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ABSTRACT

Graphite-fiber-reinforced polyimide (GFRPI) composites were formulated

from three new partially fluorinated polyimides and three types of graphite

fiber. Nine composites were molded into pins and evaluated in a pin-on-disk

tribometer. Fr i ction coefficients, wear rates, pin wear surface morphology,

N
and tra-,sfer film form4tion were assessed at 25 and 300 °C. Also assessed wasN
the effect of sliding speed on friction at 300 °C and the effect of temperature

on friction. Wear was up to two orders of magnitude lower at 25 °C and up to

one order of magnitude lower at 300 °C than with previously formulated NASA

GFRPI composites.

INTRODUCTION

The need for self-lubricating materials in the aerospace indcstry is

continuously increasing, with ever greater demands being placed on the

high-temperature performance of these materials. One class of materials that

has shown considerable promise is graphite-fiber-reinforced polyimides (GFRPI)

(1-20). They are being considered or being used already in various bearings,

gears, seals, or brake materials (9,11--14,18-20).

Polyimide, a high-temperature polymer, provides the matrix for the

graphite fibers; the graphite fibers improve the strength arid stiffness of the

composite while also providing lubrication. The term "polyimide" does not

refer to one particular polymer, however, but to a class of long-chained

polymers that have repeatin g imide groups as an integral part of the main

chain. By varying the monomeric starting materials, polyimides of different
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chemical compositions and structures can be obtained. The polyimide chains

consist of aromatic rings alternated with heterocyclic groups. Because of the

multiple bonds between these groups the polyimides have high thermal stability

and crumble, on decomposition, to a fine powder without melting.

In 1975, a polyimide was formulated from partially fluorinated polyimide

resins prepared from the diamine 2,2-bis[4-(4-aminophenoxy)phenyl]

hexafluoropropane (4-BDAF) (21) that possessed great potential for long-term

service in highly oxidative environments to 370 °C (22,23). Because of the

promise shown in the preliminary testing of physical properties two other

polyimides were formulated from the 4-6DAF diamine for tribological

evaluation: one using the dianhydride of benzophenonetetracarboxylic acid

(BTDA), and one using 50 mole percent of BTDA and 50 mole percent of the

dianhydride of pyromellitic acid (PMDA).	 In addition to these solid

polyimides, graphite-fiber-reinforced polyimide composites were made from, the

50/50 PMDA/BTDA polyimide.

Although good tribological results were obtained for both the solid

polyimides End the composite (24), they sug g ested that high amounts of the

PMDA dianhydride in the polyimide would produce polymers with even better

tribological properties. The results also showed that graphitic fiber is a

better reinforcement than nongraphitic fiber and that the sizing material may

have limited the high-temperature stability.

This study extended the results of the previous study (24) to composites

made from the 4-BDAF' diamine with 60, 80, and 100 mole percent PMDA (BTDA was

the ^the y dianhydride component) and graphite fibers. Two additional graphite

fibers were evaluated. Thus nine GFRPI composites were formulated and

Evaluated in this study. To improve t h e adherence of the polyimides to the

.fibers and the high-temperature stability of the composites, the sizing
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i'	 material as applied by the fiber manufacturer was removed and the fibers were

sized with the 100 percent PMDA polyimide.

Friction coefficients, wear rates, wear surface morphology, and transfer
F r

film formation were studied for the nine GFRPI composite ;materials (made into

hemispherically tipped pins) after they had slid against metallic disks at

temperatures of 25 and 300 °C. Friction coefficient as a function of

constantly increasing or decreasing temperature was also evaluated.

MATERIALS

New polyimides based on a novel aromatic diamine

2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane (4-BDAF) were formulated

with the dianhydrides of ber.zophenonetetracarboxylic acid (BTDA) and of

pyromellitic acid ! OMDA) (Fig. 1). One polyimide and two copolyimides were

prepared from these cc,mponents. The polyimide was polymerized from the

polyamic acid solution of the monomers of 4-BDAF and PMDA. The copolyimides

were prepared by adding the dianhydrides, in the correct proportions. to the

4-BDAF diamine during polymerization. The copolyimides contained 80 percent

(by mole) PMDA with 20 percent BTDA and 60 percent PMDA with 40 percent BTDA.

Each polyimide contained the 4-BDAF diamine, but for convenience it will not

be included in the designations. The designations will be 100 PMDA,

80120 PMDA/BTDA, and 60/40 PMDA/BTDA. The preparation of the 4-BDAF diamine

and the polyimides made from it is described U' ?nnes et al. (22,23).

Three graphite fibers were mixed with these rolyimides to make nine

composites. The fibers are designated types A, B, and C. Their properties

are listed in Table 1. The fibers were sized by their manufacturers with an

unknown polyimide. To ensure good adherence of our polyimides and

high-temperature stability, these sizings were removed and the fibers were

resized with the 100 PMDA polyimide (25).

3
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The polyimide composites were molded into pins 2.0 cm long and 0.45 cm in

diameter (25). A 0.476-cm-radius hemisphere was machined on one end. The

hemisphere was slid against 440C HT (high temperature) stainless steel

(hardness, Rockwell C 60), against the cobalt alloy Haynes 6B (hardness,

Rockwell C 44), or against Rene 41 (hardness, Rockwell C 35). The alloys had

the same surface roughness, 10 -7 R  (arithmetic mean).

APPARATUS

A high-temperature pin-on--disk tribometer was used in this investigation

(Fig. 2). The loads were applied through a lever arm. The same lever arm

transmitted the friction force to a strain: gauge whose output was continuously

recorded on a strip-chart recorder. The disks were heated by induction, and

the temperature was monitor:d by a thermocouple when the disk was not rotating

and by an infrared optical pyrometer when it was. The friction specimens were

enclosed in a chamber to control the atmosphere at 10 000 ppm H2O

(-50 percent relative humidity at 25 °C).

nnnrrniior

Specimen Cleaning

The metallic disks were washed with ethyl alcohol and scrubbed with a

water-based paste of levigated alumina 	 They were then scrubbed with a brush

under running distilled water to remove the alumina and dried with clean

compressed air.

The polyimide composite pins were scrubbed with a nonabrasive detergent,

rinsed with distilled water, and dried with clean compressed air.

Testing

After the pin and disk specimens were inserted into the test apparatus

and the chamber was sealed, moist air was pumped into the chamber for 15 min

before each test and continuously thoughout the test. After purging, the disk

was rotated at 100 rpm (0.31 m/s) at 25 °C or 1000 rpm (3.1 m/s) at 300 °C.

4

low



For the 300 °C test the disks were slowly heated by induction and held at

300 °C for 10 min to allow the temperature to stabilize. The load (9.8 N) was

gradually applied to the rotating disk through the stationary pin, which slid

on a 6-cm-diameter track on the disk.

At various times during the experiments the tests were stopped and the

specimens removed and examined by optical microscopy. The wear scar on each

pin tip was measured and the wear volume calculated. The pin was not removed

from the holder, and locating pins ensured that it was returned to its

original position in the apparatus.

For the tests in which friction coefficient was determined as a function

of constantly increasing or decreasing temperature, the procedure "as to run-in

the polyimide composite pins under a 9.8-N load at 100 rpm (0.31 m/s) and

25 °C for 30 min. The temperature was gradually increased at 4 deg C/min to

300 °C and then decreased at the same rate to about 100 °C. Below 100 °C the

heat was turned off and the disk was allowed to cool at its own rate, which was

slower than 4 deg C/min.

RESULTS AND DISCUSSION

Composite Wear Rates

To determine the effect of graphite fiber and polvimide type, a 3-by-3

experimental test matrix was set up using the three graphite fibers as one

variable and the three polyimides as the other variable. Thus nine GFRPI

composites were evaluated. The GFRPI composites were molded into pins and

slid against metallic disks. No wear was observed on the metallic disks, but

the GFRPI composites wore in a linear manner after progressing through a

run-in regime that decreased exponentially. Most of the run-in wear occurred 	 n

in the first 33 m of sliding (Table 2). Slightly lower run-in wear rates were 	

11

obtained with the type C fiber and with the 80120 PMDA/BTDA polyimide, although

the differences were not great.
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A 9.8-N load was applied to the hemispherically tipped pins.	 If this were

rolling contact, a very high Hertzian stress would have resulted. But in

sliding contact a flat area is almost immediately worn on the hemisphere, and

this reduces the Hertzian stress. The contact area on each pin was measured

after 33 m of sliding, and the contact stresses were calculated for 100 percent

contact (Table 3). Tne contact stress s ranged from 91 to 51 MPa (13 200 to

8900 psi), al hough this is by no means the maximum load-carrying capacity for

these composites.

After run-in, wear tended to increase linearly, although in a few

instances the rate changed after a period of sliding. The greatest wear rate

change was that of the 80/20 PMDA/BTDA polyimide with the type C fiber

(Fig. 3). We belie-e that the wear rate changed because the transfer

characteristics changed. Usually lower wear occurs when thin, flowing

transfer films are formes', and higher wear occurs during thick, "nonflowing"

transfer.

The slopes of the lines in Fig. 3 were deteri-i,:ned by taking a linear

regression fit (least squares) to get wear rate in terms of wear volume per

unit distance of sliding (m 3 /m) (see also Table 4). Three composites had

slightly higher wear rates than the average: 100 PMDA with type 8 fibers,

80/20 PMDA/BTDA with type C fibers, and 60/40 PMDA/BTDA with type 11 fibers.

Composite 60/40 PMDA/BTDA with type B fibers had the lowest wear rate,

0.04x10 -15 m3 /m. Although we thought this was an anomaly, it was

repeatable, as were the higher wear rates. Even so, the differences may be

due not to t;,e materials but to unknown processing variables. These materials

are by no means optimized.

The type of fiber had little influence on the steady-state wear rates,

11but the 60/40 PMDA/BTDA polyimide appeared to be a better matrix material at

25 °C (Table 4). The wear rate results were an order of magnitude lower than

6



the 1.5x10
-15

 m3 /m obtained in our preliminary study (24) for a composite

of 100 percent BTDA polyimide and type B fibers (designated type HG in that

study).

Similar experiments were conducted at 300 °C, but at a higher sliding

speed (1000 rpm; 3.1 m/s) and with Ren6 41 and Haynes 6B irstead of 440C HT

stainless steel. These alloys were used because 440C tended to oxidize at

300 °C and this increased the wear rate. Oxidation appeared to be less with

Ren6 41 and Haynes 6B.

Three tests were conducted for each composite sliding against each alloy,

for a total of six tests on each composite. Little difference in composite

wear rates was found for the three polyimides (Table 5), although the type A

fibers did produce slightly higher wear rates. Also the disk material, Rene 41

or Haynes 6B, had little effect on wear rate. It is an interesting fact that

the 80/20 PMDA/BTDA polyimide without any graphite fiber additions produced an

equivalent wear rate (Table 5).

Friction Coefficient

At 25 °C, on 440C HT stainless steel, the friction coefficients for the

nine GFRPI composites appeared to d e pend on the combined properties of both

the polyimide and the fiber since different combinations produced different

results (Fig. 4). However, the type A fiber produced the consistently lowest

friction coefficients, 0.19 to 0.25 after run-in. The type B fiber's friction

coefficients ranged from 0.20 to 0.3i, and the type C's from 0.17 to 0.36.

At 300 °C, on Rene 41 and Haynes 6B, the friction coefficients tended to

increase with sliding distance (Fig. 5), from 0.05 to 0.50. Friction was more

stable for 60/40 and 80/20 PMDA/BTDA, than for 100 PMDA, and lowest for these

composites with type A fibers. The disk material did not affect the friction

coefficient in a regular pattern for 80120 or 60/40 PMDA/BTDA. But for 100

PMDA much higher friction coefficients were obtained with Haynes 6B than with

7
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Rene 41. The reason for this and for the variation in friction with sliding

r	 distance appears to be the type of transfer film produced, as discussed later.

The friction transi0on for these polyimides (with no solid lubricant

added) in moist air (10 000 ppm H 2 0) occurs between 100 and 160 °C (25). To

determine how graphite fiber additions would affect these transitions, GFRPI

pins were slid against Rene 41 disks as the disk temperature was raised from

25 °C to 300 °C at the rate of 4 deg C/min. A load of 9.8 N was applied and

the disk was rotated at a relatively low speed of 100 rpm (0.31 m/s) to

minimize frictional heating. At temperatures below the transition (--160 °C)

the addition of graphite fibers reduced the friction coefficients from that

for polyimide without fibers in all cases; but ahove the transition in some

cases there was a slight reduction and in some cases equivalent friction was

obtained (Fig. 6).	 In general, the temperature at which the transition

occurred was not markedly affected by the addition of graphite fibers, but the

magnitude of the friction coefficient change was reduced considerably.

Composite Wear Surface Morphology

The composite wear surfaces at 25 °C were smooth and, to varying de;rces,

covered with plast i cally flowing backtransfer composite wear particles and

layers. Photomicrographs of representative wear surfaces for the three

polyimides and the three types of fiber (Fig. 7) illustrate that the fibers,

although randomly oriented, tend to cluster. Also shown is the good bond

between the polyimide and the fiber and that the two constituents do not mix

to form a surface layer except for local4Led backtransfer material. The fibers

differ in shape and size: types A and C fibers are circular but type B fibers

are bilobal. Higher magnification did not reveal any differences in fiber wear

surface morphology at 25 °C, either between the different fibers or between

fibers slid parallel, perpendicular, or oblique to their lengths.

8
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The wear surfaces of the 100 and 84/20 polyimides with type A or B fibers

look very similar at 300 °C (Fig. 8(a)). The wear surfaces are very smooth

wi±h no sign of thermal degradation to the fibers or the polyimidej. The wear

surfaces of the 100 and 80120 polyimides with type C fibers at 300 °C showed a

fine, powdery material that did not flow plastically (Fig. 8(b)). Since this

did not occur with composites made from type A or B fibers, it was presumed

that the fibers were either oxidizing or were in some way not triermally stable

under these sliding conditions.

After 3 km of sliding at 300 °C, 60/40 PMDA/BTUA showed some surface

softening of the polyimide, and the polyimide had flowed over the surface and

covered the fibers (Fig. 9).	 Even though wear rates and friction coefficients

were relatively low with this pol � imide at 300 °C, it would probably not be a

good candidate for applications at 300 °C because of this softening effect.

Transfer Film Morphology

GFRPI composite pin transfer to the metallic disks was studied by stopping

the tests at selected intervals of sliding and observing the trarsfer with a

light microscope at magnifications to 1600. At 25 'C the transfer tended to

build up with sliding distance from thin, platelet-like transfer to a thin,

continuous layer. Minor differences in transfer between the various composites

did occur, but the study was not detailed enough to correlate these differences

with changes in the friction coefficient and wear rate. We believt that, in

general, very thin transfer and minimal backtransfer produced the lowest

friction coefficients and wear rates.

For the 80120 and 60/40 PMDA/BTDA composites at 300 °C the transfer built

up to a slightly thicker film than at 25 °C, but it was still impossible to

correlate differences in transfer with changes in friction and wear rate. This

correlation could be made though at 300 °C for the 100 PMDA composites that had

slid on Rene 41 or Haynes 6B. The friction coefficient obtained on Rene 41 was

9
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0.28; that on Haynes bB was 0.50. After 4 km of sliding, Rene 41 produced

thin, flowing transfer films and Haynes bB produced thick, nonflowing transfr-r

films (Fig. 10).	 Thus, as found in previous studies (17,24, 25), thin, flowing

transfer is associated with low friction and wear and thick, nonflowing

transfer with higher friction and wear.

Comparison with Other Polymers and Composites

Other commercially available polymer materials and composites have been

evaluated under the same conditions by

study gave wear rates up to two orders

commercially available materials at 25

about an order Gf magnitude lower than

the first phase of this study (24), wh

with type B graphite fibers.

the authors. The composites of this

of magnitude lower than any of those

°C (Table 6). The wear rates were also

those of the composites formulated in

en 100 percent BTDA polyimide was used

At 300 °C the composites of this study were also about an order of

magnitude Netter than the 100 percent BTDA composites, but it is interesting

to note that the 80120 PMDA/BTDA polyimide without any fibers gave an

equiv&Ient wear rate and friction coefficient.

SUMMARY OF RESULTS

Friction, wear, and surface morphology studies of nine GFRPI composites

formulated from three new polyimides dnd three graphite fibers had the

following results:

1. Poiyimides or copolyimides .f ormulated with the diamine 4-BDAF and the

dianhydride PMDA provided a more wear-resistant matrix material than polyimides

formulated in a previous study (24) with the 4-BDAF diamine and the dianhydride

BTDA.

2. the 80120 PMDA/BTDA polyimide had the best combination of thermal

stability and tribological properties.

10
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3. 7^- 60/40 PMDA/BTDA polyimide produced good tribologiLal results at

25 °C but tended to soften at 300 °C.

4. The fiber 'type did not markedly affect the tribolog;cal properties of

t., e composites, but the type C fibers tended to dust at 30C °C, a sign of

possible oxidation.

5. Rene 41 or Haynes 6B disks wore the composites less at 300 °C than

440C HT stainless steel disks.

6. Graphite-fiber-reinforced composites produced friction transitions as

did the solid polyimides (with no solid lubricant additions), but the magnitude

of the friction coefficient change was not as great as for the sclid

polyimides.
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Property	 Fiber type

A	
-B -	 — C

rsor	 Polyacrylnr;trile Polyacrylonitrile 	 PitchPrecu
Specif"c	 gravity
Tensile strength,

1.8'
2.4	 (3.5x105 )

1.95
1.9	 (2.8x10 5 )

2.02
i1.4	 (2.0x105)

GPa	 (psi)
Tensile molulus, 390	 (5.7x10 7 ) 520	 (1.5x10 7 ) 340	 (4.9x107)I

GPa	 (psi)
Fiber elongation 0.6 0.4 0.4

at break,	 percent
Fiber	 length,	 m 0.006 0.006 0.006

Fiber	 shape Circular Bilobal Circular

Fiber diameter,	 ?m 6.5 5;13 1	 11

TABLE 1. - TYPICAL PROPERTIES OF GRAPHITE FIBERS

TABLE 2. - RUN-1N WEAR RATE AT 25 °C AFTER 33 m OF SLIDING

Fiber Resin composition, Average of
type % PMDA/% BTDA three

resins
lv)/0 80 /20 60/40

Wear rate, m3/m of sliding

A 10x10-15	 600-15	13x10 -15	 10x10 -15

B 16	 8	 9	 11

C 8	 5	 10	 8

Average of 11x10-15 600-15 10x10-15 --------

three fibers

I
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TABLE 3. - CONTACT PRESSURE AFTER. 33 m OF SLIDING

Fiber	 Resin composition,	 Average of
typo?	 % PMDA/% RTDA	 three resins

0/0	 80/20	 60/40

Contact pressure

MPa	 psi	 MPa I psi	 MPa	 psi	 Mpa I psi

A	 61	 8 900 91	 13 200 64	 9 300 72	 10 500
B	 51	 8 200 78	 11 300 14	 10 800 70 110 100
C	 78	 11 300 86	 12 500 70	 10 200 bl	 11 800

Average of	 66	 9 500 85	 12 300 70	 10 100	 -	 ----
three fibers

TABLE 4. - AVERAGE WEAR RATE AT 25 °C

Fiber Resin composition,	 Average of
type % PMDA /% BTDA	 three

resins
100/0 80/20	 60140

Wear rate, m3 /m of	 sliding

A 12x10-17 11x10-17 2800-17 1100-17
B 44 11 4 20
C 11 30 10 17

Average of 2200-17 11x10 -17 14x10-17 --------

three	 fiber
No fibers 300 7 7 --------
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TABLE 5.	 - AVERAGE WEAR RATE Al 	 300 °C

Fiber	 Disk	 Test	 Resin composition,	 Average of
type	 PMDA/ BTDA	 three

1D0/0_- T 80120	 60/40	
resins

Wear rate, m3/m of sliding

A Rene 41 1 68x10-15	 65x10 -15 73x10-15 l
2 19	 :8 65 -15

3 49	 73 77
169x10

Haynes 6B 1 62	 75 65 )

2 67	 49 57 ?66
3 58	 90 74

8 Rene 41 1 39	 36 38 1

2 48	 51 31 )41
3 41	 42 39

Haynes 6B 1 47	 34 36

2 55	 29 26 ^39
3 42	 40 42

C Rene 41 1 37	 28 36

2 56	 42 29 ^37
3 34	 34 41

Haynes 6B 1 44	 27 41

2 I	 49	 21 54 ^37
3 27	 36 30

Average of Average of - 50 47 47 --------
three fibers two disks

No	 fibers a Rene 41 - 100 35 120 --------

a Data from Ref. 25

TABLE 6. - AVERAGE FRICTION COEFFICIENTS AND WEAR RATES FOR COMMERCIAL

AND EXPERIMENTAL PO1_YMERS

(Load, 9.8 N; sliding speed, 1000 rpm (2.1 to 3.1 m/s);

relative humidity, 50 percent.]

Pin material	 Disk material	 Temperature, °C

25	 300	 25	 300

Average friction	 Average wear rage,

	

coefficient	 m3/m of sliding

Commercial polymers

4400 HT stainless steel b Polyphenylene sulfide	 0.30 ----	 620x10-15 ---------

with 40 percent gra-
phite fibers

440-: HT stainless steel b Poly(amide-imide) PTFF	 .37 ----	 180	 ---------
with graphite powders

Polyimide b	Rene 41	 .48 0.30	 48	 15x10-15
Ultrahigh molecular-	 440C HT stainless steel	 .30 ----	 6	 ---------
weight polyethyleneb

Polyimide with graphite	 440C HT stainless steel	 .64 ----	 5	 ---------
powderl'

Experimental polymers

PMDAb	Haynes 6H	 0.60 0.23	 2700-15 100x10-15
Grapnite-fiber-	 440C HT stainless steel	 .30	 .55	 12	 190

reinforced, addition

type of polyimidea

80120 PMDA/8TDA b 	Haynes 68	 .90	 .20	 5	 35

60/40 PMDA/8TDA b 	Haynes 6B	 80 I	 22	 5	 120

Graphite-fiber-	 440C HT stainless steelI	 .30	 .35	 2	 1420
reinforced BTDAa	

1

a 0ata from Ref. 24.
b Data from Ref. 25.
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