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ABSTRACT

THE EFFECT OF TANTALUM ON THE STRUCTURE/PROPERTIES

. OF TWO POLYCRYSTALLINE NICKEL-BASE SUPERALLOYS:

B-1900 + Hf AND MAR-M247

The microstructure, phase compositions, and phase fractions were

studied in conventionally cast B-1900 + Hf and both conventionally cast

and directionally solidified MAR-M247 as a function of tantalum concen-

tration. The hot tensile and creep rupture properties of the solution-

ized and aged MAR-M247-type alloys were also determ_inedas a function of

tantalum level.

The effects of tantalum on the microstructure and phase composi-

tions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally

solidified) were found to be very similar. The addition of tantalum to

the as-cast and heat treated alloys was shown to cause the partial

replacement of the Hf in the MC carbides by Ta, although the degree of

replacement was decreased by the solutionizing and aging heat treatment.

The gamma prime and minor phase fractions (primarily MC-type carbides)

both increased approximately linearly with tantalum concentration. The

gamma prime phase compositions were relatively insensitive to tantalum

variations with the exception of the tantalum and/or hafnium levels.

Bulk tantalum additions increased the tantalum, chromium, and cobalt

levels of the gamma phase in both alloy series. The increase in the

concentrations of the latter two elements in the gamma phase was a

result of the decrease in the gamma phase fraction with increasing bulk
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tantalum concentration and constant gamma/gamma prime partitioning

ratio.

Tantalum additions increased the yield stress and ultimate tensile

strength of the directionallysolidifiedMAR-M247-typealloys and had no

significanteffect on ductility. The secondarycreep rate was decreased

and the creep rupture life was increasedin the directionallysolidified

MAR-M247-type alloys with the addition of tantalum. The mechanisms

believed responsible for these improvements are the increase in gamma

prime weight fraction and increased solid solution strengtheningof the

gamma and gamma prime phases with increasing tantalum content. Stress

coarsening of the gamma prime precipitates was also observed in the

creep samples tested at 982°C. The conventionally cast MAR-M247-type

alloys exhibited extremely low ductilitiesand premature failureswhich

were related to the large fraction of intergranular fracture surface

observed in the failed specimens.
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INTRODUCTION

Nickel-base superalloys possess a unique combination of properties

that have made them invaluable to the aircraft gas turbine industry.

They are highly resistant to fatigue, oxidation, and hot corrosion at

high temperatures while still possessing good strength. Since the

introduction of precipitation strengthened Ni/Cr/AI/Ti alloys in the

1940's, much research effort has been focused on improving superalloy

performance through optimization of composition and processing. For

example, this development effort has led to the highly alloyed cast

materials where subsequent improvements in mechanical properties were

obtained by directional solidification.

Recently, the additional factor of the availability of various

alloying elements has complicated the superalloy development strategy.

The Onited States imports nearly all of its Cr, Co, Ta, and Nb [i]. Cr

and Co typically comprise nearly twenty-five weight percent of a modern

cast superalloy, and the smaller alloying additions of Ta and Nb are

equally critical for alloy performance. The uncertainty of long term

supplies of these four "strategic elements" has caused concern in the

aerospace industry. Therefore, it is desirable to study the role of

these alloying elements in nickel-base superalloys, with the goal of

reducing or replacing them without degrading material performance. In

this context, the primary goal of this study is to determine the role

of tantalum in the microstructure and high temperature mechanical

properties of polycrystalline (both equiaxed and directionally solid-

ified) MAR-M247. A secondary objective is to determine the effects of

tantalum on the microstructure of a similar superalloy, B-1900 + Hf. By

studying both of these alloys (which are commercially important, cast



nickel-base superalloys), a broader understanding of the "tantalum

effect" will be obtained.

Microstructure of Nickel-Base Superalloys

Since the mechanical properties of a material are a direct conse-

quence of its microstructure, a logical starting point for this intro-

duction to nickel-base superalloys is an overview of superalloy micro-

structure. A modern cast nickel-base superalloy is composed of between

six and twelve intentionally added elements. Before considering a

commercial-type alloy, it would be instructive to first examine a

simplified system, the nickel-rich portion of the Ni/Cr/AI phase

diagram. The austenite matrix, the gamma phase, is a nickel-chromium

solid solution, with a small amount of A1 also being present. An

ordered, coherent precipitate, gamma prime, forms when the solubility

of A1 in the matrix is exceeded at the temperature of interest. The

composition of gamma prime is based on Ni3AI, with some solubility of

chromium. The gamma prime crystal structure is one of the ordered

face-centered cubic (FCC) variants, LI2, with the A1 atoms occupying

the corner positions and the nickel atoms in the face-centered posi-

tions of the unit cell. These alloys can be heat treated by solutioniz-

ing the alloy in the single phase region (above the gamma prime solvus

temperature), and subsequently aging at a lower temperature to precip-

itate a dispersion of fine gamma prime. For a given alloy, the particle

size and volume fraction are a function of the aging time and tempera-

ture.

Commercial nickel-base superalloys have some combination of Ti,

Nb, Ta, C, B, Zr, Hf, Co, Fe, W, V, and Mo additions to the Ni/Cr/AI

ternary. The additions of these elements in the proper proportions have
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been found to improve the mechanical properties of superalloys,al-

though these developmentshave been largely empirical. The mechanisms

responsible for these improvements in mechanical properties include

grain boundary strengtheningthrough carbide precipitationor elemental

segregation,solid solution strengtheningof gamma and gamma prime, and

altering other phase properties such as the anti-phaseboundary energy

of gamma prime. Most elementscontributeto alloy strengtheningthrough

more than one of these mechanisms. Typical alloying additions that

partition to the gamma phase are W, Mo, Co, Cr, and Fe, although the

gamma prime phase also contains lower levels of these elements [2].

Vanadium, Nb, and Ta have been shown to be nearly completely contained

in the gamma prime phase, while A1 and Ti partition less strongly than

the former elements to gamma prime [2]. Titanium, Nb, V, Ta, and W

occupy A1 positions in Ni3AI while Co substitutes for Ni [2, 3].

Molybdenum and Fe either replace A1 and Ni in Ni3AI, respectively[2],

or show no site preference [3]. The equilibriumgamma prime morphology

is determined by the difference between the gamma and gamma prime

lattice parameters, which is in turn determined by the alloying ele-

ments and their distributionbetween the two phases. A small mismatch

(less than 0.5%) leads to spheroidalprecipitateswhile larger misfits

cause gamma prime precipitates to become cuboidal and eventually

plate-like [4]. Elements such as Ti, Hf, Ta, Nb, Cr, W, Mo, Zr, and V

are used in the formation of borides and/or carbides. The presence of

these precipitates on the grain boundaries improves the creep resist-

ance of the material. A more detailed discussionof the minor phases is

" included later in this section.



The gamma prime phase forms in three manners in as-cast nickel-

base superalloys, although there is some disagreement on nomenclature.

Primary gamma prime, also known as gamma/gamma prime eutectic, the

"white etching phase", gamma prime nodules, and in some cases, degen-

erate gamma/gamma prime, is the product of the final, solute-rich

interdendritic liquid [5]. Primary gamma prime is rich in AI, Ti [5,

6], and Hf [7, 8], and depleted in Cr, W [5, 6], and Co [6], relative

to the gamma/gamma prime matrix. Primary gamma prime typically takes

the form of degenerate pools or lamellar rosettes. In the latter case,

particles of gamma prime are separated by gamma ribbons in a fan-like

arrangement. Degenerate eutectic pools consist of large areas of

spherulitic gamma prime, often with strips of gamma separating gamma

prime particles. All or most of the gamma phase in the gamma/gamma

prime eutectic dissolves into the gamma prime phase after solidifica-

tion, a result of the enlarged gamma prime phase field at lower tempera-

tures [5, 9]. On further cooling, the second type, coarse gamma prime,

forms by solid state precipitation from the supersaturated gamma phase.

The morphology of coarse gamma prime is cuboidal, with the cube edges

approximately 1 micron in length. The last type, fine gamma prime,

precipitates at lower temperatures as spheroids typically less than 0.5

micron in diameter. Fine gamma prime is thought to nucleate homoge-

neously in alloys with small gamma/gamma prime mismatch [3]. Uniformly

dispersed fine gamma prime provides maximum creep resistance, whereas

primary gamma prime and coarse gamma prime are less effective [i0].

However, primary gamma prime is thought to improve the ductility of

transverse grain boundaries [II]. Current commercial heat treatment

schedules for directionally solidified (DS) and single crystal materi-



als are designed to maximize creep resistance by solutionizing and

homogenizing the as-cast gamma prime and then reprecipitating a uniform

dispersion of fine gamma prime.

" The primary role of carbon in nickel-base superalloys is to

precipitate carbides along the grain boundaries. The presence of

discrete carbide particles along the grain boundaries has been shown to

inhibit grain boundary sliding, an important high temperature deforma-

tion mechanism. Four distinct classes of carbides have been observed in

superalloys, namely MC, M6C, M7C3, and M23C6 . The "M" in the compounds

represents a carbide forming metallic element, but typically is compos-

ed of a combination of metallic elements. The exact composition is a

function of carbide type and heat treatment.

MC carbides are among the first solidification products. The

principal metallic elements that compose MC carbides are, in preferred

order of formation, Ta, Nb, Ti, and V [12], with Hf showing behavior

that is not easily ranked (see below for a detailed discussion of Hf

effects). Molybdenum and W also substitute in the FCC structure which

MC carbides possess. It is possible for several chemically distinct MC

carbides to co-exist in a given alloy. In addition, the morphology of

MC carbides is a function of cooling rate and, in some cases, melt

composition. A slow solidification rate leads to an interdendritic

network of script carbides; a rapid solidification rate leads to cubic

or "blocky" carbides [12, 13]. In fact, the effects of various relative

solidification rates on MC carbide morphology have been observed with

section size differences [14].
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The addition of Hf to nickel-base superalloys alters the composi-

tion and, in some cases, the morphology of the MC carbides. Microstruc-

tural comparisons of the same alloy with and without Hf have shown that

Hf additions increase the number of chemically distinct MC carbides; in

B-1900, there was an increase from one MC to four MC carbides with Hf

additions, as determined by x-ray diffraction [15]. The range in

measured lattice parameters indicated a variation in Hf level among the

four MC carbide types from nil to nearly pure HfC. The x-ray diffrac-

tion data were supported by microprobe analysis of individual carbides

which has also shown that the Hf levels vary within individual carbides

[8, 15, 16]. This variation has been observed as Hf-rich rings around

MC carbides or Hf-rich carbide segments. It has been suggested that the

Hf inhomogeneities are a result of significant changes in the chemical

activity of Hf during carbide formation [15]. This hypothesis implies a

time dependency of MC composition, i.e. Hf-rich rings form in the

latter stages of carbide formation. Hafnium additions have also been

found to refine the MC carbide structure from an interconnected script

network to discrete, blocky particles [15, 17], although this effect

was not observed in a similar study [18].

While MC carbides are a solidification product, the other three

types of carbides, M7C3, M23C6, and M6C , are formed by solid state

precipitation. M7C 3 carbides are only found in simple Ni/Cr/AI/Ti

alloys and are not stable in complex superalloys [3]. M23C6 carbides

form in the temperature range from 760°C to 980°C, while M6C carbides

precipitate in the temperature range of 815°C to 980°C [12]. Chromium

is the primary metallic element in M23C6 carbides, with lesser amounts

of Ni, Mo, W, and other refractory elements substituting for Cr. The



M6C carbides are composed mainly of W and Mo. Both M23C6 and M6C

carbides have large lattice parameters (greater than 1.0 nm) and

complex cubic crystal structures.The morphology of M23C6 carbides is

. either in the form of a nearly continuous layer of platelets or dis-

crete, blocky particles; both types are often located at the grain

boundaries.A cube-on-cubeorientationrelationship({i00} y/y, //

{i00 }carbide) has been observed between M23C6 carbides and the matrix

phases [6]. Such a relationshipis reasonable since the M23C6 carbide

phase has a lattice parameter that is almost exactly three times that

of the matrix phases. An identical orientation relationshiphas also

been found in austenitic stainless steels [19]. M6C carbides can also

form as discrete grain boundary precipitates,but in some cases take on

an intragranularWidmanstittenmorphology.

The sourcesof carbon for the formationof M6C and M23C6 carbides

are degenerationof MC carbides or carbon that remained in solution.

The former case is thought to be more significant in light of the

observed breakdown of MC carbides and subsequent precipitation of

secondary carbides during long term aging. The following mechanisms

have been proposed for MC degenerationand precipitationof M23C6 and

M6C carbides [12]:

MC + gamma . M23C6 + gamma prime

MC + gamma . M6C + gamma prime

Although these reactions are not chemically balanced, they do illus-

trate three factorsinfluencingsecondarycarbideprecipitation.First,

the amounts of M6C and/or M23C6 carbides that form will depend on the

relative stabilitiesof the three carbide classes.For example, low Cr

and high W and Mo levels favor the formation of M6C carbides. On the



other hand, very stable MC carbides, such as TaC and NbC, will slow the

formation of M23C6 and M6C carbides [12]. Secondly, the precipitation

of secondary carbides will alter the matrix phase compositions, pos-

sibly leading to phase instabilities. The formation of M23C6 and M6C

carbides removes elements that partition to the gamma phase, W, Cr, and

Mo, and releases elements that form gamma prime, Ti, Ta, and Nb. These

compositional changes lead to the development of gamma prime envelopes

around MC carbides and gamma prime coatings along the grain boundaries

after long term aging treatments [20, 21]. Lastly, secondary carbides

will tend to precipitate in the vicinity of MC carbides. The formation

of M23C6 and M6C carbides along the grain boundaries is a result of the

degeneration of intergranular MC carbides.

The precipitation of relatively small, discrete carbides along the

grain boundaries improves the creep resistance of superalloys. Unfortu-

nately, other forms of carbides can have a detrimental effect on

mechanical properties. For example, an interdendritic network of hard,

brittle MC carbides provides likely sites for crack initiation and

paths for rapid crack propagation [17]. Similar losses in ductility

result from continuous or nearly continuous carbide layers on grain

boundaries as well as the presence of M6C carbides with an acicular

morphology.

Topologically close packed (TCP) phases are an undesirable micro-

constituent in nickel-base superalloys. These intermetallic phases,

known as mu, sigma, and Laves, form after extended high temperature

aging of some alloys. Their occurrence has been related to poor compo-

sition control. TCP phases form in a plate morphology from the gamma

phase parallel to the {lll}y [22]. The plate morphology can cause
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significant reductions in creep rupture life and tensile ductilityby

providing sites for crack initiationand propagation [23]. In addition,

because of their large Mo and W content, TCP phases would be expected

" to weaken an alloy due to reduced solid solution strengtheningof the

matrix phases. The phase compositionscould alsobe altered such that

the gamma/gammaprime mismatch changes, and this could possibly affect

the gamma prime morphology [21]. Several approaches have been adopted

to predict the formation of TCP phases, particularlysigma. The first,

PHACOMP (for PHAse COMPutation), determines if the gamma phase is

supersaturated with solute elements by applying electron vacancy

theory. A major limitationof this method is that accurate gamma/gamma

prime partitioning ratios must be available to calculate the gamma

phase composition [24]. The second approach, SIGMA-SAFE, determines a

"supersaturationnumber" and calculates an equivalent Ni/Mo/AI phase

diagram at constant chromium level [24]. The predicted pseudo phase

diagram is particularlyattractivefrom an alloy developmentstandpoint

where it is desirable to assess the effects of alterations in alloy

composition theoretically. Both PHACOMP and SIGMA-SAFE have been

effective in predicting the susceptibility of individual heats of

material to sigma formation.

Small additionsof boron (0.005to 0.02 wt.%) and zirconium (0.005

to 0.I wt.%) are frequentlymade to polycrystallinenickel-base super-

alloys. Despite their low bulk concentrations, B and Zr markedly

enhance the creep rupture properties of superalloys. The beneficial

effects of B and Zr are thought to result from the segregation of

atomic B and Zr to the grain boundaries [12], although Zr has been

shown to nucleate MC carbides [25] and M3B2 or MBl2-type borides may

9



form along the grain boundaries. The large atomic size differences of B

and Zr relative to the transition metals would be expected to increase
w

the atomic density of the grain boundaries. An increased atomic density

along the grain boundaries would decrease the grain boundary diffusion

coefficients. This proposed mechanism is supported by the increased

microstructural stability of transverse grain boundary phases with Zr

and B additions to a model alloy [26].

An additional factor to consider in superalloy microstructures is

the potential for alloying element interactions. For example, the

addition of a stronger MC carbide forming element, such as Hf, will

release elements otherwise contained in the MC carbides to the gamma

and gamma prime phases [28]. The redistribution of Ti, Ta, and Nb to

the matrix phases would be expected to increase the gamma prime volume

fraction, as well as alter other phase properties. Another manner in

which interactions can occur is by one element affecting the partition-

ing of another element; e.g. Ta additions increase the A1 content of

the gamma phase [27]. These secondary effects should be considered when

examining bulk alloy compositional variations.

Control of grain structure is vital in cast nickel-base superal-

loys. The optimal grain size for conventionally cast alloys is a

compromise between desired creep rupture and tensile properties [12]. A

fine grain size is necessary for tensile properties because of Hall-

Petch-type strengthening. A coarse grain size is desirable to minimize

grain boundary sliding and diffusion at high temperatures. The relative
=

importance of these two factors is dependent on stress and temperature.

Directional solidification is an extreme case of grain structure

control which virtually eliminates transversely oriented grain bound-
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aries. Directionally solidified alloys have been shown to possess

substantially enhanced creep resistance and ductility, as well as

increasedfatigue life, relative to their conventionallycast counter-

parts [6, 9, 29]. These improvementsare a resultof the eliminationof

transversegrain boundaries and the orientationof the preferred [001]

directionparallel to the stress axis [9].

StrengtheningMechanisms for Nickel-BaseSuperalloys

Becauseof the high temperaturesand stresses at which gas turbine

engines operate, nickel-base superalloysare typicallystrengthenedby

a variety of mechanisms. The mechanisms can be divided into three

classes: gamma strengthening,gamma prime strengthening,and precipita-

tion hardening.Each of these strengtheningmechanismswill be examined

in turn.

The mechanismsthat may be responsiblefor strengtheningthe gamma

matrix include changes in lattice parameter, elastic moduli, stacking

fault energy (SFE), and possibly short range ordering [3, 30, 31] as

alloying additions are made. Changes in lattice parameter,which lead

to atomic size misfit effects, and attractive and repulsive interac-

tions between solute atoms and dislocations from changes in elastic

moduli can be described using conventional solid solution hardening

theory.On the basis of nickel binary alloys,Ti, AI, Cr, Mo, and W are

potent solid solution hardeners of Ni [32, 33]. A reduction in SFE

would also strengthen the gamma matrix due to increased resistance to

dislocation cross-slip. At high temperatures, the addition of slow

diffusing elements, such as Mo and W, would also contribute to gamma

strengthening[3].
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The gamma prime phase is hardened by solid solution additions and

changes in the anti-phase boundary (APB) energy. Complications due to

site occupancy, non-stoichiometry, and temperature effects (to be

discussed below) make solid solution hardening experiments difficult to

interpret, but Mo, Cr, W, Nb, and Ta are considered effective gamma

prime strengtheners [3, 34]. The larger contribution to gamma prime

strengthening from alloying additions is believed to be due to changes

in the APB energy. Because gamma prime is an ordered intermetallic

phase, the Burger's vector, a/2 <II0) , of a perfect dislocation in

disordered FCC metals (including the gamma matrix of superalloys) is

only a partial dislocation in gamma prime. Thus, the passage of one

such dislocation introduces a high energy region known as an anti-phase

domain. The passage of a second, identical dislocation is necessary to

restore the ordered structure. Typically, the dislocations in gamma

prime are observed in pairs, separated by a strip of anti-phase domain;

the spacing is determined by the repulsive force between the disloca-

tions and the magnitude of the APB energy. Elements that are thought to

affect the APB energy and strengthen gamma prime include Ti, Nb, Ta,

and W. An increase in the yield stress of gamma prime with increasing

temperature has also been well documented. It is postulated that only

the lead dislocation cross-slips to a {i00} plane from a {iii} plane,

which becomes easier with increasing temperature. The dislocation pair

is immobile until the trailing dislocation is also able to cross-slip.

The decrease in yield stress observed above 750°C is associated with

the cross-slip of both dislocations to {100} planes where cube slip

occurs. This transition temperature is sensitive to alloying additions. "

12



Two of the most important strengthening mechanisms for nickel-base

superalloys, order and coherency strain hardening, are related to the

presence of coherent gamma prime precipitates in the microstructure.

Coherency strains are the result of lattice mismatch between gamma and

gamma prime, with the subsequent strain field interacting with the

stress fields of dislocations. Coherency strains are a function of

alloy additions and temperature. Order hardening arises from the

creation of anti-phase domains (discussed above) by dislocation shear-

ing of the ordered precipitates. Order hardening is not a factor with

very large precipitates because the particle is then looped by the

dislocations rather than sheared by them. A high volume fraction of

evenly dispersed, fine gamma prime precipitates has been shown to

impart maximum creep resistance to a high performance, cast superalloy

(MAR-M200) [I0]. Order hardening has been shown theoretically to be the

largest contributor to alloy strength at room temperature and that

coherency hardening and solid solution hardening of gamma and gamma

prime have an equal, though lesser role [35].

Creep Mechanisms in Superalloys

The limiting factor in many superalloy applications is creep

rupture behavior, with creep being defined as time dependent deforma-

tion at constant stress and T > 0.6 T (absolute melting temperature).m

Creep occurs in polycrystalline materials by a combination of mecha-

nisms: grain boundary sliding, dislocation motion, and diffusional

creep. Grain boundary sliding is minimized in superalloys by the

presence of intergranular carbides and will not be considered further.

The remaining creep processes will be briefly discussed below.

13



The creep curves for superalloys, as well as most metals, can be

divided into three stages based on changes in the creep rate: a)

primary creep (d£2/d2t < 0), b) secondary or steady state creep

(d_/d2t = 0), and c) tertiary creep (d_/d2t > 05. The secondary creep

rate is one of the crucial alloy design parameters because a component

spends most of its life in this stage. The secondary creep rate is

determined by the temperature, stress, and of greatest interest to this

study, microstructure. The onset of tertiary creep is characterized by

either the development of grain boundary cavities and/or cracks, or

microstructural instabilities such as grain growth or changes in

precipitate distribution [36]. In either case, the end result is creep

rupture failure.

The creep mechanisms that apply to nickel-base superalloys are

thermally assisted processes. Diffusional creep, both within the

lattice (Nabarro-Herring creep5 and along the boundaries (Coble creep),

is dependent on diffusion coefficients, which in turn follow an Arrhen-

ius-type temperature dependence. The dislocation creep rate is increas-

ed with increasing temperature as a result of greater ease of disloca-

tion cross-slip and climb. Each of these processes has an associated

activation energy, which is often the activation energy for self-diffu-

sion. On this basis, secondary creep rate (_) has been related tos

stress and temperature using a power law expression:

_s = A [ Oa/E(TS] n exp(-Qc/RT) (15

where o is the applied stress, n is the stress exponent (3 to 5 for
a

metallic solid solutions), E(T) is Young's modulus corrected for

temperature, Qc is the apparent activation energy for creep, and A is a "

structure/material constant. In precipitation hardened materials, such

14



as superalloys, n has been found to range from 6 to 75 and to be

temperature dependent, and Qc has been reported to be several times

larger than the activationenergy for self-diffusion.An alternateform

for power law creep has been suggested for precipitation hardened

alloys [37, 38, 39, 40] :

= A' [(O - O )/E(T)] n exp(-Q/RT) (2)
s _ r

where 0 is the "resisting stress" from the precipitates, Q is ther

activation energy for creep, and A' is another structure/material

constant. The quantity ( O - o ) represents the "effective stress"
r

acting on the glide dislocations. With this modification, the value of

n is 3 to 4 and independent of stress, and Q is equal to the activation

energy for self-diffusion. The magnitude of the resisting stress is a

function of temperature and microstructure.

To summarize this overview, it should be emphasized that mechan-

ical properties are related to microstructure. Tensile and creep

rupture properties of superalloys can be enhanced by optimizing the

fraction, distribution, and composition of the microconstituents. As

has previously been stated, a high volume fraction of uniformly dis-

persed, fine gamma prime precipitates provides maximum creep rupture

resistance. The diffusion coefficients, and, therefore, the contribu-

tion of thermally assisted deformation mechanisms, can be decreased by

the additions of certain alloying elements, with refractory metals

being effective for reducing lattice diffusion and B and Zr being

effective for reducing grain boundary diffusion. Solid solution addi-

tions to gamma and gamma prime affect the gamma/gamma prime mismatch,

strength of the individual phases, stacking fault energy, and the APB

energy of gamma prime. While small, discrete intergranular carbides

15



inhibit grain boundary sliding, other carbide forms are very deleteri-

ous to mechanical properties, particularly ductility. In light of these

many interrelationships, mechanical property data must be considered

with an understanding of the changes in microstructural features when
i

any modifications are made to alloy composition or processing.

Overview of the Present Study

Tantalum additions have been made to nickel-base superalloys in

order to improve their mechanical properties by altering their micro-

structures. Tantalum is a strong MC carbide forming element and can be

expected to alter the type or types of MC carbides present, their

stability, and possibly the secondary carbide precipitation. Tantalum

is thought to partition to the gamma prime phase, where its addition

would be anticipated to increase the volume fraction of gamma prime and

strengthen the gamma prime by solid solution hardening and possibly

changes in the APB energy. The Ta present in the gamma phase may also

add an increment of strengthening by solid solution hardening and

decreasing the rate of thermally assisted deformation by slowing down

diffusion. The secondary effects of Ta additions, such as alterations

in the distribution of other alloying elements among the gamma, gamma

prime, and carbide phases, may also have a role in the observed Ta

effects.

The primary goal of this research was to examine the effects of Ta

on the microstructure and high temperature mechanical properties of

both equiaxed and directionally solidified MAR-M247. A secondary part

of this study was to determine the effects of Ta on the microstructure

of another cast nickel-base superalloy, B-1900 + Hf. B-1900 + Hf and

MAR-M247 nominally contain 4.0 and 3.0 weight percent Ta, respectively,
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and otherwisediffer significantlyonly in their Mo and W contents (see

Table I). Several recent studies [27, 41] have examined the effects of

Ta on single crystal MAR-M247, but the alloy series were stripped of

the grain boundary strengthenersB, Hf, Zr, and in some cases, C. By

combiningthe results of these two previous studieswith the results of

this study on B-1900 + Hf and MAR-M247 in polycrystallineform and with

grain boundary strengtheners, a broader understanding of the "Ta

effect"in nickel-basesuperalloyscan be attained.This informationis

not only desirable from the standpoint of achieving a fundamental

understandingof the beneficial effects of Ta, but it will also allow

guidelinesto be formulatedin the search for potentialsubstitutesfor

this strategicelement.
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Table I: Nominal Alloy Compositions

B-1900 + Hf

C Cr W Co Mo A1 Ti Ta Zr B Hf Ni

w/o 0.i0 8.00 -- i0.00 6.00 6.00 1.00 4.00 0.100 0.015 1.25 Bal.

a/o 0.48 8.78 -- 9.69 3.57 12.70 1.19 1.26 0.063 0.079 0.40 61.79

MAR-M247

C Cr W Co Mo A1 Ti Ta Zr B Hf Ni

w/o 0.15 8.50 I0.00 i0.00 1.00 5.50 1.00 3.00 0.i00 0.015 1.50 Bal.

a/o 0.75 9.78 3.25 10.15 0.62 12.19 1.25 0.99 0.066 0.083 0.50 60.36

v •



EXPERIMENTAL PROCEDURE

A. Materials

The MAR-M247-typealloys used in this study were prepared from a

master metal heat based on MAR-M247 suppliedby Cannon-MuskegonCorpor-P

ation. The master metal was cast without C, Hf, Ta, B, and Zr. These

five elements were added to the vacuum furnace charge in order to vary

their levels in the final compositionsof the seven polycrystalline

alloys in the present study and the six single crystal alloys that were

utilized in another study. The melt additions and casting of all the

MAR-M247-type alloys were performed by Howmet Turbine Components

Corporation.Two directionallysolidified (DS) alloys were cast using

the withdrawal process with the growth axis approximatelyparallel to

[001].Alloy C containedzero tantalum and alloy D containedthe normal

Ta level of about 1 atomic percent or 3 weight percent (see Table 2).

The equiaxed alloys were cast in inoculated shell molds with two

different inoculants. It has been observed in superalloys that while

inoculants affect the surface grain size, they have no effect on the

internal grain size. Two low Ta alloys and one normal Ta alloy were

cast using the inoculantfor fine surfacegrain size, and two normal Ta

alloys were cast utilizing the inoculant for coarser surface grain

size. Regardless of inoculant,the cast-to-shapeequiaxed tensilebars

had a columnar grain structure that was oriented radially to the

specimen axis. It should be noted from the compositions contained in

Table 2 that AI, Ti, Cr and Co also systematicallyincreased as Ta was

added to the alloys.
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Table 2: Alloy Compositions

(AtomicPercent)

C Cr W Co Mo A1 Ti Ta Zr B Hf Ni

B-1900+ Hf A 0.52 8.45 -- 9.58 3.57 13.40 1.74 1.34 0.019 nil 0.49 60.88

B 0.47 8.46 -- 9.48 3.59 12.92 1.78 0.67 0.019 nil 0.50 62.13

C 0.51 8.77 -- 9.63 3.63 12.68 1.79 0.00 0.018 nil 0.48 62.50

MAR-M247 A1 0 54 9.58 3 01 9.59 0.31 10.80 1.08 0.07 0.045 0.071 0.51 64.41O ' e

(Equiaxed) A2 0.54 9.61 2.98 9.63 0.31 10.99 1.08 0.23 0.052 0.033 0.50 64.05

B1 0.50 9.98 3.16 10.33 0.36 12.05 1.17 0.88 0.046 0.105 0.56 60.'86

B2 0.50 9.90 3.11 9.95 0.35 11.58 1.12 0.71 0.052 0.105 0.52 62.11

B3 0.45 9.76 3.14 9.97 0.36 12.22 1.14 0.87 0.046 0.066 0.43 61.56

MAR-M247 C 0.49 9.37 3.00 9.41 0.30 10.61 0.94 0.00 0.036 0.060 0.40 65.38

(D.S.) D 0.51 9.57 3.11 9.75 0.35 11.86 1.02 0.97 0.036 0.072 0.41 62.35



The equiaxedB-1900 + Hf-type alloys were suppliedby TRW, Incorp-

orated. The compositionsof these three alloys are also contained in

Table 2. Alloy C contains zero Ta while alloysB and A containone-half

- and the normal Ta level (about1.34 atomic percent),respectively.

B. Heat Treatment

The gamma prime solvus temperatureswere determinedby heat treat-

ing thin (_ Imm) disks of each alloy for four hours in 25°C increments

near the solvus temperature, followed by a water quench. The lowest

temperature that resulted in the complete dissolution of the coarse

as-cast gamma prime was used as the solutionizingtemperature (see

Table 3). Differentialthermal analysiswas not utilizedbecause of the

difficultiesin interpretingthe many transition temperaturespresent

in these alloys, most of which are heating rate dependent. All alloys

were solutionizedwithout the occurrence of any incipientmelting. As

is shown in Table 3, the addition of Ta increased the gamma prime

solvus temperaturein both MAR-M247 and B-1900 + Hf.

The bars for microstructuralstudies and mechanical testing were

solutionized for four hours at temperature in still air. It took

approximatelyone-half hour to move the samples into the furnace hot

zone. The bars were then quenched with an argon spray. All alloys were

given the standard MAR-M247 aging treatment of 20 hours at 8710C

followed by an air cooling. The temperatureswere kept within 5°C of

the intended values during both the solutionizing and aging heat

treatments.

C. Metallographyand Microscopy

Specimensfor optical and scanning electronmicroscopy (SEM)were

mechanicallyground through 600 grit silicon carbide paper. The final
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Table 3: Heat Treatment Schedule
I

Alloy Solution Treatment

B-1900 + Hf A 1250°C/ 4 hours, argon quench
B 1250°C/ 4 hours, argon quench
C 1225°C/ 4 hours, argon quench

MAR-M247 A 1225°C/ 4 hours, argon quench
(Con. Cast) B 1250°C/ 4 hours, argon quench

MAR-M247 C 1225°C/ 4 hours, argon quench
(D.S.) D 1250°C/ 4 hours, argon quench

All alloys were aged at 871°C for 20 hours and air cooled
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polishing consisted of 6 micron diamond paste and 0.05 micron alumina

slurry. The etchants employed were Marble's reagent and a solution of

33% nitric acid, 33% acetic acid, 33% distilled water and 1% hydro-

. fluoric acid. Marble's reagent consists of 50ml hydrochloric acid, 50ml

distilled water and 10g hydrated copper sulfate. In some cases, this

solution was diluted with water.

Thin foils for transmission electron microscopy (TEM) and scanning

transmission electron microscopy (STEM) were initially mechanically

ground to approximately 0.15 mm in thickness. The 3mm diameter punched

disks were then thinned with a Fischione twin-jet electropolisher. The

electrolyte was a fresh solution of 10% perchloric acid in absolute

ethanol with a current of approximately 40 mA. It was found that the

best polishing temperature varied between -35°C and -15°C, with the

lower temperatures being preferred for the low Ta alloys. The operating

voltage was a strong function of solution temperature.

The SEM was performed with a JEOL 35C instrument equipped with a

KEVEX 8000 energy dispersive x-ray system. A software computer program,

MAGIC V, was used to correct and quantify the x-ray data. The thin foil

specimens were examined with a JEOL JEM-100CX TEM/STEM at accelerating

voltages of 80, I00, or 120 kV. A KEVEX 7000 energy dispersive x-ray

system with suitable software was used for STEM microanalysis.

D. Phase Extraction

The phase extractions were performed using a modification of the

standard techniques [27, 44]. Disks weighing approximately 1 gram were

ground through 600 grit silicon carbide paper and electropolished with

a solution of 20% sulfuric acid in methanol at room temperature. This

treatment was used to remove surface oxides and any possible strain
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effected layers. The disks were then cleaned and weighed. Each specimen

was suspended in a weighed beaker containing an aqueous solution of 1%

ammonium sulfate and 1% citric acid. The entire sample, except for the

small portion in an alligator clip above the solution, was dissolved. A

stainless steel cathode and a current density of ImA/mm2 were used. The

residue, containing the gamma prime and minor phases, was allowed to

settle for several days before decanting the solution. After rinsing

with distilled water, the residue was dried and weighed in the beaker.

The gamma prime was then dissolved with a solution of 50% hydrochloric

acid in methanol. The beaker contents were again rinsed, dried, and

subsequently weighed. The weight fraction of gamma prime and minor

phases, predominately MC carbides, was obtained by dividing the respec-

tive residue weights by the weight of the dissolved portion of the

sample. Three measurements were made for each alloy.

E. Phase Composition and Identification

The compositions of the microconstituents were determined by a

combination of direct measurement and mass balance. The composition of

the gamma prime and minor phase residue was determined with the induct-

ively coupled plasma, atomic-emission-spectroscopy technique by

NASA-Lewis Research Center in Cleveland, Ohio. Chemical analysis of the

minor phase residue was performed with the EDS system on the SEM.

Knowing the phase fractions, bulk alloy composition, and the gamma

prime and carbide residue compositions, the gamma and gamma prime phase

chemistries were calculated based on mass balance.

X-ray diffraction was used to determine the gamma prime lattice

parameters and to identify the phases present in the minor phase

residue. The Debye-Scherrer method was utilized for the gamma prime
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lattice parameter and a diffractometer was employed with a scan rate of

l°/minute for the minor phases. In both cases, filtered Cu Ke radiation

was used. The lattice parameters were calculated using Cohen's method.

" The minor phases were identified by comparing the peak positions and

intensities with data in the literature.

The compositions of individual MC carbides were analyzed in-situ

with EDS in the SEM. However, to minimize the matrix contribution to

the x-ray signal, the in-situ EDS was limited to particles larger than

about 1 micron in size.

F. Mechanical Testing

Hot tensile tests were carried out at 540°C (1000°F), 760°C

(1400°F), and 982°C (1800°F) on the heat treated MAR-M247 type alloys.

Alloys A1 and B1 were selected from the five conventionally cast alloys

for all mechanical testing. The testing was done in air in accordance

with ASTM specification E21-79. The 0.2% offset yield stress, ultimate

tensile stress, percent elongation, and reduction in area were measur-

ed.

The creep rupture testing was carried out under constant stress at

760oC (1400°F), 871°C (1600°F), and 982°C (1800°F) in air on the

MAR-M247-type alloys. The stress levels were selected to maximize the

range of rupture times and steady-state creep rates. Testing was termi-

nated either at rupture or after a specified number of hours. The creep

rupture testing was performed according to ASTM E139-79. All high

temperature mechanical testing was performed by Joliet Metallurgical

Laboratory, Joliet, Illinois.
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RESULTS

A. Microstructure and Phase Compositions

i. As-Cast Microstructure

The microstructures of as-cast MAR-M247 and B-1900 + Hf are

composed of gamma, gamma prime, MC carbides, and gamma/gamma prime

eutectic regions. These microconstituents are shown in the SEM micro-

graph of Figure i. The eutectic regions either take the form of coarse

degenerate pools or fine gamma/gamma prime rosettes. The coarse gamma

prime in all cases is cuboidal and approximately 1 micron in size. It

appears dark and etched back from the gamma matrix. The MC carbides

appear as white particles in relief.

The gamma/gamma prime eutectic regions are non-equilibrium solid-

ification products which are located primarily along the grain bound-

aries. The morphology of the eutectic pools is a function of Ta content

in the B-1900 + Hf-type alloys; a dependency of eutectic morphology on

Ta concentration was not observed in either the conventionally cast or

DS MAR-M247. A typical structure for the MAR-M247-type alloys, regions

of both degenerate gamma/gamma prime and fine gamma/gamma prime

rosettes, is shown in Figure 2. When Ta is present in the B-1900 + Hf-

type alloys, a portion of the eutectic regions are degenerate, with the

remaining eutectic being of the rosette type. A reduction in the Ta

concentration to one-half of the original level decreases the volume

fraction of degenerate eutectic in the alloy from 7.8% to 2.5%. The

absence of Ta eliminates the degenerate structure altogether. Figure 3

illustrates this progression in eutectic pool morphology with Ta

variation. EDS analysis of the eutectic pools in both alloy series

shows that they are rich in Ta, Ti, Hf, and A1 and depleted of W, Mo
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Figure I: SEM micrograph of the normal Ta B-1900 + Hf alloy in the
as-cast condition. Note the gamma/gamma prime eutectic (E),
the coarse gamma prime (GP) and the MC carbides (C).
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Figure 2: SEM micrograph of the normal Ta DS MAR-M247 alloy in the
as-cast condition. Note the degenerate (D) and rosette-type

(R) gamma/gamma prime eutectic regions.
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Figure 3: Optical micrographs of the B-1900 + Hf-type alloys in the
as-cast condition. Note the change in the eutectic morphology
as a function of Ta content.
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(when they are present in significant amounts in the alloy), Cr, and

Co. These observations are consistent with the dendritic segregation

observed in single crystal MAR-M247 [27, 41]. The degree of segregation

in the as-cast structure is greater in the B-1900 + Hf-type alloys than

in the MAR-M247-type alloys (possibly a result of different casting

practice), with the degenerate eutectic regions being more heavily

cored than the rosette structure in the same alloy.

The MC carbides in MAR-M247 (DS and equiaxed) and B-1900 + Hf have

two morphologies and two surface topographies after etching. The MC

carbides can be acicular or blocky, as illustrated in the optical

micrographs of Figure 3 for B-1900 + Hf. Similar to the degenerate eut-

ectic pools, the acicular carbides are only present in the Ta contain-

ing alloys of B-1900 + Hf. No significant number of acicular MC car-

bides were observed in any of the MAR-M247-type alloys. This observa-

tion is in disagreement with previous research on MAR-M247 (with Hf)

[45], and is probably due to a difference in cooling rates employed

during casting [14]. The surface topography of the MC carbides were

either smooth or mottled as shown in Figure 4. Both alloy systems

contained carbides with the two surface topographies. In-situ EDS

analysis showed some correlation between surface topography and com-

position; smooth carbides tended to be Ta or Ti-rich and mottied

carbides contained significant amounts of Hf. The EDS results also

indicate that many of the MC carbides have a Hf-rich mottled shell

around them.

The x-ray diffraction phase identification from the minor phase

residues indicates that MC carbides are the major constituent of the

residue and that the MC carbide type is a function of Ta level. Table 4
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Figure 4: SEM micrograph of the normal Ta B-1900 + Hf alloy as-cast
showing the two MC carbide surface topographies, mottled (M)
and smooth (S).

31



Table 4: Lattice Parameters of MC Carbides

in the As-Cast Alloys

Alloy Bulk Ta Level Abundant MC Less-Abundant MC

(a/o) a relative a relative

(n_) intensity (n°) intensity

B-1900 + Hf A 1.34 0.440 vs 0.450 vw
B 0.67 0.439 vs 0.451 m
C 0.00 0.458 vs 0.435 m

MAR-M247 A1 0.07 0.458 vs 0.437 w
(Con. CaSt) B1 0.88 0.439 vs 0.451 vw

MAR-M247 C 0.00 0.457 vs 0.437 m
(D.S.) D 0.97 0.440 vs 0.451 vw

vs:very strong s:strong m:medium w:weak vw:very weak

32



lists the MC carbide lattice parameters and their respective relative

intensities for the as-cast alloys. Because Ti, Ta, and Hf are the

. strong MC carbide forming elements contained in B-1900 + Hf and

MAR-M247, an analysis to identify the MC carbides in Table 4 can be

attempted using the lattice parameters of the pure MC carbides of _hese

three strong MC carbide formers. The lattice parameters of HfC, TiC,

and TaC are 0.464, 0.433, and 0.446 nm, respectively. The lattice

parameter of the abundant* MC carbide in both as-cast alloy series

shifts from 0.457-0.458 nm to 0.439-0.440 nm when Ta is added to the

alloy. It is suggested, on the basis of the large lattice parameter,

that the abundant MC carbide in the zero Ta alloys is Hf-rich. The

lattice parameter of the abundant MC carbide in the Ta-containing

alloys is intermediate to that of TaC and TiC, and therefore is thoughh

to be a mixed Ta/Ti-rich MC carbide. The in-situ EDS confirms that the

abundant MC carbide in the zero Ta alloys is approximately 80 atomic

percent (of the metallic elements) Hf, and the abundant carbide in the

Ta-containing alloys is approximately 40 atomic percent each of Ta and

Ti, with the remainder being Hf, Mo, and W. The lattice parameter of

the less-abundant* MC carbide goes from 0.435-0.437 nm to 0.450-0.451

nm as Ta is added. This suggests that the less-abundant carbide changes

from Ti-rich to a mixed Ta/Hf-rich MC carbide as bulk Ta increases.

Again, in-situ EDS confirms the analysis of the x-ray data; the less

abundant carbide is about 75 atomic percent Ti with some W and/or Mo in

*The terms "abundant" and "less-abundant" MC carbide will be used
to indicate the relative intensities of the peaks in the x-ray diffrac-
tion patterns. The "abundant" carbide has greater intensity and,
therefore, would be expected to be present in the larger volume
fraction and vice-versa for the "less abundant" carbide.
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the zero Ta alloys and approximately 45 atomic percent each of Ta and

Hf when Ta is added. No borides or other minor phases were positively

identified by x-ray diffraction, although many low intensity peaks in

the diffraction scans remained unidentified. •

The compositions of the minor phase residue, which will henceforth

be referred to as the carbide compositions, shown in Figure 5, indicate

that as Ta is added to the as-cast B-1900 + Hf and MAR-M247-type

alloys, part of the Hf is replaced by Ta. The concentrations of the

other elements, Ti, W, and Mo remained nearly constant. These results

are in agreement with the interpretation of the x-ray diffraction data

and in-situ EDS analysis that the abundant MC carbide shifts from

Hf-rich to Ta-rich with Ta additions.

The addition of Ta to as-cast MAR-M247 (conventionally cast and

DS) and B-1900 + Hf causes an increase in the gamma prime lattice

parameter, as shown in Figure 6. Although the data for the two alloy

systems lay on slightly different lines, the lattice parameter data

indicates that the gamma prime phase compositions of B-1900 + Hf and

MAR-M247 are changing in a similar manner with Ta additions. Increases

in the Ta and Hf (the latter from the MC carbides) levels with Ta

additions to the bulk material are likely possibilities for the implied

changes in precipitate composition.

2. Heat Treated Microstructure

The solutionizing and aging heat treatments completely dissolved

the gamma/gamma prime eutectic and coarse gamma prime that was present

in the as-cast material. A typical fully heat treated microstructure is

shown in Figure 7. Incipient melting was not noted from the single

temperature solution treatment, which is in disagreement with results
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Figure 5a: Composition of the carbides in the as-cast MAR-M247-type
alloys as a function of Ta level.
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Figure 5b: Compositionof the carbides in the as-cast B-1900 + Hf-type
alloys as a functionof Ta level.
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Figure 6: Gamma prime lattice parameters of the as-cast MAR-M247 and
B-1900 + Hf-type alloys as a function of Ta level.

37



Figure 7: SEM micrograph of the normal Ta DS MAR-M247-type alloy
in the heat-treated condition. Note the MC carbide breakdown

and the fine gamma/gamma prime in the background (compare to
Figure 2).
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from a study on a MAR-M247 derivative alloy [45]. The capability to

completely solutionize the as-cast structure without incipient melting

in the present study is likely a result of the low heating rates

. employed (a necessary precaution when using alumina furnace tubes) and

close temperature control.

Three additional changes were observed in the microstructures of

MAR-M247 and B-1900 + Hf after heat treatment. In all of the alloys,

the MC carbides, particularly the script type, degenerated into small

particles as shown in Figure 7. This degeneration is typical of MC

carbide breakdown after high temperature solution treatments [45, 46]

or after long time aging at lower temperatures [12]. Secondly, strings

of what appear to be very small (less than 1 micron) precipitates form

in the zero Ta MAR-M247-type alloys. The additional precipitation,

primarily in the area of MC carbides, is illustrated in the SEM micro-

graph of Figure 8. Lastly, a large number of low-angle grain bound-

aries, shown both by an optical and a TEM micrograph in Figure 9,

formed in the zero Ta B-1900 + Hf alloy. Significant numbers of low

angle grain boundaries were not observed in any other alloy.

The gamma prime lattice parameter in heat-treated B-1900 + Hf and

MAR-M247-type alloys also increased with increasing Ta content as shown

in Figure I0. Included in Figure I0 are the gamma prime lattice para-

meters for the as-cast materials. The gamma prime lattice parameter in

the heat treated alloys increased linearly with Ta concentration, but

the gamma prime lattice parameters for the two alloy series are very

different, unlike the data for the two as-cast alloy series. Specific-

ally, the gamma prime lattice parameter for B-1900 + Hf was increased

by heat treatment compared to the as-cast B-1900 + Hf alloys. The
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Figure 8: SEM micrograph of the zero Ta DS MAR-M247-type alloy in the
heat-treated condition. Note the strings of precipitates and
their greater density in the vicinity of the bICcarbides.
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Figure 9a: Optical micrographof the zero Ta B-1900 + Hf-typealloy in
the heat treated condition.Note the presence of low-angle
grain boundaries decoratedwith coarse gamma prime.

41



_ ii!iiiiiiii_

Figure 9b: TEM bright field micrograph of the zero Ta B-1900 + Hf-type
alloy in the heat treated condition showing the structure of
a low-angle grain boundary.
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Figure I0: Gamma prime latticeparameters of the as-cast and heat
treatedB-1900 + Hf and MAR-M247-typealloys.
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increase in the gamma prime lattice parameter may be caused by the

solutionizing of non-equilibrium phases, such as Ni5Hf, in the

B-1900 + Hf eutectic pools.

The gamma prime morphology of the two heat-treated alloy series is

very different, with the gamma prime morphology being cuboidal for all

of the B-1900 + Hf-type alloys and spheroidal to flat-faced spheroidal

with increasing Ta level for the MAR-M247-type alloys. The gamma prime

morphologies are illustrated by the TEM micrographs of Figure II. By

coupling the room temperature lattice parameter data with the gamma

prime morphology observations for MAR-M247, it is suggested that the

gamma/gamma prime mismatch becomes more positive (_, larger than ay)

with Ta additions at the heat treatment temperature. The mismatch may

be positive or negative in the zero Ta alloys, but in either case is

nearly zero. The cuboidal gamma prime morphology in all of the

B-1900 + Hf-type alloys indicates that gamma/gamma prime mismatch of

the B-1900 + Hf alloys is larger than that of the MAR-M247 alloys. The

increasing gamma prime particle size with Ta additions, shown in Figure

12, may also have a small effect on the gamma prime morphology. These

measurements, expressed as equivalent mean circular radius, were made

by tracing TEM dark field images of gamma prime particles, such as

those in Figure II, and weighing the paper cuttings. This method gives

only a mean particle size (area) and not the range and distribution in

particle size within an alloy.

3. Carbide Phases After Heat Treatment

The x-ray diffraction data and in-situ EDS analyses of the heat

treated MAR-M247 and B-1900 + Hf-type alloys indicate that, as Ta is

added to both alloy systems, part of the Hf in the MC carbides is
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Figure II: TEM dark field micrographs using a superlattice reflection
showing the gamma prime morphology of (a) the zero Ta and (b)
the normal Ta DS MAR-M247-type alloys.
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Figure llc: (continued) TEM dark field micrograph using a superlattice
reflection showing the gamma prime morphology of the normal
Ta B-1900 + Hf alloy.
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replaced by Ta. The x-ray diffraction results, contained in Table 5,

show that for the zero Ta alloys (alloysAI, A2, and C for MAR-M247 and

alloy C for B-1900 + Hf), the abundantMC carbidehas a latticeparame-

ter of 0.461 to 0.462 nm and the less-abundant MC has a lattice

parameter of 0.433 to 0.437 nm. Using the same analysis as for the

carbides in the as-cast structure, it can be concludedfrom the lattice

parm_etersthat the abundant MC carbide is Hf-rich (aHfC=0.464nm) and

the less-abundantMC carbide is Ti-rich (aTiC=0.433nm). In-situ EDS

data confirms these conclusions;the abundantMC carbide is composed of

85 to 95 atomic percent (of the metallic elements) Hf and the

less-abundantMC carbide contains approximately60 atomic percent Ti,

with the remainder being Mo and/or W with traces of Hf. When Ta is

added to the alloys, both the abundant and less-abundant(whenpresent)

MC carbidesare mixed Ta/Hf-rich,with a range in latticeparameters of

0.451 to 0.456 nm. Broad x-ray diffractionpeaks and large in-situ EDS

compositionranges are observed for the mixed Ta/Hf-rich carbides. The

peak width, measured as the full width at half maximum (FWHM),for the

mixed Ta/Hf MC carbides is typically 3 to 4 degrees (28). As a compar-

ison, the nearly pure Hf-rich MC carbides from the zero Ta alloys have

a FWHM of 1 to 2 degrees (28 ) at comparable 28 angles and using the

same reflection. The measured in-situ Hf levels in the mixed Ta/Hf

carbides ranged from 20 to nearly 80 atomic percent. The apparent Hf

inhomogeneities have been observed in the MC carbides of other Hf

containing nickel-basealloys [8, 15, 16].

The composite carbide compositions, obtained from the extracted -

minor phase residue, in Figure 13, again illustratethat Ta replaces Hf

in th& MC carbides of both heat-treated alloy series. The Ti and Mo
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Table 5: Lattice Parameters of MC Carbides

in the Heat Treated Alloys

Alloy Bulk Ta Level Abundant MC Less-Abundant MC

(a/o) a relative a relative
(n_°) intensity (n_O) intensity

B-1900 + Hf A 1.34 0.451 s 0.456 m
B 0.67 0.454 vs ......
C 0.00 0.462 vs 0.433 m

MAR-M247 A1 0.07 0.462 vs 0.435 w
(Con. Cast) A2 0.23 0.462 vs 0.435 w

B1 0.88 0.455 vs ......
B2 0.71 0.456 vs ......
B3 0.87 0.455 vs ......

MAR-M247 C 0.00 0.461 vs 0.437 m
(D.S.) D 0.97 0.454 s 0.456 m

--- none detected

vs:very strong s:strong m:medium w:weak vw:very weak
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Figure 13a: Compositionof the carbides in the heat treated
MAP.-M247-typealloys as a function of Ta content.
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levels in heat treated MAR-M247 remain basically_constantand the W

levels decrease slightly with Ta additions, although the W levels are

slightly higher in the DS alloys than in the conventionally cast

alloys. The Ti level also remained nearly constant in the B-1900 +

Hf-type alloys, but the Mo level decreased with Ta additions. In

addition,Cr is present in the carbide residue from both of the heat-

treated alloys but was not observed in the carbide residue from the

as-cast materials (see Figure 5) or in the in-situ MC carbide deter-

minations.

Examination of the heat treated material with TEM showed the

presence of an inhomogeneousdistribution of secondary carbides in all

B-1900 + Hf and _R-M247-type alloys (see Figure 14); no similar

secondarycarbides were observed in the as-cast materials. The lattice

parameter of these carbides was determined to be 1.071 nm, typical of

M23C6 carbides, from electron diffraction studies. Limited STEM micro-

analysis showed that the Cr x-ray peak intensityincreasedsubstantial-

ly relative to the Co peak, an element not thought to be present in

M23C6 carbides, in the vicinity of these carbides. Accurate quantita-

tive analysiswas not possible because the carbides are imbeddedin the

matrix phases. In addition, the presence of Cr only in the carbide

residue from the heat treated alloys also indicatesthat the secondary

carbides are Cr-rich M23C6 carbides. Three morphologieswere observed:

acicular, blocky, and in some cases, hexagonal. The bright field TEM

micrograph and [i00] zone axis electron diffractionpattern in Figure

14 show the acicular and blocky morphologies and the cube-on-cube

( {100}y/y,// {I00}carbide) orientation relationshipwith the gamma/

gamma prime matrix, respectively. The factor of three difference in
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Figure 14: TEM bright field micrograph of acicular and blocky M23C6
carbides with [I00] electron diffraction pattern and
schematic insets showing the cube-on-cube orientation
relationship with the gamma/gamma prime matrix.
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lattice parameter between the carbides and matrix phases is also

evident in the diffraction pattern. This orientation relationshiphas

been confirmed in six other zone axes in addition to the [i00] zone

axis shown in Figure 14. The hexagonal carbide morphclogy is illust-

rated by the dark field TEM micrograph in Figure 15. The sides of the

regular hexagons lie along a <02_ and two _II) directions. The

strings of small, discrete precipitates observed in the zero Ta

MAR-M247 alloys with optical microscopy were found to be strings of

M23C6 carbides with TEM (see Figure 16). It should be emphasized that

there are no differencesin latticeparameterand orientationrelation-

ship among the three morphologiesand two types (isolatedparticlesand

strings) of M23C6 carbides. Differences in composition between the

various morphologies and types are possible; however, a detailed STEM

microanalysisstudy would be necessary to deten_in_this.

4. Phase Fractions

Phase extractionwas utilized to determine the weight fractionsof

gamma prime and the minor phases, primarily MC carbides, as a function

of Ta content. It is evident from Figures 17 and 18 that Ta additions

to B-I_00 + Hf and MAR-M247 increase the weight fractions of gamma

prime and minor phases. In addition, the weight fractions of gamma

prime or carbides are approximately linear with Ta concentration and

both alloy series can be described using the same line. The best fit

concentrationdependenciesare:

gamma prime weight fraction = 56.6 + 6.51 X (a/o Ta)

regressioncoefficient= 0.91

minor phase weight fraction= 1.3 + 0.55 X (a/oTa)

regression coefficient= 0.73
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Figure 16: TEM bright field micrograph of the M23C6 carbides arranged as
strings of discrete particles in the zero Ta MAR-M247-type
alloys.
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5. Gamma and Gamma Prime Phase Compositions

The composition of the extracted gamma prime residue from the heat

treated alloys was determined by the inductively coupled plasma,

atomic-emission-spectroscopy technique at NASA's Lewis Research Center

and was corrected for the presence of the carbides. The gamma phase

composition was calculated with the gamma prime weight fraction.and

composition in addition to the alloy composition. The absolute levels

of the various elements, particularly those present in low concentra-

tions, should be viewed with some caution. However, the techniques

utilized are sufficient to indicate compositional trends as a function

of Ta level, which are of greater interest to the present study than

absolute concentrations.

The gamma prime phase compositions for the MAR-M247-type alloys

are contained in Figure 19a. As the Ta level in the alloy is increased,

the Ta level in the gamma prime increased. The concentrations of most

other elements, namely Co, Ni, AI, W, Ti, Mo, and Hf, are nearly

constant as the bulk Ta level is increased, although the W levels

differ for the DS and conventionally cast alloy series. The Cr level

does decrease slightly with Ta additions. The gamma phase compositions

for the MAR-M247-type alloys are shown in Figure 19b. The concen-

trations of Cr, Co, AI, and Ta all increase sharply as Ta is added to

the alloy; the levels of Mo and W are nearly constant. However, the W

results again differ for the DS and conventionally cast alloys. The

nickel level decreases sharply with increasing Ta additions. Ti was not

present in the gamma phase; Hf values are not reported for the gamma

phase because the calculations indicated negative Hf concentrations.

Further work is being planned to correct this obvious error by perform-
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ing STEM microanalysison the individualgamma and gamma prime phases.

An alternate method of examining gamma and gamma prime composi-

tions as a function of Ta content is with partitioningratios, defined

as the percentage of an element in the gamma prime phase dividedby the

percentageof the same element in the gananaphase. A partitioningratio

of less than unity indicates that an element is containedprimarily in

the gamma phase, and a partitioning ratio greater than one indicates

that element is primarily in the gamma prime phase. The partitioning

ratios for the MAR-M247-typealloys in Figure 19c show that the parti-

tioning ratios of Ni, Co, and Cr are independent of Ta level. The

partitioning ratios of A1 and Mo decrease somewhat with Ta additions.

Although the partitioningratio for Ti is not shown, it is greater than

20 for all the MAR-M247-type alloys. The partitioning ratio of W

reflects the difference in the gamma and gamma prime phase W levels for

the conventionallycast and DS alloys. Partitioningdata is not report-

ed for Hf and Ta because of the scatter in the data.

The gamma prime compositions for the B-1900 + Hf-type alloys,

contained in Figure 20a, show slightly different results than the

MAR-M247-type alloys. Specifically, the Co and Ti levels remain con-

stant with Ta variations, and the Mo and Cr boncentrationsdecrease

with increasing bulk Ta content. The Ta level increases sharply, as

well as the Hf and A1 levels to a lesser degree, as Ta is added to the

alloy. The gamma phase results, shown in Figure 20b, indicate that as

Ta is added to B-!900 + Hf, the Cr, Co, Mo, and Ta levels all increase.

The Hf and A1 levels are constant with Ta variations, and both Ni and

Ti levels decrease slightly with increasing bulk Ta levels.The parti-

tioning ratios for the B-1900 + Hf-type_alloys in Figure 20c are
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similar to those for the MAR-M247-typealloys. The partitioningratios

of Co, Cr, and Ni are constant with Ta variations,consistentwith the

MAR-M247 results. In addition, the partitioningratios for AI, Mo, and

Ti are also independentof Ta content. However, the Hf and Ta partition-

ing ratios are very sensitive to increasing bulk Ta additions; the

partitioningratios of Hf and Ta increase and decrease, respectively,

with Ta additions. The change in the Hf distribution is likely a

consequenceof more Hf becoming available to the matrix phases as a

result of Ta replacingpart of the Hf containedin the MC carbides.

B. Mechanical Properties

I. Tensile Properties

Tensile tests were performed at 540°C (1000°F), 760°C (1400°F),

and 982°C (1800°F) on the conventionally cast and DS MAR-M247-type

alloys. The results are presented in Table 6. The yield strength at

540°C is increased by the addition of Ta, with the DS and convention-

ally cast alloys showing comparable properties at equivalent Ta levels.

The UTS is apparently unaffected by Ta variations. At 760°C and 982°C,

both yield strength and UTS are increased by Ta additions to the DS

alloys. Successful tensile tests were not performed on the convention-

ally cast alloys at the higher temperatures. The tensile ductility is

greater for the DS alloys than the conventionally cast alloys at 540°C

and is decreased slightly by Ta additions. Figure 21 illustrates the

temperature dependency and the Ta effects on the average tensile

properties of DS MAR-M247. An increase of about 150 MPa occurs in both

• yield strength and UTS between 540°C and 760°C; both properties de-

crease by about 500 MPa when the temperature is increased to 982°C. The
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Table 6: Tensile Properties of MAR-M247 Type Alloys%

Alloy Temperature 0.2%Yield Strength UTS Ductility
(°C) (MPa) _P_a) % Elong. % RA

A1 540 909 1018 6.5 8.2
982 --* 434 ........

B1 540 ' 949 998 3.0 4.3
982 --** 246 ......

C 540 874 1062 10.3 11.6
540 911 1087 8.1 10.8
760 981 1131 3.4 3.8
982 418 492 23.1 29.7
982 334 454 27.2 38.3
982 432 504 29.1 31.1

D 540 992 1090 6.1 10.3
540 923 1062 9.0 10.9
760 1075 1265 3.6 4.4
982 429 597 23.6 29.3
982 418 563 20.7 33.3
982 450 564 4.9 6.7

* Failed before yielding
** Failed in fillet
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temperature effects were equivalent for both alloys, although the

strengths of the Ta containing alloy were higher. The temperature

dependencies observed in this study are typical of nickel-base super-

alloys with a high gamma prime fraction.

2. Creep Rupture Properties -

Creep rupture tests were performed at 760°C (1400°F), 871oC

(1600°F),and 982°C (1800°F)on the conventionallycast and DS MAR-M247-

type alloys. Stress levels were selected to maximize the range of

secondary creep rates and rupture times at each temperature. The

results of the creep rupture testing are presented in Table 7. Ta

additions improve the creep rupture resistance by increasing the

rupture life and decreasing the secondary creep rate of the DS alloys

at all temperatures tested. This can be seen by comparing the creep

curves of the two alloys at the same stress level in Figure 22, with

one example for each test temperature.An insufficientnumber of tests

wer_ c_rried out to examine rupture ductility as a function of Ta

level.

The creep rupture property of greatest importanceto the co,_ponent

designer is secondary (or minimum) creep rate. This parameter is

typically plotted on a logarithmic scale as a function of applied

stress; the s!ope of this plot is the stress exponent n in the power

law expression for creep rate (equation1 of the introduction).The

secondary creep rates for the DS MAR-M247-type alloys are plotted in

such a manner in Figure 23. The Ta-containingalloy always requires a

higher stress at a given minimum creep rate and temperature than the

zero Ta alloy, indicating again that Ta additions improve the creep

resistance of DS MAR-M247. With the limiteddata, the stress exponents
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Table 7: Creep Rupture Properties of MAR-M247 Type Alloys

Alloy Temperature Stress Rupture Time __ (1018)-
Ductility

(°C) (MPa) (Hours) --_- _- % Elong. % RA

A1 760 414 4.1" ---*** ......
982 138 200.0** 1.15 ......

B1 760 690 0.i ---*** 2.2 2.0
982 172 1.8 ---*** 1.5 1.2

C 760 483 200.0** ---*** ......
760 690 37.5 20.6 7.4 12.7
760 862 3.5 366 7.0 7.0
871 345 198.5 8.61 49.7 41.1
871 414 15.0 39.7 3.3 4.9
982 138 200.0** 3.13 ......
982 172 91.4 17.2 36.8 60.5
982 241 9.4 145 37.2 50.2
982 276 3.1 ---*** 33.7 44.9

D 760 690 i00.0"* 3.09 ......
760 862 16.2 90.0 14.5 14.7
760 1103 2.2 ---*** 9.4 12.2
871 414 I00.0"* 5.19 ......
871 483 54.1 28.3 29.8 37.2
982 172 200.0** 3.42 ......
982 207 89.8 10.7 30.9 55.6
982 241 38.6 32.5 33.7 53.7
982 276 16.3 106 27.9 34.1

* Failed in fillet
** Test terminated in time indicated, did not fail

*** Secondary creep rate not determined
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were calculated to be 12.9, 8.4, and 6.9 for the zero Ta alloy and

15.], II.0, and 7.5 for the normal Ta alloy at 760, 871, and 982°C,

respectively.

Cree2 rupture data can also be expressed with a Larson-Miller

plot, which permits extrapolationsto temperatures and stress levels

that were not used in theactual experiments.The Larson-Millerpara-

meter can either be considered in terms of secondary creep rate or

rupture life, since they are inversely related. The formulae for the

Larson-Millerparameters are:

LMP = (T + 460) X (20 + log(trup)) for rupture life

and

LMP = (T + 460) X (20 - log(_s )) for secondarycreep rate

with units of °F and hours

Using these expressions,the creep rupture data in Table 7 were placed

on Larson-Miller plots; Figure 24 is in terms of rupture time, and

Figure 25 is in terms of secondary creep rate. By selecting a Larson-

Miller parameter, a combination of temperature and rupture life (or

secondary creep rate) is therefore determined. The position of the

Larson-Miller plot for an alloy then determines the stres_ for that

given Larson-Miller parameter. The Larson-Millerplots for Alloy D (I

" Ta) always lay at a higher stress level than those for Alloy C (0 Ta),

again indicating the greater creep resistance of the Ta containing

alloy.

Only one of four creep-rupture tests on the conventionallycast

alloys showed much ductility and creep life. The other three specimens

either failed in the fillet or at very low rupture times with negligi-

ble ductility. All fractures occurred at transverse grain boundaries,
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and, in the SEM fractograph in Figure 26, the grain structure is very

evident. This fracture mode was also observed in the tensile specimens.

The early failures and low ductilities are likely related to the

removal of the reportedly ductile [ii] gamma/gamma prime eutectic along

the grain boundaries by the solution treatment. The one successful

creep test of a conventionally cast alloy gave comparable behavior to

its DS counterpart, as can be seen in the creep curves in Figure 27.

3. Post-Creep Tested Microstructure

The microstructure was examined after creep testing by SEM on

longitudinal sections. Coarsened, cuboidal gamma prime was found in the

gauge sections of the DS specimens tested at 760°C and 871°C, and the

grip sections of the DS specimens tested at all temperatures. An

example is shown in Figure 28a. However, a rafted gamma prime structure

developed in the gauge sections of the DS alloys tested at 982°C, as is

shown in Figure 28b. The gamma prime platelets are oriented perpendicu-

lar to the stress axis. This stress-coarsened gamma prime structure has

also been observed after high temperature creep testing of single

crystal MAR-M247 [27,41]. The gamma prime morphology of the one success-

ful creep test on the conventionally cast material (at 760°C) was

coarsened and cuboidal as were the DS specimens at the same tempera-

ture. The tensile tests brought about no change in morphology or size

of the gamma prime precipitates from the solutionized and aged condi-

tion.
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Figure 26: SEM micrograph showing the intergranular fracture surface
from a 1000°C tensile test of a conventionally cast
MAR-M247-type alloy.
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Figure 27: Creep curves for zero Ta conventionallycast and DS MAR-M247-typealloys tested
at 982°C and 138 MPa.
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Figure 28: SEM micrographsshowingthe post-creep tested gamma prime
morphology of the DS MAR-M247-typealloys at (a) 760°C and
(b) 982°C. The stress axis is vertical in the micrographs.
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Discussion

A. Microstructureand Phase Compositions

The addition of tantalum has been shown to affect the carbide

composition, gamma and gamma prime compositions, and to increase the

gamma prime and minor phase fractions of B-1900 + Hf and MAR-M247. Each

of these effects will be addressed in turn within this section before

comparing the effects of Ta on the two alloy series, B-1900 + Hf and

MAR-M247 (DS and conventionallycast)•

The obvious effect of Ta on the carbide composition (see Figures 5

and 13) is that Hf is replaced by Ta, with the Hf then being redistrib-

uted to the matrix phases• However, the degree of replacement is a

function of heat treatment condition. The extent of substitution can be

measured by plotting the ratio of Ta to Hf in the carbides against the

ratio of Ta to Hf in the alloy• A slope of greater than unity for an

alloy system indicates that Ta is a stronger carbide former than Hf. From

the data in Figures 5 and 13, this "relative carbide forming strength"

has been calculated and is plotted in Figure 29. Three separate curves

are evident: as-cast MAR-M247-type alloys, as-cast B-1900 + Hf-type

alloys, and both alloy systems after heat treatment, in order of decreas-

ing slope• The significant decrease in slope (less Hf replacementby Ta

in the carbides) for both alloy systems after heat treatment may be a

result of the more thermodynamicallystable Hf-rich MC carbides replacing

the less stable Ta-rich MC carbides which form during solidification.The

observed breakdown of MC carbides, changes in the carbide composition,

and the elimination of Ti and Ta-rich MC carbides by heat treatment are

consistentwith this interpretation.An increase in the amount of Hf-rich

MC carbides during heat treatmenthas also been observed in other studies
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of MAR-M247 and similar alloys [8, 14, 43, 45]. The differences in slope

for as-cast MAR-M247 and as-cast B-1900 + Hf are possibly a result of

differences in casting practice; i.e. more rapid cooling rates lead to

more inhomogeneouscarbides. ......................

The gamma prime compositions of B-1900 + Hf and MAR-M247 were

relatively insensitive to bulk Ta variations; the only significant

changeswere increases in the Ta level (both alloy series) and the Hf and

A1 levels (only B-1900 + Hf). This is in good agreementwith the results

on Ta variations in single crystal MAR-M247 (without Hf) [27, 41].

Although the increases in the Ta and Hf levels were not large, small ad-

ditions of refractory metals such as Hf and Ta, which are thought to be

potent solid solution strengtheners in addition to their possible effects

on the APB energy, may have a significant impact on mechanical proper-

ties.

The gamma phase compositionswere much more sensitive to variations

in bulk Ta content than were the gamma prime phase compositions. In

addition to the increase in the Ta concentration (an effective gamma

strengthener),the addition of Ta brought about increases in the Co and

Cr levels in both alloy series and the A1 level in the MAR-M247-type

alloys. The increases in the Co and Cr concentrationsare believed to be

due to two causes: I) inadvertentincreases in bulk Cr and Co levels with

Ta additions (only MAR-M247) and 2) decreases in the gamma phase fraction

coupled with constant partitioning ratios for Co and Cr with increasing

bulk Ta. The latter cause is likely more significant in light of the

increases in Cr and Co levels in the gamma phase of the B-1900 + Hf-type

alloys where no bulk compositional variations exist. An increase in the

A1 concentrationof the gamma phase with Ta additions was only observed
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in the MAR-M247-type alloys. The nearly constant A1 partitioning ratio

for all alloys except the zero Ta DS alloy suggests that the increasesin

the A1 level of the gamma phase are largely a result of the inadvertent

increases in bulk A1 content. While A1 partitioning ratios of greater

than 20 were also found for the two zero Ta alloys in one of the single

crystal MAR-M247 studies [27], it is not apparent how low levels of Ta

can influence the A1 partitioning behavior. Further work is planned to

examine this result by determining directly the A1 levels of the gamma

and gamma prime phases by STEM microanalyticaltechniques.

Although the redistribution of Hf from the carbides to the matrix

phases has been mentioned previously, this aspect of the "Ta effect"

merits further discussion. The preferred order for metallic elements to

form MC carbides is Ta, Nb, Ti, and V [12]; as has been shown in this

study, Hf lies either above or immediately below Ta, depending on heat

treatment. The addition of a strong carbide forming element to an alloy

will result in the partial, if not nearly complete, replacement of the

weaker carbide forming elements in the carbides. The redistribution of

these elements to the gamma and gamma prime phases will alter the compos-

itions and/or volume fractions of gamma and gamma prime and, ultimately,

may also affect the mechanical properties. In this study, the addition of

Ta to B-1900 + Hf brought about an increase in the Hf concentrationof

the gamma prime phase while its level in the gamma phase was constant. A

more striking illustrationof this redistributionis the increase in the

Hf partitioning ratio from 0.5 to 3.0 with the addition of 1.34 atomic

percent Ta (see Figure 20c). Experimental difficulties prevented the Hf

behavior in the MAR-M247-type alloys from being studied, but a similar

effect is thought to occur. The redistributionof elements such as Ti,
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Ta, and Nb from the carbides to the matrix phases may also be one of the

mechanisms for the improved mechanical properties of superalloyswith Hf

additions.

The addition of Ta to B-1900 + Hf and MAR-M247 increases the weight

fraction of the minor phases (primarily MC carbides) and possibly de-

creases the amount of M23C6 carbides present. Although the scatter in the

minor phase data is relatively large (regressioncoefficient of 0.73),

the trend of increasing weight fraction with Ta additions is clear from

Figure 18. Three possible explanations for this behavior are variations

in bulk carbon concentration, an increase in the mean atomic weight of

the metallic elements that compose the MC carbides (while maintaining

stoichiometry),and a reduction in the amount of carbon dissolved in the

matrix phases. While there is scatter in the carbon contents of the two

alloy series, it is random in nature and couldnot-explainthe observed

increases. The atomic weights of Hf and Ta (178.5 and 181.9, respective-

ly) are very close, which eliminates the possibility of atomic weight

effects. The only plausible explanation, that Ta additions decrease the

amount of carbon dissolved in the matrix phases thereby increasing the

weight fraction of the carbides, is not unreasonable as this mechanism

has also been suggested for Hf additions [15]. Furthermbre, the addition

of Ta may also decrease the amount of the chromium-richM23C6 carbides

that precipitate during heat treatment. This hypothesis is supported by

the decrease in the Cr level of the carbide residue from both alloy

series (see Figure 13) as the bulk Ta level increases and the absence of

strings of M23C6 carbide particles in the Ta containing MAR-M247-type

alloys. The reduction in M23C6 precipitation could either be caused by a

decrease in carbon solubility of the matrix phases or increased MC
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carbide stability, resulting in less carbon being available for secondary

carbide formation.

• The addition of tantalum to B-1900 + Hf and MAR-M247 increased the

weight fraction of gamma prime, as would be expected from the large

partitioning ratio of Ta. This result is consistent with observations in

two previous studies of single crystal MAR-M247 [27, 41]. However, the

increase is greater than would be expected from the most extreme circum-

stance in which Ta partitioned completely to gamma prime. For example,

the addition of 4.3 weight percent Ta to B-1900 + Hf should lead only to

a 4.3 weight percent increase in gamma prime fraction, but the actual

increase was 8 percent. The additional increase in the gamma prime weight

fraction is likely a result of the additional redistribution of the

remaining alloying elements.

The gamma prime morphologies observed in the two alloy series are a

puzzling aspect of this study. The gamma prime in the as-cast B-1900 + Hf

and MAR-M247-type alloys is cuboidal, with the cube edges about i micron

-in length. After the solution and age heat treatment, the gamma prime

morphology is cuboidal in B-1900 + Hf and spheroidal to flat-faced

spheroidal in MAR-M247 with increasing Ta level. However, in both alloys,

the maximum dimension of the gamma prime particles is 0.I0 to 0.15

microns. The gamma prime in MAR-M247 reverts _o the original cuboidal

morphology upon coarsening after long term aging without stress [47] or

during creep rupture testing at 760 and 871°C. The differences in the

gamma prime morphologies of the B-1900 + Hf and MAR-M247 alloy series

after heat treatment could be attributed to greater gamma/gamma prime

mismatch in the B-1900 + Hf-type alloys, although no interfacial disloca-

tions or delta-fringes, normal indications of coherency strains, were
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observed using TEM under any heat treatment conditions. The transition

from cuboids to spheroids and back again to cuboids is more difficult to

rationalize for the MAR-M247-type alloys. In order to fully examine this

phenomena, the gamma/gamma prime misfit measurements should be performed

at the aging temperature. Nevertheless, the lack of interfacial disloca-

tions indicates that the misfit must be small; therefore, the observa-

tions in this and other studies may not support the traditional viewpoint

that gamma prime morphology is strictly a function of gamma/gamma prime

misfit. For example, it has been observed for Ni-Co-AI alloys that the

gamma prime morphology changed from spheroidal to cuboidal as the part-

icle size increased during the initial stages of coarsening without any

increase in lattice misfit. It has been suggested that this is a result

of the {i00} planes having a low energy which causes a reduction in total

surface energy [48]. High temperature in-situ x-ray diffraction and aging

studies are necessary to fully understand this aspect of microstructural

development.

The effects of Ta on the microstructure of B-1900 + Hf and MAR-M247

are very similar, although several differences between the two alloy

series are also present. First, to examine the similarities, both alloy

systems exhibit increasing gamma prime and minor phase weight fractions

as well as Hf replacement in the MC carbides with Ta additions. It Will

be demonstrated later in this discussion that two of these changes,

increases in the gamma prime weight fraction and solid solution hardening

by Hf and Ta, are the most significant Ta effects on the mechanical

properties of DS MAR-M247; they would be expected to have similar import-

ance in B-1900 + Hf. The increase in gamma prime lattice parameter and

apparent decrease in the amount of M23C6 carbide precipitation with
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increasingTa content are also common to both alloy series.The dissimil-

arities between the two alloy systems can either be related or unrelated

to Ta variations. The absence of significant amounts of script MC car-

bides and the lack of a Ta dependency on eutectic pool morphology in

MAR-M247,both observed in B-1900 + Hf, are likely related to differences

in casting practices. The only notable differencesin the phase composi-

tion behavior of the two alloy series were the presence of Ti in the

gamma phase of B-1900 + Hf (independentof Ta level) and the A1 partition-

ing behavior in MAR-M247. The sole difference in the microstructure of

conventionallycast and DS MAR-M247 is the tendency for W to partition

more to the carbides and the gamma prime phase in the DS material com-

pared to the conventionallycast alloys, regardless of Ta level. Overall,

the similaritiesar_ more important than the dissimilaritiessince they

have a profound influence on alloy performance, and, therefore, it is

concludedthat the effects of Ta on the microstructureof B-1900 + Hf and

MAR-M247 (DS and conventionally cast) are not specific to either alloy.

B. Mechanical Properties

In the present study, tantalum additions have been shown to improve

the creep rupture resistance,yield stress, and ultimate tensile strength

of directionallysolidifiedMAR-M247. However, the extremelylow ductili-

ties of the fully heat treated conventionally cast alloys (with and

without Ta) limited the quantity of mechanicalproperty data obtained and

therefore prevents any detailed analysis from being performed on the

effects of Ta on the mechanical properties of the conventionally cast

alloys.
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The primary mechanisms responsible for the improvements in the

strength of the DS alloys as Ta is added are thought to be solid solution

hardening of the gamma and gamma prime phases and increases in the gamma

prime volume fraction. The solid solution strengthening mechanisms are,

however, more extensive than normally considered in classical solid

solution hardening theory. With regard to nickel-base superalloys, the

possible solid solution effects as solute is added can include increasing

the APB energy of the gamma prime phase, decreasing the stacking fault

energy of the gamma phase, and decreasing the diffusion rate, in addition

to changes in the elastic moduli and lattice parameter. Additions of

refractory metals are particularly effective in reducing the diffusion

rate because they diffuse slowly and also concomitantly reduce the

diffusion coefficients of the other alloying elements.

The benefits of increasing the volume fraction of fine gamma prime

on strength (both creep and tensile) has been well documented experi-

mentally [i0, 49, 50, 51] and theoretically [35, 52]. Intuitively, this

is reasonable from the standpoint of increased frequency of precipi-

tate/dislocation interactions. In the most applicable previous study, on

a sister alloy of MAR-M247, MAR-M200, a three-fold increase in creep

rupture life was realized with an increase in the volume fraction of fine

gamma prime from 30 to 45 percent [I0]*. The addition of 1 atomic percent

Ta to DS MAR-M247 resulted in about a five-fold increase in creep rupture

life at all tempertures and stresses tested, but only a corresponding

increase in gamma prime weight fraction (all of which is fine gamma

* The densities of gamma and gamma prime for both MAR-M200 and
MAR-M247 were determined to differ by less than 3% using the published
phase compositions [6, 27, 41]. Therefore, weight fraction and volume
fraction are essentially equal and interchangable for each alloy.
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prime) from 56.5 to 62.0 percent. The increase in creep resistance is

greater for MAR-M247 than would be anticipated from strictly a gamma

prime volume fraction effect (based on the MAR-M200 data) and indicates

the presence of another strengtheningmechanism,which is suggestedto be

solid solution strengtheningof gamma and gamma prime.

While a detailed analysis of the strengtheningeffects due to solid

solution hardening (and its combinationwith precipitationhardening) is

beyond the scope of the present work, it can be demonstratedthat solid

solution effects are an important strengtheningmechanism by comparing

the creep rupture resistance of the DS MAR-M247-typealloys (with Hf, Zr,

and B) from this study to the single crystal (SC) MAR-M247-type alloys

(withoutHf, Zr, and B) from a previous study [27].Using the Larson-Mil-

ler plots, the stress necessary to obtain a secondarycreep rate of 10-6
-I

sec at 760°C was calculated for the two DS alloys and two SC alloys,

one with zero Ta and the other with the normal 1 atomic percent Ta. The

results,plotted in Figure 30, show that the Hf-Zr-B containing DS alloys

requirea higher stress to achieve the s_me secDndarycreep rate than the

single crystal alloy with the same Ta level. This is somewhat surprising

in light of the well documented advantagesof single crystal components,

including improved creep resistance, for commercial alloys such as

MAR-M200 [53]. The mechanism that is thought to be responsible for the

additional incrementof creep strength is solid solutionhardening of the

gamma and/or gamma prime phases by Hf. Zr and B are also added to the DS

alloys,but their primary location is along grain boundaries,where they

have been shown to improve alloy ductility and increase the gamma prime

phase stability,particularlyalong transversegrain boundaries [12, 26].

Although their presence would affect rupture lifetime si_ce_they enha,lce
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Figure 30: Comparison of the6stressesnecessaryto obtain a secondary
creep rate of I0- /sec at 760°C for the DS MAR-M247-type
alloys (withHf) and single crystalMAR-M247-typealloys
(withoutHf) with the same Ta variations.
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ductility and delay the onset of tertiary creep, they should have a

minimal affect on the secondary creep rate. The gamma prime weight

fractions are equivalent at a given Ta level for the DS and SC alloy

series so that the comparison is independentof any precipitationharden-

ing effect.These arguments allow one to conclude that the solid solution

effects of Hf do indeed strengthen the DS MAR-M247-typealloys. Although

it can not be presently demonstratedfor the case of Ta, a similar effect

on superalloystrength with Ta additions would also be expected since Ta

and Hf are chemically very similar. In addition, Ta additionshave been

shown to increase the strength of the gamma prime phase [54].

The extremely low ductilities and premature failures exhibited by

the conventionallycast alloys (with and without Ta) precluded any useful

mechanicalproperty data from being collected,but the resultsdo provide

some useful insight into the fracturebehavior of polycrystallinesuper-

alloys.Elongationsto failure for conventionallycast MAR-M247 with only

an aging treatment (withouta solution treatment) are about 5 percent for

creep rupture tests at 760°C to 982°C and 4 to 8 percent for tensile

tests at 650°C to 982°C [55]. These values certainlywere not attained in

this study, as is evident for alloys A1 and B1 in Tables 6 and 7. The low

ductilities are caused by the early failure of the transverse grain

boundaries, which is likely a result of the solutionizingof the gam-

ma/gamma prime eutectic along the grain boundaries.It has been suggested

that primary gamma prime increases alloy ductility because it is inher-

ently ductile [II] and therefore aides strain accommodationat the grain

boundaries. The solutionizing of the as-cast gamma prime and subsequent

reprecipitationstrengthens the matrix, but also apparently weakens the

grain boundaries. An alternate way to state this is that the stress
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necessary to fracture the boundary is less than the strength of the bulk

material. This hypothesis can be proven by determining the effects of

primary gamma prime on alloy ductility by solutionizing for different

times to control the fraction of primary gamma prime along the grain

boundaries.

Although it was previously stated that carbides play no direct role

in the strengthening of superalloys, the precipitation of a homogeneous

distribution of secondary carbides by heat treatment could give an

additional increment of strengthening. Extended solution treatments

enhance the breakdown of MC carbides, but also increase the volume

fraction of porosity. The carbon released from the MC carbide degenera-

tion would be expected to form secondary carbides, likely of the M23C6-

type observed in these two alloy systems. The precipitation of these car-

bides throughout the structure during heat treatment, and on dislocations

and stacking faults during creep testing [12], would increase the resist-

ance of the material to deformation. Since the M23C6 carbides are thermo-

dynamically stable and possibly coherent |13], they would not be expected

to coarsen rapidly nor dissolve. Thus, because of these two features,

precipitation of M23C6 carbides is an attractive alternative high tempera-

ture strengthening mechanism. An additional benefit of replacing the MC

carbides with M23C6 carbides is the redistribution of the metallic

elements, mainly Ta and Hf, from the MC carbides to the gamma and gamma

prime phases. Long term solution treatments to dissolve the MC carbides,

followed by hot isostatic pressing to eliminate the subsequent porosity,

are planned to confirm the feasibility of this potential strengthening

mechanism.
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CONCLUSIONS

I. The gamma prime solvus temperature of the polycrystalline

MAR-M247 and B-1900 + Hf-type alloys was increasedby Ta additions.The

as-cast gamma/gammaprime eutectic and coarse gamma prime were complete-

ly dissolved during the four hour solutionizing treatment without the

occurrence of incipientmelting.

2. The addition of tantalum to both the as-cast and heat treated

MAR-M247 and B-1900 + Hf-type alloys resulted in the partial replacement

of Hf by Ta in the MC carbides,although the degree of this substitution

was decreasedby heat treatment. In the case of B-1900 + Hf, the Hf from

the MC carbides was redistributedalmost exclusively to the gamma prime

phase.

3. Very small (less than 1 micron) chromium-rich M23C6 carbides

precipitated during heat treatment and are distributed inhomogeneously

throughout all of the alloys.Three morphologies,acicular,blocky, and,

occasionally, hexagonal, were observed with TEM in the B-1900 + Hf and

MAR-M247-type alloys. In addition, strings of discrete M23C6 carbide

particles formed in the zero Ta MAR-M247-typealloys. The apparent cube-

on-cube orientation relationship and lattice parameter relationship

(a . _ =3a ) was maintained regardless of the morphology orcarDiae matrix

distributionof the M23C6 carbides. The decrease in the Cr level of the

composite carbide residue with increasing bulk Ta level indicated that

Ta additions decrease the amount of M23C6 present in the microstructure.
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4. The gamma prime and minor phase (mainlyMC carbides) fractions

of the heat treated MAR-M247 and B-1900 + Hf-type alloys both increased

linearlywith Ta concentration.For example,the additionof 0.97 atomic

r percentTa to the DS MAR-M247-typealloys resulted in an increase in the

gamma prime fraction from 56.5 to 62.0 weight percent and an increase in

the minor phase fraction from 1.25 to 1.75 weight percent, respectively.

5. The gamma prime phase compositions of the heat treated B-1900 +

Hf and MAR-M247-type alloys were relatively insensitive to bulk Ta

variations. Only the Ta levels in both alloy series and the Hf and A1

levels in the B-1900 + Hf alloy series showed significant increases with

Ta additions.

6. The Cr and Co levels in the gamma phase of the B-1900 + Hf and

MAR-M247-type alloys increased significantly with Ta additions; the

increases are a reflection of the decrease in the gamma phase fraction

and constant Cr and Co partitioning ratios. The increase in the A1

concentration of the gamma phase in MAR-M247-type alloys with Ta addi-

tions, which was not observed in the B-1900 + Hf-type alloys, appears to

be a result of an inadvertent increase in bulk A1 concentration. The Ta

level also increased, particularly at higher bulk Ta levels, in the

gamma phase.

7. The yield stress and ultimate tensile strength of the DS

MAR-M247-type alloys at 540, 760, and 982°C are increased by the addi-

tion of Ta, without a significant decrease in ductility. The mechanisms

responsible for these improvements are increased gamma prime weight
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fraction and increased solid solution effects in the gamma and gamma

prime phases. The sourcesof the solute elements are the direct addition

of Ta to the alloy, the indirect effect of Ta replacementof Hf in the

MC carbides with subsequent redistribution of Hf to gamma and gamma

prime, and slight redistributions of other alloying elements. In

contrast to classical solid solution hardening, increases in the APB

energy of the gamma prime phase, decreases in the stacking fault energy

of the gamma phase, and reduced diffusion rates are incorporatedinto

the solid solution effects.

8. The addition of Ta to the DS MAR-M247-typealloys increasedthe

creep resistance by increasing the time to rupture and decreasing the

secondary creep rate at 760, 871, and 982_C. The mechanisms responsible

for these enhanced properties are the same as those for improvedtensile

strength, namely increased solid solution strengtheningand gamma prime

weight fraction with Ta additions. Stress coarsening of the gamma prime

precipitates may also play a role in the creep resistance at 982°C,

although this potential strengtheningmechanism did not appear to be a

function of Ta level in the DS MAR-M247-typealloys.

9. The premature failures of the conventionallycast MAR-M247-type

alloys during tensile and creep testing precluded the attainmentof much

mechanical property data. The two successful tensile tests and one

successful creep test indicate that the properties of the DS and conven-

tionally cast alloys are comparable, although the ductility of the DS

alloys was greater. It was suggested that the solutionizingof the

reportedly ductile gamma/gammaprime eutectic caused a reduction in the

98



strain accommodationalong the grain boundaries and, therefore, the low

ductilitiesobserved in the heat treated conventionallycast MAR-M247-

type alloys.

i0. By comparing the creep resistanceof the DS MAR-M247-typealloys

(with Hf) and the creep rupture resistance of the single crystal

MAR-M247-type (withoutHf) alloys from a previous study, it was demon-

stratedthat Hf is a potent solid solutionstrengthenerof MAR-M247.
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