置換アントラセン類の光電導性におよぼす置換基効果

杉本 見・加藤 純司・井上 博夫・井本 英二

1.5-ジアセチルアントラセン（2）および1.5-ジメトキシアントラセン（6）は相当するアントラセン誘導体の光電流に与える。また，9-ジアセチルアントラセン（8）は[1]とBrCNとの反応によってそれぞれ酸化程度の方法に準じて合成した。ここで[7]の合成である1.5-ジメトキシアントラセンは1.5-ジクロアントラセンとナトリウムメタノールとの反応によって合成した。

1.5-ジアセチルアントラセン（2）5g，NaOH 6g，ジェンレンプリロール 200 mlおよびHNNH2·H2O 30 mlの混合物を1.5時間加熱還流したのち，さらに2時間200℃に加熱した。反応混合物を100 mlの水本で10分，蒸発で中和したのち，ペンゼンで抽出し，そのペンゼン抽出液を水洗後Na2SO4で乾燥した。アルカリ性ネズルに通して流出させたペンゼンを留去したのち，残留物をエタノール中で再結晶してmp 111～112℃のプドログレム（6）を1.5 g得た。

分析値 C 92.39％，H 7.72％

C12H10としての計算値 C 92.26％，H 7.74％

δH，1.43 (6 H，t，Clc)，3.19 (4 H，q，Clc)，7.15～7.42 (4 H，m，aromatic protons)，7.56～7.83 (2 H，m，aromatic protons)，8.49 (2 H，s，aromatic protons)

以上スペクトル：m/e=234 (M+)

1.5-ジアセチルアントラセンは文献記載の方法にしたがって合成した（mp 312.5～313℃（文献値320℃）），1.5-ビス（ヒドロキシメチル）アントラセンは[2]をテトラヒドロフラン-エチルエーテル（3:1 v/v）溶液中，NaOHで還元して合成した（mp 175～185℃）。IRおよびNMRスペクトルおよび導体の結果からジアールであることを認めた。立体異性体の混合物の

E. Bergmann，A. Weizmann，J. Amer. Chem. Soc.，60，1801（1938）

電導性の測定は既報の記載の装置をおとし、同様の方法を用いて行った。すなわち、蒸着したアルミニウムを電極とし、その上に電流蒸着を用いた試料をつった "薄膜型セル" を作成した。このセル（試料の厚さ2〜5μ）を減圧下で10時間以上もったのち、電流を通して電圧をともし、蒸着蒸気を蒸発させた。測定セルにおもに用いたのは光学長の単色光を照射し、そのときに流れる電流値を各長さについて1音余をたるのを電流として測定した。結果の一部を示す電流スペクトルは測定電流範囲内の最大値を100として換算したものをプロットした。ガラス板上に蒸着した蒸着膜の吸収スペクトルは日立分光光度計（124型）を用いて測定した。スペクトルの吸収端長（しきい値）は Eley と Williams の方法にしたがって求めた。

3 結果と考察

3.1 置換アントラセン類の光電導性

8種のアントラセン類はいずれも前報で測定限界（10⁴Ω）以上の高い抵抗を示し、前報導性におよばず吸収スペクトルを検討するにいたった。しかし、光電流は（4）を除くすべての試料について観察された（図1）。各試料により吸収強度が異なり、また可視部の吸収は弱いため白色光照射下の光電流の大きさを比較することは困難である。そこで、光電流スペクトルの可視部における最大光電流ピークの高さを各試料について比較すると、その大きさは（5）、（6）、（7）、（8）の順に減少する傾向を示した。しかし、1.5〜2厘導電体ではくに大

Table 1 Physical properties of the anthracene derivatives

<table>
<thead>
<tr>
<th>Compd.</th>
<th>mp (lit.) (°C)</th>
<th>λmax <sup>a</sup> (nm)</th>
<th>λ<sub>max</sub> <sup>b</sup> (nm)</th>
<th>Fluorescence <sup>c</sup> (color)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>216(216)</td>
<td>395</td>
<td>395</td>
<td>Violet</td>
</tr>
<tr>
<td>[4]</td>
<td>76.5</td>
<td>397</td>
<td>379</td>
<td>—</td>
</tr>
<tr>
<td>[5]</td>
<td>185〜185.5(187〜188)</td>
<td>410</td>
<td>410</td>
<td>Bluish violet</td>
</tr>
<tr>
<td>[7]</td>
<td>227〜227.5(228)</td>
<td>405</td>
<td>400〜410</td>
<td>Greenish blue</td>
</tr>
<tr>
<td>[8]</td>
<td>177〜178</td>
<td>430</td>
<td>430</td>
<td>Greenish yellow</td>
</tr>
</tbody>
</table>

* a) Film.
* b) The wavelength of the maximum peak which appears at longer wavelength side.

Effects of the Substituents on the Photoconductivities of the Substituted Anthracenes

Akira Sugimoto, Shinji Kato,
Hiroo Inoue and Eiji Imoto
Department of Applied Chemistry, College of Engineering,
University of Osaka Prefecture; Sakai-shi 591 Japan

The photocurrents of the substituted anthracenes, 1,5-diacylanthracene [2], 1-acetylanthracene [3], 9-acetylanthracene [4], 1,5-dichloroanthracene [5], 1,5-diethylnthracene [6], 1,5-dimethoxylanthracene [7], 9-cyanoanthracene [8] and anthracene [1], were measured by using their "surface-type" cells in nitrogen. The compounds of [1], [5], [6], [7] and [8] showed the photocurrent spectra which corresponded to the absorption spectra of their evaporated films (Fig. 1). In the cases of [2] and [3], however, the anomalous photocurrent appeared in the threshold region of their absorption spectra. Especially, the anomalous photocurrent of [2] became larger (Fig. 2). The appearance of the anomalous photocurrent was characteristic of anthracenes having the acetyl group at 1- and/or 5-position. The magnitude of the photocurrents of the 1,5-disubstituted anthracenes was similar to that of [1]. On the other hand, the photocurrents of the monosubstituted anthracenes were smaller than that of [1]. Among the monosubstituted anthracenes, the compound [4] showed no photocurrent under the same conditions. Contrary to the results obtained in the cases of phenazines, the photoconductivities of the anthracene derivatives became better in air.

† Studies on Organic Semiconductors, XV.