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ABSTRACT

We propose that the "fireballs" invoked to explain the Centauro [11

events are bubbles of a metastable superdense state of nuclear matter, created

.n hiyh energy (E — 10 15 eV) cosmic ray collisions at the top of the

atmosphere. If these bubbles are created with a Lorentz factor Y = 10 at

their CM frame, the objections against the origin of these events in cosmic

ray interactions are overcome. Assuming further, that the Centauro events are

due to the explosive decay of these metastable "bubbles", a relatiolship

between their lifetime, T , and the threshold energy for bubble formation,

E th , is derived. The minimum lifetime consistent with such an interpretation

is T — 10 -8 sec, while the E th appears to be insensitive to the value of T

and always close to E th — 10 15 eV. Finally it is speculated that if the

available CM energy is thermalized in such collisions, these bubbles might be

manifestations of excitations of the SU(2) x U(1) false vacuum. The absence

of n o 's in the Centauro events is then explained by the decay modes of these

excitations.
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Introduction

The Centauro, [1] mini-Centauro and other "unusual" cosmic ray events

(Chiron, Geminion) are high energy (= 10 15±1 eV) cosmic ray events detected in

nuclear emulsion chambers at high altitudes (> 4000 m) with characteristics

which defy explanation in terms of "standard" high energy cosmic ray

collisions and subsequent cascading of the produced particles [2]. We

presently focus our attention on the so called Centauro events which have been

the subject of controversy over many years. The characteristics which set

these events apart from the typical events expected at these

energies (= 10 15 eV) are the following:

a. They are observed deep in the atmosphere (~ 500 g cm -? ), only a few

hundred meters above tnP emulsion chamber detector.

b. They have very high mult1,,licity.

c. They have very large mean transverse momentiim, < p t >, 3-5 times larger

than that of a typical nuclear fragmentation interaction.

d. There is a deficiency of neutral pion production.

It was immediately realized that direct nuclear collisions failed to

account for any of the above features, especially for the observed rate,

R = 10 -2 m-2 sr -l yr -1 , since the probabilty of penetration of a strongly

interactiny particle to such depths is negligible. 	 It was also pointed out

though, that most of the above features (multiplicity, <P t >) as well as toose

of other "unusual" events [3], could he accounted for in terms of the

explosive decay of an unknown state of w.atter. Rjorken and McLerran [4] for

instance, postulate a new metastable form of quark matter, introducing a new

component in the cosmic ray spectrum, wh i le Kinnunen ana Rubbia [51 argue that

these events cannot be due to high energy cosmic ray interacti,,ns, thus in

effect ayreeing with the previous authors. 	 In the present note we accept the
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interpretation of the Centauro events as the explosive decays of an unknown

yet high energy particle deep in the atmosphere. However, contrary to the

previous treatments, we relate the Centauro flux to the flux of high energy

cosmic ray particles at the top of the atmosphere, thus avoiding the

;rtroduction of a new, unknown component in the primary cosmic ray spectrum.

Tien, the requirement that Centauros are due to the Explosive decay of a

bubble of a metastable superdense nuclear matter, produced in a high energy

collision on toe top of the atmosphere, leads to a relation between the

formation of such a metastable state and to its lifetime. This is done in the

next section.

The Centauro Event Rate

In relating the Centauro rate to that of high energy cosmic ray

interactions, we shall assume that a large fraction of high energy cosmic rays

have interacted within 5U g cm- 2 frcn	 top of the atmosphe r e, which sets

the inte r .^,tion height to about 21 km. Given that the Mt. Chacaltaya detector

is at a depth — 500 g cm- 2 or a height of — 6 km, the bubbles of metastahle

matter wiii have to traverse a distance of about 15 km before they decay. We

further assume that any decay at a distanc., dL > 100 m from the detector does

not classify as a Centauro event, because the ensuing cascade will not have

the characteristics of a Centauro (i.e. closeness to the detector, few

IT 01 	 Then if To is the lifetime of the bubble and YL its Lorentz factor in

the laboratory frame, the decay rate of bubbles as a function of time after

the interaction will be

N(t) = N T e -t/YL T 0	 (1)

or in terms of the distance d from the high energy interaction point,

N(d) = N T e
-d/cY LT 0	 (2)

V
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Wh,. •e NT is the rate of bubble production at the top of the atmosphere. Then

the differential rate with respect to the pathlength dl within which decays

are identifiable as Centauro events is

dN(d) _	 1	
N(d)

-I — C YL TD

and the Centauro event detection rate should be

R =	
d l	 N e-d /cYLTo

cY L To T
	 (3)

Solving this relation for the rate of events at the top of the atmosphere, NT,

one obtains

N T = R YL` 0  ed /cYLTo	
(4)

Since we expect the formation of bubbles to have a threshold energy E i , NT

should be the integrated cosmic ray flux at the top of the atmosphere with E >

E i or

NT = n K E-1.7 = n 1.1 104 E-1.7 m-2 Sr -2 S -1	 (5)

with E i measured in GeV. The factor n denotes the fraction of these events

that produce bubbles of metastable nuclear matter, which we will presently

assume to be of the order of 1 (n = 1). The only thing now needed is a

relation between E i and YL so that we obtain a relation between Ei and To. if

Mb is the mass (rest energy) of the bubble and E*b its CM energy then its

Lorentz factor in the interaction CM frame will he

f = E*b/mb
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Hence the Lorentz factor of the CM will be YCM = (Em—

P
Consequently the Lorentz factor of the bubble in the laboratory frame, YL,

will be

Y	 EL = M lab = YCM f + (YCM-1)1/2	 (f 2 -1)
1/2

 cose* =f ( F̂ ) 1/2	 (6)
b	 p

Substituting equations (5) and k'6) into equation (4) and solving for E i we

obtain the transcendental equation

Ei = [7 
-T 

(x)1/2 f T o Pxp (d/c (	 f To))	 ( 7)x ) 1/2	 -0.59 

where R = 10- 2 m- 2 sr -l yr -1 is the Centauro event rate, dl = 10 4 cm, d = 15 km

= 1.5 x 106 cm, K is defined by equation (5), and m  has been taken as 1

GeV. Substituting the numerical values equation (7) reads

E i = [n 5.68 x 108 
E. 1/2 f To exp (7.07 10 5/E i

112
f To ). -0.59 =-F 

(Ei, TO)

(7a)

Equation (7a) can be solved graphically by plotting the curves y = F i and y =

F(E i , T o ). The results are shown in figure 1 where the familes of curvPs

F(E i , To ) are shown as a function of E i with fTo as a parameter. ThP study of

these curves points out two major features: 	 (i) For sufficiently small

values of the parameter fT o (<10- 8 ) no solution to equation (7a) exists. This

means that for sufficiently small bubble lifetimes (fr o <10-8 ) not enough of

them will survive deep enough in the atmosphere to account for the observed

Centauro flux, (ii) For fTo >10-8 there are always two solutions to equation

(7a) since the curve y = E i intersects the curve y = F(Ei, ro) at two

points. It is interesting to note that of these two solutions the highest

i
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ones are always close to an energy E i = 106 GeV for a wide range of values of

the naramter fr o , (10 -6 -10-8 ), which corresponds to a CM energy of = 1 TeV.

The lower energy solution however shifts quickly to much lower energies (CM

energies < 100 GeV for fT o > 10-7 sec.). Center of mass energies much smaller

than 100 GeV however may have to be excluded on the basis of lack of such

events in accelerator experiments. One should also note the dependence on the

assumption n = 1.	 If n << 1 the whole figure would shift downward thus

indicating longer lifetimes and lower threshold energies.

The assumption that the bubbles of the superdense metastable nuclear

state are produced with a certain kinetic energy at the CM of the collision

can actually sidestep the arguments of ref. [51 against the origin of

Centauros in high en^rgy cosmic ray collisions. The latter authors have

reached that conclusion by noting that the kinematics of the Cenaturo event

demand Y = 10 4 and M fireball = 200 GeV. Assuming further (as they dirt) that

all the primary energy goes into making the rest mass energy of the

fireball (i.e. t  = YCM ), they derived from the latter figures a primary

eneryy Ei
	 YCM Mfireball = 10

17 eV. The flux of cosmic rays at these

energies is much too low to account for the observed Centauro rate. Eq. (6)

however shows that if the bubble is created in the CM frame with a Lorentz

factor f = 10 then y  = 10 4 implies YCM = 10 3 and hence a primary energy

E  = 10 15 eV, which provides sufficient flux to account for the observed

rate.

Discussion - Conclusions

Motivated by the extraordinary properties of the Centauro events we have

reexamined the "fireball" hypothesis. In contrast to the previous treatments,

we have tried to avoid the introduction of a new component in the primary

D.
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cosmic W ays, but we have instead examined the possiblity of producing the

metastable high density [hase of ,natter needed to account for the "fireballs"

in high energy cosmic ray collisions on the top of the atmosphere.

Establishing such a connection leads to the relation of fig 1 between the

threshold energy for the production of the metastahle bubhles and their

lifetimes.

The next question one is called to answer is the nature of these

"fireballs". A clue to this question comes from the large P t observed in

these events. The value of P t observed indicates, as pointed oot [ref. 41, a

superdense state of matter with mean particle separation, k, 3-5 times smaller

than that of quarks in a nucleon. Since the corresponding energy density is

expected to be E — n4/3 _ (1/Z) 4 , (n is the quark number density) it would

correspond to energy densities — 80-600 times those of nuclear matter. Hence

the matter is expected to be in the quark-gluon phase. Unfortunately the

phase transition from the quark to nuclear matter is considered to take place

at much lower energy densities, a few GeV fm- 3 , and therefore does not appear

to account for the observed magnitude of P t . Also the decay of such quark-

gluon balls should produce 7"s contrary to observation.

In search of another scale at higher energy densities, the intriguing

possibility of the SU(2) x U(1) i U(1) symmetry breaking scale has heen

considered. If the symmetry is restored there is a contrihution to the energy

density from the SU(2 1 x U(1) vacuum. The total energy density, E, is then

E= An4/3+p

The first term is the energy density due to the quarks participating in the

collision (assumed to be cold) and the second term the energy density of the

J
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vacuum. The pressure of the mixture can then be calculated using the

thermodynamic relation

P= n dL- e= i An" /3 - p.

One can now observe that for An 4/3 = o (i.e. close to the phase transition

point) the pressure of the mixture goes to zero and the medium becomes

unstable to bubble formation. It is assumed that at T = T c the two phases

with <o = 0 and <0> * 0 coexist since the height of the harrier between them

is smaller than the thermal energy for T > T c [6]. Neglecting surface

effects, the bubbles are in pressure equilibrium between the positive particle

p ressure and the negative vacuum tEnsion. These bubbles would presumably

survive as long as the false vacuum state i^ prese ,-ved and does not decay to

its minimum energy state (true vacuum). From the formal point of view the

SU(2) x U(1) vacuum acts in a similar way as the constant bag energy density

of QCD (which presumably is due to the SI1(3) vacuum; see ref. 7), to form

bound metastable objects. The difference is that the SU(2) x II(1) vacuum is

metastable and these objects will decay with the decay of the false vacuum.

However for this situation to occur the energy density achieved in the

collision should be of the order of that required to restore the Sll(2) x, 11(1)
i

symmetry. This is roughly the energy density corresponding to black hody	 i

radiation of temperature equal to the critical temperature for SU(2) x U(1)

breaking. This is expected to be T — mH , where m 	 is the mass of the Higgs

boson. This mass cannot be determined from the theory and it is currently

unknown. Taking however at face value the observed P t for the Centauro

events, and assuming as a working hypothesis, that is due to the decay of

metastable vacuum into Higgs particles which further decay into Kaons, one is
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lead to m  - 2pt or 2-3 GeV. It is interesting to note that this value for WH

naturally accounts for the large observed multiplicity, since an ohjec^

similar to that considered to account for the Centauros with M 	 100 GeV will

,22cay into - 50 Higgs particles which will further decay into	 100 KK (see

further discussion). One should mention at this point that there is a lower

limit to the mass of the Higgs boson within the minimal (one Higgs doublet)

standard model, of the order of mH > 10 GeV [H]. However models with extended

Higgs sector [9], [10] can actually circumvent this limit. 	 It has actually

been suggested [10] that the particle x(2.2) observed in the decay

J/y +Y+x(2.2) might indeed be the long sought Higgs hoson. 	 It is encouraging

that this value is consistent with the observed value of P t as argued ParliPr.

The most serious problem concerning such an ;nterpretation of the

Centauro events is the achievement of energy densities > 100 times that of

ordinary nucleons (or 30-60 GeV rm-3 ), needed for the restoration of SU(2) x

U(1) symmetry, in view of the aryuments put forward in ref. [I'.]. These

authors have argued that at high energies the nuclei become transparent to

each other thus limiting the maximum energy density achieved in a collision.

Since, no definite answer to this question can presentl y he given and since

the required energy density is within an order of magnitude of the ones

presently considered achievable we consider that such a possihility exists.

Such a point of view is actually supported by the evidence for apparent

scaling violation both in high energy cosmic ray interactions x121 and

in pp collider experiments [13]. 	 It is interesting to note that the energy 	 at

which evidence for such violations occurs (as quoted by the above authors) is

10 15 eV, in good agreement with the threshold energy for Centauro

productions as derived graphically in fig. 1.

One can of -ourse always argue that such structures have very long life

0
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times and were created in the early universe [4], since at sufficiently early

times the temperatures were high enough for the SU(2) x U(1) symmetry to be

restored. Unfortunately this scheme, although it mry account satisfactorily

for the production cf such objects, requires the introduction of several other

parameters (their life times, spectrum, number density etc.) in an art hoc

manner. While such a possibility cannot he dismissed it appears to he at

least for the present, intractable.

Finally there is one more issue to be addressed, namely the apparent

absence or deficiency of neutral pions or photons in these events, which

should be explained in terms of the decay modes of the form of matter

considered to comprise the fireballs.	 If our hypothesis is correct and the

"fireballs" are due to false vacuum excitations, one would expect them to

decay into Higgs particles, since the Higgs field is the agent responsible for

the breaking of the symmetry. The Higgs should then suhsequently decay,

preferably into heavy quarks (Nussinov, private communication) since the

coupling of Higgs to fermions is proportional to the square of the fermion

mass.	 It is at this point that the identification of the x(2.2) meson with

the Higgs boson [10] provides evidence in support of our hypothesis and

ayreement with observation. 	 If such an identificat i on can indeed he made one

would expect the Higgs bosons to decay primarily into the heaviest quarks

lighter than `he Higgs i.e. into Kaons (which is actually ohserved i^	 ^e

(2.).) decay).	 The Kaons have sufficiently long life times (even for

K s , T - Ii)
-10 sec) that with a Lorentz factor Y = 10 4 (as observed for the

Centauro) they would have to traverse -- 300 m before they would decay into

pions. So in this scenario the absence of pions would be accounted for by the

closeness of the fireball to the detector (— 50 m). 	 It is interesting to notf^

that other similar events (mini-Centauros) which apparently release the
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fireball energy a few hundred meters from the detector show a deficiency

rather than absence of pions, potentially accounted for by the same ar3ument.

We would li!;e to acknowledge discussions with Tom Gaisser, S. Nussinov, Jon

Orines and Quaisar Shafi.
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