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ABSTRACT 

In this report a frequency-domain Green's Function Method for unsteady supersonic 
potential flow around complex aircraft configurations is presented. 

We focus here on the supersonic range wherein the linear potential flow assumption is 
valid. In this range the effects of the nonlinear terms in the unsteady supersonic compress
ible velocity potential equation are negligible and therefore these terms will be omitted in 
this report. 

The Green '8 function method is employed in order to convert the potential-flow dif
ferential equation into an integral one. This integral equation is then discretized, through 
standard finite-element technique, to yield a linear algebraic system of equations relat
ing the unknown potential to its prescribed co-normalwash (boundary condition) on the 
surface of thf' aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness 
wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The 
potentia.! and co-normalwash are assumed to vary linearly within each panel. 

The long range goal of our research is to develop a comprehensive theory for unsteady 
supersonic potential aerodynamics which is capable of yielding accurate results even in the 
low supersonic (Le., high transonic) range. 
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LIST OF SYMBOLS 

speed of sound 

contravariant base vector, see equation (29) 
contravariant base vector, see equation (29) 
(M50 - 1)1/2 

source integral, equation (40) 
doublet integral, equation (42) . 
domain function, see equation (19) 
Dirac delta function 

Kronecker delta 

finite-element shape function 

Green's function 

Heaviside function 

reduced frequency, wfJ.IUoo 
reference length 

free stream Mach number Uoo/aoo 
unit normal to (J B 

unit normal to EB 

total number of elements 

total number of nodes 

circular frequency 

non-dimensional frequency, wfJ.I aoo f3 
point having coordinates x, y, z 
eontrol point, (x., y., z.) 
point. having f.Oordinates X, Y, Z 

control point, (X., Y., Z.) 
Hadamard finite part 

hyperbolic radius, S(~e equation (14) 
time 

nondimensional time aoo f3t I fJ. 

velocity of undisturbed flow 

space coordinates 

nondimensional Prandtl-Glauert coordinates 
X = xlf3f,Y = y/f,Z = zit 
surface of body in x, y, z space 
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E surface of body in X, Y, Z space 

Ei surface of element i in X, Y, Z space 

<I> perturbation velocity potential 

4.> nondimensional perturbation velocity 
potential, <I>/Urxl--

~ = 4.>e iO(T-MooX) 

'ljJ co-normalwash in x, y, z spaee 

\II co-normalwash in X, Y, Z space 

Operators 

M2 8 2 8 2 8 2 

V () a""X'l + Oy'! + {}z'l. 
Laplaee operator in the physical space 

M M 8 2 8 2 8 2 

V 0 v oX""'! - oY""'! - a-z'l 

it &+Uooix 
o Supersonic dot product, see equation (5) 

1. INTRODUCTION 

In this report we (h'monstrate how the Green's Function Method of Potential Aerody
namics may be implemented in the frequency domain so as to enable it to handle unsteady 
supersonic flow around complex aircraft configurations. 

We focus here on the supersonic range wherein the linear potential flow assumption is 
valid. In this range the effects of the nonlinear terms in the unsteady supersonic compress
ible velocity potential equation are negligible, and therefore these terms will be omitted in 
this report. 

The Green's function method (Ref. 1) is employeq in order to convert the potential
flow different.ial equation into an integral one. This integral equation is then discretized in 
space, through standard finite-element teehnique (Refs. 2 and 3), to yield a linear algebraic 
system of equations relating the unknown potential to its prescribed co-normalwash on the 
surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness 
wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The 
potential and Iw-normalwash are assumed to vary linearly within each panel. 

1.1 A Drief Description of the Green's FunctioIl Method 

Before g(~tting int.o the specifics of this report we begin with a brief description of 
the Green's Function Method. This method applies to t.he equation of the perturbation 
v(~locity potential. The potential function ~ at any point P * in the flow field is given by an 
integral of terms containing the value of the potential and its co-normal derivative on the 
surface, (J, surrounding the body and its wake. An integral equation for the potential OIl the 
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surface of the body is obtained by letting the point P * t approach a point on the surface. 
With this method, the wake is a natural by-product and is treated as a layer of doublets. 
It may be noted that the integral equation does not require that the boundary condition 
on the co-normalwash be satisfied, but rather makes use of the continuity of the potential 
as the control point approaches the surface (j. The tangency boundary conditions are 
automatically satisfied by the type of representation obtained with the Green's Function 
Method. 

In current applications, the surface of the aircraft is divided into small quadrilateral 
elements. Each element is replaced by a paraboloidal hyperboloid surface defined by the 
four corners of the element. In this process the continuity of the surface is maintained 
but discontinuities in the slopes are introduced. The aircraft wake, on the other hand, is 
divided into strips parallel to the streamlines. These wake strips originate from the trailing 
edge and extend to infinity downstream. It should be noted that integrals over these wake 
strips may be carried out in an analogous way to their subsonic counterpart (see Refs. 5 
and 6). 

In the oth order theory, the unknown <l> (in the Prandtl-Glauert Space) is assumed 
to be constant within each element, while in the 1st order theory Cb is taken in the form 
Cb = Cb o + ';Cb} + ."Cb 2 + .;."Cb3 where (.;,.,,) are local element-wise surface coordinates, and 
the coefficients Cb o, ... , Cb 3 are chosen to interpolate the ¢p values at the four corners 
of the element. In either situation the integral equation is approximated by a system 
of algebraic equations. This system of algebraic equations is then solved by standard 
Imm('rical methods. It has been found (see Ref. 4) that in the supersonic range at least a 
I-st order theory is required in order to yield a nonsingular set of algebraic equations due 
to a numerical rather than physical anomaly. 

2. UNSTEADY SUPERSONIC FLOW 

Our point of depart.ure is the linearized equat.ion for the unsteady potential compress
ible aerodynamic flow 

1 d2cP 
V~cP - a~ dt2 = 0 (1) 

where \7~ is the Laplace operator in the physical space while <p is the perturbation potentiaL 
Choosing a frame of reference sllch that the undisturbed flow has velocity Uoo in the 
direction of the positive x-axis, the linearized total time derivative is given by 

(2) 

Introducing the generalized Prandtl-Glauert transformation 

X=: x/(31, Y =: y/l, Z =: z/l, T =: aoo(3t/l, Cb =: <p/Uool (3) 

t The bar is used herein to indicate vector quantities. 
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where 1 is a characteristic length, Moo = Uoo/aoo and f3 = (M~ - 1)1/2, Eq. (1) yields* 

82(f) f)2(f) 
V 0 V<.l> + (32 8T2 + 2Moo8Xf)T = 0 (4) 

where 0 stands for the supersonic dot-product defined as 

a 0 b = axbx - ayby - azbz (5) 

where a. and b are two arbitrary vectors. Thus the operator V 0 V stands for 

(6) 

Note that a 0 il is not necessarily positive. We define the 'super-norm' of a vector a as 

(7) 

and will use this notation in later sections of this report. 

2.1 Oscillatory Supersonic Flow-The Potential Equation 

Since in this report we shall be dealing exclusively with oscillatory flow, it is convenient 
at this point to introduce the complex potential ~t via the equation 

with 

<.l>(X, Y, Z, T) = ~(X, Y, Z)ein(T-MooX) 

(;.)/ 

n =--- = kMoo/ (3 a oo (3 

where k = wl/Uoo is the reduced frequency, and w is the circular frequency. 

With this notation, equation (4) may be rewritten as:j: 

V 0 vel> + n2~ = 0 

We remark that the case n = 0 corresponds to steady supersonic flow. 

2.2 Supersonic Integral Equation 

(8) 

(9) 

(10) 

In order to obtain the Supersonic Green's Function integral equation we proceed as 
follows: With P and p. representing the sending and receiving points respectively, the 
Green's Function G for Equation (10) satisfies 

2 , --- ---
V 0 V G + n (:11 = fJ (P - P *, T - T.) 

* See Appendix C for derivation. 
t The circumflex is llsed herein to indicate complex quantities. 
t See Appendix C. 
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G:= 0 at 00 

one well known solution of which is given by (see Ref, 4) 

where 

Here we define 

G = 2:R' cos(OR') 

H(P,P·)={6 if X - X. :::; 0 and R 0 R ~ 0 
otherwise 

R := P - P. = (X - X.)z + (Y - Y.)] + (Z - Z.)k 
R' = IIRII = I(X - X.)2 - (Y - y.)2 - (Z _ Z.)21 1

/ 2 

(12) 

(13) 

(14) 

Here {PIH(P, P.) = 1} defines the zone of influence, or Mach forecone, with vertex at p., 

Multiplying equation (10) by the Green's function G and subtracting equation (11) 
multiplied by ci> gives 

(15) 

Making use of the identity 

\7 0 (a\7b) = \7a 0 \7b + a\7 ~ \7b (16) 

equation (15) reduces to 

v 0 (Gv4> -- 4>VG) = -b(P - l\)4>(p.) (17) 

N ext for a closed bounded surface E bounding a volume V, we define the domain 
function 

E(P ) = {I if ~* ct V 
• 0 if P * E V 

(18) 

Note that for P. on E the function E(P.) will measure the so-called supersonic solid angle 
of E at P>I (see Ref. 4 for details), Hence E (1) "') satisfies the notation 

E(P.) = 1 + f!Y.;N 0 v (.2:R') dE (19) 

where IV is the outward unit normal to E. 

It can be shown that 
00 

III f\7EdV = !hfNdE (20) 
--00 
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for all .r continuous where \7 E is taken in distribution sense. Multiplying equation (17) 
by the domain function and integrating over the whole space yields 

00 III E\7 0 (G\7~ -- ~\7G)dV = -E(P*)~(P*) (21) 
-00 

By suitable integrations by parts equation (21) yields 

00 Illy Eo (G\7q, - ~\7G)dV = E(P .)q,(P *) (22) 
00 

Finally making use of equation (20), equation (22) yields 

E(P.)q,(p*) = fAN 0 (G\7q, - cI>\7G)dE (23) 

If we utilize equation (12) in (23) we obtain 

(24) 

and the above expression is equivalent to equation (A-12) of Morino (see Ref. 5). 

3. NlJMERICAL FORMULATION 

In this section, a space discretization procedure will be introduced in order to approx
imate the integral equation by a linear algebraic system of equations. Solving this linear 
algebraic system of equations yields the desired perturbation velocity potential solution on 
the airuaft surface. Once the velocity potential is known, the pressure coefficient may be 
cOlnputed through Bernoulli's Theorem. 

3.1 Finite Eleluent Fornmlation 

Assuming that the surface E is divided into Ne small finite elements Ei , Equation (24) 
yields 

2?TE(P.)q,(P.) = f, JJ'5.: ~cosnRI No \7q,dE 
l 1 ' 

N" ~~ (H -"" ,,-- I - I" '5.:. iPN 0 \7 R' cos OR ) dE 
~'" 1 ' 

(25) 

Each surface element Ei is approximated by a hyperbolic paraboloid given in the form 

(26) 
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where Pc,PJ,P2 and P3 are obtained in terms of the locations of the four corner points 
as (See Fig. 1) 

1 1 
1 -1 
1 1 
1 -1 

(27) 

Here,P+_, for instance, refers to the element corner for which ~ = +1 and 17 = -1. The 
other corners, P ++, P _+ and P __ are defined similarly. It may be noted that the surface 
defined according to Eq. (26) is continuous since adjacent elements have in common the 
straight line connecting the two common corner points. 

3.2 Surface Geometry for Hyperboloidal Elements 

We note that the geometry of the hyperboloidal element is a particular case of the 
general equation for a surface in three- dimensional Euclidean space which is given by 

p:::: p(e, 17) (28) 

where e and 17 are generalized curvilinear coordinates on the surface. For a hyperboloidal 
surface, the two basis vectors a1 and a2 are given by 

(See equation (26). 

up-.- .--
[1,1 =;j{ :::: PI + 17 P 3 

uP - -
a2 :::: u17 :::: P 2 + ep3 

The unit normal to the surface is given by 

(29) 

(30) 

and is directed according to the right hand rule such that the normal points outward from 
the surfaee (see Fig. 2). The surface element dE is given by 

dE :::: la1 de x a2d171 

or 
(31) 

3.3 First Order Spa(~e Discretization 

In what follows we shall take the potential function ~(~, 17) over a surface element, say 
Ei , as 

~i(e,17) :::: [(1 + e)(1 - r/)~+_ + (1 + e)(1 + rl)~H 
+ (1- e)(l + 17)ti»"'r + (1 - €)(l -- 17)~. -1/4 

(32) 
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Equation (32'1 (~xpresses the values of,q,i at any point (e, 17) of Ei in terms of the values of 
A ) 

<I> at the four corner points. 

More generally, consider the first-order global shape function with the following defi
nition: 

! 
(1 + e)(l - 17)/4 

(1 + e)(l + 17)/4 

~ik(e,17)::: (1 + e)(l + 17)/4 l ~l - e)(l - ~)/4 

if node k coincides with corner +- of element i 

if node k coincides with corner ++ of element i 

if node k coincides with corner -+ of element i 

if node k coincides with corner - - of element i 

otherwise. 

(33) 

With Fik defined by Equation (33), Equation (32) may be rewritten as 

Nn 

4>i (e, 17) == L Fit{ e, 17)4>k (34) 
k=l 

where Nn is the total number of nodes on the surface E, and 4>k denotes 4> at the kth 
node. 

Similarly, the supersonic co-normalwash ~(::: N 0 V'~) may be represented by (See 
Ref. i» 

Nn 

~i(e,17) = L FikU:,17)~k (35) 
k=l 

The same first-order finite-element approximation, Equation (33), has been employed for 
~. Note that if ~ is approximated by the 18t order finite-element expression while ~ is 
represented by a oth order formula, ~i(e, 17) ::: ~i(O,O) = const., a mixed type formulation 
would result. In subsequent portions of this report, ~ and q; will be taken 1st order. 

3.4 Nurnerical Approximation of the Integral Equation 

Making use of the equations (34) and (35), equation (25) may be rewritten as 

or 
Nn N" 

E(P .)4>(P.) ::: L B./ilk + L C*k~k (36) 
k'"" 1 k= 1 
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where 

N..:... 1 ~~ H , B k = '\-... -- P'k -- cos OR d'E * L., 21f' ,t R' 
i=l ~. 

(37) 

C.> = - E 2~ lb. F;>N 0 V (;. cos ORI) d!: (38) 

are the supersonic source and doublet integrals, respectively. The integrals summed in 
Eqs. (37) and (38) are zero except for those indices i which correspond to elements on 
which node k lies. 

If we now select P * to coincide with the node j so that 

then equation (36) yields 

N n N n 

E/Pj = L Bjk(Pk + L Cjk(Pk? 
k=l k=l 

or in matrix notation 
[OJkEi - Cik ] {(Pk} = [Bik]{~d 

where 0ik is the Kronecker delta. 

(39) 

Equation (39) is the derived numerical approximation of the oscillatory supersonic 
integral equation (24) of Section 2. 

In order to use equation (39) we need to evaluate the following coefficients: 

first order supersonic source coefficients, see equation (37), 

first. order supersonic doublet coefficients, see ('quation (38) 

By using hyperboidal surface geometry these integrals may be written as 

(40) 

( 41) 

Making us(~ of equation (30) the doublet integral (41) becomes 

(42) 

The appearance of t.he Heaviside function H under the int.egral restricts t.he integration t.o 
that portion of the panel within the Mach forecone. 
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4. PANEL INTEGRALS FOR THE SOURCE AND DOUBLET COEFFI
CIENTS 

The supersonic oscillatory Green's Function, equation (12), Section 2, involves an 
integrahle singularity on the Mach forecone, so that the source integral, equation (40), 
may be interpreted in a classical sense. On the other hand the doublet integral, equation 
(41), involves a derivative of the Green's Function and one must view it in distribution 
sense in order to properly interpret that integral. 

With this in mind, we shall formulate the procedure for calculating the supersonic 
coefficients. 

4.1 Some Definite Integrals 

In what follows we shall allow the 'Y} integral to be evaluated numerically and will 
analytically compute the (integral. 

By using equation (29) of Section 3.2, we deduce that 

(43) 

We now make the approximation 

(44) 

where 
(45) 

and 

(46) 

Making use of Equation (46) and recalling the relationship (31), the integrals (40) and 
(41) may be reduced to the consideration of the following e-integrals: 

and 

-+1 H 
Qm(ry) == pJ . .f emOFpde 

-] 

+1 H 
f3m(ry) == .f em[{;de 

- 1 

t I 

"tm(r/) = .f eYlHR'de 
] 
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The t3mCr/) and 'Ym(rJ) are convergent integrals while the 'pJ.' in the am(rJ) integral 
indicates that these integrals must be interpreted in the sense of the Hadamard Finite Part 
in order to assume a finite value. 

4.2 First Order Source Coefficients 

Note that the function cos OR' / R' is an analytic function of R' except for a pole of 
order 1 at R' = o. If we represent this function by a Taylor series about zero, we obtain 

cos OR' 1 0 2 R' I 
----nX-- == 1iJ --2- -+ h(R ) 

where h(R') is an analytic function o"f R' with h(O) = o. 

Explicitly 

{
(cos OR' - 1 + 0 2 R,2 /2)/ R' 

h(R') == 
o 

Furthermore, it is more eonvenient to write Fik (e, rJ) as 

where 
Fi~ ( rJ) == [Fid 1, rJ) + Fid -1, rJ ) 1/2 
FiUrJ) == [Fik(l,rJ) -Fid- 1,rJ)l!2 

(48) 

for R' =f 0 
(49) 

for R' == 0 

(50) 

Then, it is easy to show that first order source integral given by equation (40) may be 
(>xpressed as 

. Ntl 

Bjt == .}:;r tJ / A( rJ )Fi~t30( rJ )drJ 
t=l __ J 

+1 

+ / [Fi1A(rJ) + Fi~B(rJ)]t31(rJ)d17 
1 

-I] + 1 

+ / FAB(rJ)t32(rJ)(lrJ - !;: / A(rJ)Fi~'YO(rJ)drJ 
1 -} 

(51) 

2 -j J 

- ~~. / Fi~B(rJh2(17)drJ} + Sjk 
-1 



wh(~r(' 
N 11 j 1 

S'jk = lii t / J Fide, rt)H h(R'} lat x a21dedrt 
t=1_1 -1 

(52) 

Thus to evaluate the supersonic source integral we must be able to compute the integrals 
(47) for m = 0,1,2. 

We shall return to the source integral a bit later. 

4.8 Doublet Coefficients 

The integral e jk given in equation (42), Section 3 will generally be singular when we 
deal with panels only partially within the Mach forecone, so that, by a simple calculation 
the Hadamard finite part of ejk may be given by 

N, + 1 .+ 1 . I I " I 

C'. -- f 1 \: .... / / 'l:r v (C ) cos OR + OR sm nR R'''- .... ".. d Cd 
-'Jk - p .. zii L.., rl.l.'ik t", rl ... ' aJ x a2 "r, 

z;cc 1 1 1 

where R is given by equation (14). 

By using equations (26) and (29) of Section 3 we can write 

where 

with 

Mo(r,) = Po' (J>] X P 2 + ",P3 x P 2 ) 

Mdr,) = Po' PI X P3 + rt P2' PI x P3 
= (Po + r,P2 ) • (PI x ]53) 

w her(' Pc is definNl by equation (26). 

We now focus our attention on the function 

J{z) = cos Oz + Oz sin Oz 

(53) 

(54) 

(55) 

This function is analytic except for a pole of order 3 at z = O. If we represent sin Oz, and 
cor-; Oz by a Taylor series about zero, then we may write 

1 0 2 1 0 4 
J{z) = "', +---- - --- z + g(z) 

z3 2 z 8 

where g(z) is an analytic function of z with g(O) = o. 
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Explicitly 

for z ;f 0 
(57) 

for z = 0 

U sing the notation am (17), 13m (17) and 1m (17) as introduced in equations (47) and also 
introducing 

Uik ( 17) = Fi~ M 0 ( 17 ) 

vid17) = FAMo(17) + Fi~Md17) 
Wik (17) = FAMd 17) 

we will be able to write down the doublet integrals Cjk. 

The expression for the doublet eoefficient is 

1 N. {/I /1 
Cjk = 27f 2:::: -1 uik(17)ao(r/)d17 + --1 vid17)ad rJ)d17 

t:::o 1 

/ 1 n2[ 
+--1 wid17)a2(17)d17 + -2 Uik(17)!3o(17)d17 

+ II] Vik(rJ){-Jd17)drJ + 1-]1 Wik(rJ){-J2(r/)drJ] 

+1 +1 

- ~~ [/ Uik(rJho(rJ)d17 + / vidrJhdrJ)d17 
-1 -} 

+1 

+ I Wik (17h2 (rJ)drJ] } + Djk 
-J 

(58) 

The last term on the right hand side of equation (58) is a non singular integral and may 
be integrated numerically. Explicitly we have 

N --11 +1 

Djk = 2~ t J I H Fide, 17)R· a} x a2 g(R')dedrJ 
Fe!._] 1 

(59) 

From tlw foregoing it is dear that. the task before us is to develop a seheme for evalu
ating Bjk and C.'jk' 

Our approaeh will be to first eompute the am(rJ), j3m(rJ) and Im(rJ) for m = 0,1,2 
analytically and then carry out the 17-integrations involving these functions in (51) and 
(58) llsing a Gaussian quadrature t.echnique. The integral expressions 5Jk and DJk defined 
by (52) and (59) are t.o be evaluated numerically in both the e and 17 directions using 
Gaussian quadrature. 
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In the next section we focus our attention on the indefinite integrals in e associated 
with O'm(rJ), f3m{rJ) and I'm(r/), m == 0,1,2. 

5. SOME INDEFINITE INTEGRALS 

In this section we shall explicitly obtain the indefinite integrals 

(60) 

and 

for m == 0,1,2 

which occur in the process of evaluating the first order supersonic source and doublet 
coefficients. 

For convenience we write 

a == a} 0 al 

b:::: 2(Po + rJP2) 0 al 

c == CPo + rJP2) 0 (Po + nP2) 

We also let 

From standard integral tables we obtain 

-(4a(, + 2b)/dR/, 

-1/ R'(2al;, + b), 

A ( ) J d(, 00 (, 71 == Hi:'. == 

17 

for d f. 0 

for d == 0 
a>O 

for d == 0 
a==O 
c>O 

otherwise 

(61) 

(62) 

(63) 

(64) 



-(aR')-l - (b/2a)ao 

o 

A third bask integral we shall need is 

Inl(2R\/a + 2ae + b)/J(1.I/J(1. 

lnl2R'J(1. + 2ae + bl/J(1. 

2R'/b 

o 

for a =/= 0 

d=/=O 

for a = 0 

d=/=O 

for a > 0 
d=O 

for a = 0 
b=O 
c>O 

otherwise 

for a > 0 
d=l=O 

for a < 0 

d:f.O 

for a > 0 
d=O 

for a = 0 
d=l=O 

for a = 0 
d = O,e > 0 

for otherwise 

In terms of 60' (Xl and ~o above we are able to express the integrals a2, fit ,;Yo 

(&0 - ba} - cao}/a for a =1= 0 

[{2/3}R I3 
- 4eR' - 2c2 

/ RI] /b3 for a = 0 

b=l=O 

for a = 0 
b = O,e > 0 

o otherwise 
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! 2R' - i3ob/2a 
for a f- 0 

(2/3)R'3/b2 - (2/b2 )R' c for a = 0 

~ f €d€ bi-0 
f31(e,11)= -R'= l ~2C~1/2 /2 for a = 0 

b = 0, e > 0 

otherwise 

(2af. + b)R' /4a + (4ae - b2)~0/8a for a f- 0 
df-O 

(2/3b)(b€ + e)3/2 for a ::: 0 

10 ( e, 1')) = f R' d e = 
df-O 

l:e for a = 0 
b = O,e > ° 

otherwise 

Finally in term!> of j,o, j'l and 10 we obtain 11, j'2 and 12 

[ 1{2/3)R" - b"tol/2a for a i ° 
~ I [(2/5}R'5 - (2e/3)R'3 ]/b2 for a = 0 

biO 
11(e,T/) = f eR de = l :2Vc/2 

for a = ° 
b = O,e > 0 

otherwise 

(fJ2a)R' - (3b/4a)~1 - (c/2a)~o for a i 0 

{2/5)(b€ + c)5/2 /b3 - (2c/b)~1 -- (c2/b2)~0 for a = 0 
b:f:O 

~ j' edf. 
fi2{e,~) =k' = l~2/3v'C 

1 

(e - 5b/6a)RI3 /4a + (5b2 - 4ac)1o/16a2 

, [(2/7)R'7 - (4/5)cR'5 + (2/3}c2R'311b3 

i2(~,rJ)= j f.2R:d f.= 

for a == 0 
1) == 0 
c>o 

otherwise 

for a i () 

for a ::: ° 
bi=0 

for a = 0 

(68) 

(69) 

(70) 

('11) 

l ~3 v'C/3 
b ::: 0, C > 0 
otherwise 

(72) 
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In sections 6 and 7 we shall see how the indefinite integrals am, ~m and 1m given 
above are to be utilized in evaluating am(11),,Bm(11) and '"Ym(11) for m == 0,1 and 2. 

6. EVALUATION OF THE INTEGRALS FOR FULL PANELS 

In the case of a full panel, i.e. one in which {( (,11) I - 1 :s; e :s; + 1, -1 :s; 'f] ~ + I} lies 
entirely within the open Mach forecone = {RIX - X* < ° and R 0 R > O} the evaluation 
of the am,,Bm and '"Ym follows easily. In this situation these integrals are convergent and 
the Hadamard Finite part is not needed. 

The indefinite integrals am, ~m and 1m given above are to be utilized in evaluating 
am(11),,Bm(11) and '"Ym(11) for m = 0,1,2. 

am ( 11) = am (1, 'f]) - am ( -1, 11 ) 

,Bm ( 11) = ~m (1, 'f]) - j~m ( -1, 11 ) 
'"Ym(11) = 1m(1, 11) -1m( -1,11) 

(73) 

for m = 0,1,2 

In this situation the am (11),,Bm (11), '"Ym (11) are analytic functions of 11 for -1 :s; 11 $ + 1 
and the numerical computation of the definite integrals involving these functions and 
appearing in Section 4 may be carried out by a standard numerical integration such as 
Gaussian quadrature. 

7. EVALUATION OF THE INTEGRALS FOR PARTIAL PANELS 

In the situation where a panel lies partially within the Mach forecone the evaluation of 
am( 11), ,Bm( 11) and '"Ym( 11) takes a bit more doing. We note that integrals arrll m = 0,1,2 are 
singular on the Mach cone == {RIX - x. ::; 0, R 0 R = O}. Thus, for E* such thatR(E., 11) 
lies on the Mach cone, we must evaluate i'Xm (e*, 11) in accordance with the Hadamard Finite 
Part. We obtain 

(74) 

On the contrary, the integrals ~m and 1rro m = 0,1,2, are not singular at (f.., 7)) so 
order to calculate the value of these integrals at that point it is enough to plug that point 
into the expressions for these integrals. There are a few provisos however. A problem 
will occur in calculating ~o(e*, 7)) from expression (66) in the case a < 0 and d f 0, since 
R' (E., rl) = O. However the identity 

j1o(~, rJ) = --h tan- 1 (t1d1,) = -~ sin-- 1 (~-~~~) (75) 

for a < 0, d f 0 together with the faet that 2ae. + b = ±d and d > 0 for ~* with R( ~*' 7)) 
on the Maeh eone shows that 
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for a < 0, d i 0 

In addition, we s.how, in Appendix A, that 

f ~ (C ) _ { 2(-_7r)8/i sgn (2a~. + b) p ... (}:2 '-., "I - a 
o 

for a < O,d = 0 

otherwise 

(76) 

(77) 

Since the expressions ~1' '10, '11, ~2 and '12 are all given in terms of ao, ai, ~o and R', 
there is no difficulty in evaluating these functions at e* with R( ~*' "I) on the Mach cone 
via use of Equations (68)--(72) where applicable. 

We are now ready to investigate our integrals for a fixed r} with -1 ~ rJ ~ 1. We 
look at the intersection of the interval -1 ~ ~ ~ + 1 with the Mach forecone {RIR 0 R ~ 
0, X - X. ~ o}. Four cases may occur: 

(i) The intersection is empty. 

(ii) The intersection is a closed interval [el, eu] with el ~ eu' 
(See Figure 3.) 

(iii) The intersection is a single point eo with I~ol :::: 1 but R(eo, rl) oal i o. 
(See Figure 4.) 

(iv) The intersection is a single point eo with 

(a) --1 < ~o < 1 and R(eo,"I) oal :::: 0 (See Figure 5a.) 

(b) 1(01:::: 1 and R(to,"I) 0 al :::: 0 (See Figure 5b.) 

A point (~o, rio) where X - X. < 0, R 0 Ii :::: 0 and R 0 al :::: 0 is called a crz't£cal point 
if -1::; eo::; 1, -1 ~ "10 ~ 1, i.e., ((0,"10) is a critical point in Case (iv) above. 

Case (i) 

In this case we define 

Case (ii) 

In this case we define 

(Xm("I) :::: am(~u,"I) - am((t,r;) 

(:Jm("I):::: ~m(eu,rl) - ~m((i'''I) 
1m("I) :::: '1m((ttl "I) - '1m(~l, "I) 
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(78) 

for m:::: 0,1,2 

(79) 

for m:::: 0,1,2 



where a rr" (Jm and 1m are given as in Section 5. We remark however that if either €u or 
t.l or both lie on the Mach cone the evaluation of the am and (Jm for such t.. must follow 
(74), (76) and (77) of this section where applicable. 

Case (iii) 

In this situation, we have a limiting situation where either t., -+ + 1 or t.u -+ -1. The 
functions am(e, rJ), Pm{e, rJ) and 1m(t., rJ) are continuous at such a point and thus we find 
that 

and 

am{rJ) = 0 

Pm(rJ) = 0 

Case (iv) - (t.o,rJo) is a Critical Point 

(80) 

for m = 0,1,2 

Assume at first that -1 < rJo < + 1. Then the equation R 0 R = at,,2 + be + c = 0 
possesses a double root at t.o = -b/2a with -1 < eo < 1, provided a < O. At this point, 
d:= O. (Note: If a = a] 0 a, > 0, we cannot have a point on the Mach cone with R 0 al := 0 
unless IRI = 0 identically.) Now in accordance with Eq. (A.19) of Appendix A, we find 
that in this case (a < 0, d = 0) 

(81) 

while "'Ym(rJo) := 0 for m = 0,1,2. 

The am(rJ), m = 0,1,2 behave in a more complicated manner. These expressions may 
be given in the form 

where: 

and 

( ) _ reg () sp ( ) am rJ - (~m rJ + am I) rJ - rJo 

a~eg(rJo) = 0 

a;eg(rJo) = 0 
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for m = 0,1,2 

(82) 



and the special distributional contribution to (~o, Cq , and a2 is given by a~P {j (rl- rJo) where: 

(83) 

for m== 0,1,2 

In the cases where --1 < rio < 1 and I~ol == 1 the only change with the above is that 
the special contributions a~P, a~P, and a~P are divided in half. 

Thus 

(84) 

We h,we not yet considered the situation where IrJol :::: 1. Here if I~ol < 1 we set 

and if both IrJol :::: 1 and I~()I :::: 1 we set 

if rJoR 0 li2 > ° 
if rJoR 0 li2 < ° 

if floR 0 a2 > 0 

if rJoR 0 a2 < 0 

8. RECIPE FOR (;OMP1JTI~R PROGRAMMING 

(85) 

form::::0,1,2 

(86) 

In this section we summarize the procedure to be used in implementing the mixed 
analytical··numeri<:al evaluation of the source and doublet coefficients Bjk and Cjk as given 
in (40) and (42) respedively. 

1 Check if panel is entirely within the open Mach forecone ::::: {RIX -- < 0 and 
Ro > OJ. If 80 compute for each rt, -1 ~ rJ ~ 1, t.he am(rt), fJm(rJ) and "'fmCrJ) according 
to (73). (;0 to .'Jicp .'1. If the panel is not entirely within the open go to 

.<;lcp 2. 

2. For each rt, -1 ~ 'Yj ~ +1 classify the intersection of -1 ~ ~ ~ +1 with the 
closed Mach forecone == {RIR 0 R ~ 0, X - X* ~ O}. Then compute the am(rJ), fJmCrJ) 
and "'fm(rl) in accordance with items (74)-(86). Go on to Step 3. 

Step 3. Evaluate the rt·-integrals involving am(rt), fJm(rt) and I'm(rt) for m :::: 0,1,2 and 
appearing in (40) and (42) by a numerical integration scheme such as Gaussian quadrature. 
In the casle where there is a critical point (eo, rto) within the panel and the O'm (rt) have a 
distributional component a~rP interpret the integrals in the form: 

+1 ! L(rt)(J'm('7)d'Yj 
-1 
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as 
+ I 

J reg sp 
L(rJ)am (rJ)drJ + L(rJo}am (rJo) 

-1 

where a~eg and a~ are as given by items (82)-(86). Go on to step 4. 

Step 4. Finally evaluate the double integrals Sjk and Djk in an entirely numerical way by 
Gaussian quadrature in both e and rJ over the unit interval -1 ~ e ~ +1, -1 ~ .,., ~ +1. 

and 

Care should be taken on two points: 

(i) The integrand should be set to 0 where R oR :::; O. 

(ii) Where R' is sufficiently small then both g(R') and h(R') should be 
replaced by the approximation 

n4R,3 
h(R'} '" -u 

without loss in aecuracy. 
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APP]~NDIX A--CRITICAL POINT AND SPECIAL SINGULARITY 

In this appendix we shall study singular integrals of the form 

f S(e,rl ) 
p.f. --Rl:f-de = Fs (17) (A.I) 

where S (e, 17) is a polynomial in e of degree ~ 1. 

We focus on the situation where a = a1 0 a} < 0 in the neighborhood of a point 
(Co, 170),-1 < I~o < +1,-1 < 170 < +1 where Ro R = 0, Roal = 0 and X -X" < o. 

We shall find that this integral (A.l) exists only in distribution sense as a function of 
17 and in fact takes the 'value' 

(A.2) 

Proof: We study in detail the prototype situation of Fig. 6 where R 0 a2 > 0 at (eo, 170) 
and the Mach cone intersects 17 = +1 at two e values both with lei < 1. The situation 
with Ii 0 a2 < I[) at (eo, 170) with the cone inverted may be handled by analogy. 

We note that for 171 < 170 the cone does not interact the line 17 = 171 so that clearly for such 
171, Fs (171) = o. 

Further for 171 > 170 the integral (A.I) has a 3/2-order singularity at two distinct e 
values on the line 17 = 171' By definition of the Hadamard Finite Part it follows that 
Fs (Til) = 0 her,c again. 

In order to demonstrate (A.2) we therefore need only show that 

In fact if we denote by 

f 
110 allowahle e 

it is clear from previous remarks about F~(17) that 

1: Ws (17) will be independent of 17 for 17 > 'Y/o, and that 

2: 
+1 

Ws(+l) = f Fs(rl) d17 
--J 
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(A.3) 

(A.4) 

for 17 > 170 



so that. it. suffices for us to prove that for any rl > rJo 

Interchanging order of integration in (A.4) we find that for any rJl > rJo 

111 

W () f f f ~iRL/3rJ) d'Yl de 8 rJl = p.. .'/ \" 
allowable e 110 

We now denot.e by V(e, rJd the integral 

We have previously seen that 

RoR > 0 

X - X" < 0 

is independent of rJ for rJ > rJo. 

Let us now evaluate the integral (A. 7) explicitly. 

We note that for any fixed rJ > rJo we may write 

(A.5) 

(A.6) 

(A.7) 

for rll > rJo 

in the situation of Fig. 6. Here 6(rJ) and eu(r/) are roots of Illi = 0 with et(rl) < (rj). 

If we now write 

we find that 

(A.8) 

Next making the change of variable e = (eu - ef)p/2 + (eu + el)/2 in (A.8) we obtain 

(A.9) 
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From (A.7) WE~ have seen that for 'Y/ > 'fJo the integral (A.9) is independent of 'Y/. Now 
letting 'YJ 1 'YJo we of course have €u (rJ) 1 eo and €d 'YJ) i eo and then obtain that 

1 1 
Ws = U(eo, 'YJo) ! (T=- p2)l/2 = 1l'U(eo, 'Y/o) 

--] 

Next we compute U(eo, 'YJo) in terms of S(eo, 'YJo). 

We note that 

R'~~l~''YJ) = U(e,'YJ) 

(A.lO) 

so setting e = eo and using L'Hopital's Rule as 'YJ 1 'YJo we obtain after simplification 

and then from (A.lO) we have 

(A.1l) 

Now in the situation as pictured in Fig. 6 Ii 0 a2 > O. In the situation where the Mach 
cone is inverted, R 0 (12 < 0 at ((,0' 'YJo), (s('e Fig. 7) but 'YJ2 < 'YJo in (A.6) causing a double 
sign reversal so that we obtain in either case 

(A.12) 

To complete our proof we note from Appendix B that at a point (eo''YJo) with R 0 Ii = 0 
and R 0 iiI :::: 0 we have that 

(A.13) 

so that finally from (A.12) 

(.4.14) 

which completes the proof of {A.2}. 

We an' now prepared to relate the foregoing to the evaluation of the am ('YJ) for m == 
0,1,2.at a critical point (eo,'YJo)' For simplicity we assume -1 < eo < 1 and -1 < 170 < 1 
in our discussion. 

WE~ recall that the am ('YJ) are defined as 

for rn:::: 0,1,2 
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In the cases m = 0 or m ::.= 1, em will of course be a polynomial of degree ~ 1 so that 
from item (A.2) we can immediately say that with S(€o,'I7o) = €~ 

for m = Oor 1 

In the notation of Section 7 we set Q:~~g ('170) = 0 and 

(A.I5) 

In the case m ::.= 2 we are dealing with 

This integral contains both a regular and a singular component. To isolate them let us 
note that if R' = (ae + be + c)1/2 then e = R'2 fa + S(e, '17) where S(e, '17) is a polynomial 
in e of degree ~ 1. Note that a ::.= S(eo, '170)' 

Thus we may write 

(A.le) 

Now the second integral on the right of' (A.I6) will equal 

by (A.2) but since a ::.= S( ~o, '170) this integral must equal 

-7re~ I 
-~."- ~~-,." -'-'-"'-'~'-~-".~-~ .. 

Ik . al x a21 e=:,eo 
'/-170 

(A.17) 

and we set 

as we have stated in Eq. (83). 

To pro('eed we must hav(' 
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But this integral equals 

in our notation of Section 7. 

To show 

it suffices to show that 

We proceed with the latter. In fact we compute (3m(rJ) for m = 0,1,2 at once. Suppose 
the Mach cone cuts our panel as in Fig. 6 and we consider rJ > rJo. Then with the notation 
R' = ,/-a /0:u -=e)(r=--~) we see that 

ell 
(1m(rJ) = ~! 

ee 
(A.l8) 

for m = 0,1,2 

The change of variable E = (Ell. + €t}/2 + (Ell. - Ef)p/2 transforms A.18 into 

+1 
(3m('1) = ~! K(~ -+:Jdl~;~-_.(Eu __ €t)p/2]m. dp for m = 0,1,2 

v - a __ 1 V 1 - p2 

N ow l(~tting rl 1 110 we have that Ell. 1 eo and EI. 1 eo so that in the limit 

+1 Cr'! dp 7r cr' (3m(11o) = --= = _._--v-a _} V1 - p2 v=a 

An almost identical argument shows that 

e ... 
1m(rl) :::: v=-;; ! eYlJ(i:·=·i)(Z=-e~) de 

ef 

transforms into 
+ I 

(A.19) 

form=0,1,2 

for m:::: 0,1,2 

1m(11) :::: v-a .I [(Eu + et}/2 + (eu - Et}p/Z]m [(eu - e,)/2r~ /i'=-~2 dp 

so that as 11 1 rJo, eli ! Eo, (/ T (0 we obt.ain 

1m(rJo) = 0 for m:::: 0,1,2 
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APPENDIX B.--~A LEMMA CONCERNING SUPERDOT PRODUCT 

In this brief appendix we prove an elementary lemma concerning the superdot product. 
This lemma comes into play in proving formula (A.2) of Appendix A. 

LEMMA: Let a, band c be three vectors in R3. Assume that (i) a 0 a = O. (ii) a 0 Ii =: 0 
and (iii) bob ~ O. Then 

(B.l) 

We rt,fer the reader to Ref. 3 for definition and properties of the superdot product. 

PROOF: Without loss of generality we may assume coordinates have been rotated so that 
az =: O. We may assume lal =f. O. 

Then a takes the form 

Let us write 
b =: bxz + by) + bzk 

then 0 =: axbx - ayby from (ii) or equivalently 

We now pro('('ed by cases. 

Case 1: Ifax = ay f. 0 then from (B.2) it follows that bx = by. Then 

(

ax ay 0) 
(1 • j) xc=: Det bx by bz 

Cx c y Cz 

=: ax(bycz - bzcy) - ay(bxcz - bzcx ) 

=: (axc x - aycy)bz 

C88(' 2: Here ax == -ay =f. O. 

It follows from (B.2) that bx =: -by 

Then again 
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and so 

:::: ax(bycz - bzcy) - ay(bxcz - bzcx) 

:::: (axcx - aycy) - bz 
:::: (0; 0 e)( -bz ) 

10;· b x el :::: Iii () elV -b 0 b once again. 

APP]~NDIX G-···DERIVATION OF THE SUPERSONIC 
OSCILLATORY P.D.E. 

We begin with the linearized potential flow equation: 

(C.l) 

Passing to Prandtl-Glauert coordinates after the introduction of scaled variables as 
indicated in equation (3) we proceed as follows: 

which results after simplifkation in 

(C.2) 

At. this point we introd1.lee $(X, Y, Z) via the equation 

<1> (X, Y, Z, T) :::: $(X, Y, Z)eiO(T MO()X) 
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The consequences of this transformation are as follows: 

Then equation (C.2) can be written 

2 2 A 2 2 A • a~ +fi n <I> -. 20 Moo<I> - 2z0Mooax = 0 

These equa.tions finally lead to: 

(C.3) 

which is Eq. (10) of the text. 
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Fig. 1 Geometry of the hyperboloidal element 

Fig. 2 Surface geometry 
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Fig. 3 Illustration of case (ii) 

Fig. 4 Illustration of case (iii) 
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(8) ( b) 

Fig. 5 Illustration of case (iv) 

Fig. 6 Case of critical point, with R 0 U2 > 0 
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Fig. 7 Cas(> of critical point, with R 0 a2 < 0 
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