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INTRODUCTION

In this report mathematical physiecs arguments useful for lightning
discharge and generation problems are pursued. The ildea of using a more
mathematical approach than heretofore 1s based on the prospects for
clarification of the physical phenomena involved which in many cases is

~ obscured by the multiplicity of factors at work.

The first section treats a soliton Ahsatz for the lightning stroke

":rincluding a charge generation term which is the ultimate source for the

phenomena. In this way the number of functions required to completely specify
electric and magnetic fields, charge and current densities is reduced to a

1 minimum. For purposes of simplification it is supposed that the fonization

channel radius is independent of time.

The second section establishes dynamical, electrical and thermal equations

for a partially tonized plasma’ including the effects of pressure, magnetic

field, electric field, gravitation, viscosity and temperature. From these
equations is then derived the Non-Stationary Generalized Ohm's Law essential
for describing field/current_density relationships in the ionization channel of
the lightning stroke. Arguments are then glven for the essential participation
of ionic generation processes in the "exponentially" increasing current density
and charge density which develop during the stroke.

The third section deals with the discharge initiation problem and argues
that the fonization rate drives both the convective current and electric
displacement current to increase "exponentially" but that because of relative
saturation of the former compared to the latter the convective current is
unable to "relfeve" the electric field which eventually increases to breakdown
unleashing the lightning stroke. 1In this section the non-linear term of the
Non~-Stationary Ohm's Law is retained without approximation so that the temporal
development of the lightning discharge may be precisely formulated.

The fourth section deals with the statistical distributions of charge in ,
the thundercloud preceding a lightning discharge. Defining centers of positive
and negative charge, centers of generation and recombination as well as centers
of current efflux and influx for the cloud it becomes possible to statistically
characterize the development of the cloud dipole moment and the relative
velocity between the centers of charge as functions of time.

The fifth section contains some physical comments on the stability of the
pre-lightning charge distributions and the use of Boltzmann relaxational
equations to determine them. Also the argument for aircraft providing a
lowered impedance path for the stroke is given subject to the additional effect
of field enhancement factors such as aireraft curvatures.

*NASA-ASEE 1984 Summer Fellow
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MATHEMATICAL PHYSICS APPROACHES TO
LIGHTNING DISCHARGE PROBLEMS

LIST OF SYMBOLS

charge per unit volume (net signed charge in a unit of volume)
absolute (non-negative) quantity of positive charge per unit volume
absolute (non-negative) quantity bf'negative charge per unit volume

net signed charge crossing unit area per unit time electrical current
density

absolute (non-negative) quantity of positive chérge crossing unit area

per unit time: electrical current density of (absolute) positive charge

absolute (non-negative) quantity of negative charge crossing unit area

per unit time: electrical current density of. (absolute) negative charge

The directions of the current densities are given by the vectorial
average of the velocities of the individual charges crossing unit
area in unit time; with this convention the above definitions of the
magnitudes of the current densities are completed vectorially

net signed charge generated per unit volume per unit time (includes ion
production and recombination)

absolute (non-negative) quantity of positive charge generated per unit
volume per unit time

absolute (non-negative) quantity of negative charge generated per unit
volume per unit time.

light speed
elapsed time
distance unit of elapsed time = product of light speed and elapsed time

del operator with scalar components representing partial
differentiations in the coordinate directions

magnetic permeability of medium (plasma)
electric permittivity of medium (plasma)

electric intensity field vector
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magnetic intensity field vector
charge (absolute) of electron

valence of ion, i.e. non-negative ‘integer multiple of e which is
absolute ionic charge: for electron or singly-charged + ion Z=1

diffusion coefficient (one third of Square of step length per mean free
time in a random walk)

drift velocity in a random walk
unit vector orthogonal to6 axis of cylindrical coordinate sSystem

unit vector in direction of circumferential (8) increase in cylindrical
coordinate system ‘

Cunit vector in axial direction of cylindrical coordinate system

operﬁtor of partial differentiat;on in direction of u,
operator of partial differentiation in direction of ug
operator of partial differentiatidn in direction of u,
radial component of magnetic field intensity
circumferential component df magnetic field intensity

axial component of magnetié field intensity

radial component of electric field intensity
circumferential component of electric field intensity

axial component of electric field intensity

fraction of light speed at which soliton (pulse) propagates
radial dependence of axial component of electric field intensity

radial dependence of circumferential component of magnetic field
intensity

reciprocal channel size constant (of ionization channel)
modified Bessel function of second kind
modified Bessel function of first kind

radial component of current density vector



circumferential component of éurrent density vector

axial component of current density vector

absolute number of particles per unit volume

absolute number of positively charged particles per unit volume
absolute number of negatively charged particles per unit volume
absolute number of uncharged particles per unit volume

valence of positively charged particles (averaged for aggregate)
valence of negatively charged particles (averaged for aggregate)
mass density: total mass of particles in a unit volume

mass current density = momentum density: total vectorial momentum of
all particles in a unit volume

number of neutral particles generated per unit volume per unit time
(including recombination and ionization)

Eulerian derivative operator for differentiation with respect to time
while following moving portion of plasma D, = 3, + V.V

t t
magnetic induc;ion field vector
vectorial avebage velocity of positively charged particles

vectorial average velocity of negatively charged particles

vectorial average veloclity of uncharged particles (averaged over small
portion of plasma)

mass of positive lons (averaged over small portion of plasma)
mass of negative ifons (averaged over small portion of plasma)
mass of uncharged particles (averaged over small portion of plasma)

vectorial momentum transfer to positive ions per unit volume per unit
time

vectorial momentum transfer to negative ions per unit volume per unit
time

vectorial momentum transfer to neutral particles per unit volume per
unit time (momentum transfer excludes contributions to pressure and
viscosity)



P, partial pressure due to positive ions

P. . partial pressure due to negative ions (including electrons)

po  partial pressure due to neutral particles

n*v viscosity for positive ions

n_ viscosity fér negative ions

n, viscosity fbr neutral particles

) gravitatioagl botentlal

Ny ar{thmetic meaﬁ viscosity |

v viscous ayeragé velocity of small portion of plasma

n resistiviky of%plasma

a reclprocé; valence weighted mass of charged particles = 1/(Z+m_+z_m+)

m, geometrfékméahtmass of charged particles = (m*r'n_)”2

mA valencg'ﬁeigﬁted arithmetic mean mass of charged particles

<Z> averageﬁ;alénce of + and - ions

<22$ average squéred valence of + and - ions

my harmonic mean mass of charged particles weighted for valence and
concentration

nA valence welghted concentration average for charged particles

ZG geometric megn valence of charged particles

Z6 mass weighted valencevdifference parameter

A Laplacian operator

r electrical collisional frequency

5+ vectorial cyclotron frequency for positive ions

3_ vectorial cyclotron frequency for negative ions

T absolute temperature (Kelvin)

3; thermal current density




<D>

<Y>

thermal con&héﬁ{?;tﬁi

power per unit volume radiated

specific heat at constant pressure per unit mass for + ions
specificiheat at constant pressure per unit mass for - ions

specific heat at constant pressure per unit mass for neutral particles

power radfﬁted per unit volume by + ions

power radiated per unit volume by - ions
power radiatqd per unit volume by neutral particles
temperature of + ions

temperature of - ions

. temperature of neutral particlés

thermal conductivity for + ions
thermal conductivity for - ions
thermal conductivity for neutral particles P

diffusion coefficient for + ions

diffusion coefficient for - ions

diffusion coefficient for neutral particles

mean free path length (1 = mean free time)

mean free speed

collisional frequency for + ions

collisional frequency for - ions

collisional frequency

specific heat per unit mass averageq for +, - and neutrals
arithmetic mean mass of particles

average diffusion coefficient

average collisional frequency




~volume of region

Boltzmann constant

conductivity

surface of region
volume average

surface average

- unit riormal vector for surface

time dependence of charge déns}ty:
time dependence of eléctricéi(b@rbént density
time dependence of eléc;ric f;§l&"

vectorial electric field intenslty generated by + charges

vectorial electric field intensity generated by - charges

‘total absolute positive charge

total absolute negatiVe'charge

center of positive chéyge

center of negative charge
‘portion of total volume oveE which net production of + ions occurs

-portion of total volume over‘which net recombination of + ions ocecurs

center of generation for + charges

center of recombination for + charges

center of generation for - charges

center of recombination for - charges

‘portion of closed surface over which current due to + charges is efflux
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portion of closed surface over which current due to + charges is influx

portion of closed surface'ovéf'whlch current due to - charges is efflux

portion of closed surface over which current due to - charges is influx

~center of effqu of current on surface S due to + charges

center of influx of current on surface S due to + charges
center of efflux of éﬁfkent on surface S due to - charges

center of influx of current on surface S due to - charges

total number of + charges generated per unit time {n V
total number of - charges generated per unit time in V

total absolute quantity of positive or negative charge (equal)

' relative vgctoriél velocity of centers of positive and negative charge

vectorial'dibqle'moment of thundercloud

- Boltzmannian derivative operator for differentiation with respect to

time while following states of small portion of plasma in phase space

Bt = at + v eV=+3 - V;

R

differenﬁlal volume element in locational space

differential volume element in velocity space

occasionally the same symbols have been used for different variables but
the difference in meaning should be clear from the difference in context
and in location on the 1list of symbols: one should especially note the

difference between t mean free time and distance unit of elapsed time; k

reciprocal channel size constant and the Boltzmann constant; viscosity
and resistivity n ' '



1. Soliton Ansatz for the Lightning Stroke with Charge Generation Term

The basic objective of this section is to derive a mathematical framework
in terms of which observational and experimental data can be used to identify
and interpret physical features of the propagation of fields, charges and
currents during a typlecal lightning stroke. By characterizing the field and
current density components in terms of a small number of scalar functions it
should become easier to relate input data to the actual development of charge,
currents and flelds. - -

The starting point is the set of Maxwell equations modified by the
inclusion of a charge generation term G describing the number of charges (of
valence Z) generated per unit volume per unit time. The absolute charge
density q 1is taken to be positive corresponding to the absolute value of
charge per unit volume. Then in principle each of the following equations
after (1.2) is doubled with a separate version for positive and negative
. charges and for the currents and fields associated with them. The actual _
- signed charge density q and current density J are related to these unsiged
quantities by , ’

Q=q, -q_ . (1.1)
J-J -3 | - | (1.2)

but for conciseness the generics q, J will be used for typical Qs 3* or

q_, J_ corresponding to G,, G_. Generally the inclusion of a G term means:

that charge conservation will be violated for + and - species separately but it

will be expected that overall conservation holds for the net charge given by

(1.1). _ :
" Turning now to the Maxwell equations one has using <t = ct and Gaussian

units ‘

UXE = ~ud | (1.3)

J=c(VxH- eaTE) : (1.4)

: T

q=¢eV -« FE+ 59 Gdt (1.5)
(o]

V-H=0 : (1.6)

Non~Conservation of charge then follows by adding the partial time derivative
of (1.5) to the divergence of (1.4)



3,0 + V + J = ZeG (1.7)

At the outset it may be noted that the assumption

J = -DVq + wq (1.8)

converts (1.7) to a Diffusion Equation with drift
3,9 = DAq + weVq + qVew + ZeG (1.9)

In the case of a lightning stroke it is to be expected that the DAq term
which acts as a randomizing element in (1.9) will be small compared with the
drift term weVq producing an often small random deviation in direction of the
stroke (whose direction is principally determined by W). This point which is
of passing interest will not be fur;her pursued here.

The modified Maxwell Equations (1.3), (1.4), (1.5), (1.6) are to be solved
in cylindrical coordinates with a soliton Ansatz for the case of no & :
dependence. Components in the 8 direction will, however, be retained. The
expressions for curl and divergence in (r, o, z) eylindrical coordinates under
these conditions are recalled to be : '

- - ar(rﬂe)
VxHa= -urazﬂe + ue(azHr -aer) + u,

(1.10)

PO (rH.) ¢ B H, C(1.11)

V.fal

where Gr, u ’ Gz are the unit vectors in the radial, circumferential and
axial directions?

By virtue of (1.11), (1.6) may be written

ar(rHr) - az(-er) : (1.12)

So that the magnetic intensity components may be expressed in terms of a
function ¥(r,z,t) by

rH = 3 v (1.13)
r z
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“rH = arw (1.14)

- If ¥(r,z,t) = rh(r)F(z-£1) one has

H, = h(r)F'(z = £1) E (1.15)

W, - TLOMOM'E(z - £T) | (1.16)
This suggests an Ansatz for He of the form

He = h(r)di(z - &) . i (1.17)

and a correspbnding Ansatz for Ez of the form
E, = e(r)E'(z - £1) S ' (1.18)

‘The cyiindrical components of the Faréday Induction Law (1.3) are

—BzEe - -ua‘[Hf‘. ’ (1.19)
3zEr - aPEZ = ‘uarﬂe (1.20)
1 . : :

;Br(rﬁe) - -uaTHz (1.21)

which upon substitution from (1.15), (1.16), (1.17), (1.18) become

[ ] )
azzo a =uEh(r)F (z - £1) ' (1.22)"
aéer - le)EEz = ET1) = pgh(r)i'(z - £1) (1.23)
Lontreg) = g HBEM ee - gy | | O (rew

11



Clearly, (1.22) is satlsfied‘by

E, = -uEh(r)F(z = £1) - (1.25)

in which case (1.24) is automatically satisfied. According to (1.23)

3E, = e(r)E(z = €1) + uen(r)ilz - £x) (1.26)

which is satisfied by

Er - ezr)E(z - E1) + uth(r)H(z - Er)‘ : (1.27)

Collecting the components of electric and magnétic intensities one then has

E, - e(r)E(z - £1) | , " ' (1.28)
E, = -uEh(r)F(z - £1) (1.29)
E, = ezr)E(z - £1) + uEh(r)H(z - £1) (1.305
-, - LEREe(; gy | | (1.31)
Hy = h(r)H(z-£7) - (1.325
H, = h(r)F(z -£1) (1.33)

For the generation term G in (1.5) and (f.T)'one takes
G(r,z,t) = g£g(r) r' (z-£1) : ' (1.34)

where T 1is an as yet unspecified soliton function (not the Gamma function).
In terms of T the integral of G can be written

T . :
,f Gdt = [r(z) - I(z-£1)]g(r) - | (1.35)
o

12



It should be noted that (1.5) assumes- no‘genération before time t=0,.

(1.35) in (1.5) one has

-

g = 9,E, + 2 3.(rE) + j g(r) [r(z) - r(z-£1)]

lpr substituting from (1.28), (1.30)
| .- e(r)E (z~£t) + LEE.LEll. E(z E1) + ug LEELEl_ H( -£1)
§ﬂ+ oo 8(r) [r(z) - r(z-g1)]
At time t=0 this beééhgs
g - e(r)E"(z),* é;séézllliE(z)_* uigsﬂésll: H(z)
For zero initial charg;:density q=0

' ' ' '
e(r)E"(z) + LES_éEll. E(z) + uﬁtsﬁésll H(z) = 0

.and it must be satisfied with r independent of z. This can be
accomplished by

K2e(r) - Lre ir)] . uELghir)]

and

E (z) = k%E(z) + k°H(z) = 0

The first equation of (1.40) implies

e () + X8 L 2e(ry - o

13
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(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)



which is satisfied by the modifiéd Bessel functions I (kr) and K _(kr) of
which K (kr) exhibits exponential decay as r » « while I (kr) “becomes
exponent?ally infinite as r » =, Thus Ko(kr) s the betteR solution and one
may take

e(r) = A Ko(kr) : (1.43)
The second equation of (1.40) is satisfied by the choice
] L .
uEh(r) = e (r) = AkKo(kr) (1.54)
while (1.41) is satisfied by

-k%H(z) = E (2) + K2E(z) (1.45)

Substituting these results into (1.28), (1.29), (1.30), (1.31), (1.32),
(1.33) one has A

E, - AKo(kr)E'(z-Er) : (1.46)
1] '.

Ee - -AkKo(kr)F (z-E1) (1.47)
-A ! X . , 48

E. = = K (kr)E (z-E1) . (1.48)

Ho - Zﬂifx (kr)F(z-£1) | (1.49)

z 0 Ko r z2-ET .

-A 2 '

Hy = -;EEKO(kr) [(k"E(z-g1) + E (z-E1)] (1.50)
Ak, !, ' .

Hr - EEKO(kr)F (z~E1) | (1f51)

The components of the Ampere Circuital Law (1.4) are

1. ,
Jz/c = rar(rHe) eaTEz (1.52)
Jo/c = (3H - dH ) - €d f | (1.53)
J/ec = -3 H -3 E (1.54)
r z 0 T r

14



80 that substitution from (1.28), (1.29), (1.30), (1.31), (1.32), (1.33) yields

30« LMEM (s - g0y o coo(mels e - (1.55)
Je/c - h(r)F'zz -~ & 1) + [:rhrr :]' F(z - £1)
| 2 |-| o :
- e h(r)F (z - g1) . (1.56)

J./e = -h(r)H(z - Erf‘+i€£[e2r)€éz - Ef) + ugh(r)H(z - €0l - (.57
for the éurrent'densities..? 

Subséitution from (1.43), (jfuu) and (1.45) then yields

J /e = — (k"E(z-g1) + (1-epf“)E (z-E€1)] (1.58)
AK'(kr) 2 . 2 1 F

Je/c e [k"F(2=E1) + (1-€pE°)F (z~E1)] (1.59)
AKK (kr) , 2. tir '

Jr/c - -—*EE——- (E (;-ET) +-é(1-eu£ JE  (z-E1)] (1.60)

k
while (1.39)'app11ed to (1.37) results in

9= 2 r(2) - riz-g0)a(r) | (1.61)

which for g(r) = e(r) = AKo(kr) is

>

Ze

g = o K (kr)[T(2) - r(z-g1)] (1.62)

o

The solution might be further simplified by taking F=0 {f experimental
Justification excluding circumferential currents could be found. This would
leave only E(z-£71) and r(z=g£1) 1in the solution considerably simplifying the
correlation of field data with the propagation properties of the lightning
stroke. Return strokes are easily handled in the Ansatz by replacing £ by -¢.
The pulse speed £ 1s known to be a proper fraction of light speed. Another
result F-E' 1{s obtained if the circumferential component of the Poynting
vector {3 set equal to zero.

15



It seems clear physically that -3 'constant pulse shape can hardly be
maintained indefinitely as it propagates along its ionization channel.
However, {t does not follow that in the times considered the pulse shape will
change very much and in any case it is primarily important at this stage ‘to
discern the way in which the various vectorial components depend upon the E
and T functions. In this way it i3 hoped that measurements will eventually
clarify the entire phenomenological sequence of events of the stroke.

2. Plasma Dynamiés and the'Non-Stétionary Generalized Ohm's Law

~The purpose of- this section is to systematically construct the dynamical,
electrical, and thermal equations describing the behavior of a typical portion
of plasma containing positive and negative ions (including electrons) and
neutral particles 'entirely free of mathematical approximations. This is to be
effected by means of suitably defined averages. The electrical equations are
then used to establish (2.54) the Non-Stationary Ohm's Law relating electrical
fleld E to current density J,. R

. The formulation will include effects of partial pressures due to + and
- lons and neutral particles, external electromagnetic fields, a gravitational
potential field and viscosity terms.;« '

There will naturally still rema?n bhysical approximations and statistical
assumptions concerning the extent to'ﬁhlch such averages can reasonably
represent the parameters entering into the formulation.

The restriction here to an isotropic model is not serious since the
 pressures may be readily generalized to stresses as in the transition from an
f{deal fluid to an anisotropic viscous fluid. The tensor extensions possible in
the model are generally easily handled and will be ignored here.

First relevant averaging parameters are defined and then equations for
mass, charge, momentum, and thermal transport and generation are established.

2a. Definitions and Formulations

The notation adopted associates a + subscript with positive ions, a -
subscript with negative tions (including electrons) and a zero subscript with
neutrals. The lons are supposed to be of valences Z* and Z_.

We define

1§ns téns Qeutrals _
n=n_+n_+ n, = number density (2.1)

q = (n+Z* - n_Z_)e = charge density (2.2)

16 .




so that

atp - m*?.t.n+ + m_atn_ + moatn

= + + =
p n.m, n_m_’ nomo mass density

+ .
n*m+v* nmyv_ nomovo = pVv

mass current density (defines v)
(also equal to momentum density)

J = Z+en*;+ - Z;en_;_ = electrical current density

(o)

Ved=mnV(nyv) +mV(nv)+ m Ve(n_v,)
atq - Z*eatn+ - Z_eatn_

Ved=2e%(nyv,) - Z_eV-(n_v_)

We assume no net mass generation and no net charge generation

3p+ ¥+ J =0=23q+V-]

No net mass No net charge
generation generation

With G,, G_,

N atn_

i

atn* +V . (n*;+) = G, generation rate of + ions

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

.» G, the generation rate for + ions, - ions and neutrals (the
latter is initially Regative and finally positive in a transient ionization-
i recombination sequence) one has

(2.11)

+ 9 «(nv) = G_ generation rate of - ifons (incl. electrons) (2.12)

f‘ atno +V . (novo) = GO generation rate of neutrals

17
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so that the ionic generation rates are related to the neutral rate as shown
below (2.16) (2.17) ‘

mG, +mG_+mG =0 nonet mass generation (2.14)
Z+G* - Z_G_ = 0 no net charge generation (2.15)
Consequently,
-m, Z_ ' o
G, = — T 32 G_ = number of positive lons generated (2.16)
=T+ +o- per unit volume :

per unit time

G = G_ = number of negative ions (or electrons) (2.17)
generated per unit volume per unit time

The electromagnetic fields are regarded as externally imposed, it being
supposed that the particle motions are sufficiently random as to produce
effective cancellation of the flelds generated by individual particles except
when their motions become so highly correlated as to produce well defined
resultant flelds.

The Eulerian derivative Dt - Bt + VvV « V of the mass current density 36

(mass/area time = momentum/vol.) and of the electrical current density J are
given by (2.18) and (2.22)

O, T, = mD (n,7,) + @D (nT) + mD(ny7) (2.18)
JxB=J xB-JxB (2.19)
3* - en+Z+\7+ | (2.20)
J_=enzZv_ ' i? (2.21)
D J = ez,D (n,v,) - eZ_Di(n_;_) (2.22)

By solving for v, and ;_ In the expressions for the two current densities J
and J these quantities may be expressed in terms of them and of the velocity
of nelitral particles v, as shown in (2.26) and (2.28)

18




m en*Z*;+ -enzZyv_ =J m (2.23)

ez nmv +nmv =J -nmyv eZ (2.24)

en_(Zm_+2Zm)v_=eZJ -mJ- enmzZ.v_ (2.25)

| eZJ_ -mJ -enmZ v

i - + .

E Vo —— (2.26)
| ‘ en_(Z,m_+ 2Z_m) :

| en+(2+m_ + Z_m*);+ - eZ_3m +»m_5 - enomoz_\'/'o (2.27)
‘ _ eZJd +mJ-enmZ v
; v, - m 20" 0 o (2.28)

enf(z+m_ +Z.m)

[eZ+3 -mJ-enm2zZyv Im

- m + 00+ 0 " -

_n_v_ : : (2.29)
e(Z,m_+'Z_m)

_ [eZ_3 +mJ - enm Zv_Im
mnv, = - e (2.30) -
e(Zm_+Z_m)

The momentum densities for the 3 species satisfy the equations

) xB - ¥p - n+m+V¢ + T+

+

0|+ !

Dt(n+m*v+) = en+Z+E + en+Z+ (

n,

3

* NV, ¢ = UV - V) (2.31)

-

- V- - e
Dt(n_m_v_) = -en_Z E - en_Z_(E—)x B - Vp_~-nmVs + T_

- n_ -
v+ = WV e v) (2.32)
- - o - . : -
Dp (ngMgVo) = nghvg + 3= TV « vy) = 9pg - ngmTp + Ty (2.33)

19



The terms ?+, T, T represent momentum transfer rates per unit volume to
+ lons, - ions and ngutrals due to collisions. ¢ is gravitational potential
and n_, n_ and n, are viscosities. Addition yields

DtJm - Dt(pv) = (J x B)/e - Vp - pVo + 3nAA < v+ nA(V o KVD) (2.34)

under the assumption that the net tranfer of momentum for the whole system is
zero. Thus 'l‘+ + T_+ To = 0. <v> is a "viscous average" velocity defined by

nv, tn_v_+ Vo * 3nA<v> with U arithmetic mean viscosity.

The electrical current densLtié; for the lons satisfy

’ - e2n+Zf _ e?n+zf _ ~ eZ,
Dt(en+Z+v+) - — E + — (v, x B) = — Vp, - enZ V¢
. + B +
eZ c el eZ T
+ - + - +
+ 5:- ndv, + 55: nV(V « v) + 5:- , (2.35)
_ -e2n_23? _ ezn_Zg . eZ_
D.(en 2 v ) = o E - o (v_x_B) - T Vp_ - en_Z_V¢
. eZ_ - - eZ_ - el _ _
M e nV(V e v)+—T_ (2.36)

These may be subtracted to yield

_ > n+Zf n_Zg ae 2,2 Z, 7 _
D.J = e + —— | E ¢+ — = J x B
t m m_ c m m m
2 2 2
Z'm Z°m ae Z.Z nm Z yA
+99(;—- *>JxB- = °°(—++-—)v x B
c m, m_ c m, m_ o
eZ_ eZ Z, . Z_ _
+!E-\7p__-E-Vp+ +e(n_Z_-n+Z+)V¢+e(ET+ -a-:'l'_)
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where a 1s defined by o(Z m_+ 2. m ) = 1. A resistivity

in terms of the momentum transfer terms for ions thus

2
Z, _ Z_ _ > nZ,  n_Z_ -
- e T+--—T_)-e + nJ
m

m
+

n may be defined

(2.38)

n = resistiyity (not to be confused with viscosities n,s N_, no)

By introducing the'rollowing means, the electrical current density equation.can

be made more concise

. ( Zm + 2. m_ )
A Z,+Z_

> - (z+ N z_)/z

<z - (zf . z2 )/2

2 -
n 2 n_2Z
. ( —2 . -—-—-) /(n Z° + n 22)
m, m, m_ +7 -
n, = (n,2% + n_22)/(2% + 2%)
2 2 2
2¢<2°>n, n,z; ) n_z°
m, m, m_
2
g = 2.2,
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(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)



Zim_ Zém+
z - SummN  w Gsmm— (2-“8)

s m, m_

A = Laplacian operator, V = del operator

In these terms, one has

_ 292< 22> n, - - ezzép - - aezi -
DJ = (E - nd) + —3 (v x B) + S J xB
ol m.c
G
ezzgnomo Z Z,
- — (v_x B) + e(-—-Vp_ -— 9, )+enZ_ -nZ)%
m.e +

Zn v Zn v Zn v Zn v
+ e+ et - e FRLIG (7 NLL I
+eA[ m. . ] +3V(V |: m, - ]) (2.49)

Defining the conductivity o by

1
o= (2.50)
and the electrical collisional frequency T by
2e2 < 22 > n,
r = = n : (2.51)
H
and introducing the vectorial cyclotron frequencies
_ Z+e§
Q, = - s (2.52)
+
_ Z_e§
- — 2.
aQ_ mo (2.53)
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The second and third terms may be replaced so that

_ - _ eZ_m*n+ -
DtJ = T(oE = J) + Ee— (Q+ X v+) i (2. x v.)

‘ aZi m_ _ . - - Z_ zZ,
+ —— Z:(an-)-Z_:(an*-) +e(;n—-\7p_-a-Vp+>

Z+n+v+ Zn_v_
+e(nZ_-nZ)V + es ~ -

+ m_

| Znv., .z n;> |
-] + + + Lo e e
+ 3 VE ( — - = "N :l | | (2.54)

+

8

The simplest non-stationary case is with B = 0 and negligible viscosity,
pressure and gravitational gradients.

Then (2.54) becomes

p.J = r(¢E - J) : ) (2.55)

as the generalized Ohm's Law which reduces to E = nJ or J = oE for

_ - _ Z Z

- +
DeJ =0 =B =V and =0 = =W, with n =n_=n, =0 (2.56)

(2.55) will be considered in more detail at the end of this section.

In terms of g the vectorial acceleration due to gravity (2.54) can also be
written

2
- - m, 0 _ mHZGpa -
J=o¢ E - 3 3 DJ + 3 2(va)
2e” < Z° > nA 2<Z° > nAch
2 2
am,Z_ 0 Z.nm ¢
+ ! g JxB - g g oM > (v_ x B)
2ce<Z >nA 2 <727 > nAch




4 g A +r:+ v -m- -
2e < 27 > q + -
A
m,C Z.n.v Z_n_;_
- 2 vov. i - (2.57)
be < 2° > ny + | -

The heat transport equations consider Joule heating, viscous heating and
radilation. Thus in general one has (¢ = specific heat/mass at constant
pressure) P

n (v, + U . 7,)

+ 3

n_(v_ e UV . 7))

- - - 3
- - nAv_ UV . 7))
+ novo . Avo + 2.0 3 9
+ 8 (2.58)

S 1is the energy radiated per unit volume pér unit time

where J_, the thermal current density is taken to be proportional to the
temperature gradient ’

Je =-x VT (2.59)

It is understood that J is obtained from the generalized Ohm's Law. Hence,
one may write for the 3 specles of particle

n

n+m+c+at'l‘+ -V ‘(K*VT+) = en+Z+(§-;+)/c + ﬁ+v+-A;+ + 5: (;+-V)(V . ;+) + S+

(2.60)

- - - - n. . -
nme 3T -V «(x V) = “en_2_(E-v_)/c n_v_-av_ + 3 (Vv_e)(V e v ) +5_

(2.61)
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n

- . = . + o . v .
nomocoatTo v (KOVTO) NoVe AV, 3 (vo (v vo) +S (2.62)
where T+, T_ and To are the temperatures of + ions, - ions and neutral
particles.

A plasma temperature may be defined by

+ +
nmecT +nmeT_ nomocoTo T (2.63)
-
+ + .
nme, tnme_ +nme

Then a specific heat at constant pressure cy may be defined by

‘ + + - ‘ )
nm,e, *nme_+nme ecp (2.64)

where

nm v nm_ +nam o= op %*;L{A (2.65)
Hence

nmeT +nmecT_+ nomocgfé-; pcpT | (2.66)
Diffusion coefficients may be defined by

nmeD =x, nmeD =«_, ngM.Ce.0y = Ko (2.67)

in terms of the thermal conductivities Koo K_, Ko for the 3 species,

Since diffusion coefficients in general are obtained from a random walk model
with mean free time 1t and mean free path A one has

D - Av where v = A (2.68)
3 T
Hence
2
D = 13—1 (2.69)
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and since

one qgbtains

KTz kT

D-—-—'

m my

(2.70)

(2.71)

with collisional frequency v, Substitutlng this result fopr each species into

the expression for pcka one has

2 2 2
Y*n+m*c*D+ *Y_nm_eD_ o+ YonomocoDo = pcka
If <m> denotes the arithmet{c mean mass with

3<m> = m_+ m_ + m,

one can define a statistical average collisional frequency < v > by

+ o+ ¢
+ +
<m> (n+m+c+ n_m_c_ nomoco)

2 2 2
+ +
Y.nm e, Y_n_m-c_ Yonomoco

<Y >

or
Y.n mzc +Yn mzc +Y n mzc =<Y><m> pc
AR I - - 0000 p
50 that an average diffusion coefficient < D > becomes

2 2 2
Y,nmeD + Y.nm_cD_+ YonomocoDo

<Y ><m> pe
*°p

<D > =

Hence the expression for pcka ylelds

kT

<D>-<m><Y>
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(2.73)

(2.74)

(2.75)

(2.76)

(2.77)




Returning now to consideration of the Non-Stationary Ohm's Law (2.55) and
approximating the Eulerian derivatlve DtJ by BtJ one has

3,J = T(eE - J) . (2.78)

Then (1.7) can be partially differentiated with respect to time to yield

2 - | x
3;q + V+(3,J) = 23, G ! | (2.79)

into which (2.78) may be substituted to yield

32q + Ta¥-E - 17-J = zed

¢ ‘ (2.80)

Substitution from (1.5) and (1.7) then ylelds

2 l'g ' aZe ft
th + I‘th + o= q = TZeG + ZeZ)th+ o . . Gdt (2.81)

in which the charge generatloh terms act as foreing functions in the above
inhomogeneous equation., For G=0 one obtains the corresponding homogeneous
equation : ’

2 o
atqH + FatqH o =0 - (2.82)

which is satisfied by
Q = q,e | (2.83)
for

R T 52 -0 £2.84)

which is seen to have no roots with negative real part since

2\ =~ -1 s+ \Vr° - 552 (2.85)

corresponding to exponential decay or oscillation under an exponentially
decaying envelope in (2.83) depending upon whether
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=
Q

(2.87)

°|

or

mlg

(2.88)

In any case the argument Indicates that decay of charge 1s inevitable
unless G # 0. Thus nonvanishing charge generation is a sine qua non for an
"exponentially" increasing charge density.

In the next section examples of increasing charge will be derived without
neglecting the non-linear term in (2.55).

3. Lightning Stroke Initiation Problem

The purpose of the section is to attempt to characterize the mathematical
features of the initiation problem in sufficient detail to clarify the physical
theory of the phenomenon and provide a framework for the design of experiments
and observations of the development of lightning discharges.

The starting point is the set of Maxwell equations modified by inclusion
of a charge generation term G which is a function of position R and time =

= ¢t signifying the number of charges (of valence Z) generated per unit volume

per unit time.

VxE=-udH (3.1)
J=c(VxH-ce€d ET) (3.2)
= Ze T :
q = eV-E+ = f Gdt (3.3)
[e]
VsH = O (3.4)

Elimination of E between the time derivative of (3.3) and the divergence
of (3.2) leads to

3,9 * Ved = ZeG (3.5)



In this q 1s meant to be the absolute quantity of a single-signed charge per
unit volume while J {3 the corresponding current density and G refers only
to the absolute number of correspondingly charged particles generated per unit
volume per unit time. In the same way E and H fields are generated by

these (single-signed) charges. Hence, (3.5) typefies one of the two equations

3,9, + V-J, = ZeG, (3.6)

3,q_ *+ VeJ_ = ZeG_ (3.7)

with the actual (signed) charge density q and actual current density J
given by

qQ=aq, -q_ (3.8)

J - J+ - J_ (3-9)

but it will be more concise to simply deal with (3.5) recalling that with this
specification both q, and q_ are positive.

Integrating (3.5) over a simply-connected volume V bounded by a surface $
the Gauss Divergence Theorem ylelds '

S , - -
jg<ndo> Ze <G>v (3.10)

<atQ>v + s

where < > and < > {ndicate volume and surface averages respectively. One
s
notes that for <G>v-0

-S
<3tq>v v < ned> (3.11)

80 that it is not possible to have an increase in the absolute quantity of
charge {n a region together with an efflux of current unless <G>v is positive.
The normal vector n is taken to point outward (away from V) on S!

To the above equations one also adds the Non-Stationary Ohm's Law
previously derived.

otJ = T'(6E - J) (3.12)



which may also be written
Q3 J + (J+7)J = qroE - qrd (3.13)

If a solution of this partial differential equation be sought which is
separable in q, J and E one has

a(®, 1) = q(f)al1) (3.14)
J(R, ©) = J(R)8(1) (3.15)
E(R, 1) = E(R)Y(1) (3.16)

(3.13) becomes

An AA

' ~ ~ ~ A
cqlaB + 82(J-V)J = qEToaY - qJTaB (3.17)

or

~n

' ~ ) ~Aa
qQJ(TB+cB da + 82(J+V)J = qEToay (3.18)
which can be satlisfied separately in time and position provided

(8 + S8 )a = 8° = av (3.19)

A - ~

and (absorbing constant factors in q, J, E)

~a

rqd + (J+V)J = qETe ' (3.20)

In other words

v-8+8p (3.21)
v

o = b , (3.22)
re + c8
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1
For a temporally increasing current density 5 >0 and (3.21) indicates
that the field will increase faster than the current density. Also

Y =8 + %e (3.23)

| For

g = (erT- 1K o Wk (3.21)

|
|
]
\ with W= A(W + 1)
|

' k=1

' -
8" = kWKW < ke WK

) , (3.25)

| 8" e kW Ve (k=1WK A (W)
i or
i - -
| 8" - a2k (2= (k-1)WK 2] (3.26)
whence
SN (R FARE (3.27)

2 [(‘ o Ak *[1 . Ac(ik-ﬂ]wk-h Ac(l;ﬂ) wk—2] (3.28)

and by (3.22)
a = wk*’/ [(1 . lSE) W ﬁSﬁ{] : (3.29)
r . T
all of which are initially zero.

For times 1 >> 1/) (t >> 1/\c) one has the asymptotic formulae for the
temporal dependence of current density, electric field, charge and displacement

current
g~ KT (3.30)
y - (1 N 1%5> MKT (3.31)
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ML (1 . ‘—‘;l) (3.32)

Y-k (1 . 28K ) KT (3.33)

So that Ak can be chosen sufficiently large that the ratio of displacement to
convective current i{s large.

In the presence of "exponential" forcing from the ionic generation term G
both convective current and displacement current will increase but eventually
the convective current will be "relatively saturated" with respect to the
displacement current which thus provides the physical mechanism for increase of
the field to breakdown. It should be clearly understood that the displacement
current referred to here i{s monotonically increasing not osclllatory as in most
electromagnetic applications.

After breakdown occurs, it leads to the development of an ionized channel
with enhanced conductivity so that it then becomes possible for larger
convective current to flow which ultimately "relieves" the high E field and the
lightning stroke proper is over. The disturbance in charge balance can,
however, lead to return strokes and further effects. The constants I and
must be determined experimentally.

Naturally the increase in q,’3 and E will not occur everywhere but

only in locations subject to (3.20). Applying the Gauss Divergence Theorem to
(3.20) one has

aAn AA

S ~ - ~
F<ql>, + 7 < md > =T <ogE >, (3.34)

or

<in

¢ (3em)d >y = T < o(aé - >, (3.35)

which suggests that the larger the discrepancy from the static Ohm's Law the
less likely the discharge region is to be spherical since the sphere has the
smallest surface S for a given volume.

It should be particularly noted in the arguments of this section that the
results (3.24), (3.29), (3.27) and (3.28) for the current density, charge,
field and displacement current take full account exactly of the non-linear
(J+V)J term in (3.13) the Non-Stationary Ohm's Law appropriate for this case.
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k. The Separate Charge Distributions in a Thundercloud

In this section the statistical properties of the separate + and - charge
distributions in a thundercloud will be investigated and relations involving
the cloud dipole moment will be established.

Writing (1.5) for the separate charge speclies one has

Z,e T -
U ) G eTeE, (u.1)
(o]
Z_e T -
qQ_ = el G_dt - eV+E_ (4.2)

o

for the positive and negative absolute charge densities.
Using the Gauss Divergeénce Theorem this leads to total charges

Z e T o . .
Q, = —;- fof - G dvdr + egfp-qu (4.3)

Z_e g1 R ;Q-: _ L
Q - = f f G_dvdr - e¢n-£_d3 (4.14)
o

In terms of these (positive) total quantities of positive and negative charge
one can define

1 ~ ,
F(+ "3 Rq+dV 4.5)

+

as the center of positive charge and

- 1 -
R =3 faq_dv (4.6)

as the center of negative charge,

The rates of change with time of the total charges of the two species is
found from (4.3) and (4.4) to be

dtQ+ -7, [G+dV + 5¢n-3tE+dS {U.7)
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d,Q_ = Z_e fc_dv - efﬁ-até_ds (4.8)

The velocities of the + and - charge centers can be found from (4.5)
and (4,6)

- - 1 - -

R, = d,R, = 6+f R3,q,aV - R d, (0 Q,) (4.9)

- -~ 1 - -

R = df_ - Q_Jf Rd,q_av - R_d, (n q_) (4.10)

Substituting from the modified continuity equations

949, = Z,eG, - V-], (4.11)

8,Q_ = Z_eG_ + V] (4.12)

(4.9) and (4.10) become

. Z+e _ 1}_ - - .
R, = T RG, av - 5+ R(V'J+)dV - R+dt:< n Q+) (4.13)
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. Z e
R_ = i RG_dv + a R(VeJ_)dv R_d, (2n-Q_) (4.14)

so that if vV . 18 the portion of total volume 'V over which net production
of + 1ions {s occurring and V.. 1s the portion of total volume V over which
recombination of + ions i{s occurring one has V = V.. * V,_ and one may
define

§S+ - Vl- j- §|G+|dV (4.15)
b V++

-G ‘ 1 -

R J'V Rlo,av (4.16)

-

as the center of generation for + charges and the center of recombination for
+ charges., Similarly

RS, - L j RIG_[av (4.17)
fa V_ -
+ V_+
A J R|G_]av : (4.18)
- V -
- - V_- .
are the center of generation for = charges and the center of recombination
for - charges. The terms in (4.13) and (4.14) containing the divergences of

current densities can be written in terms of surface integrals by the Gauss
Divergence Theorem. Thus

fﬁ(v-ﬁ)dv - é-ﬁ(r'x‘iws (4.19)

30 I{f the portion of S in (4.13) corresponding to current efflux is S,, and
the portion corresponding to current influx is S,_ one can define

=1

++

'é J R[(n-d,)|ds (4.20)
++ S

++
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=I 1 =)= = S
R,.= 3 S' Ri(ned )|ds - R (4.21)
+ - S .

+ -

as the centers of current efflux and current influx due to positive charge.
Similarly In (4.14)

A0 S I T P (1.2
- S-+

o % j' R|(n+J_)|ds (4.23)
-- 75

In terms of (4,15), (4.16), (4.20), (4.21), (4.22), (4.23) one has from (4,13)
and (4.14)

2 + -G =G ++ +4+ = = = »

R, =g (VL v, RO - i - f,d,(2n Q,) (4.24)
. Ze " -G (S_,RL,-s_RL) _

R_ = T (V_+R_+' V_R_ )+ 3 - R_dt(ln Q) (4.25)

Returning now to (4.7) and (4.8) one notes that according to (1.4)
cfafes - ﬁa.v,cﬁds--‘éﬁ.rxds

and

j£ n'¥ x H dS = 0 (4.26)

over a closed surface so
€ §'n-atE+dS = - I+ (u.27)

e:§'ﬁ-at§_ds = -1 (4.28)
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where I and I_ are the currents flowing out of V
charges respectively. Thus (4.7) and (4.8) become

Q, - dtQ+ =2 eN -1,

Q = dQ =zeN_ +1I_

where N_ and N_ are the total number of charges +
per unit time. )

due to .+ and -

(4.29)

(4.30)

and - generated in V
| |

In case of net charge zero Q = Q = Q and the relative velocity of the

+ and - charge centers is given by

S0
Qi - W - - 9(§+- E_)dt(z§_q)

with
W - z+e(v+*§f+- v+_§f_) - z_e.(v_;ﬁ_f- v_/%)
W (s, /-5, R . (s_,RL - s__R)

The dipole moment M of the cloud is

M=QR ~-R )

+ -

and its time rate of change is

M= Qi+ Md (2nQ)

(4.31)’

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

The condition for constant separation of the charge centers is Vr = 0 hence

(4.34) implies

M d, (&n Q) = W= Wt
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Thus the averaging arguments to establish the statistical structure of the
cloud charge distributions is establ{shed.

5. Physical Arguments Bearing on Lightning Discharge Problems

According to Earnshaw's Theorem electric charges cannot be maintained in
equilibrium by electrical forces alone so it is important to recognize that
static models have a limited use in explaining lightning and the development of
thunderclouds capable of generating it. Actually one can start with static
models in unstable equilibrium and augment the electric and gravitational
forces by aerodynamical flows giving at least temporary stability to the ‘
Structures while the charge concentrations develop in the cloud. The proper
tool for the temporal development of these + and - charge distributions is
the Boltzmann equation

Btp = atp + v-Vﬁp + a-V;p =8&.p (5.1)

where

p(R, v, t) dr_dr_ (5.2)
R v

is the probabi{lity that a charge is located within dt of R and with a
velocity within dr of v and 6§ _p 1is the so-calleg "collisional
derivative" which ig not actually a’derivative at all but an integral giving
the rate of change of p due to collisions. Under some conditions which are
probably adequate for the problem of explaining the physical basis of charge
separation in the cloud in mathematical detail the th may be replaced by Yp
to form the Relaxational Boltzmann equation!

Btp = Yp (5.3)

In the stationary, collisionless case (5.3) is easily solved in terms of the
canomical ensemble for which

e_E/kT (5.4)

P =P
The problem of charge separation is clearly neither stationary nor
collisionless so (5.3) must considered as it i{s and {ts solution is obviously

somewhat more complex than (5.4). Since (5.2) must satisfy the normalization
condition

Ifp dt_dr_ =1 ' (5.5)
R v

'For negative Y, 5.3 corresponds to decay to a null state; if it is desired to
decay to a final state Py then p should be replaced by p-po.

38




for all time it is clear that Y cannot be taken to be constanthince this
will lead to a probability density with an exponential factor e in the
solution so the (5.5) cannot be satisfied. Thus (5.3) must be studied in
generality to rigorously establish the properties of the sSeparately signed
charge distributions and it i{s intended to pursue this direction in a
subsequent publication. Here we merely note that it follows from (5.3) that
the locations of maximum probability density correspond to the positions of
null resultant force for each charge species and the physical explanation of
the charge separation process must be found in the fact|that the null force
altitudes are different for positively and negatively charged particles. The
three types of force term most relevant for the altitud segregation process
are the electric field force, the gravitational force ahd the average force due
to collisions. The electric field force is altitude dependent and oppositely
directed for the two charge species.. The gravitationall| force is altitude
dependent via the altitude variation of the acceleratioh due to gravity and
will reflect the mass difference of the two charge specles. The collisional
drag force will depend on the altitude variation of temperature and
concentration which will also play a role in the thérma biasing of fracture
processes in riming. Although the null force condition|for the two charge
species may be fulfilled at separate altitudes it cannot be expected that such
a separation of charges will remain stable for any appreciable time without the
influence of a vorticial flow which would tend to. keep the separated charge '
configuration within its low pressure region. '

The average fair weather electric field of the Earth is directed downward
and decreases monotonically;with'increasing altitude. Typical values are 120
volts/meter at the surface, 25 volts/meter at 3 km. and 6 volts/meter at 10 km.
Below 3 km. the field is sufficiently strong to accelerate electrons upward out
of the layer of atmosphere closest to the Earth. The acceleration of positive
lons i3 less because of the mass difference between electrons and positive ions
and the net result is to establish an excess of positive charge in this region.
However the most important features of the situation are not the static ones.
There is a continuous upward transport of electrons and a continuous downward
transport of positive ions to the negatively charged Earth under fair weather
conditions. This is the obServed Sky-Earth current. Far above it is to be
expected that there will be an escape of electrons into the thermosphere
analogous to the esdape of hydrogen since the electric fields are presumably
negligible and the electron gas is even less dense than hydrogen. This is of
little relevance to events in the troposphere except as a consistency condition
for the general upward flow of electrons.

With the advent of pre-storm conditions there is a disruption of the
normal adiabatic lapse rate so that the lower troposphere becomes considerably
cooler than it was under falr weather conditions. This is due to enhanced
mixing between layers at different altitudes. In this way the lower
troposphere attains a temperature intermediate between the fair weather surface
temperature and the tropopause temperature. This quasi-isothermal layer
interferes with the vertical transport of heat leading to the development of
thermal vortices with updrafts near the surface and 1t also interferes with the
transport of electrons upward and the transport of positive ions downward so
that each of these species tends to collect at characteristic altitudes with
the positive {ons usually concentrating at higher altitudes because they are
subject to much higher drag in the thermal updrafts. There is a very large
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slze difference between the electrons and the positive ions. Again it should

be emphasized that this charge separation process is dynamical rather than

Static and that it depends upon the aerodynamic flow to remain stable for any

appreciable length of time. After the Separation of charges becomes

accomplished one can expect that the local effects of the charge maxima will

result in electrons being repelled upwards and downwards near the negative

charge center at altitudes above and below it while positive ions will be

likewise repelled upwards and downwards near the positive charge center above -
and below it.

It should be clear that continuous transport of electrons away from Earth
and continuous transport of positive ions to Earth under fair weather
conditions cannot be maintained indefinitely if the Earth is to retain its
negative charge. 1In order for this to be preserved one expects that the net
result of the lightning ground strokes in thunderstorms will be to return a net
negative charge to the Earth so that a consistent fair weather electric field
may be maintained. With regard to individual strokes this could be

accomplished by transporting negative charge to Earth or positive charge from
Earth,.

Under storm conditions charge separations of 2 to 6 kms. occur with charge
concentrations of the order of tens of coulombs and these generate breakdown
fields (3 megavolts/meter in dry air; 1 megavolt/meter in clouds). Since
breakdown i{s observed to occur it is a simple matter to compute

E = k Q?/r? = 106 volts/meter (5.6)
with k = 9 x 10* so
Q/r =~ ,01 (5.7)

and to have breakdown there must be roughly 10 coulombs of charge of each sign
for each kilometer of Separation to generate such a field.

The fair weather surface field of about 120 volts/meter corresponds to a
surface charge density of about a nanocoulomb/meter?, This yields an Earth
total charge of about half a megacoulomb over the total area_of the Earth of 5
x 10'" meters?. With an observed air conductivity of 2 x 10 '“/meter ohm a
Sky-Earth current density of about 2.4 picoamperes/meter? is obtained. Hence
the total current over the whole Earth is 1200 amperes according to the
stationary form of Ohm's Law. This must then be compensated during lightning
strikes in thunderstorms by much larger current acting for much shorter times.

6. Summary and Conclusions
The basic purpose of the soliton Ansatz used in the first section is to

reduce the number of functions in terms of which the 3-component electric field
intensity, convective current density, magnetic field intensity and the scalar
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electrical charge density and i{onic generation may be described. The intention
Is that the functions left unspecified in that section be determined by
experimental data. Once they are specified the full functional dependence of
all components would be determined. Also the relationship of the input data to
the full characterization of the vectorial fields would be precisely specified
and the directional properties of the lightning strike fields clarified.

In order to understand the processes underlying the initiation of
lightning discharges it is essential to have a physically reasonable,
mathematically manageable formulation of the relationship between the electric
Intensity field and the electrical current density. The purpose of the second
section {s to give a systematic plasma dynamic derivation of the nonlinear,
nonstationary generalization of Ohm's Law appropriate for the plasma of the
lonization channel. The simplest case (2.55) suitable for the lightning
discharge problem involves an electrical collisional frequency in addition to
the conductivity characteristic of the stationary form of Ohm's Law which
results when the left side of (2.55) vanishes. The modifications of (2.55) the
generalized Ohm's Law which would ensue due to the influences of magnetic '
field, gravitation, pressure and viscosity would follow from (2.54) but are not
required in the present discussion.

One finds that the electrical charge density naturally decays (with or
without oscillation) unless there is an ionic generation term which produces
inhomogeneities in the differential equation for the charge density. These act
as forcing terms and no matter how small they may be initially, they make

possible the development of "exponentially increasing" charge and current
densities.

. In section 3 a separation of variables argument is pursued to determine
the relationships between the time-dependences of the charge density, current
density and electric field without dropping the nonlinear term of the
generalized Ohm's Law. It is found that there is a relative saturation of the
convective current which allows the electric field to increase monotonically
with time corresponding to a non-oscillatory displacement current. This
continues unt{l dielectric breakdown occurs which is accompanied by the
development of an ionization channel with a greater conductivity than the pre-
Stroke medium. When this channel is developed a larger convective current can
flow thereby relieving the high field which led to breakdown. After the
channel has been developed the stochastic nature of the charge exchange process
can lead to a succession of return and direct strokes.

If one considers a crude model for field propagation along the ionization
channel with the rather drastic assumptions that appreciable values of the
fields are restricted to a cylindrical portion of the channel of radius r and

length h and that all losses from this portion are radiative, one obtains for
the power loss P
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P=S2mrh + 8 nr2 (6.1)
r z _

where Sr. S are the radial and axial components of the Poynting vector. If
the power w%re then taken to be produced by Joule heating one would have

EzJz - 2(Sr/r) + (Sz(h) (6.2)

For. Sr== Sz and h >> r this would yield
r = (2 Sr/Esz) (6.3)

for the radius of the ionization channel. Sr could be obtained from the
luminosity of the lightning flash and using Jz = I/mr? (6.3) becomes

o 1/3
r = (2 ur/ﬂEBI) , (6.4)

where E has been replaced by the breakdown field EB and I 1is the
current.

In the fourth section the statistical descriptions of the two charge
species is given quantitatively in terms of the corresponding absolute
densities of positive and negative charge which separate out in a thundercloud
with the development of the electrical dipole moment of the cloud. In the
fifth section physical arguments bearing on the charge separation processes are
reviewed. o

It is bellieved by the author that considerable progress has been made in
making the quantitative arguments of the first, third, and fourth sections with
the work of the third section on discharge initiation being founded on the
plasma-theoretic derivation of the generalized Ohm's Law in the second section.
There is every indication that the concepts of section 5 can be supported by
precise treatments of the Boltzmann transport equation in a subsequent
publication. Finally a comment about triggering will be made. In addition to
the field enhancement factors associated with excessive curvatures of portions
of an aircraft one can expect triggering to occur because the aircraft
themselves lower the impedance path for a lightning stroke. For metal-bodied
alrcraft this is because they decrease the free ailr path of the stroke and for
composite-bodied aircraft because they raise the permittivity of the stroke
locus.
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