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1. INTRODUCTION

The device—application potential of ultrathin periodically — layered

semiconductors, commonly known as superlattices, has attracted a great

deal of recent attention, since the pioneering work o;' Esaki and

collaborators" in the early 1070's. In constrast to the mainstream of

research on III—V materials, our Interest in semiconductor superlattice:

has focused on the possibilities offered by creating such structures In

silicon, still the most technologically important electronic material.

In this report we summarize the second phase of a comprehensive

theoretical study of silicon—superlattice electronic structure and its

implications for enhanced carrier mobilities in such systems. The

first, preliminary phase of this work was performed under NASA grant

NAG-1 -33 and included detailed studies of hypothetical one— and

two—dimensional systems, as well as the formulation of the basic

three—dimensional model upon which the present investigation has

focused.

Our efforts during the present grant period have been concentrated

in five main areas:

(i) A highly—refined and intensive investigation of both the

valence— and conduction—band—edge electronic structure of the thin—layer

(< 11 A) silicon—superlattice systems, utilizing the methodology

developed during the first phase of this work. The results of this

study have been recently published.3

(ii) The development of anew theoretical method for extending our

thin— layer calculations to layers of thicknesses > 11 A, where most

potential experimental interest lies.

(iii) A corresponding intensive investigation of the electronic

structure of thicker — layer ( I1-1,10 A) silicon superlattices.

(iv) Preliminary calculations of impurity—scattering—limited

electron mobility in the thicker — layer superlattices.

(v) The selection and testing of an experimental method for

producing the fine metal lines that would be required to produce an MOS

superlattice.

In addition to the principal investigator, S. Krishnamurthy, as a

graduate student in the Department of Physics, participated in all five

of the above research areas. The work reported in areas (ii), (iii),

and (iv) has comprized a major portion of his Ph . D. thesis 4 and will

also be published . r' Additional participatants in area ( v) were

Dr. K. P. Roenker, Assistant Professor of Electrical Engineering, and

r„	 ^s^
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E, Craig, graduate student In the Department of Electrical and Computer

Engineering,

In Sec. II, the major theoretical considerations which have guided

our work are reviewed. Then In Secs. III and IV, respectively, our

electronic structure calculations covering areas (i), (ii), and (III)

and our mobility calculations covering area (iv) are presented and

discussed, Finally, our efforts to experimentally produce the fine

metal lines of area (v) are summarized in Sec. V. Concluding remarks

are given in Sec. VI, while a bibliography of conference papers and

journal publications resulting from this work are collected in Sec. VII.
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I1. GENERAL THEORETICAL CONSIDERATIONS

A. Possible physical structures

Within the confines of silicon materials technology (i.e.,
excluding III-V and 11-VI materials), the number of possible
superlattice structures is greatly limited. With regard to conventional
layered structures, the Si-Si l „ x Ge x system is the prototype silicon
superlattice. In addition to our theoretical work on this system, a

preliminary experimental investigation of Si-Sir_ xGe x superlattices has

been made at Rockwell International. e Quite interestingly, their

results showed evidence of enhanced transverse electron mobility even

without deliberate modulation doping. This observation is actually in

sharp constrast to the GaAs-Ga r-x Al xAs system, in which the uniformly

doped superlattice shows significantly decreased mobility below the

bulk, 7 and strongly suggests that additional physical mechanisms are at

work in Si-Si l _ xGe x . Our theoretical studies indeed suggest a second

possible mechanism, one of quantum origin arising from the uniquely

modified electronic structure in silicon-based superlattices. 	 In

particular, we find a reduced transverse conductivity effective mass

associated with the superlattice band structure, as discussed in

Sec. III below.	 It is unclear at this point, however, whether or not

this effect is actually playing a role in the observed enhanced

mobility. For one thing, the experimental program at Rockwell

concentrated on generally thick-layer (> 300 A) systems, where such a

quantum effect should be greatly diminished. Secondly, the Rockwell

Si-Sir -xGe x superlattices have been grown with a chemical-vapor-

deposition (CVD) technique in which the quality of the interfaces is not

rigidly controlled. Possible interface strain fields and other

nonuniformities cloud any straight =forward interpretation of their

results in terms of our theoretical predictions. Attempts to grow

better superlattices, utilizing the more-precise technique of motecular-

beam-expitaxy (MBE) 2 and accomodating the lattice mismatch in a

strained-layer structure, a have recently been undertaken at Bell

Laboratories.s

Beyond the Si-Sir -xGe x system, silicon materials technology offers

some other novel possibilities for superlattice structures. One is an

MOS (metal-oxide-silicon) configuration with a grided metal electrode

made up of fine parallel metal lines uniformly spaced on the oxide

layer. rc (See Fig. 1.)	 In this system, it is envisioned that an extra

periodic electron potential could be extended into the silicon by

holding alternate metal lines in the grid at different voltages. The

primary technological challenge of creating such a system comes in

producing a periodic metal electrode pattern of the ultrathin dimensions

required (< 500 A line spacings and thicknesses). We have done some

exploratory work in this direction, focusing on (i) existing techniques
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Fig. 1. Conceptual drawing of a possible MOS superlattice structure.
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for producing fine metal lines of the required thickness and (it)
methods which could be tested with our laboratory facilities. After a
literature search of current fine-line technology, we selected one
promising method for laboratory testing. The results of this study are
reported in Sec. V.

Another possible silicon superlattice structure could be one
consisting of alternately n- and p-doped silicon layers. This type of
system (the so-called nipi superlattice ll ) has been realized in GaAs
with MBE, 12 and shows a number of interesting properties including a
tunable band gap. t3 It turns out, however, that advantages such as
modulation doping in enhancing carrier mobilities are lost in this type
of superlattice.

B. Enhanced mobility

As in bulk semiconductors, there are three basic physical
mechanisms which influence carrier mobilities in the ideal semiconductor
superlattice;	 (1) impurity scattering, (ii) phonon scattering, and
(Iii) band edge electronic structure. The first, impurity scattering,
is primarily dictated by the level and uniformity of doping.	 Its
degrading effect on carrier mobility in the superlattice can be
minimized by modulation doping. In this technique, only one of the two
constituent layers in the superlattice is doped, and this is done In
such a way as to segregate the added carriers from their parent ions.
For example, if one dopes the constituent possessing the highest-lying
bulk conduction-band edge (e.g., Ga l-xAl xAs) with shallow donors, the
ionized donor electrons will migrate to the second constituent (e.g.,
GaAs) having the lower conduction-band edge. Application of a
transverse electric field (i.e., one parallel to the layers) then allows
the donor electrons to move in regions free of ionized impurity
scattering centers, leading to enhanced transverse mobility. This
effect is particularly striking at low temperatures, 7 where impurity
scattering dominates other scattering mechanisms. Furthermore, the
effect is not dependent on any quantum-mechanical coherence of the
superlattice, but only on the heterostructure itself, and has now been
observed in a single-period GaAs-Ga l-XAI xAs heterostructure as we11,14

For the Si-Si l-xGe x superlattice, modulation doping would appear to
be l ess advantageous in principle because in this case it is the pure
material constituent (Si) which posseses the higher-lying
conduction-band edge, so that now the segregated donor electrons must
move in the (disordered) alloy component (Si l-xGe x ). Thus reduced
impurity scattering is traded for increased disorder scattering. This
balance may nonetheless still be favorable, however, because the latter,
Is not expected to be large, but this has not as yet been demonstrated
experimentally.
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The precise role of phonon scattering in altering superlattice

mobility is also not well established at this point In time. Model

calculation of the electron-phonon scattering rate in a layered

superlattice simulating GaAs-Ga l _ xAl xAs suggests, in fact, that this

rate should actually be enhanced rather than diminished. t5 The

calculation assumes among other things, however, that both the phonons

and the electronic band structure are unaltered in the superlattice,

which is, generally speaking, not the case.

Carrier mobilities are also directly affected by the electronic

structure of the material in which the carriers move. Of course, part

of this dependence is already implicit in the impurity and phonon

scattering rates, but we know from simple treatments of bulk

semiconductors that a major effect of the band structure ultimately

comes in the form of a multiplicative factor involving the conductivity

effective mass me.	 Ideally, for ionized impurity scattering the

mobility varies as (m e )' 1/2 and for acoustic phonon scattering as

(me) -5/2 . In the limit of a three-dimensional quantum-mechanically

coherent superlattice, where carrier mean-free paths are long compared

to the superlattice period s and the band structure is well defined, one

expects similar premiums on effective mass, with me for the bulk

replaced by an appropriate value for the superlattice. 	 In silicon

superlattices, this should be the case when s « 1000 A at room

temperature or s << 4000 A at liquid nitrogen temperature.

Interestingly, one can make a number of general statements about

the expected behavior of effective masses in the superlattice prior to

doing detailed calculations. First, the usual isotropic conductivity in

bulk diamond or zineblende crystals becomes anisotropic in the

superlattice with distinct values parallel (i.e., transverse) and

perpendicular (i.e., longitudinal) to the layers of the superlattice. A

scalar conductivity effective mass in the bulk thus becomes a

conductivity effective-mass tensor in the superlattice, involving both

transverse and longitudinal masses, say, mhT and mho for holes and meT

and me[, for electrons. As in the bulk, band edges in the superlattice

occur along symmetry directions, and the electronic structure in the

vicinity of each edge can be described in terms of transverse and

longitudinal band masses, say, mhi and mht for the valence band and mei

and me t for the conduction band. (Uere, as in customary bulk

descriptions, longitudinal l refers to the direction of the symmetry

axis and transverse t to the plane perpendicular to that axis.) In the

usual case, where there is a simple one-to-one correspondence of the

band edge in the superlattice with the band edge in the bulk, it is also

useful to relate these Is 	 masses to their counterparts in the bulk.

For example, for the heavy-hole valence band with a band edge at the

center of the Brillouin zone (k = 0, the r point), one can write
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mhl = al mhh	 (l)

and

mht = a t mh h	(2)

where mh h is the bulk heavy—hole mass and a l and a t are enhancement or
reduction factors which give the relative hole masses in the
superlattice. Furthermore, in this case

mhL = mhl	 (3)

and

mhT = mht	 (4)

Similarly, for a single conduction band edge (not necessarily at ^ = 0),

mel = 91 ml

met = Pt m t ,

where m, and mot are bulk masses and #I and P t are relative electron—mass
factors.	 If the conduction band edge is also at Ic = 0 (i.e., a
direct—gap material), then m, = m^ and also mel = met and meT = met•
The more important case for our purposes is that of a silicon— like band
structure with multiple equivalent band edges centered out along the
<100> axes near the X—point zone boundaries. Then meT and mei, are
weighted averages of me t and me l . In the bulk, or course, there are six
equivalent, effectively degenerate, minima with me = me T = me t and

m°	 C(I /m7) +(2/m:)]

4_	 3	
(7)

s.
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In the superlattice, symmetry alone will determine whether or not this

six—fold degeneracy is lifted and a different average of ma t and ma i is
operative. For superlattices oriented in a <lll> direction, all six

minima remain equivalent by symmetry, so that'no lifting of the

degeneracy Is expected. For superlattices oriented in either a <I10> or

a <100> direction, on the other hand, a four—two splitting of the

six—fold degeneracy is expected. For example, in a [100]—oriented

silicon superlattice the [100] and [T00] minima are equivalent by

symmetry as are the remaining four minima located in the (100) plane.

Thus the superlattice is expected to have either two or four equivalent

minima. Our calculations, discussed in Sec. III below, show, In fact,

that either case can occur, with the two—minima case preferred as the

	

thickness of the superlattice Increases.	 In the Lwo—minima case, one

has simply

•	 .	
(

	

met = mel	 )8

and

•	 •	
)(

	

mq T = me t	 9

in place of an average like Eq. (7),

One can further anticipate certain general trends in the factors

OIL, a l , # t , and # l . When the superlattice is formed, the most

pronounced effects on the band , structure are the folding of the bulk
bands into the mini—Brillouin zone of the superlattice and the opening

of band gaps ( the so—called minigaps) on the longitudinal zone—boundary
faces. The latter has the clear effect of flattening the bands In the

longitudinal direction and hence one expects a l > 1 and, for conduction
band edges located along the longitudinal direction, #I > 1. 	 In

practice, this mechanism is so effective that except for the very

thin—layer cases onto usually approaches the conditions

a l ^ w and #1 ^ w
	

(10)

Consequently, the longitudinal conductivity effective masses mhy and meL

are always increased over the bulk, and no mobility enhancement is
likely.	 In any transverse direction, on the other hand, such flattening
of the bands does not occur and one expects to a first approximation at

1 and St	 1, so than definite conclusions about mh t and met can't be
drawn.	 Interestingly, however, one can easily see that even if Qt = 1,
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moT based on Eq. (9) Is significantly decreased below mQ from Eq. (7).
Using the known bulk silicon values ml = 0.97m and m *t = 0.19m, 16 one
finds m; = 0.26m and

7T a meT/mo

= 0.73 Pt
	

(11)

Thus symmetry alone could account for a 27% decrease in the transverse
electron conductivity effective mass in [100]—oriented silicon
superlattices. Ultimately, this effect arises because of a more
favorable averaging of the relatively small transverse band mass m't in
the superlattice than in the bulk. Moreover, It Is an effect clearly
associated with the indirect nature of the bulk band gap and Is absent
In superlattices derived from direct—gap materials such as GaAs.

Of course, additional considerations enter the picture beyond
band—edge effective masses. For example, the bulk conduction—band edges
which split away and above In energy in the superlattice will always be
accessible at a high enough temperature. In practice, a thermal average
over a number of bands is necessary to establish the effective carrier
mobility. Moreover, a different thermal average, which weights the low
energy states more heavily in the superlattice than in the bulk, is
usually appropriate. In the bulk, the conduction—band—edge
constant—energy surfaces are ellipsoidal in shape and the density of
states for a single band has the familiar form

Nc( E ) _gas m t (2m 1 ) l/z (E—E c ) i/2	(12)

where E C is the conduction—band edge. In the superlattice, on the other
hand, the band flattening mentioned above makes the constant—energy
surfaces more nearly cylindrical in shape, so that the corresponding
density of states is proportional to that of a two—dimensional electron
gas. For a single conduction—band edge at X = 0:

Nc( E ) = z1 
	 (13)
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which is Independent of energy, our preliminary calculations of

impurity—scattering—limited electron mobility in silicon superlattices

based on these considerations will be discussed In Sec. IV below.

C. Band—structure model

In formulating a band •-strucutre model for silicon superlattices, we

have been guided by a desire to examine general trends In this new class

of systems rather than to obtain highly accurate details In any specific

structures. Towards this end, wt have adopted an empirical

tight—binding (TB) approach which both gives a reliable bulk band

structure of pure silicon and provides enough flexibility to treat all

superlattice structures of interest with the variation of only a few

parameters. The specific superlattice geometry considered here is

Illustrated In Fig. 2. We Pssume that the underlying tetrahedral

coordination of pure bull; silicon Is preserved in the superlattice, so

that the position and bond length d of the nearest neighbors is

unchanged. The shaded areas in Fig. 2 represent regions where either

the silicon atoms have been substitutionally replaced by a second

species (i.e., germanium in Si l _ x Ge x ) or the electron potential has been

rigidly raised or lowered as envisaged in MOS or nipi superlattice

structures. In the former case, we further Ignor any disorder In the

alloy by making a virtual crystal approximation and also any slight

increase In the bond length due to the presence of the second species.

Then in all cases the periodicity of the superlattice is unchanged in

the transverse plane (the yz plane in Fig. 2), but in the longitiudinal

direction the layers repeat with a period

s = n e a/2 ,	 (14)

where a is the bulk silicon lattice constant and 2n e is the number of

atomic layers in each primitive cell of the superlattice. For

convenience, we assume n e to be an even integer ? 2. Then both the

superlattice and its minizone in reciprocal space have simple tetragonal

symmetry, as shown in Fig. 2. In the TB method, a small number of

atomic—like basis functions is assigned to each atom and the electronicf,

states of the solid are obtained as linear combinations of these

orbitals. Following Harrison, 17 and the earlier work of Chadi and

Cohen la on bulk silicon, we have adopted a minimal basis set of one

s—like and three p—like orthonormal atomic orbitals. A careful r,tudy of

the electronic structure of pure silicon revealed that in this basis one

must retain both nearest—neighbor and second—neighbor interatomic 	 iax
interactions to obtain a satisfactory description of the energy bands in

the vicinity of the fundamental energy—band gap. The near—neighbor
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Superlattice Geometry

x

1

Fig. 2.	 Schematic drawing of the silicon superlattice geometry treated

in this work.	 At the top is the real—space structure with

period s; below iz the corresponding mini —Brillouin zone

(minizone) in reciprocal space.
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interatomic matrix elements In covalent solids are primarily unc!;:i)ns

of bond length d in the solid and, according to Harrison, 17 may bt,
expressed in the form

V 11 , m = 77ll , m!'t2/(md2 ) ,	 (16)

where 1,1' = s or p and the subscript m is either o or n. We have fixed

the dimensionless parameters 7711•, together with the intra—atomic

energies c a and c by fitting our bulk TD energy bands to the accurate

pseudopotential results of Chelikowsky and Cohen" for energies up to 1

eV above the conduction—band edge. The best set of values we have
thereby obtained are listed In Table I of Ref. 3.

Since we assume the bond length d of the superlattice to be

Identical to that of bulk silicon, the V11,,, are also unchanged In the

superlattice. The silicon Intra—atomic energies c 9 and y on the other

hnrw; become

Ca + Vs° ) 	(16)

and

C  + V (a p)	 (17)

for the second layer of the superlattice. Fitting of the bulk silicon

energy bands fixes e 9 and e p , so that the entire effect of the

superlattice potential is Incorporated into the constants V9° ) and V(P)
In general, these quantities represent different potentials seen by s

and p electrons in the second layer, The special case

V 9 = V(1 S) = V(P)
	

(18)

corresponds to the situation envisaged in an MOS or nipi sta?erlattice,

where the electron potential in alternating layers is raised or lowered

by a constant value V e . We have designated this as type—I behavior.3

Another interesting case occurs for

V = — V(e) = V(P)	 (19)e	 s	 s
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in which case s and p electrons effectively see equal and opposite

superlattice potentials. Detailed consideration of the electronic

structure of bulk germanium and the measured band—edge discontinuities

of the SI—Ge heterostructure 20,21 suggests that this limit, which we

have designated as type-11 behavior, 2 is appropriate to the Si—Sil_xGex

superlattice. Our studies have further shown that in the absence of

band bending at the heteroJunction Interface that an approximate

relationship between the superlattice potential V. and the germanium

concentration is

VS w (0.5 ± 0.1)x	 (in eV).	 (20)

Band bending and other nonideal interface effects may be incorporated

Into our model by allowing, for example, V. to grow linearly across

several layers at the interface instead of changing abruptly from zero.

We have considered a number of such graded—layer calculations, but they

produce results so qualitatively and quantitatively similar to the ideal

case that we shall not consider this complication further in the present

discussion.



III. ELECTRONIC—STRUCTURE CALCULATIONS

In the above energy—band model, the superlattice electronic

structure is reduced to a function of two chemical parameters, V9 9) and
VIP), and three geometrical quantities: superlattice orientation,

period s, and relative thickness of the two alternating layers. We have

focused our attention on the limiting cases of highest applied interest:

a [100]—oriented superlattice of either the type—I or type—Il variety

with equal layer thicknesses. The latter condition is maintained to

maximize the effective superlattice strength for fixed values of V s and

n5. Unequal layer thicknesses produce qualitatively similar but

quantitatively smaller effects in all cases. Also note that for equal

layer thicknesses 1,

s = 21 ,	 (21)

and the parameter n 9 is just the number of {100} atomic planes contained

In a given layer.

A. Thin—layer superlattices (l S 11 A)
In a straight—forward application of the TB method, the energy

bands E(k) are obtained by direct diagonalization of the appropriate
Hamiltoniin matrix.	 In either the bulk or the superlattice, the

Hamiltonian matrix is constructed from a basis of Bloch wavefunctions of

the type

0R.Q) = dN Z a ( r—Rl) elk`'R1	 (22)

where a is an orthonormal s, p x , py , or p Z atomic orbital and the sum is

over the N equivalent sites R i on which this orbital is centered in the

crystal.	 If there are 2n 9 atoms in the primativg cell, then there are

an, such basis states and an an, x an, Hamiltonian matrix results. The

detailed form of this matrix is given and discussed in the Appendix of

Ref, 3.

We have performed TV electronic structure calculations for the

superlattice band energies E(k) with k in both a longitudinal [100] and

a transverse [001] direction in type—I as well as type—II cases over the

parameter ranges

^F w 1
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0 < y < ymnx	 (23)e	 e

and

2<n, <-8 ,	 (24)

where Vm " is the value of V. for which the fundamental band gap closes.
For n9 > 8, matrices larger than 64 x 64 would result and alternate
means of calculation using complex band structures are needed, as
discussed in Sec. IIIB below. The limit n 9 = 8 corresponds to layer
thicknesses of l = 11 A or a superlattice period of s = 22 A.

Typical results that we have obtained for the band structure in the
vicinity of the fundamental energy band gap are illustrated in Fig. 3.
The top panel shows the pure bulk silicon bands with the characteristic
indirect gap and conduction-band edges along the <100> directions out
toward the zone boundaries. The superlattice band structure may be
thought of as evolving from these bulk bands in two steps: The first
step is the ^-space translation or folding back of the bulk band
structure into the minizone of the superlattice for infinitesimal V..
The second is the additional dispersion introduced into the folded bands
for finite V s . The center panel of Fig. 3 shows the bulk silicon bands
folded into the n a = 4 superlattice minizone. Four of the
conduction-band minima remain fixed, but the remaining two along the
[100] and [T00] directions are displaced to positions near ) = 0. When
the superlattice potential V. is increased from zero, the bands split
apart, the fundamental gap narrows, and the [100] and [TOO] minima are
further displaced in position and also lowered in energy relative to the
four transverse minima, as shown in the bottom panel of Fig. 3.

The valence -band edge in the superlattice remains stationary at kv
= 0, :he minizone canter, except for very large values of V. (e.g., V. >
2.0 eV for n e = 2). The conduction-band edge X., on the other hand,
varies with both n s and V 9 , with either the characteristic
two-longitudinal-minima or four-transverse-minima behavior occuring in
each case. The qualitative position of k c as a function of n e and V.
for both type-I and type-11 superlattices is illustrated in Fig. 4.
Note that the two-minima case is favored ^s n 9 increases and that in
certain cases the two minima coalesce at 	 = 0 and a.direct band gap
results. The general trend suggests that . 	 sufficiently large n a , the
band gap will become direct for all values of V g . Our thick-layer
calculations confirm this, as discussed below.
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The magnitude of the fundamental band gap E. decreases continuously
as V. is increased in all cases. The gap decreases more rapidly with V.
the larger n e Is and also somewhat faster in the type-II case than in
the type-I case, as shown in Fig. 5 for n 9 = 2 and n a = B. The latter
behavior Is expected on the basis of Eqs, (16)-(19), since the s and p
energies are pushed together in the second layer for the type-II
superlattice,

At the valence- and conduction-band edges Ire have also determined
the longitudinal and transverse curvatures of the energy bands to obtain
the effective masses mh l , mh t , me l , and me t . Relative band masses al,
a t , # l , and Pt were then obtained by normalizing the calculated band
masses by the calculated values of mhh , mi, and mi for bulk silicon via
Eqs. (1),(2),(5), and (6). The relative masses so obtained show a
number of interesting and prominent features, as illustrated in
Figs, 6-8. The valence-band masses a l and a t are smooth functions of Vs
for fixed n, since the band edge k v is stationary, As expected, we find
a l > 1 for V. > 0, with a l >> 1 possible for large n s . The transverse
mass a t , on the other hand, drops off very sharply with V. from unity to
about 0.8 in all cases, as shown In Figs. 6 and 7. For larger values of
V S , a t remains less than one and is found snaller in the type-11 case
than in the type-I case for fixed n g and is larger the larger n 9 is for
both cases. Unlike a l and a t , the conduction-band masses fl, and Pt are
not smooth functions of V. becasue k. also varies with V 9 . The expected
behavior fl, > I and Pt % 1 is, however, still found. Figure 8 displays
Pt versus V. for n s = 2 and n 9 = 8 in the type-1I superlattice.

Whenever the conduction-band edges lie along the longitudinal x
axis and Eq. (11) applies'for the relative transvese electron
conductivity effective mass 7 T1 we indeed find 7T < 1, so that enhanced
mobility is possible. This situation occurs in our calculations for n9
6 in the type-I superlattice and n B >_ 4 in the type-II superlattice.

Figure 9 shows the variation of 7 T , 7T - 1/2 , and YT_ 6/2 with V for n 9 =

8 in the type-1I superlattice. The quantities YT-1/2 and 7T -1/2 are the
ideal enhancement factors expected for impurity-scattering-limited
electron mobility and phonon-scattering-limited electron mobility,
respectively, if all other things are equal.

n
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10011	 11001

L001]	 11001

m
Y
W

n^

Superlattice
ns=4

VS=0.0

Superlattice
ns= 4

VS=1.OeV
Type II

Fig. 3, Evolution of the -iperlattice electronic structure in the
longitudinal [100] and transverse [001] directions from the
bulk energy bands for a typical case. Top panel, the bulk
silicon bands; center panel, folded bulk bands in the n 9 = 4
superlattice minizone; bottom panel, type-11 superlattice bands
for a finite superlattice potential V..
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Fig. 4. Qualitative position of the conduction—band edge in both type—I
and type—II silicon superlattices as a function of n s and V3.
The position ^c = [001] actually corresponds to four equivalent
edges symmetrically centered along the the transverse y and z
axes; ^c = [100] corresponds to two equivalent edges
symmetrically centered along the Ox axis near X = 0; j c = 0
corresponds to the special case where the latter two edges
coalesce into a single point at the center of the minizone.
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Fig. 5. Variation of the fundamental energy band gap E a with V. for n,
= 2 and n s = 8 in type-1 and type-11 superlattices. The
vertical arrows indicate places where the conduction—band edge
position kc changes discontinuously (see Fig. 4).
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Fig. 6. Relative transverse hole band mass a, vs V s for n 3 = B in

type—I and type-11 superlattices.
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Fig.'9. Relative transverse electron conductivity effective mass -Y T and

Impurity—scattering— limited and phonon—scattering—limited

enhancement factors YT- 
1/2 and YT- 

5/2 vs V. for n 9 = 8 in the

type-11 superlattice. The lower scale is as in Fig. 7.
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B, Thicker—layer superlattices (I1 5 l 5 110 A)

Because the TB Hamiltonian matrix Increases in size proportional to
layer thickness, the calculation of the superlattice electronic

structure In this manner becomes Intractable for even modestly thick
layers. The complex band—structure technique of Schulman and Chang22
nicely overcomes this difficulty. In this method, one views the

superlattice as being composed of bulk regions in each layer separated
by interface planes, as shown in Fig. 10. The number of atomic
Interface planes is taken such that the atoms in bulk regions I and 11
are not directly coupled: for second—neighbor interactions, two planes
at each interface are r ,:quired. One then capitalizes on the fact that
the solutions to Schrbdinger ' s equation are local and hence in the bulk
regions must be some linear combination of bulk states inclucing both
extended Bloch states (real 1t) and evanescent states (complex j_C). For a
given energy E, there are In our case 16 possible R states in each bulk
region. These states, together with two—.d imensional Bloch sums of
atomic orbitals centered on the Interface —plane atoms, can be used to
expand the superlattice wavefunction in the form

%PQ ( T .E ) = JN	 e ^^ k^v} 
'^IA.i(^)^l (r—L, E)

L

+ jF 
BQ(B.)0k 11 a(.07k)1 ,	 (25)

where g = qxX + J 11 is the superlattice wavevector, Ir = nsx_, with n an
integer,	 = k 1 X + J 11 is a bulk wavevector (1 = 1 , 16 ),1h°^c is the
corresponding bulk wavefunction for region o (o = 1,11 in hg, 10), and

O a Is a two—dimensional Bloch state for interface plane j (j =
S j ,S2 ,S 3 ,S 4 in Fig. 10) and atomic orbital a (a = s,p x ,p y,,p Z ). The
resulting Hamiltonian matrix is of size 48 x 48 Independent of layer
thickness.

The price that must be paid for a fixed Hamiltonian—matrix size is
an energy dependent basis, requiring an iteration procedure to calculate
the superlattice band structure self—consistently, For given values of
n e and V 9 , one fixes the superlattice wavevector $ and selects a trial
energy E = E t to to be used in Eq. ( 25). For the chosen E t , the 16 bulk
states for each region are obtained. This information is contained in
the complex band structure of the bulk material, 23.24 which need only be
generated once for each layer. Figure 11 shows the [100] complex band
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Fig 10. Schematic diagram of the n, = B superlattice geometry, showing

the projection of four planes of atoms onto the z = 0 plane.
The unhatched circles represent the Si atoms of layer A, while
the hatched circles represent the atoms of layer B. Atoms
belonging to the planes z = —a/4, a/4, and a /2 are marked —,
+, and ++, respectively. The bulk regions I and II and
interface layers Sp S21 S 3 , and S 4 apply to the complex
band—structure technique discussed in the text.
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structure of bulk silicon. The 48 x 48 superlattice Hamiltonian Is then

set up and dlagonalized to obtain the true superlattice energy E. for
the assum.id basis. One iterates this procedure until E. = E t to some
acceptable tolerance. In our procedure, an accuracy of 10-5 eV In
energy is achieved with typically 5 iterations in less than I minute of
cpu time. By varying $, the complete superlattice hand structure may be
mapped out in this way.

Our tight-binding complex band-structure method (TB-CBM) Improves
upon that of Schulman and Chang 22 In two important ways. First, our
tight-binding model includes second-neighbor interactions as well as the
first-neighbor interactions considered by them. Second, in constructing
the superlattice Hamiltonian from the basis (25), we have included
certain finite-layer corrections 4,e to the bulk regions that are
necessary to make the method exact and were neglected by Schulman and
Chang. These corrections become vanishingly small as n 9 ^ oo, but
significantly affect fine details of the hand structrure such as
effective masses for the range of n s considered here.

TB-CBM calculations of the silicon superlattice band structure have
been carried out for 8 5 n s 5 80 (11 5 1 <- 110 A) and 0 5 V s 5 1.0 eV
for both the type-I and type-11 cases. In particular, Lhe magnitude of
the fundamental band gap, conduction band-edge positions, and band-edge
effective masses have been obtained over these parameter ranges. For ne
= 8, the results obtained are identical to those from the thin-layer TB
calculations, confirming the exactness of our approach. For n, > 8, the
trends extablished in the th,i.-'9yer calculations are continued. The
variation of the band gap magnitude E q with V. and n a is shown in
Figs. 12 and 13 for thic g-layer Lype-I and type-II superlattices,
respectively. As expected, E  continues to decrease with increasing V.
and n,, but the E versus V n curve quickly saturates for large n,.
Extrapolation of the n, = 80 curves in Figs. 12 and 13 suggests that the
band gap will close for V. = 1.11 eV, the bulk silicon band gap, in the
limit n e ^ w, as required in the type-I case.

The positions of the two n e = 8 conductions band edges remain along
the x axis for n e > 8. For n a ? 32 (l ? 44 A), the two edges
permanently coalesce at P and a stable direct band gap results. This
situation is illustrated in Fig. 14, where the complete longitudinal
[100] and transverse [001] band structure E( -q) in the vicinity of the 	 f%
fundamental gap is plotted in a typical thick-layer case. The energy
difference A between the X and P conduction band edges always remains
small, however, (<- 0.0085 eV = 75 K) and eventually decilnes back to
zero as n e - w, as shown in Fig. 15.

For n e > 8, Lhe infinite limits of Eq. (10) have been essential)}r
reached for the longitudinal electron and hole effective masses at any
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finite V.. The transverse effective mass factors a t and Rt also

saturate t) values near unity for n H > 84. The thick-layer, type-1 and

type-11 superlattice values of a t vs V. are plotted In Fig. 18, while

the thick-layer, type-11 values of flt vs V. are plotted in Fig. 17. The

corresponding type-I values of Pt are virtually identical to the latter.

With Pt w 1, one has _/T u 0.73 and the impurity-scattering-limited and
phonon-scattering-limited enhancement factors, 'YT-1/2 and yT'5/2
saturate at values of 1,17 and 2,20, respectively, as shown in Fig. 18.
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Fig. 12. Variation of the fundamental energy band gap E g with V s for
the thick— layer type—I superlattice at five layer thicknesses.
Compare with Fig. 5
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type-11 result has been omitted for clarity.
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Fig. 18. Relative transverse hole effective mass a t vs V. for various
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IV, IMPURITY-SCATTERING-LIMITED ELECTRON MOBILITY

In our present studies, we have considered ionized Impurity
scattering of electrons from the screened Coulomb potential

e 2 e -hr	

(28)
/C	 r

where x is the dieletric constant of the host and A -1 is the Debye
length, A 2 = (47rn 1 e 2/,ek B T), for uniform doping to a concentration n1.
In bulk silicon, where the density of states (12) Is operative for each
conduction band edge, the corresponding mobility of nondegenerate
electrons is well approximated by the standard formes

	

32k 2 	 (k T) 3/2_

AB	 J8t3 e 3 n (m'c ) 1 2 GB(n1,T,mc),	 (27)
1 

where GB is a slowly varying function of n l , T, and m:. In the
superlattice, a similar calculation, but with a constant density of
states like (13), yields for the i th conduction band

	

_ 15sk 3/2	 k T	 .	
(28)µSL	

4nNIU2 ( nlmeT )t
 2 GsL(n1,T,meT),

neglecting interband scattering. Here G SL is also a slowly varying
function and me T is the appropriate transverse conductivity mass for the
ith band. The inverse-square-root effective-mass depegdence of the bulk
is recovered, as expected, but the temperature and impurity
concentration dependencies now reflect the two-dimensional nature of the
transport. Summing contributions from all thermally accessible
conduction bands, the average electron drift mobility in the 	 Y
superlattice is given byir

PS   =	 n114SL̂n1	 (29)
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4
where n i is the electron concentration In the ith band. For T 5 300 K,
the conduction bands which must be Included in Eq. (29) are shown in
Fig. 14,

For a typical silicon superlattice, the calculated relative
mobility µSL/µB based on Eqs. (27)—(29) is plotted In Fig. 19 as a
function of n l for various values of T and in Fig. 20 as a function of T
for various values of n l . It can be seen that at low temperatures,
where impurity scattering dominates other scattering mechanisms, an
enhancement in electron mobility is indeed possible for sufficiently
high carrier concentrations. The qualitative variations found with ni
and T are most easily understood by considering the high temperature
limits of Eqs. (27) and (28), from which one finds

ASL^AB — CI 1T ) I/2 In( C -)	 (30)

where C 1 and C 2 are constants. For a fixed T in the range of interest,
this function increases to a maximum for some n l and then decreases
monotonically. Similarly, for a fixed n i , this function increases to a
maximum for some T and then decreases.

The corrresponding Hall mobility in the superlattice may be
calculated by replacing Eq. (29) by the average

^ rini(ABIL)2 / Fj n,Ai	 (31)

where r i is a weighting factor reflecting the energy dependence and
anisotropy of the scattering. Our calculated relative Hall mobility is
plotted in Fig. 21 as a function of n l for various values of T and in
Fig. 22 as a function of T for various values of n i , for the same
superlattice parameters as in Fig. 19. Similar magnitudes and trends
are clearly seen.

The r°sults presented in Figs. 19-21 should be considered as upper
limits to what could be expected in real systems. Neglected factors
will tend to reduce the actual mobility, in particular, Interband
scattering at high carrier concentrations and alloy scattering in the
case of a Si—Si l _ xGe. x superlattice. At the same time, these results
take only partial advantage of the unique reduced—effective—mass



t

—39—

enhancement mechanism In silicon superlattices, which should be much

more effective In the case of phonon scattering.

.	 i
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V. THIN METAL LINE FABRICATION

We hu 3e made a reasonably thorough literature search of recent
developments in fine—line technology and have uncovered a wide range of
techniques all of whioh can basically be catagorized as either X—ray,
electron—beam, ion—beam, or optical lithographies. 	 In our laboratory,
only optical lithography was available, and the most promising optical
method we discovered was one reported by Speide11 27 at IBM. He claimed
lines as narrow as 600 A with his technique, and, as a preliminary test,
we decided to try it in our lab. We closely followed his procedure,
modifying steps only according to the facilities available to us. The
complete procedure and results are described as follows.

On several clean silicon wafers, oxides of thickness x 3400 A were
grown. Standard clean I (SC1) was prepared as a 7:3:3 solution by
volume of deionized (DI) water, H 2 O2 (307), and NH 4 0H (29%). This
solution was used at about 80 1C for 20 minutes to clean the oxidized
wafers. Next the wafers were prebaked at 180°C for 30 minutes, coated
with hexamethyldisilazane at 4000 rpm for 15 seconds, then coated with
AZ 1350J photoresist at 5000 rpm for 20 seconds, and finally baked at
65°C for 25 minutes. Since we desired an undercut in the photoresist
layers, the soft—baked wafers were next soaked for 5 minutes in
chlorobenzene and soft—baked again for 30 minutes at 65°C.

With a previously—prepared mask for 2.5 µm lines, the wafers were
UV exposed for 15 seconds. We used high —speed developer (1:3.5 of PZ
developer and water) to develop the wafers. They were developed for 9
sec with 3 minutes of DI rinse, then placed in the developer for 1
minute and rinsed^in running DI water for 3 minutes. The dried wafers
were hard—baked for 30 minutes at 125°C in vacuum.

Figure 23 shows SEM photos of typical photoresist structures we so
achieved. Because of the chlorobenzene soak, undercuts or "lips" are
clearly visible on either side of the line. These "lips" are less than
1/3 of the total thickness of the line. We estimate that each undercut
is approximately 4000 A wide. The size of the undercut can be reduced
by reducing the soaking time in chlorobenzene. The undercut 'is made at
a rate of approximately 800 A per minute of soaking time in
chlorobenzene.

The desired thin metal lines are achieved by evaporating Al at an
angle of 20 1 into the undercuts. To etch away the unwanted Al and
photoresist, we tried two different methods. First, the wafers were
heated in acetone for 5 minutes and cleaned in an ultrasonic cleaner for
1 minute. The photoresist surface is thereby removed without disturbing
the Al. Then an etch was done to remove Al layers between the two lines
that are formed in the two undercuts. The etch removed Al between the
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lines but also smeared out the two lines at the same time. To get

sharper lines, we followed the reverse procedure. That is, we first did

the Al etching and then removed the photoresist. The latter gave

reasonably sharp Al lines.

The final line thickness we achieved was % 4000 A, dictated by the

size of the undercuts. This dimension can definitely be reduced to the

the order of 600 A, as demonstrated by Speidell 27 , by appropriately

reducing the soak time in chlororbenzene. To obtain even thinner lines,

on the order of 100-200 A, however, will undoubtedly require X —ray or
electron—beam lithographie r. For this reason and because we had no
immediate scheme in mind to produce the periodic line pattern ( r ig. 1)
required for an MOS superlattice, we did not pursue this study further.

^c..; .̂.^-a-rr.__ _..	 ry.a.^ca++.c^^^is sa;	 _	 r!"as^=r^ti-4-- ^^^•_bnsr:. F=':^ 	 ^	 4A e "
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Fig. 23.	 Photoresist strucuture used to fabricate thin Al metal lines

in our laboratory, as described'in the text. 	 Top panel:
10,000x magnification; bottom panel: 7.000x magnification.
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V1. CONCLUSIONS

Our results bode well for the propspect of achieving enhanced

electron mobilities in silicon superlattice systems. We have seen that

the general trends in band structure indicate a reduced electron

conductivity effective mass in the transverse direction, with a unique

symmetry lowering in [100]—oriented superlattices playing a leading

role. For a fixed superlattice potential strength, this effect

initially increases with layer thickness, but quickly saturates to a

limiting value, Phonon—scattering—limited mobility, which is dominant

at room temperature, should be most strongly enhanced by this mechanism,

with an ideal limiting enhancement of 2.20 predicted if all other things

are equal. The two—dimensional nature of the transport, however, also

brings with it a strong dependence of mobility on carrier concentration.

Our calculations show that impurity—scattering—limited mobility, which

is dominant at low temperatures, will actually be diminished at low

carrier concentrations and enhanced only for high carrier

concentrations.

Since our band—structure model for silicon superlattices is an

idealization we expect that any mobility calculated on the basis of our

model should represent an approximate upper limit for given geometrical

conditions. Two principal effects which'peed to be addressed more

thoroughly in any refined theoretical treatment are (i) chemical

disorder in the Si l _ x Ge X layer of the superlattice in the type—II case

and (ii.) surface effects, including band—bending, strain fields, and

possible defects at the interfaces between layers. Physically, both of

these effects should decrease any measured electron mobility. In

addition, interband scattering, which was neglected in our

impurity—scattering—limited mobility calculation should also decrease

the actual mobility.

The most pressing need for the near term, however, is some hard

experimental data on high—quality superlattice structures. Hopefully,

this will be forthcoming in the Si—Si t _ XGe X case with the new work

initiated at Bell Laboratoties. 9 Also, the fabrication of an MOS

superlattice should be given some serious consideration in light of the

continuing rapid developments in fine—line technology.

n
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VII. CONFERENCE PAPERS AND PUBLICATIONS

Below is a summary of all written and oral output connected with
this research:

(a) Contributed conference papers:

1. "Theory of Silicon Superlattices," J. A. Moriarty, Bull. Am.
Phys. Soo. 28, 421 (1981).

2. "Electronic Structure of Silicon Superlattice Systems," S.
Krishnamurthy and J. A. Moriarty, Bull. Am. Phys. Soo. 29,
215 (1984),

3. "Electronic Structure of Silicon Superlattices," S. Krishnamurthy
and J. A. Moriarty, Superlattices and Microstructures (in
press).

(b) Journal publications:

1. "Theory of Silicon Superlattices: Electronic Structure and
Enhanced Mobility," J. A. Moriarty and S. Krishnamurthy,
J..Appl. Phys. 54, 1892 (1983).

2. "Electronic Structure and Impurity—Limited Electron Mobility of
Silicon Superlattices," S. Krishnamurthy and J. A. Moriarty,
Phys. Rev. B (to be published).

(c) Theses:

1. "The Theory of Silicon Superlattices: Band Structure and
Mobility Enhancement," S. Krishnamurthy, Ph. D. thesis
(University of Cincinnati, 1984) (unpublished).
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