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INTRODUCTION

, In this report mathematlcalphyslcsargumentsuseful for lightning
dischargeand generationproblemsare pursued. The idea of using a more
mathematical approach than heretofore is based on the prospects for
clarificationof the physicalphenomenainvolvedwhich in many cases is
obscured by the multiplicity of factors at work.

The first sectiontreats a sollton Ansatz for the lightning stroke
includinga charge generationterm which is the ultimatesource for the
phenomena. In this way the number of functionsrequired to completely specify
electricand magnetic fields,charge and currentdensitiesis reduced to a
minimum. For purposesof simplificationit is supposed that the ionization
channelradius is independentof time.

The second sectionestablishesdynamical,electricaland thermalequations
for a partiallyionizedplasma includingthe effectsof pressure,magnetic
field, electricfield, gravitation,viscosityand temperature. From these
equationsis then derived the Non-StatlonaryGeneralizedOhm's Law essential
for describingfield/currentdensityrelationshipsin the ionizationchannelof
the lightningstroke. Argumentsare then given for the essentialparticipation
of ionic generationprocessesin the "exponentially"increasingcurrent density
and chargedensitywhich developduring the stroke.

The third sectiondeals withthe dischargeinitiationproblemand argues
that the ionizationrate drives both the convectivecurrentand electric
displacementcurrentto increase"exponentially"but that because of relative
saturationof the formercomparedto the latter the convectivecurrent is
unable to "relieve"the electricfield which eventually increasesto breakdown
unleashingthe lightningstroke, in thissection the non-linearterm of the
Non-StationaryOhm's Law is retainedwithout approximationso that the temporal
developmentof the lightningdischargemay be preciselyformulated.

The fourth sectiondeals with the statisticaldistributionsof charge in
the thundercloudprecedinga lightningdischarge. Definingcenters of positive
and negativecharge,centersof generationand recombinationas well as centers
of currentefflux and influx for the cloud it becomespossibleto statistically
characterizethe developmentof the cloud dipolemoment and the relative
velocitybetweenthe centersof charge as functionsof time.

The fifth sectioncontainssome physicalcommentson the stabilityof the
pre-lightningcharge distributionsand the use of Boltzmannrelaxational
equationsto determinethem. Also the argumentfor aircraftprovidinga
loweredimpedancepath for the stroke is given subjectto the additionaleffect
of field enhancementfactorssuch as aircraftcurvatures.

*NASA-ASEE1984 Summer Fellow
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MATHEMATICAL PHYSICS APPROACHES TO
LIGHTNING DISCHARGE PROBLEMS

LIST OF SYMBOLS

q charge per unit volume (net signed charge in a unit of volume)

q+ absolute (non-negative) quantity of positive charge per unit volume _

q_ absolute (non-negative) quantity •of negative charge per unit volume .

net signed charge crossing unit area per unit time: electrical current _:
density _,

J+ absolute (non-negatlve) quantlty of positive charge crossing unit area ili:!
per unit time: electrical current density of (absolute) positive charge

absolute (non-negatlve) quantity of negative charge crossing unit area :•:

per unit time: electrical current density of. (absolute) negative charge i_

note: The directions of the current densities are given by the vectorial

average of the velocities of the•indlvldual charges crossing unit i_

area in unit time; with this convention the above definitions of the I
magnitudes of the current densities are completed vectorially

G net signed charge generated per unit volum@ii:per unit time (includes ion
production and recombination)

G+ absolute (non-negatlve) quantity of positive charge generated per unit
volume, per unit time

G_ absolute (non-negatlve) quantity of negative charge generated per unit
volume per unit time.

c light speed

t elapsed time

distance unit of elapsed time - product of light speed and elapsed time -"

? del operator with scalar components representing partial
differentiations in the coordinate directions

magnetic permeability of medium (plasma)

€ electric permlttivlty of medium (plasma)

electric intensity field vector



magnetic intensity field vector

e charge (absolute) of electron

: Z valence of ion, i.e. non-negative integer multiple of e which is
absolute ionic charge: for.electron or singly-charged + ion Z=I

i

I " D diffusion coefficient (one third of square of step length per mean free
time in a random walk)

_ w drift velocity in a random walk

: _ unit vector orthogonal to axis of cylindrical coordinate system
i r

b _e unit vector in direction of circumferential (%) increase in cylindrical
coordinate system

unit vector in axial direction of cylindrical coordinate systemz

B operator of partial differentiation in direction of ur r

B8 operator of partial differentiation in direction of u8

B operator of partial differentiation in direction of uZ Z

H radial component of magnetic field intensityr

H8 circumferential component of magnetic field intensity

H axial component of magnetic field intensityz

E radial component of electric field intensityr

Ee circumferential component of electric field intensity

E axial component of electric field intensityz

fraction of light speed at which soliton (pulse) propagates

e(r) radial dependence of axial component of electric field intensity

h(r) radial dependence of circumferential component of magnetic field
intensity

k reciprocal channel size constant (of ionization channel)

K (kr) modified Bessel function of second kind
o

. Io(kr) modified Bessel function of first kind

J radial component of current density vectorr



J circumferential component of current density vector"
G

J axial component of current density vector
Z

n absolute number of particles per unit volume

n+ absolute number of positively charged particles per unit volume

n absolute number of negatively charged particles per unit volume

n absolute number of uncharged particles per unit volume
o

Z valence of positively charged particles (averaged for aggregate)+

Z_ valence of negatively charged particles (averaged for aggregate)

p mass density: total mass of particles in a unit volume _:

J mass current density - momentum density: total vectorial momentum ofm
all particles in a unit volume

G number of neutral particles generated per unit volume per unit time

o (including recombination and ionization)

Dt Eulerian derivative operator for differentiation with respect to time

while following moving portion of plasma Dt = _t + _.V

B magnetic inductlon field vector
2 •

_+ vectorial average velocity of positively charged particles

v vectorial average velocity of negatively charged particles

T ° vectorial average velocity of uncharged particles (averaged over small
portion of plasma)

m+ mass of positive ions (averaged over small portion of plasma) _

m mass of negative ions (averaged over small portion of plasma)

m mass of uncharged particles (averaged over small portion of plasma)o

T vectorial momentum transfer to positive ions per unit volume per unit.
time

T vectorial momentum transfer to negative ions per unit volume per unitw

time

T vectorial momentum transfer to neutral particles per unit volume per
o unit time (momentum transfer excludes contributions to pressure and

viscosity)



p+ partial pressure due to positive ions

p, partial pressure due to negative ions (including electrons)

Pc partial pressure due to neutral particles

n+ viscosity for positive ions :

n_ viscosity for negative ions

n Viscosity for ne.utralparticles
! 0 _,"

_ gravitational potential

nA arithmetic mea_ viscosity

viscous aTerag_ velocity of small portion of plasma

"/ In resistivity of plasma

i _ reciprocal valence weighted mass of charged particles = I/(Z+m +Z m+)

mG geometri9 mean mass of charged particles - (m+m_)I/2

mA valenceweighted arithmetic mean mass of charged particles
.,

<Z> average•valence of . and - ions

<Z2> average squared valence of + and - ions

mH harmonic mean mass of charged particles weighted for valence and
concentration

nA valence weighted concentrationaverage for charged particles

ZG geometric mean valence of charged particles

Z6 mass weighted valence difference parameter

A Laplacian operator

r electrical collisional frequency

_+ vectorial cyclotron frequency for positive ions

-_ vectorial cyclotron frequency for negative ions

i T absolute temperature (Kelvin)
J

" J_ thermal current density



thermal conductivity

S power per unit volume radiated

c+ specific heat at constant pressure per unit mass for + ions

c_ specific heat at constant pressure per unit mass for - ions

co specific heat at constant pressure per unit mass for neutral particles

S+ power radiated per unit volume by + ions

S_ power radiated per unit volume by - ions

SO power radiated per unit volume by neutral particles i_

T+ temperature of + ions• '.'.
:f

T_ temperature of - ions _

To ,temperature of neutral particles

_+ thermal conductivity for + ions

__ thermal conductivity for - ions

_o thermal conductivity for neutral particles •,

D diffusion coefficient for + ions+

D diffusion coefficient for - ions

Do diffusion coefficient for neutral particles

mean free path length (3 - mean free time) "_

v mean free speed

Y+ collisional frequency for + ions

Y_ collisional frequency for - ions

Yo collisional frequency

Op specific heat per unit mass averaged for +, - and neutrals

<m> arithmetic mean mass of particles

<D> average diffusion coefficient

<Y> average collisional frequency



• )._'

.._.

k Boltzmann constant "

o conductivlty ,_:.,
.'.._;,;..'...?.

V. volume of region ._7,.,',__.
_'_i_:..

S surface of region :::...

<>V volume average "

<>S surface average ... ;_.. '-

-6 unlt normal vector forsurface .
.._ ' o . • .

_(_) tlme dependence of charge density •
" ... "i...' i "..::.: _'"

B(_) time dependence of electrical,current density
i

Y(_) time dependence of electric•Yield ,
:

E vectorial electric field intensity generated by + charges

"E •vectorial electric field intensity generated by - charges :.
[

Q+ total absolute positive charge

Q_ total absolute negative charge

-R+ center of posltlve charge

-R_ center of negative charge

V++ portion of total volume over which net production of + ions occurs

V+ portion of total volume over which net recombination of . ions occurs

++ center of generation for , charges

-G
R+_ center of recombination for +charges

_G+_ center of generation for - charges

_G center of recombination for - charges

S++ portion of closed surface over which 'current due to + charges is effluxw

• , 7.



S portion of closed surface over which current due to + charges is influx

S,+ portion of closed surface over which current due to - charges is efflux

S__ portion of closed surface over which current due to - charges is influx

-I
R.+ center of efflux of current on surface S due to +¢harges

-RI center of influx of current on surface S due to + charges.--

_I center of efflux of current on surface S due to - charges

_I •centerof influx of current on surface S due to - charges

N+ total number of + charges generated per unit time in V

N total number of- charges generated per unit time in V

A total•absolute quantity of positive or negative charge (equal)

_rel relative vectorial velocity of centers of positive and negative charge

vectorial dipolemoment of thundercloud

Bt Boltzmannian derivative operator for differentiation with respect to
time while following states of small portion of plasma in phase space

d_ differential volume element in locational space

d_-- differential volume element in velocity spacev

note: occasionally the same symbols have been used for different variables but
the difference in meaning should be clear from the difference in context
and in location on the list of symbols: one should especially note the
difference between _ mean free time and distance unit of elapsed time; k
reciprocal channel size constant and the Boltzmann constant; viscosity
and resistivity n



I. Soliton Ansatz for the Lightning Stroke with Charge Generation Term

The basic objective of this section is to derive a mathematical framework
in terms of which observational and experimental data can be used to identify
and interpret physical features of the propagation of fields, charges and
currents during a typical lightning stroke. By characterizing the field and
current density components in terms of a small number+of scalar functions it

" should become easier to relate input data to the actual development of charge,
_ currents and fields.

The starting point is the set of Maxwell equations modified by the
inclusion of a charge generation term G describing the number of charges (of
valence Z) generated per unit volume per unit time. The absolute charge
density q is taken to be positive corresponding to the absolute value of
charge per unit volume. Then in principle each of the following equations
after (1.2) is doubled with a separate version for positive and negative
charges and for the currents and fields associated with them. The actual
signed charge density q and current density J are related to these unsiged
quantities by

q " q+ - q_ (1.1)

•=J+ -" J_ (1.2)

but for conciseness the generics q, J will be used for typical q+, J+ or
q_, J corresponding to G+, G_. Generally the inclusion of a O term means
that charge conservation will be violated for + and - species separately but it '
will be expected that overall conservation holds for the net charge given by
(I .I).

Turning now to the Maxwell equations one has using T - ct and Gaussian
units

V x E - -_ H (1.3)T

J-c(vx -ca£) (14)T

cV _ + Ze[-q = • -- Gd_ (1.5)c Jo

V • H - 0 (1.6)

Non-Conservation of charge then follows by adding the partial time derivative
of (1.5) to the divergence of (1.4)

•.., . ,

," , .
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8tq . V • J = ZeG .y': (I.7)

At the outset it .maybe noted that the assumption
.,

_ -DVq. wq (1.8)

converts(1.7) to a DiffusionEquationwithdrift

atq - DAq + w-Vq + qV-w + ZeG (1.9)

In the case Of a lightning stroke it is to be expected that the DAq term
Whlch acts as a randomizing element in (1.9) will be small compared with the
drlft term w.Vq producing an often small random deviation in direotlon of the
stroke (whose direction is principally determined by D). This point which is
of passing interest will not be further pursued here.

The modifiedMaxwellEquations(1.3),(1.4),(1.5),(I..6)are to be solved
in cylindrical coordinates with a soliton Ansatz for the ease of no 8

dependence. Components in the 8 direction will, however, be retained. The
expressions for curl and divergence in (r, 8, z) cylindrical coordinates under
theseconditionsare recalledto be

ar(rHo)
(1.10)? . H = -UrazHe + ue(_zHr -arHz)+ Uz r

_ar(V • H - rHr) + azHz (1.11)

where u , u_, u are the unit vectors in the radial circumferential and
r Z

axial dlrect_ons.

By virtue of (1.11), (1.6) may be written

\

ar(rH r) - az(-rHz) (1.12)

So that the magnetic intensity components may be expressed in terms of a
function _(r,z,T) by

rH = a _ (1.13)
r z

lO



-rHz " _rP (1.14)

• If +(r,z,T) - rh(r)F(z-&T) one has

" Hr - h(r)F'(z - _T) (1.15)i

J

-Erh(r)]'F(z- &_)H -
z r (1.16)

This suggests an Ansatz for H of the form
e •

He - h(r)H(z- _T) . (1.17)

and a corresp0ndlng...Ansatz for E_ of the form

Ez - e(r)E'(z.. - _) (1.18)

The cylindrical components of the Faraday Induction Law (1.3) are

-_)zEo " -_)zHr (I. 19)

- . -u3TH0azEr arez (1.20)

I
rar(rE0) - -ua Hz (1.21)

whichuponsubstitutionfrom (1.15),(1.16),(1.17),(1.18)become

I!

azE0 - -_&h(r)F (z - _) (1.22)•

! I

azEr - e(r)E(z - _T) - _h(r)H'(z - _T) (1.23)

" rr!a (rEo) . -u& [rh(r)]'F'(Zr- _) (1.24)

II



Clearly, (1.22) is satisfiedby

I

E - -u_h(r)F(z- _T) (1.25)B

in which case (I.24) is automaticallysatisfied. Accordingto (1.23)

! !

E e(r)E(z- &_) + l_h(r)H'- (z- &x) (1.26)z r

which is satisfiedby

I

E - e(r)E(z-&T). ._h(r)H(z-&_) (1.27)r

Collecting the components of electric and magnetic intensities one then has

!

E -e(r)E(z- _,T) (1.28) +.
Z

Ee - -i_,h(r)F_z- F_T) (1.29)

!

S - e(r)E(z- 5T)+ u&h(r)H(z-ST) (1.30)r

-H [rh(r)]'- F(z- _T) (1.31)
z r"

H - h(r)H(z-&t) - (1.32)0

H - h(r)F(z-_T) (1.33)
r

For the generationterm G in (1.5)and (1.7)one takes

O(r,z,_) - &g(r) r' (z-_T) (1.34)
1

where r is an as yet unspecifiedsollton function (not the Gamma function).
In terms of F the integralof G can be written

T

f GdT-,-[r(z) - r(z-_z)]g(r) (1.35)o

12



It should be noted that (1.5) assumes no:generation before time t=O. Using
(1.35) in (1.5) one has

' ., _ •

Ze
9 . _) E + ! _)r(rSr) + g(r) [r(z)- r(z-_T)] (I 36)€ z z r _'c

or substltutlngfrom (1.28),(1.30)

S . e(r)V" [re (r)]
" ( Z -- _ _ ) * r l E(ZlF.T)+ U£,[Ph(r)]rH(z-F,_)

_/:i,Ze g(r) Jr(z) - r(z-_T)] (1.371
,!..-. _C

At time t=O this bed6mes
./.

':
t t

9 = e(r)S"(z)+ [pe'(r)]S(z)+ l_[rh(,r.)]H(z) 41.38)

For zero initial charge density q=O
L.

t ! t

" [re (r)] Ij_[rh(r) ]e(r)E (z) . E(Z) . H(Z) I O (1139)r P

and it must be satisfied with r independent of z. This can be
accomplished by

! ! t

k2e(r) . (re (r)] . tj__ (1.40)
r P

and

Z''(z)I k2E(z)+ k2H(z)= 0 (1.111)

The first equation of (1.qO) implies

'' e (r) k2e(r) - 0 41.t12)" e (r) * -P

13



which is satisfied by the modified Bessel functions I (kr) and K (kr) of
which K (kr) exhibits exponential decay as r w_ile I (kr) °becomes
exponent_ally infinite as r * -. Thus K (kr) _i] the bette_ solution and one
maytake o

e(r) = A Ko(kr) (1.43)

The second equation of (1.40) is satisfied by the choice

t ! ,.

u_hCr) - e (r) - AkKo(kr) {1.44) ..

while (1.41) is satisfied by

t!

-k2H(z) = E (z) + k2E(z) (1.45)

Substituting these results into (1.28), (1.29), (1.30), (1.31), (1.32),
(1.33) one has

!

E - AK (kr)E(z-&T) (1.46)z o

I l

E0 - -AkKo(kr)F(z-_T) (1.47)

--A I t

Er - -_ Ko(kr)E'(z-&T) (1.48)

Hz - -Ak2Kp&o(kr)F(z-&T) (1.49)

-- A t II

He = --j_Ko(kr) [k2E(z-_T) + E (z-_T)] (1.50)

Ak '
Hr - _-_Ko(kr)F (z-ST) (1.51)

The components of the Ampere Circuital Law (1.4) ape

Jz/C- ,iar(rHo) - caE (I52)T Z

Je/c= (azHr- arHz) - ca_ (1.53)T

J /c = -azH0 - ca E (1.54)r ir

14



so thatsubstitutionfrom(i.28),(1.29),(1.30),(1.31),(1.32),(1.33)yields

!! J /c - [rh(r)]'H(z - _T) . c_e(r)E[z 2_) (1.55)Z r

- h(r)F (z - _ T) + F(z - _:)

" II

- £_&2h(r)F (z - _T) _ (1.56)

:i/ "

a /c. -h(r)H[z- _+)+_[e[r)E[z- _) + u_h(r)Hiz- _+)] (1.57)
r

i for the current densities. 12

i Substitutionfrom (1.43),(ii_.44)and (1.45)thenyields

-AK (kr)
J /C o [k2E(z-&T)+ (I-cu52)E''(z-ST)] (1.58)z U5

AKo(kr)" 2 ''
Jo/c- _ [k2F(z-_T)+ (1-cp_)F (z-_T)] (1.59)

!

AkK (kr) , ,,,.

jr/C. o ....[E(z-_)+1--_(1-cu_2)E(z-_)] (1.601_ k_

while (1.39) applied to (1.37) results in

. ze [r(z)- r(z-_T)]g(r) (1.611
€ cC

which for g(r) = e(r) = AKo(kr) is

g - AZ---seKo(kr)[r(z) - r(z-_)] (1.62)i € cc

The solution might be further simplified by taking F-O if experimental
. Justification excluding circumferential currents could be found. This would

leave only E(z-_T) and r(z-_T) In the solution considerably simplifying the
correlation of field data with the propagation properties of the lightning
stroke. Return strokes are easily handled in the Ansatz by replacing _ by -£.
The pulse _peed _ is known to be a proper fraction of light speed. Another
result F-E' is obtained if the circumferential component of the Poynt[ng
vector is set equal to zero.

..



It seems clear physically that..a:constantpulse shape can hardly be
maintained indefinitely as it propagates along its ionization channel.
However, it does not follow that in the times considered the pulse shape will
change very much and in any ease it is primarily important at this stage to
discern the way in which the various vectorial components depend upon the E
and r functions. In this way it is hoped that measurements will eventually
clarify the entire phenomenologieai sequence of events of the stroke.

2. PlasmaDynamicsand theNon-StationaryGeneralizedOhm'sLaw _;;

The purpose_f thissectionisto systematicallyconstructthe dynamical, .,
electrical,and thermalequati0nsdeshribingthe behaviorof a typicalportion
of plasma containing positive and negative ions (including electrons) and

neutral particles entirely free of mathematical approximations. This is to be
effected by means of suitably defined averages. The electrical equations are
then used to establish (2.54) the Non-Stationary Ohm's Law relating electrical
field E to currentdensity J. :

The formulation will include effehts of partial pressures due to + and
- ions and neutral particles, externai e!eetromagnetic fields, a gravitational
potential field and viscosity terms.'

There will naturally still remain physical approximations and statistical
assumptions concerning the extent to which such averages can reasonably
represent the parameters entering into the formulation.

The restriction here to an isotropie model is not serious since the
pressures may be readily generalized to stresses as in the transition from an
ideal fluid to an anisotropic viscous fluid. The tensor extensions possible in
the model are generally easily handled and will be ignored here.

First relevant averaging parameters are defined and then equations for
mass, charge, momentum, and thermal transport and generation are established.

0

2a. Definitions and Formulations

The notation adopted associates a + subscript with positive ions, a -

subscript with negative ions (including electrons) and a zero subscript with

neutrals. The ions are supposed to be of valences Z+ and Z .

Wedeflne

i_ns i_ns 9eutrals
n = n+ + n_ + no numberdensity (2.1)

q = (n+Z, - n_Z_)e - charge density (2'2) "

16



m

p - n+m+ + n_m_ + nomo mass density (2.3)

n_m_ v_, .- _ _norno v 0 IJm n m v + pv (2.4)

mass current density (defines v)
(also equal to momentum density)

- Z+en+v. - Z en v - electrical current density (2.5)

so that
, . • , . . " , .

_tp - m._tn. . m_Btn- + mo_tn° (2.6)

_ _ nolo)- v.( (2.7)
V • 5m m.V.(n+v+) + m_V.(n_v_) + m°

Btq - Z+eBtn+ - Z_e_tn- (2.8)

V • 3 - Z+eV.(n+v+)- Z_eV.(n___) (2.9)

We assume no net mass generation and no net charge generation

Btp + V • Jm = 0 = Btq + V • J (2.10)

No net mass No net charge .
generation generation

With G+, G_, G the generationrate for + ions, - ions and neutrals (the
latter is initially_egative and finallypositive in a transientionization-
recombinationsequence)one has

Btn + + V • (n._+) - G+ generation rate of + ions (2.11)

Btn_ + V • (n_v_) - G_ generation rate of - ions (Incl. electrons) (2.12)

. Btn° + V • (novo) - GO generation rate of neutral's (2.13)

17
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so that the ionic generation rates are related to the neutral rate as shown
below (2.16) (2.17)

m+G+ + m_G_ + moG° = 0 no net mass generation (2.14)

Z+G+ - Z_G_ - 0 no net charge generation (2.15)

Consequently, __.

-m° Z
- - ' number of positive ions generated (2.16) _

G+ m_Z+ + m.Z_ Go per unit volume
per unit time

-m Z

G - o + G - number of negative ions (or electrons) (2.17)
- m_Z+ + m+Z_ o generatedper unit volume per unit time

The electromagneticfieldsare regardedas externallyimposed,it being
supposed that the particlemotionsare sufficientlyrandom as to produce
effectivecancellationof the fieldsgeneratedby individualparticlesexcept _..
when their motions become so highly correlated as to produce well defined i,
resultant fields.

The Eulerian derivative Dt - at + _ • v of the mass current density _m

(mass/area time - momentum/vol.) and of the electrical current density _ are

given by (2.18) and (2.22)

Dt Jm " m+D (n+v+) + m_Dt(n_v_) + moDt(noVo) (2.18)
t

x B - J. x B - J_x B (2.19)

J. - en+Z+_+ (2.20)

- en Z ; (2.21)

DtJ - eZ+Dt(n+v .) - eZ Dt(n _ ) (2.22)

By solving for v+ and v_ in the expressions for the two current densities J
and J these quantities may be expressed in terms of them and of the velocity

of neutral particles _ as shown in (2.26) and (2.28)o

18



m,  en.Z+v+- enZ v -] ] m_ (2.23)

-- -- JeZ+ _n.m+v. + n_m_v = Jm nomoVo eZ (2.24)

" en_(Z+m . Z_m.)v_ - eZjm - m+J - enomoZ.V° (2.25)

eZ.Jm - m.J - enomoZ+V0
- -.... (2.26)

en_(Z+m_ + Z_m+) .

en+(Z+m_ + Z_m.)v+ -eZ_J m + m_J- enomoZ_V0 (2.27)

'" eZ J + m J - en m Z v
T_ . _..-m - o o- o (2.28)

. '.

en.(Z+m_ + Z_m+)

- [eZ.Jm - m+J - enomoZ+V0 ]m_
m_n_v_- (2.29)

e(Z.m_+_Z_m+)

[eZJ + m J - enomoZ_V° ]m+ (2.30)
m -- m -

m+n+v+ u
e(Z+m_ + Z_m+)

The momentum densities for the 3 species satisfy the equations

[

<',)Dt(n+m+v+) - en+Z+_.+ en+Z+ _- x g - Vp+ - n+m+V@ + T+

If+

* n+ATt++ _- V(_/• v+) (2.31)

p

Dt(n_m_v_) - -en_Z_E- en_Z_ x B m ?p_ --n_m_?@. T_

T]

+ n_AT_+ _--V(V• v_) (2.32)

I]0 -- :

Dt(nomoV o) - rloAVO + _-- ?(\7 • vo) - 7po - nomo?,_ + TO (2.33)
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The terms _., _ , _ represent momentum transfer rates per unit volume to
. ions, - ions a_d n_utrals due to collisions. € is gravitational potential

and q+, n_ and no are viscosities. Addition yields

DtJm - Dt(p_) - (J x B)/c - Vp - pV¢ + 3nAA < v > + nA(V • <_>) (2.34)

under the ass_mpt_n that the_net tranfer of momentum for the whole system is

zero. Thus T+ + T + TO - 0. <v> is a "viscous average" velocity defined by

n+_+ + n___ + no_o = 3nA<_> with nA arithmetic mean viscosity.

The electrical current densities for the ions satisfy

e n+Z+ _

Dt(en+Z+_+) = m--'-_E + m+c (_+ x B) - mT Vp+ - en+Z+V¢

eZ+ eZ+ eZ.T+
. ---n.Av.. ---n.V(V•v+)+ -- (2.35)
m+ 3m+ m+

2 i 2 z2-e n Z2'. e n eZ
.... _) -Dt ....(en_Z_v_) " m E - m c (v_x_ m - Vp_ - en_Z_?¢

eZ eZ eZ
"+ - n Av + - n V(V • v ) + --C _ (2.36)

m - - _ - - m_ -

These may be subtracted to yield

oe z z_(z,z)Dt_ e2 n+Z2+( - - _.. +- .m..m _ _ __ _mX_

.oo(z:o oo z.ZOoOo(Zz)- m 3x_ - - + - --- _ + X

C m+ _ / c m+ __ Vo

ez ez (z. )+ m_---ZVp_ - --m+Vp+ + e(n_Z_ - n+Z+)V¢ + e m+--T+- T- "

. eAL'_ -_-- • _v • -L m, m_ T ) (2.37)
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where _ is defined by e(Z.m. + Z_m+) - I. A resistivity n may be defined

in terms of the momentum transfer terms for ions thus

- e --g. e2 -- . -- nJ (2.381
" m+ m_ - m+ m

n = resistiyity (not to be confused with viscosities %, n_, no)

By introducing the following means, the electrioal current density equation can
be made more concise

2 (2.39)
mG . m_m+

Z+m+ + Z.m_ )mA " Z+ + Z (2.40)

1_. = (m_..__. + ..__)/(n+Z+2 + n Z2) (2.43)mH

nA = (n+Z2 + n_Z2_)/(Z2++ Z2)_ (2.44)

Z2 n Z2
2 < Z2 > nA n+ + . _-- . -- (2.45)

m+ m

2 . Z Z+ (2.46). ZG -

- I (2.47)
e - (Z,m_ + Z_m+)
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Z2.m_ Z2m.- (2.48)
Z6 m+ m_

A - Laplacian operator, V - del operator

In these terms, one has

22

2e2< Z2> nA e ZGp ceZ_

Dt_ mH (_- n_) *--T" (vx _) . c " _xmGc

22ZGnomo _ ( Z_ Z+ )

e

\ Vp, + e(n Z - n+Z+)V¢- 2 ' (v0 x B) + e _--Vp_ - m-_ - -
raGe

Z+n.v. Z_n_v_ e (2.49) ;
+ eA m+ m_ + _ V V m. m_

Defining the conductivity o by

1 (2.50)
n

and the electrical colllsional frequency r by

2e 2 < Z2 > nA
r - n (2.51)

mH

and introducing the vectorial cyclotron frequencies

Z+eB
(2.52)

+ m+c

Z eB
(2.53)

- " m c
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The second and third terms may be replaced so thatr

eZ_m.n+ _ eZ+m n _
Dr5-r(a_.-3)+ (_+xv.)- .(a xv)

' m_ m+ - -

[z , ,] (z z): + 2 - (J X __) - _'+(J X _+ + e _ Vp_ - _+ Vp+

zoo?i + e(n_Z_-n+Z+)V¢ + eA m+ -_]-/

i e E (Z+_'_+ +Z : _)]

+ g V • ":""-'_'- (2.541• m.

_ The simplest non-stationary case is with B = 0 and negligible viscosity,
pressure and gravitational gradients.

, Then (2.54) becomes

DtJ - r(_E - J) (2.55)

as the generalized Ohm's Law which reduces to E = nJ or J = aE for

Z_ Z+

DtJ = 6 = B = V¢ and _- Vp _ = _+ Vp+ with n+ = n_ = no = 0 (2.56)

(2.55) will be considered in more detail at the end of this section.

In terms of g the vectorial acceleration due to gravity (2.54) can also be
written

i

2

:. j = a E - mHa mHZGPa

2e2 < Z2 > nA 2 < Z2 > nAm_c

2
amHZ_O ZGnomomHa

. 3x_- (_ox_)
2ce<Z2>nA 2 < Z2 > nAm_c

+ "' _--Vp_ - _+ Vp_ + Z2 (n_Z_ - n+ Z+)g
2e < Z2 > nA -" 2 e < > nA
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mHO Z_n+_. Z n
. g

2e < Z2 > nA m+ m_

mH 0 Z+n.v. Z q
- V V • (2.57)

6e < Z2 > nA m+ m_

The heat transport equations consider Joule heating, viscous heating and

radiation. Thus in general one has (Cp - specific heat/mass at constantpressure)

n.(v,• v)(v• %)
pep@tT + V • J8 " _ " J/c + n,v+ • Av+ . 3

n_(v_• v)(v•v_)
+nv .av +-- w - 3

no(V° • Vl(V•_o)
. noVo AVo 3
+ S (2.58)

S is the energy radiated per unit volume per unit time

where J8' the thermal current density is taken to be proportional to the
temperature gradient

J8 " w _ V T (2.59)

It is understood that J is ob_alned from the generalized Ohm's Law. Hence,
one may write for the 3 species of particle

- - _ _+ _

n+m+c+atT+ - V .(_+?T.) - en+Z+(E.v+)/c + n+v+.A_+ + _- (_+.V)(? • v+) + S+

(2.60)

n

n.m_c_atT- - V .(K_?T_) - -en.Z_(E.__)/c nl__'Av_ + _- (v_-V)(V • v_) + S_ "

(2.61)
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n

- - "-q (Vo'V)(V'vo) + S (2.62)nomoCo_tTo V .(_oVTo) - noVo'AVo + 3 o

where T+, T. and To are the temperatures of + ions, - ions and neutral
particles.

- A plasma temperature may be defined by

n+m+c+T++ n m c T + nomoCoTo
, , - T (2.63)

n+m+c+ + n m c + nomoC°

Then a specificheat at constantpressurec may be definedby
Y

n+m+c+ + n_m.c_ . nomoCo- pep (2.64)

•_'_!:..,

where ..-'. •

mn_m+ + n.,m. . nomo P ..... (2.65)

_ Z.

Hence _.'-.
,_il.{'' .
:i • " 4

popn+m+c+T+ + n m c T + nomoCoTO . T (2.66)

Diffusion coefficients may be defined by

n.m+c+D+ - _+, n m c D = __, nomoCoDo = <o (2.67)

in terms of the thermal conductivitles <+, __, <o for the 3 species.

Since diffusion coefficients in general are obtained from a random walk model
with mean free time _ and mean free path A one has

_v
D - =- where v - - (2.68)

5 T

Hence
2

. D - v..__T (2.69)
3
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and since

2
mv . _ kT (2.70)2 2

one Qbtains

kTx kT
D = m mY (2,71)

with collisional frequency Y. Substituting this result for each species into

the expression for pCpkT one has

2 2c D = pCpkT (2.72)Y+n+mc+D++ Y n m2c D + Yonomoo o

if <m> denotesthe arithmeticmeanmass with

3 < m > - m+ + m_ + m° (2.73)

one can define a statistical average eolllslonal frequency < Y > by

m2c 2cY+n+m c+ + Y_n_ - - + Yonomo o

< Y > " < m > (n+m+c++ n_m_c_+ nomoCo) (2.74)
h

or

2 2 - < Y > < m > (2.75)
Y+n+m+e+ + Y n m2c + YonomoC° pCp

so thatan averagediffusioncoefficient< D > becomes

2 m2c m2c DY+n+m+c+D+ + ¥ n D + Yono o o o
< D > = (2.76)

< Y > <m> pop

Hence t.heexpression for pCpkT yields

kT
< D > - < m > < Y > (2.77)
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Returning now to consideration of the Non-Stationary O_n's Caw (2.55) and

approximating the Eulerlan derivative DtJ by _tJ one has

3tJ - r(aE - J) _ (2.78)

. Then (I.7) can be partially differentiated with respect to time to yield

32tq + V'(BtJ) - ZeStO (2.79)

into which (2.78) may be substituted to yield

2
3tq+ raV-E- rv-J= ZeBtG (2.80)

'..;.::[.':.,.

Substitution from (1.5) and (1.7) then yields

32 + FBtq + Fo FoZe i[ttq _- q - FZeG + Ze_tG+ "_-'c_ Gdt (2.81)
0

In which the charge generation terms act as forcing functions in the above
Inhomogeneous equation. For G=O one obtains the corresponding homogeneous
equation

2 + + r_.qa
atqH F_tqH _ qH " 0 (2.82)

which is satisfied by

_t
qH " qle (2.83)

for

A2 + rl + F_o. 0 <2.84)

which is seen to have no roots with negative real part since

--_r2 4re. 2X - -r - ---- (2.85)
£

corresponding to exponential decay or oscillation under an exponentially
decaying envelope In (2.83) depending upon whether
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4_
r >- (2.87)

€

or

4G
F < -- (2.88)€

_i
In any case the argument indicates that decay of charge is inevitable :

unless G _ O. Thus nonvanishlng charge generation is a sln_____equa no_._.nnfor an i
"exponentially" increasing charge density. <,!

In the next section examples of increasing charge will be derived without
neglecting the non-llnear term in (2.55). _:

3. Lightning Stroke Initiation Problem

The purpose of the section is to attempt to characterize the mathematical
features of the initiation problem in sufficient detail to clarify the physical
theory of the phenomenon and provide a framework for the design of experiments
and observations of the development of lightning discharges. :!

The starting point is the set of Maxwell equations modified _y inclusion
of a charge generation term G which is a function of position R and time =
- ct signifying the number of charges (of valence Z) generated per unit volume
per unit time.

V x E - -p3H (3.1)T

- c(V x H - £_ _-) (3.2)
T

- -- Gd_ (3.3)
C

i.'_

._.; ,

V.H - 0 (3.4) ' :'

Elimination of E between the time derivative of (3.3) and the divergence
of (3.2) leads to

_tq + V.J - ZeG (3.5)
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In this q is meant to be the absolute quantity of a slngle-signed charge per
unit volume while J is the corresponding current density and G refers only
to the absolute number of correspondingly charged particles generated per unlt
volume per unit time. In the same way E and H fields are generated by
these (single-slgned) charges. Hence, (3.5) typefles one of the two equations

- _tq + . V.J+ - ZeG+ (3.6)

3tq - + V'J_ - ZeG. (3.7)

with the actual (signed) charge density q and actual current density
given by

q - q. - q_ (3.8)

but it will be more concise to simply deal with (3.5) recalling that with this

specification both q+ and q. are positive.

Integrating (3.5) over a slmply-connected volume V bounded by a surface S
the Gauss Divergence Theorem yields

S = Ze <G> (3.10)<Btq>v + V'< n'J >s v

where < > and < > indicate volume and surface averages respectively. One
notes that for <G>s-o

v

. -_S< _._> (3.11)• <_tq>v V s

so that it is no__ttpossible to have an increase in the absolute quantity of
charge in a region to,ethel with an efflu× of current unless <G> is positive.
The normal vector n is taken to point outward (away from V) on SY

. To the above equations one also adds the Non-Stationary Ohm's Law
previously derived.

DtJ - r(cE - J) (3.12)
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which may also be written

qatJ+ (J.V)J. qraE- qrJ (3.13)

If a solutionof thls partlaldifferentialequationbe sought which is
separablein q, J and E one has

q(R, _) - q(R)a(_) (3.14)

_(R, T) : J(R)8(T) (3.15) "

E(R, "_) : E(R)Y(T) (3.16) "

(3.13) becomes

cqJa8 + .V : qEraaY - qJre8 (3.17)

or

qJ(rS+c8 )a . 82(J.V)j - qEro_'f (3.18)

which can be satisfiedseparatelyin time and positionprovided

c ' 2
(B + _ 8 )e : 8 : aY (3.19)

A A

and (absorbing constant factors in q, J, E)

A_ A A ^A

rqJ * (J.V)J - qEra (3.20)

In other words

C I

Y - 13+ _ 13 (3.21)

, (3.22) -
1"8 + ca
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For a temporally increasing current density _ >0 and (3.21) indicates
that the field will increase faster than the current density. Also

t t ^ t t

Y - 13 . _8 (3.23)

For

• S. (exT- I)k - Wk (3.24)

!

with W- I(W + I)

$ !

8 - kWk-IW - _k(Wk+ Wk-1) (3.25)

'' I+ )wk-28 - Ik(kWk- (k-1 )I(W+I)

or

t!

8 - 12k[kWk+ (2k:1)Wk-l+ (k-1)Wk-2] (3.26)

whence

y = (1 + _'/ Wk + AckFWk-1 (3.27)

Y - Xk I . -_--)W• + r F (3.28)

and by (3.22)

).Iwk+1 I k
- / 1 + -_- W + (3.29)

all of whichare initiallyzero.

For times _ >> 1/A (t >> I/Ic) one has the asymptotic formulae for the

temporal dependence of current density, electric field, charge and displacement
" current

8 " eIk_ (3.30)

y- (i +_--_) eIk'c (3.31)
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eXk_/ ( xk'_)" I +- (3Z32)F

yl - _k (I + _°k ) _k_e (3.33)

so that Ak can be chosen sufficiently large that the ratio of displacement to
convective current is large.

In the presence of "exponential" forcing from the ionic generation term G
both convective current and displacement current will increase but eventually
the convective current will be "relatively saturated" with respect to the
displacement current which thus provides the physical mechanism for increase of
the field to breakdown. It should be clearly understood that the displacement "
current referred to here is monotonically increasing not oscillatory as in most
electromagnetic applications.

L

After breakdown occurs, it leads to the development of an ionized channel

with enhanced conductivity so that it then becomes possible for larger
convective current to flow which ultimately "relieves" the high E field and the
lightning stroke proper is over. The disturbance in charge balance can,
however, lead to return strokes and further effects. The constants r and
must be determined experimentally.

Naturally the increase in q, _ and E will not occur everywhere but
only in locations subject to (3.20). Applying the Gauss Divergence Theorem to
(3.20) one has

A_ S A A AA

r < qJ >v + v-< (J.n)J>s - r < aqE>v (3.34)

or

J A AA JS_< ( .n)J > - r < o(qE - ) > (3.35)V s v

which suggests that the larger the discrepancy from the static Ohm's Law the

less likely the discharge region is to be spherical since the sphere has the
smallest surface S for a given volume.

It should be particularly noted in the arguments of this section that the

results (3.24), (3.29), (3.27) and (3.28) for the current density, charge,
fi_eld and displacement current take full account exactly of the non-linear

(J.?)_ term in (3.13) the Non-Statlonary Ohm's Law appropriate for this case.
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4. The Separate Charge Distributions _n a Thundercloud

In this sectLon the stat£stical properties of the separate + and - charge
distributions in a thundercloud will be investigated and relations involving
theclouddipolemomentwillbe established.

Writing (1.51 for the separate charge species one has

r Z+e ;T'! ; q. - "=_ O.d_ * cV.E+ (4.11
! O
!

Ze _
- I O d_- _V.E

q- " "_- )o -
(4.2)

for the positive and negative absolute charge densities.
Using the Gauss Divergence Theorem this leads to total charges

Q+ - -_- G+dVd_ + a_n-F.+cLS (4.3)

Z_eft.[ .,.. gQ_ - -_- G dVa'4- _ n.F._dS (4.41
O

In terms of these (positive) total quantities of positive and negative charge
one can define

I Rq+dV "4.5)R." 5.

as the center of positive charge and

I / Rq_dV (4.6)

as the center of negative charge.

The rates of change with time of the total charges of the two species is
found from (4.3) and (4.4) to be
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The velocities of the . and - charge centers can be found from (4.5)
and (4.6)

, - 1 5 Ratq.dV - R+dt(Pn Q+)
_. l d_R+ l Q._ (4"9)

_ I f _atq dV - R dt(£n q )" dtR- " (__ - - - (4.10)

Substituting from the modified continuity equations

m

_tq+ - Z+eG+ - V.J+ (4.11)

atq- = Z_eO_ + V.J_ (4.12)

(4.9) and (4.10) beeome

. Z.e f 1 5 )dV R+dt(gn Q+) (4.13)
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_. Z.e _ I fR(V.J )dV- R dt(_n Q ) (4.14)R_- Q_ _G_dV. __ _ . _

so that if V+. is the portion of total volume V over which net production
of + ions is occurring and V+_ is the portion of total volume V over which

- + V+ and one mayrecombination of + ions is occurring one has V V++ -
define

SRG. 1__ glo+ldV (4.15)
++ V++ V++

_G+_.V.__,]'V _lo+ldv (4.16)
+-

as the center of _eneration for + charges and the center of recombination for
+ charges. Similarly

_G . 1.___._" _.IG_IdV (4.17)• -+ V_+ _r
-+

_o . 1_ _lO_ldv (4.18)
-- V__ V

are the center of seneratlon for - charges and the center of recombination
for - charges. The terms in (4.13) and (4.14) containing the divergences of

current densities can be written In terms of surface integrals by the Gaus:}

Divergence Theorem. Thus

fR(V.J)dV - _ R(n.J)dS (4.19)

so if the portion of S in (4.13) corresponding to current efflux is S+. and
the portion corresponding to current influx is S+_ one can define

. _x.+.s..!_s RI(_'J+)IdS (4.2o)
..
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[_._.i [j(n.J,)Ids ....: (4.21)
+" S

.--

as the centers of current efflux and current influx due to positive charge.
Similarly in (4.14)

T

. ! [ _I(_'7)Ids (4.22)
-+ S_+ _S_. -

t

--" S._! )S Rl(n'J" )IdS (4.23)

In terms of (4.15), (4.16), (4.20), (4.21), (4.22), (4.23) one has from (4.13)
and (4.14)

J

R. - Q-_- _ +_) - Q+ - -' - R+dt(£n Q+) (4.24)

. z_e _G (S_._z_.- S _Z)
R_ - _ (V +RG+- V ) + Q_ - R_dt(£n Q_) (4.25)

Returning now to (4.7) and (4.8) one notes that according to (1.4)

;dS- n.Vx_ _ c

and

f n.V x H dS - 0 (4.26)

over a closed surface so

_ n._t_,dS - - I+ (4.27)

r _ n._tE_dS - - I_ (4.28)
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where I+ and 1_ are the currents flowing put of V due to + and -
charges respectively. Thus (4.7) and (4.8) become

Q+ = dtQ+ = Z+eN+ -I+ (4.29)

" __ - dtQ- - Z e__+ I_ (4.30)

where N+ and N_ are the total number of charges + and - generated in V
; per unit time. ! i

In case of net.charge zero Q. = Q_ = Q and the relative velocity of the
+ and - charge centers ls given by

Vrel"_+- _- (4.31>

So

_G. _ _ Q(fi,_fi )dt(_nQ)QVrel= _ (4.32)

with

_G Z e(V++_G+_ V+__G_) _ Z_e (V_+R, G- V _G ) (4.33)

_I . (S _I _ S+ _I ) + (S _I _ S _I ) (4.34).+ .. - .- -. -.

The dipole moment M of the cloud is

" Q(R+- R-) (4.35)

and its time rate of change is

m

M- QVrel+ M dt(£n Q) (4.36)

The condition for constant separation of the charge centers is Vrel = 6 hence• (4.34) implies

dt(£n Q) . _G_ _I (4.37)
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Thus the averaging arguments to establish the statistical structure of the
cloud charge distributions is established.

5. Physical Arguments Bearing on Lightning Discharge Problems

Accordingto Earnshaw'sTheoremelectriccharges cannot be maintained in
equilibriumby electricalforces alone so it is importantto recognizethat
static models have a limiteduse in explaininglightningand the developmentof
thundercloudscapableof generatingit. Actuallyone can start with static
models in unstable equilibriumand augment the electricand gravitational
forces by aerodynamicalflows giving at least temporarystabilityto the
structureswhile the charge concentrationsdevelop in the cloud. The proper
tool for the temporaldevelopmentof these + and - charge distributionsis
the Boltzmannequation

BtP - _t p + _.V_p + a.V_p - 6tp (5.1)R v

where

p(R, _, t) dr_dr_ (5.2)
R v

is the probability that a charge is located within dr_ of R and with a

velocity within dr of v and _tp is the so-calle_ "collisional

derivative" which i_ not actually a-derivative at all but an integral giving
the rate of change of p due to collisions. Under some conditions which are

probably adequate for the problem of explaining the physical basis of charge

separation in the cloud in mathematical detail the 6tp may be replaced by Yp
to form the Relaxational Boltzmann equation'

BtP" YP (5.3)

In the statlonar),, colllsionless case (5.3) is easily solved in terms of the
canomical ensemble for which

-E/kT
P" Poe (5.4)

The problem of charge separation is clearly neither stationary nor
colllsionless so (5.3) must considered as it is and its solution is obviously
somewhat more complex than (5.4). Since (5.2) must satisfy the normalization
condition

lipdr dr - I (5.5) "v

=For negative Y, 5.3 corresponds to decay to a null state; if it is desired to

decay to a final state Pc' then p should be replaced by P-Pc"
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for all time it is clear that Y cannot be taken to be constanty_ince this
will lead to a probability density with an exponential factor e in the
solution so the (5.5) cannot be satisfied. Thus (5.3) must be studied in

generality to rigorously establish theproperties of the separately signed

charge distributions and it is intended to pursue this direction in a

subsequent publication. Here we merely note that it follows from (5.3) that

the locations of maximum probability density correspond to the positions of

. null resultantforce for each charge species and the ph,sical explanation of
the charge separationprocessmust be found in the fact!that the null force
altitudes are different for positively and negatively cilarged particles. The

._ three types of force term most relevant for the altitudl._ segregation process

are the electric field force, the gravitational force alld the average force due

to collisions. The electric field force is altitude de)endent and oppositely

directed for the two charge species. The gravitational force is altitude

dependent via the altitude variation of the acceleratio1_ due to gravity and
will reflect the mass difference of the two charge species. The collisional

drag force will depend on the altitude variation of teml)erature and

concentration which will also play a role in the thermal blasing of fracture

processes in riming. Although the null force condition for the two charge

species may be fulfilled at separate altitudes it canno be expected that such

a separation of charges will remain stable for any appreciable time without the

influence of a vorticial flow which would tend to keep the separated charge

configuration within its low pressure region.

The average fair weather electric field of the Earth is directed downward

and decreases monotonically /,withincreasing altitude. Typical values are 120
volts/meter at the surface, _25 volts/meter at 3 km. and 6 volts/meter at 10 km.

Below 3 kin. the field is sufficiently strong to accelerate electrons upward out

of the layer of atmosphere closest to the Earth. The acceleration of positive

ions is less because of the mass difference between electrons and positive ions

and the net result is to establish an excess of positive charge in this region.

However the most important features of the situation are not the static ones.

There is a continuous upward transport of electrons and a continuous downward

transport of positive ions _o the negatively charged Earth under fair weather

conditions. This is the observed Sky-Earth current. Far above it is to be
expected that there will be an escape of electrons into the thermosphere

analogous to the escape of hydrogen since the electric fields are presumably

negligible and the electron gas is even less dense than hydrogen. This is of

little relevance to events in the troposphere except as a consistency condition
for the general upward ,flow of electrons.

With the advent of pre-storm conditions there is a disruption of the

normal adiabatic lapse rate so that the lower troposphere becomes considerably
cooler than it was under fair weather conditions. This is due to enhanced

mixing between layers at different altitudes. In this way the lower

troposphere attains a temperature intermediate between the fair weather surface

temperature and the tropopause temperature. This quasi-isothermal layer

interferes with the vertical transport of heat leading to the development of

thermal vortices with updrafts near the surface and it also interferes with the

- transport of electrons upward and the transport of positive ions downward so

that each of these species tends to collect at characteristic altitudes with

the positive ions usually concentrating at higher altitudes because they are

subject to much higher drag in the thermal updrafts. There is a very large
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size difference between the electrons and the positive ions. Again it should
be emphasized that this charge separation process is dynamical rather than
static and that it depends upon the aerodynamic flow to remain stable for any
appreciable length of time. After the separation of charges becomes
accomplished one can expect that the local effects of the charge maxima will
result in electrons being repelled upwards and downwards near the negative
charge center at altitudes above and below it while positive ions will be
likewise repelled upwards and downwards near the positive charge center above -"
and below it.

It should be clear that continuous transport of electrons away from Earth
and continuous transport of positive ions to Earth under fair weather
conditions cannot be maintained indefinitely if the Earth is to retain its
negative charge. In order for this to be preserved one expects that the net
result of the lightning ground strokes in thunderstorms will be to return a net
negative charge to the Earth so that a consistent fair weather electric field
may be maintained. With regard to individual strokes this could be
accomplished by transporting negative charge to Earth or positive charge from
Earth.

Under storm conditions charge separations of 2 to 6 kms. occur with charge :
concentrations of the order of tens of coulombs and these generate breakdown
fields (3 megavolts/meter in dry air; I megavolt/meter in clouds). Since
breakdown is observed to occur it is a simple matter to compute

E = k Q=/r2 - 106 volts/meter (5.6)

with k = 9 x 10' so

Q/r " .01 (5.7)

and to have breakdown there must be roughly 10 coulombs of charge of each sign
for each kilometer of separation to generate such a field.

The fair weather surface field of about 120 volts/meter corresponds to a
surface charge density of about a nanoeoulomb/meter=. This yields an Earth
total charge of about half a megacoulomb over the total area of the Earth of 5
x 10 =_ meters =. With an observed air conductivity of 2 x 10-=_/meter ohm a
Sky-Earth current density of about 2.4 picoamperes/meter= is obtained. Hence +
the total current over the whole Earth is 1200 amperes according to the
stationary form of Ohm's Law. This must then be compensated during lightning
strikes in thunderstorms by much larger current acting for much shorter times.

6. Summary and Conclusions

The basic purpose of the soliton Ansatz used in the first section is to

reduce the number of functions in terms of which the 3-component electric field

intensity, convective current density, magnetic field intensity and the scalar
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electrical charge density and tonic generation may be described. The intention
is that the functions left unspecified in that section be determined by
experimental data. Once they are specified the full functional dependence of
all components would be determined. Also the relationship of the input data to
the full characterization of the vectorial fields would be preciselyspecified
and the directional properties of the lightning strike fields clarified.

In order to understand the processes underlying the initiation of
lightning discharges it is essential to have a physically reasonable,
mathematically manageable formulation of the relationship between the electric
intensity field and the electrical current density. The purpose of the second
section is to give a systematic plasma dynamic derivation of the nonlinear,
nonstationary generalization of Ohm's Law appropriate for the plasma of the
ionization channel. The simplest case (2.55) suitable for the lightning

discharge problem involves an electrical collisional frequency in addition to
the conductivity characteristic of the stationary form of Ohm's Law which
results when the left side of (2.55) vanishes. The modifications of (2.55) the
generalized Ohm's Law which would ensue due to the influences of magnetic
field, gravitation, pressure and viscosity would follow from (2.54) but are not
required in the present discussion.

One finds that the electrical charge density naturally decays (with or
without oscillation) unless there is an ionic generation term which produces
inhomogeneities in the differential equation for the charge density. These act
as forcing terms and no matter how small they may be initially, they make
possible the development of "exponentially increasing" charge and current
densities.

In section 3 a separation of variables argument is pursued to determine
the relationships between the time-dependences of the charge density, current
density and electric field without dropping the nonlinear term of the
generalized Ohm's Law. It is found that there is a relative saturation of the
convective current which allows the electric field to increase monotonically
with time corresponding to a non-oscillatory displacement current. This
continues until dielectric breakdown occurs which is accompanied by the
development of an ionization channel with a greater conductivity than the pre-
stroke medium. When this channel is developed a larger convective current can
flow thereby relieving the high field which led to breakdown. After the
channel has been developed the stochastic nature of the charge exchange process
can lead to a succession of return and direct strokes.

If one considers a crude model for field propagation along the ionization
channel with the rather drastic assumptions that appreciable values of the
fields are restricted to a cylindrical portion of the channel of radius r and
length h and that all losses from this portion are radiative, one obtains for
the power loss P

z
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P

P - S 2wrh + S wr2 (6.1)
r z

where Sr, S are the radial and axial components of the Poyntlng vector. If
the power w_re then taken to be produced by Joule heating one would have

EzJz = 2(St/r) + (Sz/h) (6.2) • :

For S _ S and h >> r this would yield
r z I

r - (2 S /E J ) (6.3)
r z z

for the radius of the ionization channel. S could be obtained from the

luminosity of the lightning flash and using rj - I/_r 2 (6.3) becomesz

r - (2 Sr/_EBI)I/3 (6.4)

where E has been replaced by the breakdown field EB and I is the
current,z

In the fourth section the statistical descriptions of the two charge
species is given quantitatively in terms of the corresponding absolute
densities of positive and negative charge which separate out in a thundercloud
with the development of the electrical dipole moment of the cloud. In the
fifth section physical arguments bearing on the charge separation processes are
reviewed.

It is believed by the author that considerable progress has been made in
making the quantitative arguments of the first, third, and fourth sections with
the work of the third section on discharge initiation being founded on the
plasma-theoretlc derlvation of the generalized Ohm's Law in the second section.
There is every indication that the concepts of section 5 can be supported by
precise treatments of the Boltzmann transport equation in a subsequent
publication. Finally a comment about triggering will be made. In addition to
the field enhancement factors associated with excessive curvatures of portions
of an aircraft one can expect triggering to occur because the aircraft
themselves lower the impedance path for a lightning stroke. For metal-bodied
aircraft this is because they decrease the free air path of the stroke and for
composlte-bodled aircraft because they raise the permlttlvlty of the stroke
locus.
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