized	 equations	 have

solutions with strikir,,;ly simple and helpful properties, summed up in the
p

ideas of "admittance function" and "Love ,numbers". a

1,
l

t.
5.4	 The Adm ittance Function

A	 long	 record	 of	 observations	 of Co ,	 the	 "surface-bottom"	 ocean

tide,	 at	 a	 station	 of	 latitude and .longitude 	 X)Vcan be approximated

quite accurately by a trigonometric series:
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1
t)	 I a 0 ,.(0,X) cos(w Tt + X T 	2)

T 0-0

a	 DoT($ ► a ► t)	
,	 (63)

fi

where wT is	 the tidal frequency and X	 the astronomical argument,	 as	 pert

(62 c-d), of the ocean tidal comeonent	 Now, according to (62a)
a OT y

VTTO,X,t)	 =	 V 4P 2m (sin ^) cos	 [w Tt + X T + mA + ( m=n) 2^

(64)
z

r
FF

{with m	 Int	 [ 6 /I w T I + 4])

w.
is the constituent of frequency wT of the tidal potential at 	 ( ,a),	 Over

the	 Earth's 	 surface	 VTT consists	 only	 of	 second	 degree	 spherical

harmonics,	 under	 the	 approximations	 made	 in	 its	 derivation.	 The
t

i admit tance function relatingD o T	 to	 VTT	 is the complex. quantity

M

► ^)^	 isT,^)OYO,a'U)	 =	 e	 ,	 (65a)
IVTTO ► a)I

where

l

0, A ) _	 [	 a2T,^)] 1./2 sign	 [V	 (65h)OT	 T]
=0

$
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e T(^f^)	 -tg_
1

 [a1T($! a)Ja^T(^, )l - mX	 (n-m) 
z	

(65c)

are the amplitude of the constituent of 4 	 of ;frequency wT , and itsE w n

phase shift relative to the corresponding constituent or V*.	 The

f^ 1

accumulated evidence (Hendershott and Munk, ib. ! 1970) suggests that

	

<	 Y{$,,X,wT)	 is a smooth function of WT! 'so it. varies very little in	 E

modulus and phase across each of
. 
the narrow bands that nuke up the tidal

spectrum.	 For this reason, if w	 is the frequency of a line
f

T(central)

within one of these bands situated near the center, it is valid to assume

that

r

	

R	
ET(^! ^) = eT(central) (f a)	 (66a)

and

rr	 rr	 yy

tt	 ^

OT:  o-r(central)	 (66b)
r

	

rr	 TT	 TT(central)

so	
1

a	 a (^!a)

	

}	 o($! ^)

	 OT(central) 	
(67)

a	 a 
IT	 IT(central) al

	

*	 ;	 q

for 0 < f 4 1 and all W
T 
in that band. From the last relationship and

(63) follows that 	 i

	

F	 ^^	 r
x

	

i	
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•k 	 ;;,tt.-^a r^,t {.a^".^a^. a7.. _-mss y ..,x	 ^	 „r-„,

rF

i

I

1

(^ ► a ► t) ° 	 a	 (V /V	 ) cos( w + x -

o(band)	 0=0 QT(central) T(band)	 T T(cent ral) 	
2

r

t	 (68)

k
r

where

	

	 indicates that the sum is over the constituents in the band
T(band)

only. To speed up calculations at the price of a slight loss of accuracy,
t

one can make use of the relationships

1^

cos(w Tt +	 T- 6	 ) = cos X	 cos(w Tt -	 2) - sin '^T 
s n( w t - 2)

.	 z

and,	 to first order in (w	 -W )t
T(central)	 T

r

k
! coscos

{ sin }(WT t-a2 )	

{sin
^t	 sin

}`UlT(central)t- S2)+(^T(central)-
wT)

t{-Cos
^i

T(central)t-S2}. 3 s

^ 'F

}

4 So, instead of (68),
4

1

t
^o(band)($,^,t)	

=
0=0

a	 ($,a)	 {A	 (t)
aT(central)	 T(band)

cos(w

T(centra )t a 
2) }

+ B	 (t) sin
(wT(central) 

t -
B 2

.i

j

s 1•`
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r .^

where

A	 (t) _	 ^,	 (V /V

T(band)	 T(band) 
T T(ret

4

d

JJ

I

i

T(central) wT)t sin xT 
+ cos xT]

4

(70a)

t
}

(t}	 _	 ( V /V	 )[(Ww )t cos	 X - sin x ]
T	 T( central)	 T(central)'-	 T	 T	 T

y

r

r
T (band)	 T(band)

a

(70b)
3-

k
provided.	 that	 I (w	 - w) t	 <<	 (w	 t 't	 y;	 In	 actualT(central)	 t	 T(central)	 T

s calculations	 this	 condition	 can be met by updating	 the phases XT in the }
h
f above expressions sufficiently often 	 (for a given band), and using these
R

new values with "t"	 counting	 from the time of	 the last resetting, until r

the next update. 	 This saves the effort of having to compute one sine and

one	 cosine	 value	 at	 every	 instant•.	 where	 (0)	 has	 to	 be	 evaluated,	 for

every frequency in the band., 	 For solar tides, the V T must be corrected to
r

account	 for	 the	 "radiational	 tide	 potential"	 (Cartwright	 and	 Tayler

(1971)).	 Radiational tides are caused mostly by the -periodical heating of

the	 atmosphere	 by	 the	 Sun,	 which	 modifies	 the 'air pressure 	 at	 the	 sea

It surface,	 forcing	 the	 ocean at	 the	 same	 frequencies	 as	 the	 solar	 tides.

a This thermally driven variation of the atmosphere accounts for most of the

atmospheric "tides", with the gravitation of the ,Sun and the Moon playing

a lesser role.
. 7 '
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.Y	 5.5	 Love Numbers

can be regarded as a function defined for all $ and k 	 but which
,k	 o

is	 identically	 zero	 over	 land.	 Such a function must	 have an infinite

spherical	 harmonic	 expansion	 because,	 although	 very	 smooth	 over	 the

oceans,	 it	 is discontinuous across 	 the coastal boundaries.	 Furthermore, }

is at each point a sum of trigonometric functions of time, as in (63),
Oso its complete expansion in space and time is

:f.

J1) Cos( W t + X-
T	 2o	 nmaOT nma	 T

....
.

T n=0	 m=0 4=0 6=0

anT
($I X 1 t )	 (71)

T n=0

where	 the	
4nmUOT	

are	 the	 spherical	 harmonic	 coefficients	 of a 
Or( 

$,t^:)

(0=0,1)	 in ( 63). 0) 	Putting (70) and ( 71)	 together:

n	 1	 1

o(band ) ^ $^ ^^ t)	 ^'	 nmaOT( central)Ynma(
n=O m=0 a=0 0=0

JA	 (t) cos ( w	 t - S ^) - t B	 (t) sin ( w	 t
T(band) -	 T(central)	 2	 T(band)	 T(central)	 2

(72)

(1)Tide-lands	 not	 wit.hstanding,	 in	 a	 global	 scale	 it	 is	 reasonable	 to
regard	 the coasts,	 as	 well as	 the ocean floor,	 as	 impermeable and well
defined	 boundaries.	 Under	 this 	 assumption,	 the, conservation	 of	 mass t
requires	 that	 ^ 0=0 in (71)	 et	 seq. ,	 so	 ^OOOR7- =0	 for all f3 and all 'r
(if	 4) 7-	 00).	 However,	 the	 same	 notation	 shall	 be used	 later	 for	 the
spherical harmonic	 expansions	 of	 tidal models and their errors; 	 some of
them do not satisfy the conservation constraint, so the zero harmonic has
been kept in (71) et seq.
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The altimeter measures the total tide, not individual components,

and the concept of admittance makes it easier to take into account the

rt	 "sidebands" when estimating the "main tides" from altimetey (such as M2,

S2, K1, etc.).	 In what follows,	 g	 (¢,a,t) (the expression between
k	 on T

f;
curly brackets in (71)) shall be called, for short, the "n, spherical

I	 harmonic" of 4o (at frequency wT).
•„

The tidal displacement of water changes the forces acting on the body
f,

-^	 of the Earth, which ,yield's because this body is not rigid. These related 	 x

movements of mater and solid matter modify the gravitational potential.

ter'	 Since the responses are nearly linear and the Earth is close to having 	 -

fi
spherical symmetry, the spherical harmonic expansion of 4 is related toP	 Y	 Y ► 	 P	 P o

those of the vertical displacement d' of the bottom and of the tidal

o)

induced change in potential V	 as follows:

L
w t

i ^o

sue ( ^ ^,t)	 La n	 nT
h'	 lonT O I X1t)	 (73)

T n=0
,:	 t

k	 and	 =

( 4o)	
00

R
n+1

(	 V	 9 (1 
+ kin;) onT0 1 A t ) (r)

f{	 T n=0 eF(74)

1

a. a	 122



?i TIN,

4

Here

3P
w

n
Pe

 (2n+1)

g	 P/R 
2 

is	 the mean acceleration of gravity ' on the Earth's surface,	 p w

the mean density of water and 	 p	 the mean density of the Earth.	 h'
e	 nT

and	 k"	 are	 known	 as	 load	 Love	 numbers	 (Munk	 and	 McDonald,	 1960;
nT

(40)
6'Farrell,	 1972)	 because	 and	 V	 are	 the result of	 the loading of

the body of the planet by the ocean tide on its surface. 	 TheIr dependence

on	 W'	 as well as on n is stressed here to bring the formulation in line
T

with that of Wahr (ib6, 1979) for ordinary Love numbers, which probably is

the most	 realistic one at present;	 the extension to load Love numbers can

be found in (Sasao and Wahr,	 1981).	 In the past this dependence has been

largely	 ignored,	 because	 the	 theory	 was	 restricted	 mostly	 to	 the

spherical, non-rotating case, where the main free oscillatory modes have a

frequency considerabl, y higher than any tidal component. 	 Wahr has included

the	 effect	 of	 both	 rotation	 and	 oblateness	 in	 his	 computations.	 Th. e

latter	 requires	 the	 use	 of	 functions	 slightly	 different	 from

OIX)
the Y	 however,	 the	 difference	 in	 the	 results	 is	 less	 than	 1% and

nma

can be ignored here.

The tidal potential has an expansion on the Earth's surface given by

(62a).	 V*	 causes a	 deformation of	 the body of	 the Earth, or body tide,

resulting in a vertical displacement 	 and a change in potential	 VM

which are, approximately,
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60,X ► t )	 k2T VTT2(^,X,t) (7s)

(here VTT2(^*X,t) is the same as VT P,X,t) in (64)),

and

(	 3{
V($;^,t) ffi	 ^, h2T VTT2(^,,t)	 (C) (76)

rThe contribution of 	 Ko to the geocentric tide 	 K0	 of expression (1)	 is	 °!

^— a= so
	 a ,

C	
+ I

C	 (1 + n hnT)on'M,,t) (77)
^ T	 n=0
r

The	 h2T and k 2	 are	 known simply	 as	 Love numbers,	 after the man who

first	 wrote	 about	 them	 (Love,	 1909).	 In the 	 interval 2 6 n < 25, which

includes	 most	 spatial frequencies	 of	 interest,	 the	 approximate sizes	 of	 k=	 '.'

these various numbers change monotonically from

h2 T = 0.612,	 k2 
T 

= 0.302,	 h2 T = -1.007,	 k2	 - -0.310,	 a2	 = 0611.,
T

to

h25T = 0.047, k25T .= 0.002, h25T ",_2.194,	 k25T - -0.046,	 a2 5 = 0.011
F;

(from	 Table	 1	 in Hendershott,	 1972). 	 The	 largest departures	 from these

{ values occur within the. diurnal band.
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fi	

4

The value 's of h2 r , kZ T , h2T,and k2 T (1) can be calculated by using a

simplified linear model for the departures of the particles that made up

the body of the Earth from their undisturbed state, selecting a plausible

set of physical parameters for the matter of the planetary interior, and

integrating numerically a set of ordinary differential equations related

to the linear model. The integration variable is depth, in the interval

from the geocenter to the surface, and the Love numbers are the integrated

values at the surface.	 Usual approximations include a spherical or

v' elliptical	 body where	 density,	 elastic	 parameters,	 etco	 vary	 only with

depth and viscosity is zero, so there is no energy dissipated by the tidal

motions.	 The mechanical	 parameters	 are	 discontinuous	 at	 the boundaries

separating	 the core (divided in solid inner core and liquid outer core),

betweenthe	 mantle	 and	 the	 crust,	 sometimes	 with	 an	 additional	 change

upper and lower mantle.	 In consequence,	 the published values of the. Love

numbers	 vary	 according	 to	 the	 linear	 Earth	 models	 used	 for	 their

` '
p	

b.

computation.	 Wahr	 (ib.,	 1.979)	 has	 assumed	 an	 elliptical,	 vertically..

stratified,	 dissipationless	 Earth	 with	 no	 oceans.	 A	 slightly	 more

accurate	 formulation,	 including	 dissipation,,	 would	 require	 the

introduction of small additional phase shifts 	 enT	 on top of the	 XT	 in
.. r

(1)There 	 is	 a	 component	 VF	of	 the	 total	 tidal	 potential,	 in	 the	 long
period species	 (m=Q), which is actually constant in time (and virtually a` r

`. second	 zonal	 in	 space,	 see	 expression	 (62)).	 It	 produces	 an	 equally
constant change in the Earth's equatorial bulge and, thus, in the value of
C200 compared to what itwould 'be if our planet were alone in space.	 The
Love numbers for the resulting stationary body tide are probably those of t
a "liquid Earth", as our planet is supposed to have been "flowing" towards T
its	 actual	 figure	 C,f	 hydrostatic _equilibrium	 over	 the	 eons	 that	 this
"frozen tide" has been Acting on it. 	 There is also a slight discrepancy
between the "bulge" of the mean ocean surface and that of the geoid, equal

to the "frozen" component of the ocean tide VF/9 (So and Mo in Table 3).

r^
125

a^

101+1

T- .



the arguments of the tidal functions. This appears unnecessary here. The

main variation of the Love numbers with wT occurs when the frequency is

close to one cycle per day (diurnal tides) and is caused by a resonance in
r	

the fluid core (Wahr, ib., 1979 and Wahr and Sasao, 1981).	 For semi-

diurnal tides the Love numbers are virtually independent of 	 w..

Horizontal changes in density, etc., further complicate the picture, but

they do not have to be considered here; they would only matter in highly
x

accurate or local studies of tides.

° 5.6	 Representing The Ocean Tides

The	 mathematical	 model	 for	 the 	 ocean	 tides	 is	 derived	 from	 the

nonlinear	 Navier-S`t.oke's 	 equations	 of	 hydrodynamics,	 linearized	 by

ignoring	 small;	 quadratic	 terms	 in	 the	 unknowns	 and	 using	 first	 order

formulations	 for	 the	 forces	 related	 to	 turbulence,	 bottom	 friction, 0

" crustal	 bending	 (6')	 and	 self	 gravitation	 (V(ro) )	 In	 Cartwright

(ib.	 1977),	 Hendershott	 (1972),	 Schwiderski	 (ib.	 1980b))	 and	 Parke	 and

Hendershott	 (198Q) one can find information on the historical development'
r

w of	 the	 linear	 theory	 and	 of	 the	 methods	 for	 integrating	 the	 tidal.

G equations.'	 Alternatively,	 the use of nonlinear terms to represent bottom

'friction yields	 a,:system of equations	 that 	 is	 overall	 nonlinear and can

r'< only	 be	 solved	 by	 numerical	 ,integration	 in	 space	 and	 in	 time	 (Estes,
:r

1980).	 On	 the	 other	 hand,	 a	 purely	 linear	 system	 requires	 numericalr
u

integration in space alone,	 the time variable being eliminated by working

with the Fourier transform of 	 go	 (as in Pekeris and Accad,	 1969).	 The
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simplest linear equations are those of Laplace. Usual, assumptions made in

obtaining tidal equations are that the Earth is spherical, the depth z of

the ocean is nowhere significant compared to the planetary radius and to

a_ the	 horizontal	 size	 of	 the	 tidal	 waves,	 that	 the	 small	 meridional

- component of the Coriolis force can be ignored,	 and that the velocity of

the	 horizontal	 tidal	 current	 is	 independent	 of	 depth.	 in	 fact,	 the
z

velocity does	 change	 from	 the	 surface	 down,	 but	 because	 the	 density	 of

ocean water is well stratified there are two main types of waves: 	 those

described by the	 tidal equations,	 which move	 the surface up and down to 4`

k

^s produceo, creating horizontal currents that are virtually independent of

depth,	 and those that do not move the surface appreciably (also known as

internal waves)	 but cause	 currents	 that vary with depth.	 Clearly, only

^d r

waves	 of	 the	 first	 type	 can	 be	 mapped with	 an	 altimeter	 or	 with 4

r
conventional tidal gauges.

Figures 5	 and	 6	 show the	 charts	 of	 the M2	 constituent	 obtained	 by

Schwiderski	 ( 1979).	 The	 lines	 in Figures 5	 and 6	 present	 the amplitude

r

k) in cm and	 the	 phase	 in degrees.	 The lines	 of	 equal phase (or
o^

cotidal lines)	 in Figure. 6 show, successively, where the tidal waves crest

v	 {`; at about half an hour intervals. 	 Looking at	 titese lines in their proper

sequence maker, an `animated picture" of the waves as they turn about their

fried	 nodal points	 or amphidromes	 (where	 the amplitude	 is	 always zero).
3

Notice how smooth the waves are.

x
F

c	 .
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Goad ( 1980) has computed the power spectrum of Schwiderski ' s 142''tide

up to degree n-180, showing a fast rise up to degree nw8 and then a fall
3

.`	
of more than an order of magnitude at n=20; from there on the spectrum

trails off to zero slowly, reflecting the discontinuities of ; o along the

"	 coasts, For the other semi-diurnal, components the general shape of the

maps, including the approximate location of the amphidromes, is quite

similar as for M2. The same is true for the diurnal components, although

their patterns are quite different concerning the locations of the

amphidromes, etc., from those of the semi-diurnals.

41

^ While	 the waves of individual constituents are virtually periodical,

the	 total	 tide is not,	 because the orbital frequencies of the Moon are not

harmonics of those of the Sun. therefore 4o never repeats itself exactly.

A fluid motion can be described in terms of a velocity potential ¢

r and	 a stream function	 (see Lamb	 ( 1.932)),	 and	 both4
0
 and Quo	 can be

expanded	 into what can be a fast converging series of velocity potential

F' base functions	 i	 (Proudmao, 1916;	 Rao and Schwab,	 1976):

r

{

4	
00	 1	 4

{ec}(4,X,t)	
Q	

^.	 {Go X)cos(wT + X T - S 2) ;, (78)
r

O	 T i=0 0-0	 i ST

t
i

where the	 41ST	
and 	 A^	 areiOT real numbers.

f
.r

;
x
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0  

are specific to a given ocean basin, as they depend on the

bathymetry and the coastal outline, and form a complete set of orthogonal

functions over that basin, in the sense that

H (basin) 0i 
(P i do = D ,	 (79)

` where the positive constants Di are zero if i	 J, 1.

r

and

If (basin)	 0i 4o da #	 (80),

for at least one 'value of ip unless	 is identically zero.	 Integrationo
here is confined to the oceanic regions, and	 do	 is the spherical element-

j of area
!t

da	 R2 cosh 0 da	 (81)

Notice that	 the	 4 i	 are independent of	 wr;	 in fact.	 they can be

' used	 to describe a wide variety of	 vertical motions of the sea surface p;

within	 a	 given	 ocean,	 besides	 tides.	 These	 functions	 do	 not	 have

x
analytical	 closed	 expressions	 except when	 the 	 shape	 of	 the	 ocean	 is

unrealistically simple.	 To compute	 4^ i	one must solve, numerically an

eigenvalue-eigenfunr.,tion problem involving a differential operator related

a to the unforced	 linearized	 tidal equations,	 with	 the boundary condition

that, along the coast,

'; 129



alpi

z	 0	 (82)
an

4

Here,	 "z"	 is	 the	 depth	 of	 the	 ocean,	 and "a/ an"	 represents	 partial

differentiation in the 	 direction normal	 to	 the coast.	 The calculations
i

can	 be	 done	 only with	 a digital computer,	 but,	 once the.	 ai 	}rave	 been

obtained,	 this	 disadvantage	 can	 be	 offset	 by	 the	 speed	 wi th	 which	 the

expansion	 (78)	 of	 4o	 converges and by several benefit s associated with

orthogonality.	 Rao and Schwab (ib.,	 1976) and Sanchez et al.	 (1984), 	 have ?'

studied	 the	 use of	 these	 interesting	 .functions	 for parameterizing t1des
t

{ and other oscillatory motions of large bodies of open water without having

to	 make	 assumptions	 on	 the	 amount	 of	 internal	 dissipation	 and	 bottom

friction,	 usually poorly	 known.	 The	 4^	 can	 represent	 any long-wave

vertical	 displacements	 of	 water,	 even	 when	 the 	 energy ,dissipation	 is

'. unknown,	 in	 much	 the	 same	 way	 as	 spherical	 harmonics	 can	 be	 used 	 to

represent' any gravitational potential, 	 even when there is no knowledge of z'

t

the mass distribution that generates the field.

3

: If	 the	 bottom	 of	 the	 ocean	 is	 replaced	 with	 a	 horizontal.	 surface{

lying at a depth of "no motion.", the 4^i calculated with this new boundary

can
	

be	 used	 to	 parameterize' the	 stationary	 sea	 surface	 topography	 wo

corresponding to the global circulation..

<

m

;h

s
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5.7	 The Tidal Part of the Orbit Error
i

The attractions of	 the	 Sun and	 the	 Moon,	 together ^dth	 the	 tidal

1

changes	 they induce in	 the gravitational field of the Earth (expressions
t

rt.	 ry
(74)	 and	 (76)),	 affect	 the	 orbit	 of	 a	 satellite and must	 be	 considered

.R when computing	 its	 position	 and velocity.	 The	 direct	 influence of	 the

celestial	 bodies can be calculated with 	 such accuracy that	 the	 results j
7

can be	 regarded as exact.	 The	 solid. Earth- and ocean tides are less well
t

known,	 so	 there	 may	 be	 significant	 errors	 in	 the	 calculated	 values

of'V( Co ) and V(a) .	 The -body tide 6 has a 	 limited	 frequency range, mostly

below two cycles per revolution, because only the second harmonic 	 V*	 has C

an important effect	 (expression	 (76)).	 As	 the existing models of	 d are

quite accurate, only the long period effects of their shall errors A6 	 are

likely	 to matter,	 adding to	 the	 polynomial	 terms	 and	 to	 the	 "quadratic"

t-, oscillations	 in	 Ar	 (expressions	 (47)	 and	 (52)).	 Therefore,	 shorter

period	 errors	 related	 to	 tides	 are	 probably	 due	 mostly	 to	 A^ ,	 the
_

t.
o

uncertainty	 in	 the	 ocean	 tidal	 charts.	 The	 perturbations	 of	 spacecraft

orbits have been used to learn about the broader features of tides, and to

try	 to	 estimate	 directly	 Love	 numbers	 and	 other	 important	 geophysical

parameters	 (Lambeck	 et	 al.	 (1974),	 Fe]sentreger et	 al.	 (1979),	 Marsh	 et-

'. al.	 ib.	 (1983)).

N
The error 

ado	
can be represented by an expansion like (71) for	 ^o,

il
P
€ with	 the	 coefficients^nma6T

	
substituted	 by	 the	 errors	 A^nmaaT	 in

these	 coefficients.	 Replacing	 Y(41A)	 with	 its equivalent in Keplerian

,
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. r
elements (expressions	 (29-30)) and	 using	 the	 relationships	 for	 the

,roducts of sines and cosines,

a

.
4

A4o(C)	 =-z
1	

O	 n	 1	 1

a

n	 _

Fnmp (l)
`
,:

T n=0 m =0 a=0 8=0
nmaBT p=-n

F

cos Mn-2p) (w+M) A- m6" * w T)t + ^nmapOo ^' (XT-O

(83)

.x p

where nmapOo
_ (n-2p)(w(tk) + M(t k ))0

+ m6'(t k );	 the	 osculating w, M	 and0 _	 o

6' have been approximated by wt + w(to),	 etc.;	 and	 XT is	 as	 in	 (62d').

Because of	 the	 nearly- linear relationships	 between	 tidal	 phenomena,

rewriting 'expression (74)	 with the harmonics of	 ACo	 instead of those

of	 40 gives	 the	 effect 6V(4'40) of	 Q4	 along	 the	 orbit.	 So, p

re lacinP	 g (R)n+1 Y)	 inr	 nma($r (74)	 with	 its	 equivalent	 in	 Keplerian

elements according to (31), gives (Lambeck et al.,	 ib.,	 1974); y

a

QV(t)o)=

OD

u	 a (1+k')	 R n+1 a^	 F	 (I)	 0(e)
(a)`{

t
2R2 nmaBT n
	 nT nmaOT	 n nmp;	 npq__ p=	 q=-

°H cos(((n-2 +)(w*M)P q - qw + m8'	 WT) t+	 (X	 B r )l^nmapgo	 T 

., (84)
x 7^7

€	 ,^
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4

Neglecting	 the contribution of	 the error	 in d,	 the	 sum of	 the shorter

period perturbations that form the "periodical" part 	 ArO 	of the tidal

` radial error is given by ?:{

^r (T) (t) _ 1	 a (l+k')0	 {r	 °+ {f l }) T2R	 n	 nT	 nmaOT	 nmp ( q
i

nmpgaOT

f

cos n-2 +	 U+M , -	 w + m6' f w t +	 o	 +	 1r
^((	 P g)(	 )	 q	 )	 `^nmap ( q'^'{tl})°	 (X T-^ 711M

µ

^.°

L

(85)

where 	 1 1 "	 stands	 for	 " "	 "	 +1 "	 and	 -1 " respe c tive ly ,(^!+{-_-}	 )	 4 ,	 ( q	 )	 (q	 )	 , _ 	 and y

"(T)"	 for	 "tidal".	 The frequencies present	 in	 Ar (T)	 differ from those
t

in	
Ar(NT)	

(expressions	 ( 47)	 or ( 52))	 by f wT ,	 so	 the actual values of ip^
1

^-

k the	 coefficients r	 I°	 are	 also	 different	 ( see	 (16)	 ( 38)	 andnmp ( 9-t1})OT	 , f

` (43)),	 thus	 the subscripts "nmpgT".	 Terms where the	 (,) T	 are substracted

!

"

are progradc	 the others are retrograde	 ( the change in	 the argument has 3t

the same or opposite sense to that caused by the rotation of the Earth).

^

t

i

(NT)
As in expression (47) for 	 Ar	 ,	 the mean elements and their rates'

generally	 change,	 very slowly,	 as	 the orbit	 decays,	 though	 they may	 be

considered as constants during each weekly arc; the 	 r°	 change+{f l } )nmp ( q
g

accordingly in (85). e

A

1 135

4



-OWN

5.8	 The 'Case of the "Frozen", Repeat Orbit

When a) - 0 and	 exactly	 NP	 revolutions	 take	 place	 in	 precisely	 N D

nodal	 days,	 the	 ground	 trat-,k	 repeats	 itself	 with	 a	 frequency

w	 - 2Tr/T	 where	 Trc	 ND x	 (length of	 the	 nodal	 day).	 Then	 therc	 rc
frequencies in the arguments of the cosines in (85) are, with the possible

exception of	 w	 multiples of	 w	 so	 A-r (T)	 becomes
rc

Ar (T) (t)	 I	 a (I+k'
AnMaaT k nmp(q+[*O I)T2R	 n	 nTnmpqaOT(nonres)

0
cosf(((n-2p	 -m N+(q+1*11))NR	 D)Wrc*WT)t+^nmap(q+j+0j)o 	 XT-' 2

(86)

When	 dealing	 with	 this	 type	 of	 orbit,	 the	 time	 origin	 to	for	 the

^nmap(q-kj oi 1)0, and X T is	 as	 in	 expression	 (52)	 and	 in	 (62'c),

so M (to )	 0 early in the repeat part of the mission.

The	 error A4	 in	 the	 geocentric	 tide	 its	 present	 in	 the	 residual
G

altimetric sea surface heights according to (7). 	 Assuming that the error

in	 the	 body	 tide	 is	 small	 enough	 compared	 to	 A4	 to	 be	 neglected,
0

expressions (29), (30) and (77) imply that

136



li

14 	 y

Q G(t)	 2	 (1+onhnT)	 4 nmaOT	 (I)
nmaRT	 p -n^nmp

^F	
i

r cost((n-2p)(wA) +m8' t GiT)t	 CimapOo t (XT-^ 2)],

i

(87)

;f

d.

t. In the case of the "frozen", repeat orbit this formula becomes

r n

A4C(t)	
2	

( 1+anhnT) 
^^nrnaOT	 (I)

nmaC3T	 p -nFnmp
a

-
Ca	 r ti

cos [(((n-2p)N R - m N D ) W 
re 

t w T	 nm ap0o	 T
) t +	 t (X '-a -^)]•-	 2 r

(88)

_
4

Comparing	 (86) and (88) one sees that the periodical terms in both
f

AF T)
	

and A4G	 have the same frequencies when these errors are treated

as	 time series.	 Consequently,	 At< T )	 and	 A ^G	 are "lumped together" in

the	 residual	 sea	 heights	 and	 can	 be	 separated	 only	 by	 using the Love z

numbers k'nT , _ so	 these must be known reasonably well. ' The same comment

can be made regarding the h'	 needed, in 'turn, to obtain Ado from -Ar,G.
Jit

3

t
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5.9	 The	 lasing of Ocean Ties With the Mean Sea Surface and With
Each Ocher

When observed with an altimeter from a "frozen" repeat orbit, a

tidal constituent of frequency W would appear, at the same points alongT

the repeating ground track, to rise and fall between consecutive

overflights at the slower frequency

W	
xg 

W	 W	 Int	 [w /w	 + 1/21.	 (89)
T(strobed)	 T	 rc	 T	 rc

17
ij

(Int	 (x)	 integer	 part	 of	 x).	 This	 phenomenon	 is	 analogous	 to	 the

apparent	 slowing	 down	 of	 a	 rotating	 wheel,	 or	 the	 plate	 of	 a	 record

player,	 when illuminated	 at	 regular intervals by short flashes of light.

The "strobed" frequency	 W	 would be zero if	 w	 were an exact
T(strobed)	 T

multiple	 of	 the	 repeat	 frequency	 W	 The	 corresponding	 tidalrc

"frozen"	 in	 time	 a d	 inseparable	 from	 staticconstituent	 would	 appear	 n

features	 of	 the	 sea	 surface	 such	 as	 the	 geoid	 undulations	 or	 the

";j stationary	 sea	 surface	 topography.	 This	 may	 happen	 with	 some	 tides

depending	 on	 the	 inclination,	 eccentricity	 and	 height	 of	 the	 orbit

(W	 ND,	 and	 depends	 on —a,	 and I according	 to	 (10)).
rc

Moreover i	two	 different	 tides	 of	 frequencies w T	 and w T	 may^ appear
1	 2

"lumped"	 together	 if	 their	 I 'strobed"	 frequencies	 are	 the	 same.	 For

and	 altitudes	 of	 about	 this	 is	 possible	 when	 thesmall.	 1000 km

inclination is somewhere between 700 and 1100 , which is one reason why the
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projected orbit of TOPEX has been chosen with an I a 640 . In the case of

SEASAT, where I - 1080 , some tides (Like; 01 and N2) were. aliased with

each other and some (like P1) with the -mean sea surface, as mentioned by

	

f
	

Mazzega (1984). Details of this problem are discussed at some length in

C ' 
two reports: one by NASA's TOPEX Science Working Group (1981, Appendix

B.2), and the other by a similar group organized by CNES in France to

discuss POSEIDON (ib., 1983).
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5.10 The Complete Expression of the Radial Orbit Error

The total error Ar is the sum of the tidal and non-tidal components

Ar (T) and Ar 
(NT) 

(expressions (47) and (85))

	

E	 Ar(t) a Ar (T) (t,) + ArkNT)(t)

	

AC

z	 o

r nma nmp ( q+1t1 })
nmapq(nonres)

r

cos[((n-2p+(91 11))(i+M)` - (q+1t1}) c*me)t + ¢nmap(q+1+1})o^

^z

2Rn	 nT	 nmaOT 	 nmp(q +1t1 }) T:. nmaOq T(nonres)
yy

EE

O	 •	 •	 O	 •
cos[((n-2p+(q+1f1 }))(w*M)-(q+1 1 })"b—)t t w,t

f

=
Ei
r° ^

+	 I ( X	 2) ^ + Akcos, Mt^- 0nma	 + ^l	 op(q	 1	 })

+ Bksin At + Ckt cos At + B kt sin At

2	 2	
J	

k3
+ Ek t,	 cos At + Fk t „sin At +	 rJk(t-to)

J=0
(90)

where	 the terms	 that modulate	 the sin At	 and	 the	 cos Mt, and those in

the polynomial at	 the end, are	 the agregate of all the very long period

and resonant contributions from errors in the models of both gravitational

and 	 non-gravitational	 forces,	 as	 well	 as	 uncertainties	 in the	 initial

state.	 Expression	 (90)	 describes	 all 	 significant	 elements of Ar over a

weekly arc. a
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The non-tidal part of the error in (90) has the same structure as a

sum of additional: tidal components of frequencies p , w, 2w,.,.,

(corresponding to gm0)1,,2,9.., with their amplitudes becoming negligible

above 2W, one of which is "static" (q-0).

n

The corresponding expression for the especial case of the "frozen",

repeat orbit is, from (52) and (86),

(	
o	 r,

Ar t )

	

t) a	 AC
	 rnmp(q+{tl })k	 nmapq(nonres)

O

a£	cos[((n-2p+(q+{t1}))N +mN )w t"	
o

,.	 R	 D rc	 nmap(q+{tl })o
..	

ea (1+k') A t	 r	 o2R	 n	 nT	 nmaST nmp(q+{*1 })T
Of	 nmagq T(nonres)

o
cos [(((n-2p+(q+{tl})) NR+ ►"ND) wrcT)r

Tt
+ ^nmap(q+{-`1})o + (XT--0 2)

+ Akcos At + Ak sin At + Ckt cos At

-	 + D  t sin Mt + Rkt2 cos Mt + F k t 2 sin Mt	 E

i
+ k (t-t lo)	 l

J=0	 ('91)

Here, because the orbit is stabilized by occasional maneuvers, the

rnmp(q+{fl }) and w, M, 0' can be regarded as constants over the whole 	 {

s	 mission.

;e

s!e
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6.0 IMPLICATIONS FOR THE ANALYSIS OF ALTIMETRY

6.1 General

Expression	 ( 7)	 shows	 that	 the	 residual	 sea	 height	 Ahw	contains,

` besides	 the	 orbit:	 error ( Qr), information	 on	 the	 unknown	 parts	 of	 the

geoid (M1)	 and , the	 tides (AY, the	 non- tidal	 variations (wt ) and	 the
x

mean sea surface ,topography ( wo )	 of the general circulation.

The	 fine	 details	 of	 the	 geoid	 can	 be	 determined	 very	 clearly	 by

mapping the mean sea surface with altimetry, 	 because the orbit error or

and	 the	 topography wo introduce	 distortions	 at much	 longer wavelengths.'

Those details often outline quite well the submerged trenches, ridges and

mountains	 that produce	 them because of incomplete isostatic compensation.

This	 was	 recognized	 soon after	 the	 first use of an altimeter in SKYLAB

"x (Leitao	 and	 McGoogan,	 1975;	 McGoogan	 et	 al,	 1975).	 Today,	 high

resolution	 maps	 of	 the	 sea	 surface,	 like	 those	 produced	 by Marsh	 and

Martin	 (1982),	 reveal	 aspects	 of	 the	 ocean	 crust	 of	 great	 interest	 to

., geologists and geophysicists (Watts,	 1979).

i

E
^	 ^

In	 addition- to	 being	 useful	 over	 the	 sea	 for	 studying	 the

gravitational field and oceanographic phenomena, altimetry is valuable to

' § some extent over ,land (Brooks, 	 1981) and particularly over 'ice (Brooks et

al.,	 1978).	 The main	 problem on	 land	 is	 the	 roughness	 of	 the	 surface

observed;	 a	 normal	 sampling	 rate	 of	 one	 measurement	 per	 second	 (about`

{$ R
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3

every eight kilometers along track) would be insufficient for mapping

mountain areas, for example. Other applications, such as the study of

wave height, surface winds, etc. (Mognard et al., 1984), based on the

shape	 and katensity of the returning radar pulses, 	 rather than on their

timing, are not affected by the orbit error.

5.2 Crossover Points and Ove rlapping Arcs

The difference between two heights measured on the same spot at times
^ ^r

, tl and t2 is, according to (7),

6h (t 	 Ah(t) - Ah(tw	 l ,t2	 w	 l	 w	 2)

_Ar(t ) - Ar(t
1	 2	 G	 2)+A^(t )-A4G	 1 }(t	 +w

t (r
1
-)-w

t (t 2 )

+ AA(t 2 ) -• AA(t)

K

(92)

:e
The	 permanent	 part	 AN + w	 is	 totally absent,	 and only Ar,	 the

w o
4

tides	 and other time-varying features are observable to some extent. 	 Of

$ course, measurements very rarely happen tobe'taken so close to each other ti

that	 the cancellation of	 AN + wo	 is complete.	 Normally it is necessary
3

to	 interpolate	 Ahw(t l )	 and	 Ahw(t 2 )	 from measurements	 just preceding
.. t

and	 just	 following	 passage	 over	 the	 point	 in question. There- are	 two

types of point:	 a crossover point is the intersection of an ascending and

«-
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s

a descending are of the ground track (each named after the nearest

equatorial crossing),, while an overlap Roint lies where two or more

parallel arcs (or colinear arcs) run on top of each other; the height

difference in (92) shall be called a crossover difference, or an oyerlap

difference, accordingly. 	 In a "frozen", repeat orbit, all points are

overlap points, but only some are also crossover points.

p
Over	 arcs	 of	 a	 few	 thousand	 kilometers	 Ar	 can	 be	 represented ►

closely by a constant and a _linear terms, or "bias+tilt". 	 For many years

now the "bias+tilt" model has been used for estimating Ar	 from crossover a

differences,	 by	 least	 squares	 adjustment,	 in 	 order	 to	 correct	 the	 data
x

5t. (Rummel	 and	 Rapp,	 1977,	 Mather et	 al.,	 1977).	 Extensions	 of	 this idea,

' involving	 either	 polynomials	 or	 Fourier	 series, are	 explained	 in	 Goad
1

et al. (1980).	 Similar procedures for correcting overlap differences were

also	 developed	 in	 the	 early	 days	 (Mather	 et	 al `.,	 1978).	 A	 system	 of fi

observation equations for estimating biases and tilts out of differences n	 ^?

F of either	 type	 is rank-deficient,	 and	 to solve it	 is	 necessary to "fix"

r

first	 some	 carefully	 selected	 "master	 arcs",	 or	 to	 minimize	 the

discrepancies along each arc between 	 hW	 and Nc using some model of the
c

geoid (see Rowlands,	 1981).

As explained	 earlier,	 in a "frozen",	 repeat orbit	 the radial error
^	 r

contains a significant component tt.at  is a function of latitude alone, and r_

unobservable	 in	 crossover	 differences.	 Therefore,	 application	 of	 the ;}
M

"bias+tilt" method may leave 	 zonal "wrinkles"	 in the estimated mean sea

: 14 4 r
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r1

surface. Fortunately, most of the data available today were obtained with

f GEOS-3 and	 SEASAT in non-repeat, or "general" orbits. 	 This situation is

likely to be reversed by future missions, where most satellites will be in

repeating	 orbits.	 However,	 after the fuel of	 the stabilizing engines is

exhausted,	 the	 satellites	 will	 gradually	 drift	 towards	 more	 "general" i

u. r orbits under various	 disturbing influences	 (or -may be maneuvered towards

F

them while	 there is	 still somefuel left) yielding more suitable "master.

r" arcs"	 to	 rectify	 the	 mean	 sea	 surface,	 as	 long	 as	 their	 altimeters

continue	 to operate	 for a substantial part of one apsidal period (27r/i)

In,	 such	 orbits,	 most	 of	 the	 radial	 error	 of	 gravitational	 origin	 is
s

observable in the crossover differences over that interval. 7

According	 to	 (47)	 and	 (52),	 Ar(t
1
)-Ar(t 2 ) in	 (92)	 is	 a	 function	 of

the	 ACnma ,	 so	
these may be estimated from crossover differences	 (Shum,

_ ^

1982).	 The shorter	 period effects	 of	 the	 zonal errors	 are unobservable

when	 the	 ground	 track	 repeats,, and	 one	 would	 expect	 that	 also	 those

-: s	 r
produced	 by	 low	 order AC	 might	 be	 hard	 to	 observe	 (Wagner,	 ib., t

nma

1984).	 The	 situation	 is	 somewhat	 better in	 non-repeating orbits,	 where

all AC	 are estimable.,	 in principle.	 In any case,	 the use of crossover
nm a

!
r

differences can be an interesting way ' of employing altimetry to improve or

calibrate	 existing	 gravity	 field	 models,	 in	 combination	 with	 ordinary

satelite tracking data,	 terrestrial gravity measurements, etc..

w^
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6.3 Direct Mapping of Ocean Tides

Because of the convenient structure of the orbit error, "frozen",

repeat	 orbits provide	 the	 best	 data	 for studying tides,	 particularly in

' the	 form	 of	 overlap	 .differences.	 According	 to	 expressions	 (85),	 (86),

' (87)	 and	 (88),	 the	 tide-related	 signal.	 is	 the	 sum of	 A{G and ar ( 'T ) ,	 both

of which,	 in the case of a repeating ground ,track,	 have exactly the same
r	 r

temporal.	 frequencies.	 The,	 overlap differences	 can be modelled using, the
V

'

A«

f observation equation t

+ 2

(	 ► )) ff A (t	 )	 cos(w	 t—^^w(tl ► t,2)	
"	

B
^	 ^	 1BT	 i	 X	 l —	 Y	 T(central)	 ^") r

Y=1	 i6T(central	 t(band)
x

— B(t )	 sin(w	 t -R	 ) + A	 cos^it	 + B	 siAtcent'ral)	 Y 	 kY	 Y	 kY	 Y <
r

T( band)

' 2
Ck tYcosMt Y 	 k+ D`	 t YsinMtY + Ek tYcosMtY a

^-
Y	

Y	
Y

+ Fk tYsinMt Y +	 ri (t Y-tk )3 } (-1)(Y-1)

i

:.

Y j=0	 Y	 Y

(93)

where Y=1 corresponds	 to	 t 	 and Y=2 to t
2
., The	 terms	 of	 the	 sum

iT

r

represent	 the	 "Lumped	 tide" A; +Ar (T) , with	 A	 and B	 given
G	 T( band)	 T( band) i

x by (70).	 In what follows,	 regardless of t 2 , the instant t 1 always belongs

to	 the	 first	 repeat of the ground track,	 thus Ak1 =A1, Bk 1 =B 1 , etc.	 So all ti

the	 overlap differences 	 are with respect	 to	 the	 first	 arc,	 which should [

not	 be	 shorter	 than one 	 repeat	 period	 Trc .'	 The	 base	 functions	 Bi_forr
E	 : 1
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parameterizing the "lumped tide" in space can be anything convenient,,

including spherical harmonics if the estimate is world-wide. The velocity

potential functions 0i (see expression (78) et seq.) are orthogonal and

complete over the ocean basins, so they can represent the "lumped tide".

Solving a redundant system of observation equations based on (93) by

' the	 least- squares	 method,	 one	 can	 separate	 the	 non-periodical	 part

of Ar from the "Lumped 	 tide .".	 Then,	 this	 "lumped tide" may be corrected

iteratively	 (for	 example)	 to	 obtain	 Ado .	 To	 start	 with,	 one	 can guess

that	 Ar (T ') + A;C	is	 identical	 to	 A;o,	 making	 in	 this	 way	 a	 first

F, estimate	 of	 the	 yielding of	 the	 solid Earth 6'	 and	 the	 perturbation. of
( A ,o) t

the	 potential	 V	 This	 'requires	 a	 numerical	 spherical	 harmonic

analysis (1)	of	 that guess	 of A^	 and	 then use of	 the	 resulting	 A
o	 nmaOT

according	 to	 (73)	 and	 (86)	 to	 get	 the	 corresponding values 	 of	 d'	 and

Ar(T^.	 Correcting	 the	 "lumped	 tide"	 by 	 substracting	 these values will
r

result	 in a new estimate of A4 , which can be corrected likewise in turn,
o

etc.	 Because Ar(T) and	 6' are	 probably	 small	 compared	 to A^	 thex ,p

A M It is possible to 'do this numerical analysis,	 to very high degree and
order,'	 using	 fast	 algorithms	 like	 those	 described	 (including	 program
listings)	 in	 (Colombo,	 1981).	 Recently	 Tscherning	 et	 al.	 (1983)	 have
compared	 the	 efficiency	 of	 these	 and	 other	 algorithms,	 all	 of	 which
approximate	 integration	 over	 the	 sphere	 with	 numerical	 quadratures	 on
grided	 data.	 For	 sufficiently fine grids, 	 computing the coefficients in

' this way,	 reconstituting the data from the computed coefficients, finding
z the	 differences	 between	 the	 reconstituted	 and	 the	 original	 data,	 and
` iterating this procedures 	 can be shown to be equivalent, in the limit, to E

a full least squares adjustment of the coefficients.	 The first iteration ¢
µ corresponds;	 to 	 the	 well-known-practice 	 of	 "pre-whitening"	 in	 ordinary'

Fourier	 analysis,	 and	 may	 increase the	 number	 of	 significant	 figures
recovered	 considerably.	 To -avoid	 numerical	 problems,	 the coefficients
calculated in these large analyses are always fully normalized.

?r n
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n

iterations	 are	 likely	 to converge.	 As	 a	 < 0.1,	 d' is one order ofn
h'n

(Q °
)

magnitude	 less	 thano, and	 so	 is	 the	 radial	 effect	 of	 AV	 on	 the

adjusted orbit,	 or ephemeris (5 cm at most for STARLETTE (1000 m altitude)

according	 to	 Marsh	 et	 al.	 ib.	 (1983)).	 The	 terms	 in	 Ar	 can	 be

separated in two groups:	 those with periods of the order of months, which

are	 filtered	 out	 together with the non—tidal orbit error,	 and those with

periods	 of	 less	 than	 Try,	 that 	remain	 in	 the	 "lumped tide".	 of	 the

latter,	 only terms whose frequencies are less	 than one cycle per day may k.

have	 to be corrected for,	 as	 their amplitudes decrease quickly with the

-period.	 The	 process	 described	 here	 assumes	 that	 the	 Love	 numbers	 are

adequately	 known,	 the	 same	 as	 the	 solid	 Earth	 tide	 6.	 Moreover,	 the

° contribution	 to	 S'	 and	 Ar (T)	 of	 the	 tides	 in	 the	 polar 'regions	 not

spanned	 by 	 the	 ground	 track would have	 to	 be estimated	 relying on pre—

existing	 tidal	 charts.	 The	 use	 of	 the	 for	 parameterizing	 thei
successive 	 approximations	 to A; 

0
, starting	 with A, may	 be	 advantageous

_ because	 of	 their	 "tide —like"	 nature,	 and	 their	 orthogonality	 over	 the

oceans.

Once Ar and	 d'	 have been separated from rG in a global way, a method

like	 that 	 of	 Cartwright	 and	 Alcock(1981)	 can	 be	 used	 for	 the regional

refinement	 of	 the	 tidal map.	 Estes	 (ib.,; 1980)	 has	 simulated a global =

estimation	 of	 tides	 from	 altimetry	 (with	 a	 somewhat, simplistic	 error

a
model)	 and his work suggests that a faithful picture may be obtained from

a few months' worth of data.	 A satellite with_a coverage as dense as the

k

%
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one projected for POSEIDON (Figure 2) should help greatly to obtain very

detailed charts.

If the geocentric tide C, can be mapped reliably with altimetry, it
G

may be possible to use the measurements of 4p 
	

taken with deep-sea

pressure gauges (Zetler,, 1980), to estimate 6' + 6 directly at the

locations of those gauges. This may be helpful in studying ocean loading

effects, the body tide, and the theology of the Earth's interior.

d.

A quite conservative sufficient condition for separating the

non-tidal orbital error 
Ar(NT) 

from the tidal signal A4 	 Ar
(T)
 is that

their respective spectra should have no frequency in common. 	 In a

(NT)
"frozen", repeat orbit the portion of Ar 	 present in the overlap

differences consists of the "quadratic once per revolution" oscillation
r.

and the polynomial terms in (52). Its spectrum is confined to two bands:

the first extends, approximately, from 0 to 21 and the second from

M-21 to A+21	 one cycle every 30 years for SEASAT).	 The tidal

signal, as seen from the satellite according to (86), (88) and (89) has

all its components at frequencies that differ from the harmonics of W byrc

-I- W	 As 0 and M are harmonics of W	 the sufficient
T(strobed) *	rc

condition requires that

21 !WWT(strobed)l	
(94)
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^i
	 so all the spectral lines of Ar (T) fall outside the two main bands

of Ar (NT) .	 However, this guarantees good separability only if the

duration Td r of the data stream analyzed satisfies

T	 > 12n/(Iw-21 w 1)j•	 (9.5)dr	 T(strobed)

For all past altimeter missions, and for any contemplated future ores,

Td r < 4 yearn, fro the tidal components that can be resolved from the

measurements. ral; e f;ingle satellite must have "strobed" periods not much

longer than 4 years, s vg4ming that the data were free from errors. As the

period of 21 must be of the order of one decade, all those "resolvable"

components should satisfy (95) and be, therefore, separable from the

	

r	 resonant terms In (93).

In the case of ordinary non-repeating orbits where the perigee

precesses once or more per year, expression (90) shows that the orbit

error must resemble a periodical up and down motion with its main,

components at frequencies 0, W and 21, and with spatial wavelengths as

small as 1000 km. These components can be seen as additional "tides",

which would have to be included in the model, greatly increasing the

number of parameters to be adjusted; otherwise, they may bias the

	

*	 estimates of the real tides.

F

All attempts at mapping o with GEOS-3 data, originally thought to

be a -reasonably straightforward operation ( Zetler and Maul, 1971), have	 k

turned out rather disappointing results. The poor distribution in time
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and in space of these measurements (collected over disjoint intervals of

no more than 20 minutes, because of the lack of an onboard data storage

device), the somewhat low accuracy of the instrument and the -non repeating

nature of the orbit, all have conspired to frustrate those efforts (Maul

and	 Yanaway (1978),	 Bretreger	 (1979),	 Won and	 Miller	 (1979),	 Masters	 et
x

al.	 (1979), and Coleman	 (ib.,	 1981)).	 The	 first	 estimates of	 the M2 tide

showing	 clear	 agreement	 with	 the	 amplitudes	 and	 phases	 observed	 at 4

maritime	 stations	 or	 plotted	 in existing	 tidal	 maps	 have	 been	 those	 of

Cartwright	 and	 Alcock	 (ib.,	 1981)	 for	 the	 northeastern	 Atlantic,	 of4

Mazzega	 (1983)	 for	 the	 Indian Ocean,	 and	 of	 Mazzega	 (1984,	 ib)	 for	 the

` whole	 world,	 all	 based	 on	 measurements	 from	 the	 last	 month	 of	 SEASAT.

Although	 these workers	 have	 taken no advantage of the 	 structure	 of	 the
F^

..
orbit	 error	 (treated by them like -white noise), 	 their results are beater

«.

probably because	 of	 the	 special Mature	 of Or along	 the repenting gruund
i.

track,	 while the accuracy and the spatial coverage of the data must have

helped also, even when the total observing period was short.

r	
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7.0 CONCLUSIONS

	

3	 The nature of the orbit determines that of the radial orbit error.

There is a geographical component in this error, due to the gravitational

s	 field model, that is lar$est in the case of "frozen", repeat orbits.H

	k	 Because of the precise repetition of the ground track every few days, this

	

"T	 is the kind of orbit likely to be used in most future missions, and hc_s
r

been used already for SEASAT

	

L	
In the differences in altimetric heights along the colinear passes ofL

	

n	 L

a repeating ground track, the radial error left consists of a -slowly

	

increasing oscillation plus a low degree polynomial (if the arc is about a 	 4
3

week long). This error, produced mostly by resonances of zonal origin, is

t"
easy to model and to separate from oceanic variations because it has a

	

!--	
much longer wavelength. -Its main . contribution to the power spectrum. of	 ..

!irthe total error should be confined to very low frequencies and to a narrow

poak at about one cycle per revolution; this seems to agree well with
r

experience (Marsh and Williamson, ib., 1980).' It is important to have

	

accurate and dense tracking and also good models of the non-gravitational	 ^.

	

sThe use o£ incorrect models of these forces mayt 	ix forces.	 *-	 y increase

^
Y

	

	 significantly the resonant part of the radial error., It is easy to deal
j

with the long period effects of the errors in non-gravitational models,,

	

Y	 because they belong mostly to the "resonant" part of Ar. The shorter

}}
	 period _effects of these errors, on the other hand, cannot be treated

J<
	 adequately with the type of analytical theory used here. Therefore, the	

k
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present conclusions (insofar as they are based on that theory) are

reliable only if the models are good enough to make such effects quite

small.

0
	 To separate the main tidal components from, each other and from the

mean sea surface, heliosynchronous and high inclination orbits should be

avoided. Howevero for studying other time-varying features, using repeat

heliosynchronous orbits could make the effects of non-gravitational force

model errors more tractable, particularly those caused by the complex and

often changing shapes of the spacecraft. If the attitudes of the various

parts of the satellite (particularly the solar panels on which most of

those forces act) are stabilized with respect to the Sun by making their

orientations in inertial space functions only of the spacecraft's position

relative to the plane of the ecliptic, then the pressures of solar

radiation and of Earth's re-radiation, and the errors in their models,

will be functions of that position as well (except for small variations in

R the Earth's albedo, the slow annual changes in solar declination and in

apparent luminosity of the Sun with distance as the Earth moves in its

elliptical orbit, etc.) Under the assumptions, over long periods of time,

the errors in the computed values of these forces will - repeat themselves

atmost exactly once per revolution. Their contributions to the radial

error will consist of a resonant 'part (an extreme example of which seems

re 4), and of a part thatto be present in one of the graphs in Figu

repeats along the ground track and thus largely disappears - from overlap

differences.	 As the atmospheric helium bulge follows the Sun, similar
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considerations would apply to drag model errors. Departures from this

well-behaved, pattern due to changes in solar radiation intensity and

.	 magnetic flux could be reduced by such a simple procedure as the daily

adjustment of the drag and reflectivity coefficients (reality, of course-,

r	 can be wonderfully messy, so these ideas are to be taken with a grain of

r	 salt).

In a "frozen", repeat Orbit, part of the radial error is "lumped

'	 to ether" in the altimeter measurements with the error in the.	 g	 ,	 ,	 geocentricp
w	 _

tide, but they can be separated using Love numbers.

"Frozen", repeat orbits are best for studying temporal variations

(like tides) by analyzing col.near pass differences, because the radial

error left in them is easy to filter out; however, since a significant

part of Ar is also unobservable in crossover differences, these orbits are

worst for modelling the mean sea surface by the "bias t tilt" method.	 j

^

	

	
t

In the crossover differences of ordinary, non-repeating orbits, where
i

the mean perigee is not "frozen", the radial error can be observed and

F	 corrected better than in the recreating case, by the "bias +, tilt's method,

provided the times of the ascending and descending passes at the

s	 crossovers are dit^tributed over a substantial part of one apsidal cycle.
fi

In this sense,; non-repeat orbits are best for mapping the mean sea

surface.	 The same applies to the use of crossover differences for
^t}a

k	 calibrating or correcting existing gravity^. 	8	 g	 g g	 Y field models.

i
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Improving the	 force models,	 the gravitational	 one in particular,	 is

essential	 to	 the determination of	 the stationary sea surface topography

Wo, which requires both precise knowledge of the orbit and of the geoid.

The difference between the geocentric tide (observed with satellite-

borne	 altimeters) and	 the	 "surface-bottom' s 	tide	 (sensed	 with	 deep-sea

pressi.lre	 gauges) is	 the	 sum	 of	 the	 body	 ride d and	 the	 crustal
t

bending d'.	 Once Long series of accurate measurements from altimeters and

pressure	 gauges	 are	 available,	 it	 may	 become	 possible	 to	 map	 these

vertical movements directly, across the oceans.
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