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SUMMARY

Research work on NASA Grant NAG 3-9 concentrated on development of
numerical methods for the Euler equations and on development of analysis
methods for these equations. Results of this work have been published as
journal articles, AIAA papers, student theses, and MIT internal reports.
The most important results were a streamtube Euler solver which combines
high accuracy and good convergence rates with capabilities for inverse or
direct mode solution modes and an analysis technique for finite difference
models of hyperbolic partial difference equations.

Two graduate students, Robert Bush and Michael Giles, were partially
supported by this grant. Robert Bush received his S.M. degree in February
1981 and his Ph.D. degree in September 1983. Michael Giles received his

S.M. degree in September 1982. Michael was also supported for a summer

visit to ICASE in 1983.



TECHNICAL SUMMARY

The earliest work on this grant was computational work on approximate
factorization (AF) methods for Euler and Navier-Stokes equations and was
performed by Robert Bush. The major new result from his work was recogni-
tion that the optimum time step size for AF methods was not necessarily the
largest stable time step. This result has now been substantiated by other

analytical and computational results. A Jour. of Comp. Physics paper [1]

and an S.M. thesis [2] were published during this phase. A copy of
Reference 1 is included in the Appendix.

The next phase of effort on the grant concentrated on a new analysis
method applied to finite difference methods for hyperbolic equations, and
was performed by Michael Giles. This work developed group velocity concepts
for finite difference equations to explain spurious traveling wave
solutions, dissipation and stability of inflow/outflow bounc-ry conditions,

and convergence rates. During this phase, a Jour. of Comp. Physics paper

[3], an IMACS symposium paper [4], an ICASE contractor report [5] and a
S.M. thesis [6] were published. References 3, 4, and 5 are included in the
Appendix.

The last phase of the grant work examined new solution methods for the
Euler equations and was also conducted by Michael Giles. Major results
from this work were a box-type method for the quasi-one-dimensional Euler
equations, and a streamtube method for the two-dimensional Euler equations.
Both methods are substantially faster than other comparable solution
schemes. An AIAA paper [7] was published on the streamtube method, and an
internal MIT report [8] was published on the box method. References 7 and

8 are included in the Appendix.
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Note

Boundary Treatments for Implicit Solutions
to Euler and Navier—Stokes Equations

INTRODUCTION

Implicit time marching schemes like those of Beam and Warning [1], Briley and
MacDonald 2|, and MacCormack (1980) |3| generally have not been as robust as
would be expected from a stability analysis for the pure initial value problem.
Recently, Yee er al. |4] illustrated that a more general stability analysis, which
includes the effect of boundary conditions, may explain some of the seemingly
anomalous behavior of these schemes. Tae major theoretical basis for this type of
modal stability was established in a sciies of papers by Kreiss |5, 6], Osher |7, 8],
and Gustafsson et al. |9].

Yee as well as Gustafsson and Oliger | 10| considered the etfect of inflow—outflow
boundary condition formulations on the stability of a class of numerical schemes to
solve the Euler equations in one space dimension. The charactetistic feature of a
subsonic inflow—outflow boundary is that a priori boundary values may be specified
for only some problem variables, while remaining boundary values must be deter-
mined as part of the solution process. Yee demonstrated a rather large disparity in
stability bounds between the use of explicit or implicit extrapolation procedures and
in general demonstrated that implicit extrapolation procedures had the least
restrictive stability bounds. The intent here is to explore computationally the
implication of this work for several two-dimension»l Euler and Navier-Stokes
simulations.

NUMERICAL PROCEDURES

The two-dimensional Navier-Stokes equations may be written in vector form as

1
U GE 6F R _ES

(1)

ol el et "
ét éx ¢y éx oy

The strong conservation law form may be retained under a general coordinate

mapping as illustrated in Viviand [11]. All computations to be described were

conducted in a mapped computational domain but for simplicity numerical and
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boundary condition procedures will be described in the simple two-dimensional
geometry shown in Fig. 1.

A 1979 paper by Beam and Warning |12| outlined a sclution scheme for systems
of equations of form (1) which included most numerical schemes for which the modal
boundary condition analysis has been conducted. This scheme uses the well-
developed methods for ordinary differential equations as a guide to developing
numerical methods for partial differential equations. The scheme presented combines
linear multistep methods. local linearization, approximate factorization. and one leg
methods. The shceme. a generalizati»n of the scheme presented in [1|. solves for a
variable p(E) u which is equivalent to du" in the class of schemes represented by the
earlier paper. The earlier scheme is somewhat easier to understand as du" is just the
change in the solution from time level n to level n + 1. while p(E) u is a more general
time differencing formula.

The solution schemes chosen are implemented as

(I + L") du* = RHS", ()
(7 + L") U™ = AU, 3)
U= UM + AU, (4)

where RHS" is very nearly the finite difference approximation to the steady state
equations, and L, and L, are linearized difference operators representing a particular
time and spatial differencing scheme.

Full details of these operators are contained in [1]. If the spatial differencing is
taken to be centered, the computational form of either Eq. (2) or (3) appears at each
interior point as

A74U}_, + B]AUT + C}4U?, , = D!, (35)
where A, B;, and C, are 4 X 4 matrices known at time level n, D, is the right-hand
side vector at node point i/ known at time level n, and 4U7 is the unknown vector at
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node point i. The boundary points will be assumed to involve only the nearest two
points in the x direction.

Al4U, + BM4U, + ClAU, = D}. (6)

The restriction to extrapolation along grid lines (actually transformed grid lines), is
necessary to maintain *he block tridiagonal form and avoids possible instabilities due
to skewed extrapolation, see [13].

The full matrix equation will reduce to tridiagonal form if the first and nth
equations are substituted into the second and the (n — i)th equations, for example,

B,=B,—A,A;'B,. (7)

BOUNDARY TREATMENTS

Inflow—outflow Boundary

The finite difference algorithms studied usually require more boundzry values than
are required for the partial differential equations which they simuiate. These extra
numerical boundary conditions cannot be set arbitrarily and are usually determined
through an extrapolation procedure. T'hese extrapoiation procedures may either be
explicit, that is boundary values needed at a new time are determined uniquely from
the old time level solution, or implicit. that is, the boundary values are determined as
part of the new time level solution. The analytical boundary conditions or the
extrapolation quantities are usually not conservation variables but primitive variables.
and a local linearization is usually required as part of defining the extrapolation
procedure.

Consider. for example. an implicit subsonic outflow boundary at which the local
static pressure is specified as a boundary condition and all other variables are to be
determined by extrapolation. Figure | shows a typical computational grid and defines
the subscripts used.

P} =P}, given, (8)
p nel p ne1 p n«l
pu =2| pu - ( pu implicit space extrapolation. (9)
Pv/ i, P [iji-1 pulij-2
In order to complete the boundary formulation, all equations must be expressed in

delta form and in terms of conservation variables. For the (otal internal energy this
may be done througa its definition

E =P/(y=1)+1(pu)’/p + (v)*/p. (10)

Since the relations between conservation variables are nonlinear, some linearization
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step will be necessary before the boundary condition formulation may be used. We
choose to introduce our linearization step here as
AE, = (E!*'—EN = (1/(y = 1)) AP-{(u* + v*)" dp + u"A(pu) + v"4(pv)
+ (dudv, u?, 4v?, dpdu, dpav). (11)
If terms of order dudv are neglected, the error is equivalent to the linearization error

of the interior point scheme. We may express the transformation from boundary
variables to conservation variables as

4p 1 0 0 0 dp

e dpu _ 0 1 0 0 Adpu =N, AW,
dpv 0 0 1 0 dpv
4E./ ;; — W+ wm " 1Y(y-1) 4P (12)

we shall in general denote transformation from conservative to primitive variables as
Awi.I=TI-JAUi.}‘ (|3)

The extrapolation conditions for W,  are

dp 2.0 0 0 dp
Apu 0 200 Adpu
‘ - -
W= | aon 00 2 0|40
4P /., 0 00O 4P .y
-1 0 0 0 dp \
0 -1 00 4pu |
* 0 0 -1 0 dpr Li4)
0O 0 00 AP o
or
‘ju.:./=P./—lwv./-l+PJ—EWI.J-2‘ “5)

The final equations relating the boundary conservation variables and the interior
conservation variables are

au, ,=N{ (P, T}, AU, + P, T}, ,4U;,_,) (19)
or
au, ,Gi, 4V, +H], ,4U,,_,. (17)

With the definition of P, _, and P,_, given in Eq. (15), T, ,_, and T, ,_, are identity
matrices.
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An explicit outflow boundary treatment was constructed using

P"*'=pP"  given,

p n+1 p n
pu =(pu - (18)
Pe/ig PV )i

and setting G, ,_,=H,,_,=0.

In forming Eq. (9), we choose to extrapolate the local momentum flux rather than
a specific primitive or characteristic variable; choice of other extrapolation variables
would alter only the transformation matrix 7, ;. Extrapolation of the momentum flux
is somewhat arbitrary, but its choice did not affect the accuracy of the computational
results to be presented.

Solid Wall Boundary Procedures

The boundary treatment procedure illustrated for inflow—outflow boundary are
easily extended to cover solid walls in either inviscid or viscous flow situations. Here

4p v/T - p/T 0 0 4apP
dpu yu/T . pu/T 0 0 ar
AU, ,=| dpv | = /T - p/T 0 Sq 4q (19)
1 1 yq° 1 pq :
dEl T 1 + 3T ——2—7 0 ) Au
or
Uy =N; , AW, . (20)

where g is the velocity parallel to the wall and S is the wall slope. For the inviscid
flow examples éP/¢y. ¢T/¢y. and ¢q/cy are set equal to zero, while, for the viscous
flow examples v, u, and éT/¢Y are set cqual to zero and ¢P/éy is equal to
4/3u(é?/év*)(v). All derivatives are evaluated by one-sided finite difference formulas.

As indicated by Buggein er al. [14], an ADI type procedurc requires boundary
conditions for the intermediate step. Usually the intermediate step was in the v
direction and the boundary conditions were applied as if the intermediate results were
physical quantities, that is, the boundary conditions of Eq. (19) were applied to the
quantities 4U™* of Eg. (2).

Explicit wall boundary treatments are generated by applying the primitive variable
form of Eq. (19) and forcing the correction matrices to be zero.

NUMERICAL RESULTS

Three geometries were selected for detailed study: an inviscid supersonic diffuser
with weak oblique shock, supersonic in/supersonic out: an inviscid supersonic
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Fic. 2. Computational grid for weak shock diffuser calculations.

diffuser with a strong normal shock. supersonic in/subsonic out. and a viscous super-
sonic difTuser with weak oblique shock illustrating a shock-boundary layer
interaction. Sketches of the geometries are shown in Figs. 2—4. Solutions for each
geometry were run to steady state fcr a range of time step sizes. For convenience.
time step sizes are reported in terms of x and vy CFL numbers

(CFL,) = max(dt(u + ¢), ;/4x, ). (21)
(CFL), = max(dt(v + ¢), ;/4y, ;). (22)

The time step size was uniform over each calculation which results in nonuniform
CFL, and CFL, numbers. The maximum value of each is reported. Sample
convergence history plots are shown in Fig. 5 which shows the log of the value of the
point maximum steady state residual

SSR =¢E/éx — éR/éx + ¢Fjéy — éS/cy (23)

plotted against the iteration number. A solution was not termed stable unless the
residual converged to the machine accuracy. about 1 X 10", All calculations used a
32 bit floating point word size.

Each geometry calculation was run with fully explicit extrapolations, 4u = 0. and
with fully implicit extrapolations: the results are summarized in Table I. The most
interesting of these results are shown in Fig. 5. At a tipe step size corresponding to a
CFL, number of 15. convergence was rapid and very nearly monotonic in time. At
smaller time step sizes. the convergence was slower but nearly monotonic. At a CFL,
of 45, convergence rates initially appeared to be faster than for a CFL, of 15. but the
final residual values oscillated sugnificantly about its minimum value. At a CFL, of
90. the convergence rate was substantially slower than at a CFL, of 15. and at larger
CFL, values the solution diverged.

The results for the strong shock diffuser can reasonably be compared to those of
Yee e al. [4]. They reported a CFL number stability limit between 10 and 20, while

| ’
1

1

| |

H HHA

=
e

Fic. 3. Computational grid for shock-boundary layer calculations.
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FiG. 4. Computational grid for strong shock calculations.
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Fic. S. Convergence history for strong shock diffuser calculation.
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we found stability limits between 90 and 150. Thus the analysis in one space
dimension does appear to provide a sufficient condition for stability, but it may not
provide a close approximation to the stability limit. It is essential. however, to
emphasize that the largest convergence rates were observed at time steps
corresponding to CFL numbers of order 10 and that only a marginal computational
time advantage for the implicit boundary formulations was observed.

The results for the shock-boundary layer calculation are very interesting but they
demonstrate a substantial comput=tional advuntage for the implicit solid wall
conditions. not for the inflow—outflow extrapolation. Here the stability boundary and
the best convergence rates were observ:d at time step sizes corresponding to CFL,
numbers of 5 to 10. When using the iiplicit wall conditions, the algorithm stability
appeared to be independent of grid spacing in the normal direction as might be
hoped. When using the explicit wall condition. the algorithm stability was limited to a
CFL, number of about 500.

CONCLUSIONS A%D DISCUSSION

While it is difficult to generalize from only a few test c.amples. it .s apparent that
a better appreciation of the role that becundary treatments play in implicit algorithms
has a'lowed the development of far more robust Beam and Warming type solvers. For
both explicit and implicit boundary treatments. we were able to ccmpute solutions
accurately with time steps 50 to 100 times . ger than explicit time limits while
retaining the ability to choose rather arbitrary initial conditions. In many cases. our
limiting time steps for the two-dimensional test problems were in fact larger than the
limit which a one-dimensional analysis would suggest.

The most important computational result we observed was that while an improved
appreciation of boundary treatments did allow very iarge time step sizes to be used.
the largest convergence rates to steady state were cbserved at relatively small ume
step sizes. For the two-dimensional test problems. the best CFL, numbers were of
order 10. not of order 100. One-dimensional test examples showed no such
convergence rate behavior. Presently unpublished analysis by Abarbanel ef ul. [15]
has linked this behavior to the approximate factorization form of Egs. (2) and (3).
This effect now seems to be setting the time step sizes for our viscous flow
computations and new work should focus on methods for cvercoming this limitation.
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Abstract

An asymptotic approach is used to analyze the propagation and dissi-
pation of wavelike solutions tc finite difference equations. It is
shown that to first order the amplitude of a wave is convected at the
local group velocity and varies in magnitude if the coefficients of the
finite difference equation vary. Asymptotic boundary conditions coup-
ling the amplitudes of different wave solutions are also derived.
Equations are derived for the motion of wavepackets and their interac-
tion at boundaries. Comparison with numerical expetiments demonstrates

the success and limitations of the asymptotic approach. Finally an

asymptotic global stability analysis is developed.

Notation
§ U, = U - U u U = l-(U + U.)
x o j+d j*1 J X J+s 2 i+ ]
A U. =U - U 7 U. = U, -U
x ] i 3 x ] ] 3=
E U =0
ax j j+a

When there are several independent variables the subscript on the
finite operator denotes the direction of the shift, differencing or

averaging. For example,

n n n

n
it Uj u(x ,tn) then 6x Uj¢§ Uj+1 f Uj

3
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A = complex conjugate of A

Re(A) = Real component of A

In(A) = Imaginary component of A

I. Introduction 3

Methods for analysing dispersive partial differential equations are
well established. Using Fourier deccmposition and asymptotic evaluation
of integrals, or by direct asymptotic expansion, [S,9f it can be shown
that the energy propagates at the local group velocity. Ray theory
(5,9] then treats wavepackets, localized wavelike disturbances, as
particles and derives simple o.d.e.'s for their motion. This paper
applies the techniques to the analysis of numerical wave propagation in
finite difference equations. Due to the discretization the numerical
waves are always dispersive even if the analytic system being modeled is
nondispersive. Until recently the importance of the group velocity in
analyzing finite difference solutions does not seem to have been
recognized. Kentzer (4] discusses the role of group velocity and shows
rthat in many common schemes the numerical group velocity at high
wavenumbers is in the opposite direction to the analytic group velocity.
Vichnevetsky and Bowles [8] derive reflection coefficients for the
interaction of waves at boundaries, and present several illustrative
numerical examples. Trefethen (6] provides a group velocity interpreta=-

tion of the stability theory of Gustaffson, Kreiss and Sundstrom (3],

Page 4
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and ir a forthcoming paper (7] will derive rigorous conditions for the
P-stability (10] of two-bounda-y problems. In the stability analysis in
this paper we use P-stability, which is concerned with stability in the
limit tew, rather than GKS-stabilty which is concerned with stability in
the limit At+0. Reference [2) contains further details and numerical
examples of the work in this paper. It also includes' a more general
global stability analysis which allows for variable coefficients in the
finite difference equations, and in the case of constant coefficients

reduces to the exact stability analysis of Beam, Warming and Yee [1].

The approach we use is an asymptotic one in which a wave solution is
expressed as a product of a complex amplitude and an oscillatory phase
function whose frequency and wavenumber may also be complex. The asymp-
totic assumption, or approxization, is that the length scale for varia-
tions in the amplitude and wavenumber is large relative to a mesh cell
length. An asymptotic expansion leads to a local dispersion relation
relating the wavenumber to the frequency. The first order terns produce
an equation for the amplitude in which the local group velocity appears
as the velocity of convection of the amplitude. Also there is a
variation in the magnitude of the amplitude if the coefficients of the
finite difference equation vary. All of the wave solutions with a given
frequency and different wavenumbers are coupled at the boundaries by
asymptotic boundary conditions. If there are only two waves per
frequency then this reduces to the amplitude reflection coefficients

computed by Vichnevetsky and Bowles (8].
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The following section develops a theory for the motion of wave-
packets which are waveiike disturbances of finite length and constant
frequency. Using the techniques of classical ray theory [5,9], these
can be treated as particles and simple o.d.e.'s can be derived to
describe their motion and the change in their energy.. When they reach
the boundary they are reflected into wavepackets of a different wave-
number but the same frequency and the energy of the reflected wavepacket
can be calculated from boundary reflection coefficients. The last
section derives a global stability analysis in which ihc usual Fourier
stability analysis is modifled to calculate the effects of non-periodic

boundary conditions and slowly varying coefficients. This analysis is

then used to calculate the spectral radius of the backward Euler method.

II. Asvmptotic Amplitude Analysis

Asvoptotic Amulitude Egquation

Consider a general linear homogeneous finite difference equation

with variable coefficients,
r

n
LLU, =20 1
5 Y3 (1)
wvhere
—
Lj £ cmp(x) Bmx Bpt (2)
m,p
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If the conefficients cmp are constants then

"2 = exp(i(j3=n2)] (3)

is an exact solution of (1) provided

X
é‘ﬁ cmp exp(i(mo~-pR)] = 0 . (4)

This equation is called the dispersion relation between wavenumber
and frequency 1. If the coefficients are not constant then U can be

expressed as,
U; = A(§,n) exp(i¢(3,n)] (5)

where A(j,n) is a slowly varying amplitude and ¢¥(j,n) is the phase of

the wave and is related to the frequency } and wavenumber j by

g R ;
n TR (6a,b)

The asymptotic approximation which is made is that the length scale

LA and time scale Tj for variations in A and the length scale L, for
variations in » are much greater than 1. Substituting (5) into (2) and

expanding A and ¢ in Taylor seies about a point (j,n) yields,

o : 3A A im? _ 3o
- X - —_— — — A —
Lj Uj exp(iv] : Cmp(j) exp(i(mo=-pR)] | A + m 33 + p s + 2 -+
o, p
-2 -2 -2
+ O( ALA . ATA - ALO ) (7)

To satisfy equation (1) the amplitude A(j,n) must satisfy ,

3A A
a°(°lnij) A+ a, (d,23,3) %" a:‘@naaj) ;—J' + l,(bofl.j) Az—g =0 (8)
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where ,

a,(5,2,3) = Z Cnp(j) exp(i(mo=-p2)] (9a)
m,p

a,(0,2,§) = 1(3-4 (9b)
L 31 )%, const

o, (6l 3) = =22 ‘ (3¢)
§ H ek \a® .Q,) const

i/32an
8y (9,32,)) = = =i=— (94)

Because of the asymptotic assumptions (8) can only be satisfied if

a,(5,2,3) =0 + 0o L,~", LN, 7,71 ) ' (10)

This is the asymptotic form of the dispersion relation between 3 and
R and will usually be satisfied by setting ao jidentically equal to zero.
¢ is now a slowly varyiny function of j due to the slow variation in the
coefficients. Neglecting the second order terms and dividing by ai gives

the asymptotic amplitude equation.

3A 3A
o + g 33 =c A (11)
where rg = a, / a, and : = - (a, %% +a;) / a (12,13)

Differentiating Eq.(33) with j held constant gives,
ja." 73a,"
da, -[—=- 12, s =0 (14)

aQ /1¢,3 const & ’La@‘ 2,] const -

Hence,
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an’
(3;: 3 zons® -=a; /a, rg (15)

Thus the amplitude A of the wave is convected at the local group

velocity.

Asymptotic Boundary Conditions i

The general solution of Eq.(1) is a sum of waves with different

constant frequencies |} and slowly varying wavenumber ¢ and amplitude A.

3
A_(3,n) exp(i( g »_(5) df -ng)] (16)

[
)=

The outer summation is over different values of Q, and the inner

summation is over the M different values of p which satisfy the

dispersion relation for each 3. For each 3,2 the amplitude A satisfies

the asymptotic amplitude equation on the interior of the computational
domain independent of all the other waves. All the waves of each

frequency are however coupled by boundary conditions.

Suppose one of the finite difference boundary conditions at j=J is

n n
BU; = Z O Eix zpt u; =0 (17)
Lp

Performing the same expansion as in the derivation of the asymptotic
amplitude equation, retaining only the leading terms, and equating the

coefficients of exp(-iQ) for vach 3, the boundary condition becomes,
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M J
v 1 . !
h b(a.on) An(J) cxp[l) Qn ds ) 0 (18)
o= 0
wvhere,

b(ﬂ.on) = ;Z; Dlp exp(i(ly=-pa)) (19)

There are similar asymptotic boundary conditions at j=0.

III. Rav Theorv And Wavepacket-Particles

In addition to the asvmptotic approximations made earlier this
section assumes that for all real wavenumbers 3, the frequency (Q is real
for all j and so the group velocity Ty is real.

A Lagrangian-type total time derivative is defined by,

3 3
on 3-;* l‘g 33 (20)

dJ-

80 a0 rg ¢ (21)
dA
an €A |, (22)
ds _ . 22

and 3; Ig T (23)

A general initial value problem for a wave of frequency 1 and wvave-
number $(2,j) can be solved by integrating these equations from given
initial conditions.

A wvavepacket is a wave for wvhich the amplitude A is non-zero on only
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a small part of the domain. The energy is defined to ke,

x

7 J
2 2 dx
E(n) = [ lA(x.tn)l dx -[ |AC(3,n)]| ij (24)
X, 0

Differentiating this definition, and using (22), yields,

dE - [dax*=13 = dx ‘

Thus equations (21) and (25) describe the motion of a wavepacket
particle in the interior of the computational domain. When the wvave-
packet reaches a boundary it is reflected as one Oor more wavepackets
with the same frequency but different wavenumber. For the case in which
there are just two wavenumbers corresponding to the same frequency the

ratio of the reflected energy E, to the incident energy E, i3 given by,

rql(s,,J)
rgls,,J)

R, ' (26)

™ m
»~
.

where the amplitude reflection coefficient RJ is defined by,

" A,(J,n) (27
S S WY ’

and is determined from the asymptotic boundary condition.

Exaople

The example is the solution of the model convective equation,

au au
— —
3t c X 0 (28)
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using a trapezoidal =ethod,

S rbr  ua et un | ™a (29)
t 2 Je} TtTx 2 3=} TTx 3
cAt
with T § — (30)
it B N

Figure 1 shows the solution U(x,t) corresponding to a uniform grid
0<3<2C0 with r=1, and initial conditions corresponding to a wa'epacket
approxizmately 20 mesh units wide. Comparison of the heights of the
wvavecrests a-e at t.ne levels 60 and 120 shows thct.thc phase velocity,
the velocity of the wavecrests, is greater than tiae group velocity, the
velocity of the wavepacket.

Figures 2 and ] show comparisons of the wavepacket theory w.th
numerical experiments. In each case "experimental” values fcc X(n), the
position of the wavepacket, and E(n), its energy, are obtained by
solving the finite difference oquniionl and "predicted” values are
calculated by solving the wvavepacket equaticns. The initial wavepacket

in each case is similar to that in the previous example.

In the first case r varies exponentially from 0.05 at j=0 to 0.2 at
=200 and 3=0.04 . Trigure 2 shows X(n) and 1n(E(n)] both predicted and
experimental. This example shows the movement of a vavepacket and the
change in its energy due to the variation in r. The agreement betveen
the predicted and experimental values is excellent. The energy of the
anralytic solution is constant so the wavepacket theory has successfully

predicted aimost all of the change in the numcvical energy due to the
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nonuniform grid.

In the second case r is constant and ¢q. . to 1.0 and 3=0.J .
Figure ) shows X(n) and 1n(E(n)). This example illustrates the effect
of the downstream boundary reflecting a wavepacket with raduced energy.
Because of the finite length of the wavepacket the drop in energy is
szneared and X(n) does not quite reach 1.0 . Again the agreement is
excelient with the vavepacket theory accuratesly predicting the ¢nargy of

the reflected wavepacket.

IV. Asymptotic Stability and Convergence Anzlysis

In this section it is assumed that there are two wvavenumbers
corresponding to ‘each frequency, and that if one is resal then so too
is the other. Examples of nethods satisfying these conditions are the
trapezoidal method applied to the 2audel convective proble 3 with variable
CFL number r, and the wvhole class of Beam-Waraing schemes appiied to the
model convective problem with constant CFL number.

The normal Fourier analysis assumes constant coefficients and
;ortodic boundary conditions and derives eigenfrequencies 1(3) where
is a real vavenumber satisfying the periodic boundary conditions and
N(y) 1a the corresponding frequency given by the dispersion relation.
The common use of Fourior analysis to predict the stability of problems
vith nonperiodic boundary conditions implicitly assumes that 2(¢) is a

close approximation to the true eigenfrequency. This section followvs
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that assumpcion, calculates a correction Q' to the Fourier frequency
Q(¢) due to the boundary conditions, and then determines the validity of

the assumption based on the asymptotic errors.

b) J
U'j' = A,(j,n) expki.[ 9, 4 -ina | + A,(Jj,n) exp i[ 6, dr -mn, (31)
0 0 J

If the true eigenfrequency is Q+Q' then A=zexp(-inQ') and so,

An(j.n) = exp(=-inQ') Am(j.O) , m=1,2 (32)

Substituting these expressions into the asymptotié amplitude
equations to evaluate the time derivative and then integrzting the

resuitant oc.d.e. gives,

J
Am(J,O) = Am(0,0) exp‘[(
0

eeild!

Ig

J dj , m=1,2 (33)
o

The two asymptotic boundary conditions then become in matrix form

/ \
i

A, {0,0) |
B [ ‘- 0 (34)

a,(0,0) !

A non-trivial solution exists only if det\B)- 0 and this leads to

rthe following equation for 3°'.

J
expliat [ [rglo, .17 =(zg(s,, 117" a3 =
0

b,(2,5,) b, (2,s,) ( j{

J .
= -= dj (35)
B, (2,0,) b, (R,0,) }O‘rg
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If 4,, ¢, are chosen so that the r.h.3. is real and positive then

J )
{ b,(2,¢,) b, (Q.e‘)l r e \ fg o * I
gt = =32110 + Re [— -& a4y (36)
N g b: (.1.0,) bl (3.0,)' /lo rgh (rgl l
wvhere,
J .
N = ‘[ [rg(at.j)l" - [x:g(o,.j)]'1 dj (37)
0

Thus the frequency 3 resulting from a normal Fourier analysis is
corrected by an amount 3' due to boundary conditions and variable
coefficients. This approach, using 3 as an initial approximation to the

actual eigenfrequency, is valid provided the asymptotic error is small.

The asymptotic error is O(LA'Z,TA‘z) = O(J‘z.ﬂ'z) so provided rg<<J

N >> | and hence Q' << 1 except near frequencies for which

J]

b,(2,5,) b.(
b, (. ) b

 {

S bS]

v, )
3,)

s
2 'V ’

is zero, or infinite, which usually occurs at 3=0. However these
frequencies are heavily damped by the boundary conditions and so an
accurate estimate of their eigenfrequencies is not essential. This

v

method gives accurate asymptotic values near the critical frequencies

which are least damped and which therefore determine the overall

spectral radius of the scheme.
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Example

This example is the backward Euler method applied to the model
convective problem with constant CFL number r and space extrapolation at
the downstream boundary. The finite difference equation is,

. S i (38)
¢ ruﬁx] j .

and the dispersion relation is,

a, = 1 - exp(4d) + ir sin(¢) = 0 (39)

After carrying out the calculations the frequency correction 1' is

found to be [2],

ir cos(:) (1 = ir sin(3))
Q' = - T T F ainilo] | log(cot(3/2)] (40)

Thus the effect of the boundary conditions is to greatly accelerate
convergence at low wavenumbers while having little effect on the higher

wavenumbers. The spectral radius i is

A = max ,exp(=i(Q+3'))]|
]
r log(J)

a2 1 - T for J>>r (41)

V. Cunclusions

The validity of the asymptotic approach developed in this paper is
demonstrated by the numerical results in sectic III. The limitations

of the wavepacket theory are due to the asymptotic approximations
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involved in treating the wavepacket as a particle. The stability
analysis in section 1V uses fewer approximations and so the asymptotic

errors will be substantially smaller.,

The calculation of the asymptotic amplitude equation and asymptotic
boundary conditions for a particular case is no more difficult than a
normal Fourier analysis. For applicable cases the wavepacket theory and
the stability analysis are straightforward. In more complex cases the
main benefit from the theory is the insight given by the asymptotic
amplitude equation and boundary conditions. The ampiitude equation
gives the group velocity and the effect of varying coefficients which is
of great interest since in 2-D cascade geometries cell lengths can vary
by factors of up to 100 in inviscid calculations and 1000 in viscous
calculations. The asymptotic boundary conditions give the amplitude

reflection coefficients which provide a practical criterion for choosing

the best numerical boundary conditions.

Acknowledanments

This research was supported by NASA Lewis Research Center under
grant No. NAG3-9 with Technical Monitor Dr. R. V. Chima, and by a
Scholarship for M. Giles from the Kennedy Memorial Trust.

References

1 R. Beam, R. Warming, H. Yee, "Stability Analysis for Numerical
Boundary Conditions and Implicit Difference Approximations of
Hyperbolic Equations”, Proc. NASA Symp. on Numerical Boundary
Procedures, 1981, pp.99-207.

Page 17



M. Giles and W.T. Thompkins Jr. , "Asymptotic Analysis of Numerical
Wave Propagation In Finite Difference Equations" , MIT Gas Turbine
and Plaszz Dynamics Laboratory Report No. 171 , February 1983

B. Gustafsson, H-0. Kriess, A. Sundstrom, "Stability Theory of
Difference Approxima*~ions for Initial Boundary Value Problems II",
Math. Comp. 26 (1972), pp. 649-686.

C.P. Kentzer , "Group Velocity And Propagation Of Numerical Exrrors"
AIAA Paper No. 72-153

J. Lighthill , Waves In Fluids , pp 237-260 , Cambridge Univerity
Press 1978.

L.N. Trefethen, "Group Velocity Interpretation of the Stability
Theory of Gustafsson, Kreiss and Sundstrom", Jour. Comp. Phvs. 49
(1983), pp. 199-217

L.N. Trefethen, "Stability of Finite Difference Models Containing Two
or More Boundaries", to appear

R. Vichnevetsky and J. Bowles , Fourier Analysis of Numerical
Aporoxizations of Hvrcerbolic Eguations , SIAM Studies In Applied
Mathematics 1982.

G.B. Whitham , Linear And Nonlinear Waves , chapter 11 , John Wiley &
Sons 1974.

H. Yee, R. Beam, R. Warming, "Stable Boundary Approxizations for a
Class of Implicit Schemes for the One-dimensional Inviscid Equations
of Gas Dynamics", AIAA-31=1009-CF , AIAA Computational Fluid Dynamics

Conferenca, Palo Alto, June 22-23, 1981

Page 18



e
0 b 4/\/\/\ 120
)
0 L"’(\I 180 -
0 ettim—— 240
uo i 300
O fosirrbonm 360
0 PAAA 420
0 AN~ 480
o L
0 .50 .00
X

Figure 1. Numerical Solution of Convection Egquation



—o— NUMERICAL
EXPERIMENT

WAVEPACKET
THEORY

-2.498 .66

In(E)
|

-2.52

400

o
n
o
o

: n

Figure 2. Position and Energy of Wavepacket: Effect of
Non=-Constant CFL Number



—o— NUMERICAL
EXPERIMENT

—— WAVEPACKET

Figure J.

THEORY
| l

Position and Energy of Wavepacket:
at Boundar:es

Reflections



ORIGINAL §room
OF POOR QUALITY

INTERNAL REFLECTION DUE TO
. A NONUNIFORM GRID

Massacnusett3 Inaty
Cambridge,

Michael S.les
W. T. Thomex.na, Jr.

tuze 2f Technology
AA 22139

Tel: 617-253-2276

Abstract

This paper presents and analyses tvo
examples of vave-trapping, the internal
reflection of numerical vaves due solely to
variations in grid sestretching. In both
examples the analytic equation is the scalar
convection equation which is non-dispersive
and for which each Fourier coamponent of a
general disturbance propagates at the sase
velocity ¢>0. Hovever, numerical approximsa-
tions of this equation using J-point spatial
differencing and traspesoidal (or Crank-
Nicholson) time integration have the property
that for a given frequency there Ls a sinusus
required spatial resolution ax for traveling
vave solutions. In both the examples presen-
ted, an initially well resolved vavepacket
propagates tovards a region of the grid in
which the spacing ax is increasing, until it
reaches the point at which the spatial resol-
ution reaches the critical vealue and its
group velocity 1is zero. It is then reflected
and becomes a vavepacket with vavelength less
than 4 node points traveling with negative
group velocity. It travels through the vell-
resolved region until once again it reaches a
region of inadequate grid resolution, and ls
then reflected back into a vavepacket with
vavelength greater then 4 node points and a
positive group velocity. The difference
betveen the two examples lies in the details
of the spatial differencing, vhich causes no
qualitative change but greatly affects the
“energy”® of the wvavepacket during the
oscillation.

These tvo cases are analyzed using a
previously derived asymptotic analysis vhich
calculates simple o.d.e.'s for the sotion and
the energy change of vavepackets traveling
through nonuniform domains. Cespite the
presence of the turning points at which the
simple asymptotic analysis is not strictly
valid, the agreement betveen the nuserical
experiagnts and the theoretical analysis is
excellent.

Notation

variable
coordinates
velocity

analytic

variable
coordinates
velocity

group velocity

cosputational

amplitude
phase
fraquency
vavenusber

e DPDe4>» nLG ORE

U; . ﬂ(l’.tn)
‘llu; ® u;.. g lpt"; - U;.’
b5 =03,y =0y o vl el ol
c‘u';q u';"- o . '“:"’;.’ - %(u”‘"o u';)

I. Introduction

Nonuniforms grids are a common feasture of
sany nuserical calculactions. Por exasple, in
calculating tvo-dimensional transonic flow
over an airfoil, the gricd spacing ax will
usually be very small ne<r the leading edge
of the airfoil to resolve large graiients,
and ardund the shock to limit the errors due
to numerical dissipation, while in the far
field 4x often becomes very large. There 1is
nuserical evidence that these nonunifors
grids can cause some problems. Groech and
Orszaqg (2) found spurious nonephysical
internal reflections due to grid stretching,
Rence there is interest in analyzing simple
model problems to gain insight into the
difficulties.

There are two limiting cases of none
uniform grids. In the first there are tvo
uniform gqrids with different gpatial resolu=-
tion 4x joined by an interface. This case
has bevn analyzed by Vichnevetsky (6] and
Trefethen [(S]. To summarize their findinge,
in general a vave incident on the interface
produces a reflected wvave in addition to a
transeitted vave. If the vavelength of the
vave 18 much larger than ix on both sides,
then the reflected wave has a very small
smplitude. If the vavelength (s of the same
order as ix then up to 100% of the numerical
energy (s reflected from the interface.

In the second case AXx varies slowvly over
4 length scale much larger than )x. It (s
this case vhich s considered here u.ing a
previously derived asymptotic analysis (').
This analysis is also applicable to finite
difference equations in which the non-uniform
coefficients are due not to non-uniform gridse
but to slovly varying analytic equations.
First ve reviev the theory for the asysptotic
analysis and then ve present tvo nuserical
solutions of the sodel convection equation
using Jepoint spatial differencing and trape=-
zoidal (or Crank=-Nicholson) time {ntegration.
Becauee of the particular choice of vartiable
grid spacing Ax and the frequency of the
vavepacket chosen for (nitial conditions, the
examples both exhibit wave-trapping in wvhich
the vavepacket's motion (s confined to &
central portion of the domain and {its posi-
tion, vavenumber and energy 90 through a
periodic oscillation. It (s shown that the
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asymptotic theory accurately predicts this

behavior.

1. eview of \symntotic Analvsis

Consider a general linear, homoqeneous,
finite difference equation vith variable
coefficlents,

L, U, =0 ()
SIS |
vhere
L’ 1 E: C.,(j) B lp‘ (2)
a,p

Polloving the asymptotic approach of
classical analysis of vave propagation in
nonuniform dispersive msediuss, ve consider
the trial solution,

u; « Al4,n) expliv(3,n)] (3)

wvhere A(),n) i3 a slovly varying asplitude
and v(9,n) is the phase of the vave and \s
related to the frequency 3 and vavenumoper o
by
. i
R .,
The asymptotic approximation which (s
msade L9 that the length scale L for varia-
tions in A and ¢ is msuch greater than !.
Substituting (J3) into (1), expanding A and ¢
in a Taylor series about a point (j,n), and
neglecting terws of order L-', produces,

(4,35)

oh ¢ a2 .,%7 caalt .o (6)
vhere,
ag = 2: c.’(j) exp(i(me=-pn)) (7)
., p
ja a 1 3%
a, - 1 ?a ' 8" -y ‘L.O A, -3 “—lo (8=10)

All of the terms In (6) except for the
first are of order L-', and so ve require

that the O(1) terms in a, is identicallv equal
to zero. Since 1 is assumed to be constant,
because the coeffictients in (2) are not
timse-varying, this condition defines the
dispersion equation s=9(2,)). Equation (6)
can then be rearranged to form the assymptotic
amplitude equation.

A 24

m "l v
vhere,

(11)

fq * ‘l/‘l'[%%}j const s

k) a
e = -(o,;%ooo)/ol- -ln,%;’/alo, -e /8, (13)
Thus the ssplitude A of the vave |{»s
convected at the local group velocity and
grove cr decaye in nonuniform cases In which

the vavenumber ¢ is a function of .

We now restrict our attention to none
dissipative numerical schemes for modeling
hyperbolic systems. In these cases the jroup
velocity for the numerical scheme (s real,
and it is convenient to define & Lagrangian-
type total time derivative,

QLHﬂ;II;

L., Ao =
an ' an " fe 0y
90 that, ae in claseical ray theory (8], a
set of equations may be written for the wvave
propagation along rays.

4

an " 9
CLY
dn

4 2
I~y g (17)

(14)

' (13)

- ¢A |, (16)

A general initial value probles for a
vave cf frequency Q0 and wvavenumber ¢(0,)) can
be solved by i(ntegqrating these equations fros
given initial conditione. In (4) Trefethen
derived the kinematic ray equations (1%5).,(17)
from the dispersion relhtion for an aniso-
tropic 2-0 case in which the grid wvas unifors
but the eanalytic coefficients vere not. Com=-
putational experiments confirmed the predice
tions of the ray theory. In this paper wve
are interested in the motion of wvavepackets,
vhich are vaves for wvhich A is zero on all
but a emall part of the domain. The energy
is defined to be,

J
Lin) = [ IAtx,e 1% ax
%o
J
. f TYE R 1k 5? d9 (18)
0
Differenviating this definition, and
using (16), ytoxdl.
= . (:u.(c)o[d)] %?(rq-—)] € (19
Thue equations (15), (17) and (19)

describe the motion of a vavepacket {n the
interior of the cosputational dosain,

[II. Examples and Analysis

Both of the numerical examples are
solutions t2 the model convective equation
vith constant positive velocity c.
l—"loc)—uuo

x

e (20)

Both schemes use trapezoidal time integr-
ation and J-point spatial 4ifferencing on a
nonuniforms qgrid. The Jdifference betwveen the
schemes lies in the exact details of the

spatial differencing. The first scheme i@,

AL ® ney o

(.t‘ 3"90,"1-|’“:('r a‘)]u) 0 (21)
h - —J—. cat

wit rj.’ .,“_ .’ (22)

This (s only first order accurate on non=
unifors qgrids. The second scheme is second
order accurate.

( fryay 99 l
T s .7 {u" a0
s 0T, . .°C et t x
I 3oy Taey 2
Both examples use 4 cosputational domain
vith 200 nodes, and non-uniforam stretching
Such that r varies as shown in figure '. The
initial condition Ls a vavepacket located at

(21)



the center of the domsain, vith a vavelength
of approxisately 12 node points.

21

Oo X 1

riqure 1. Plot of r(x) for both examples.

Fiqures 2 and ) eshow the development of
the eolution for the tvo examples. Qualita-
tively the bDehavior in both cases is the
seme. Por the first 100 fterations the
vavepacket travels right, with increasing
computational vavenumsber &e the local msesh
spacing Ax increases. As the vavenuabder
increases past v/2, the vevepacket reverses
direction, and in the next 100 iterations
travels back to the center of the dosain and
the vavenusber reaches a peak of nearly «.
The wvavenumber then begins to decrease vhile
the vavepacket continues mcving left, Atter
atout )00 iterations the vavenumber ls Ddack
to ¢/2, and the wavepacket reverses direction
again and travels right back to the center of
the domain, at vhich tise Lt has the sase
vavenuasber {t hed originally.

The analysis of the first exasple begins
by calculating the disp.vsion relation.

.= =21 sin(Q/2) *ir cos(Q/2)einle) (24)

80 the dispersion relation (s,
2 tan(a/2) = r siale) (2%)

Por a particular value of Q0 the disper-
sion relaction shove that there are tvo values
of ¢ for each value of r. If r is less than
a4 critical value repgyp=2tan(a/2), both roots

are real vith one in the interval [(0,¢/2] and

the other (n the interval (v/2,v]. 1If r ia
greeter tfan r.pyp, both roots are complex.

A full discuseion of these features is given

in (1], Por the exasple presented here
F<Fepqy in the middle 80V of the domain.

Piqure 4 showe the real roots ¢ in this part
of the domain.

The vavepacket equations for the first
Axample arce,

4 -

an ° %9 r cosl(e)lcomt(n/2) (26)
de - 4 1

i & sin(e)cos? (0/2) (27)
dE .

i e 0. (28)

O . ,
CD V2 )( 1

Figure 4. Wavepacket path in x-9 phase plane

CEquations (26) and (27) deecribe an anti-
clockwise motion around the x-¢ curve in
figqure 4. At the turning points t=Fepqe.

¢=+/2 and the group velocity r,; ls szero.
%% hovever is non-zero 60 the vavepachet
continues msoving round the curve.

Pigqure % shows a comparison of the posi-~
tion and energy of the wavepacket obtained
from the numerical experiment and from integ-
rating the vavepacket equations. The agree-
ment 18 surprisingly good considering that
the theory (s asymptotic, not exact. In fact
the asymptotic theory is not strictly valid
at the turning points, but following the
procedure used by Lighthill ()] to analyze
caustics (turning points in analytic equa~
tions) it is possible to construct a local
analveis in the neighborhood of the turning
point, which resolves this difficulty.

In the second exasple,
R =24 8in(Q/2) + ir cosin/2)8in(e)

o%co-(;/z)(couuul s 0(L=2) (29)

To firest order in L this is the ssme as
in the first example, so the dispersion
equation and the equations for changes {in x
and ¢ are all the same. The energy equation
however is different.

de 48, ) 2
T - zd’.1 cosl(g))cos?(n/2) € (3o

Figqure 6 showvs the comparison betveen
the numerical experiment and the vavepacket
theory. The theory accurately predicts the
larqe change in the enerqy of the vavepacket
during the oscillation.

It might be argued that to calculate the
stability of the finite difference scheme one
should really analyze the eigenmocodes of the
finite difference equations. In (1] 4t vas
shown that for a particuler class of probless
the average decay rate ca.culated using the
vavepacket analysis (s ssymptotically equal
to the decay rate of the eigenmodes. Using o
eimilar analysis it can be proved that the
same is true for this problem, and so since
the wavepackets have tero average decay rate,
the eigenmodes also have zero decay rate. To
desonstrate this this numericelly, and
examine the transition fros a2 wavepacket fors
into an eigenmode representation example !
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Figure 5. Comparison between theory and expariment

for example L.

vas continued for 80,000 fterations. Fiqure
7 shove the seolution at various staqes in Iits
developsent. 1000 ifterations represent 2.9%
periods of the oscillation, so In fiqure T(a)
the vavepacket s alternately travelinna left
then right. GCradually the vavepacnet bLecoses
stretched vith the largest amplitude at the

front of the vavepacket and a steadily Jrove
ing “teil” behind. This is & more extrese

example of a4 phenceenon noted and discussed
by Vichnevetsky (7). 1In the oriqginal vave-
packet the ssplitude medulation corresponds
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Figure 6. Comparison betweer theory and experiment
for example 2.

to a small perturbation Iin the frequency, and
consequently there Ls enerqgy associated with
8lightly higher frequencies which travels at
4 ssaller greup velocity than the sajority eof
the energvy. After adbout 50,000 fterations
the enerqy Ls spread throughout the reqion {in
WALCA FPFepqyg. At this stage In the develop-

sent the solution {s Dest considered to be a

sum of elqensodes of the systes. Since there
4re probably seversl eigqenmedes vith f(requen~
€iee close to the frequency of the original
vaveapacket, there 18 considerable “"deating®
or ilnterference betveen the eigenmodes.
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INTRODUCTION

In finite difference calculaticns of steady-state subsonic solutions of
quasi-one-dimensional and two-dimensional Euler equations using time marching
methods, it is often observed that when the solution has almost converged to
steady-state the remaining residuzl is due to the propagation of low frequency
waves up and down the domain. These waves are largely unaffected by numerical
viscosity and are dissipata¢ ' hrough the interaction with the inflow and
outflow boundary conditions. The purpose of this paper is to examine this
process by analyzing the wun-teady 1linearized perturbations of a orne-
dizensional, steady, unifo m, subsonic flow. For this 1linear problem with
constant coefficients - 1is possible to derive the exact eigenmodes and
eizenfrequencies of the iri.tial boundary value problem. This 1is the classiczl
technique used to analyze physical and acoustical vibrations in a finite
dezain [5] and more recently used 1in numerical analysis to examine the
P-stability of finite difference approximations to scalar equations [2,3!.
The exponential decay rate of the physical eigenmodes 1Is computed for several
different sets of boundary conditions commonly used in finite difference
calculations and the implications for the stability and convergence rates cf
these calculations are discussed.

The wellposedness of both the initial boundary value problem (i.b.v.p.)
and the steady-state boundary value problem (b.v.p.) 1is discussed briefl:.
The definitive analysis of the i.b.v.p. for multi-dimensional hypertolic
systems is given by Kreiss in [4]. Oliger and Sundstrom [7], use an enerzy
method to establish sufficient conditions for the wellposedness of the Euler
1.5.v.p. Finally, the wellposedness of the steady-state solution to the
nonlinear quasi-one-dimensional and two-dimensional Euler equations will be

discussed in a forthcoming paper by Wornom and Hafez [9].



2. ANALYSIS
The equation for the unsteady linearized perturbation of a steady, uniform

one-dimensional flow is,

1 T ) 0 Py

~ — = =1 ~ .

u + 0 u [+) u =0, (1)
P/ 0 vp u P/ x

where 3, ;, E are the perturbation density, velocity and pressure and
E. ;, ; are the steady, uniform values.
The analysis 1s greatly simplified by defining the following non-

di~ensional variables

> =2/3 (2)

u = u/c (3)
~ s |l

P =p/> ¢ (%)

x = X/L (5)

t = Te/L, (6)

— -1
where ¢ = [vp/p] 2 is the speed of sound. L 1is the physical length of the
dorain considered, so in the non-dimensional domain the subsonic 1inflow {is
at x = 0 and the outflow {s at x = 1.

The resultant non-dimensional equation is

u + Aflu =0, (7)

P/ ¢ P/ x



where

M 1 0
A=|0 M 1], (8)
0O 1 M

and M 1is the Mach number of the unperturbed flow.

Equation (7) has wave-like solutions

0
u = exp:i(kx - wt)}U (9)
P

provided
(kA - wI)U = 0, (10)

so w/k 1is an eigenvalue of A and U 1s the corresponding eigenvec:or.

The three eigenvalues of A and their corresponding eizenvectors are

(1lila,b)

o

—

A, =M+ 1 U, =

—
-

(l2a,b)

A ® ¥ = 1 v, = [-1 ‘ (13a,b)

A general eigenmode of the initial boundary value problem can be written
as a sum of the three elgenwaves,

i(w/XI)x 1(4/\2)8 i(v/X3)x

U1 + QZ e U2 + 33 e

-{w
U=e t[a e

1
1 U, . (14)

3-



The eigenfrequency w and che values of the constants @y, @y, ay are
determined by the three boundary conditions.
At the inflow boundary at x = 0 there are two boundary conditions which

when iinecarized and non-dimensionalized have the form,

cC, Um=o, ’ (15)

where C1 is a 2 x 3 matrix. Substitution of (14) into (15) yields the

n
equation,
b b12 b3 *
a |- 0 (16)
by L2Y) L7LY aq
where
oy b2 b3 \
- (
c, (U, U, U, (17
b2 LY by3

A necessary condition for the initial boundary value problem o be

wellposed is that the 2 x 2 matrix

is nonsingular and so can be inverted to obtain a and @ns the values of

1

the Iincoming characteristics, as a function of . the value of the outgoing

characteristic.



Similarly the outflow boundary condition yields one equation of the form

Coue ¥ = ¢ (18)
and substitution of (14) produces
|
(b31 b3, bas) ] = O (18
%3
where
\ REICTAR 1(2/\,) 1w/rg)
(by; By Byyl =y le gy = Uy e Uy)e  (20)

The second necessary condition for the wellposedness of the initial

boundary value problem i{s that b33 is nonzero so that a, the value of the

incoming characteristic can be determined as a function of

ay and a, the

values of the outgoing characteristics.

Equations (16) and (19) can be written jointly as

"1
B(w) ) o= 0. (21)
3
To obtain a nontrivial eigenmode B(:) must be singular and the vector
(al a, 03) must be a corresponding null vector. Thus the eigen-

frequenices can be calculated from the following determinant equation

det B(.) = O.



The matrix B can also be used to examine whether the steady-state
boundary value problem is wellposed. The three requirements for wellposedness
are that a solution exists, is unique, and small perturbations in the boundary
data produce small perturbations in the solution.

The linearized steady-state boundary value problem has a zero solution and

this solution is unique provided there are no nonzero solutions to
3, | = o (23)

i.e., provided that B(0) 1is non-singular.

A perturbation of the boundary data leads to an equation of the form

=y

\

1

B(0) \2 = ?2 . (24)
iy

3

R}

which, provided B(O) 1is nonsinzular, can be solved to obtain
(J1 a, 03)T which define the characteristic perturbations of the steady-
state solution.

Thus the linearized steady-state boundary value problem i{s wellposed if,

and only {f, det B(0) 1is nonzero, or alternatively the initial boundary value

problem does not have a zero eigenfrequency.

3. EXAMPLES

(a) Entropy, Enthalpv Specified at Inflow, Pressure at Outflow

The physical boundary conditions are



p-lo”Y =3/5 Y (25a)

X=0 _
l-zlu’2+l:—_-*—;1-62+12 (25b)

(o]
X=1L P =P, (25¢)

where p°, u”, p” are the unsteady physical variables which are a sum of the
steady-state and unsteady perturbation variables. The corresponding

linearized non-dimensionalized equations are

-1 0 1 o}

x =0 ul=0, (262)
-1 (y=1)M vy P
o

x =1 (0 0 1) u |= 0. ‘ (26%)
P

At x = 0 substitution of the eigenvector definitions (1llb), (12b), and (13b)

into the eigenmode definition (14) yields

P 1 1 ay
=8t Hg 1 -1 2 (27)
P 0 1 1 a,

Substitution of this equation into (26a) produces the characteristic inflow

boundary condition



3
-1 0 0 %y
- a, = 0, (28)
=1 (y=1)(1+M)  (y=1)(1-M) .
%3
Similarly at x = 1
o 1 1 1 N exp(iu/kl)
ul=e¥t [0 1 4 1 exp(tu/iy) |, (29)
P 0 1 X a4 exp(iw/\a)

and substitution 1into (25b) produces the characteristic outflow bou-dary

condition

1 1 1 a exp(iu/\l)
(O o 1) (o 1 =1 3, exp(in/kz)

0 1 1 4 exp(iw/k3)
"
= (0 exp(1=/1,) exp(12/1,)) [ 1, ] =0 . (30)
3
Tozether equations (28) and (30) define the matrix B
' -1 0 0
B(w) = (-1 (y=1)(1+M) Cr=1)(1~-M) . 1)

0 exp(iuliz) exp(iu/\s)



The eigenfrequencies are given by

det B = (y=1)[(1-¥) exp(1/X,) = (14M) exp(1w/)4)] = 0, (32)
2{u 1 + M
) exp( ) . —_— (33)
i —vi) I-H
1 - o 1+ M
=) y = —z——' -1 log(-;——‘ — \1) + 2n7| , (34)

where n {s an integer.

Thus there 1{s an infinite set of discrete eigenfrequencies. It is usel:l

to define a decay rate ’n

- o, 98¢ - te(u ). (35)
For this exanmple
2
-1-.‘1 rl + M, )
% = =T Wi ly=5 L

The amplitude of the eigenmode grows, or decays, as exp(-ot), so the
requirement for all eigenmodes to decay {s B, >0 for every n. In this
example the requirement {is satisfied and so any {initial disturbance at

t ~J will decay exponentially.

(b) Mass Flux, Fnthalpv Specified at Inflow, Pressure at Outflow

The physical boundary conditions are
p°u” = pu (37a)

(37Y)

X =L p* = . (37¢)
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Omitting the algebraic details the resultant matrix B {s

M 1+ M M-1
B= =1 (Y=1)(1+M) (v=1)(1-M) . (38)
0 exp(iw/kz) exp(iw/xa)
The eigenfrequencies are
v -yl -
w - ‘_.!_M_ [- § log(gi t:;% ti«ig - R%) +2(n +1p )'r] . (39)

The decay rates are

2

-l =M (1 + M1 + My -1)1) 40
n " TT 1°8((1 W[ -M(r = D]/ (42)
(c) Densitv, Pressure Specified at Inflow, Pressure at Outflow
The physical boundary conditions are

‘.:' -3 (41a)

X =0 '
Ip' -; (41%)
X =1L p- = p . (41c)

The matrix B {s
1 1 1

B= |0 1 1 . (42)

0 exp(iy/kz) exp(iu/x3)



The eigenfrequenices are

w = (1= m (43
and the decay rates are z2ero.
Since one of the eigenfrequenices {s zero the steadv-state boundarv value

problem is 1ll-posed, as discussed earlier.

(d) Densitv, Velocity Specified at Inflow, Pressure at Qutflow

The physical boundary conditions are

A ) (44a)
X=20
u =y (44dH)
X =1 p" = p. (4%¢)
The matrix B {s
1 1 1 \
B=1]0 1 -1 - (45)

0 exp(l:/\z) exp(ig/XJ)/

The eigenfrequenices are

s = (1 =) (n +1p) (46)

and the decay rates are -ero.
In this example the steady-state boundary value problem {s wellposed but

because of the zero decuy rates unsteady oscillaticns will continue

{ndefinitely without exporcontial growth or decay.
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(e) Non-reflecting Boundary Conditions

The full nonlinear non-reflecting boundary conditions specify entropy
and the appropriate Riemann invariant at the inflow, and the other Riemann

invariant at the outflow [4]

p-lo°Y = /37 (47a)
X=0
- . -— 2 o
u” + ;_-T c u + YT]. c (47‘0)
. 2 .2 =
X =1 u = c u =) c . (47¢)
The matrix B is
-1 0 0
B = -1 2 0 . (48)
y-1
1 9 E N
f=r exp(ig/hl) 0 2 exp(iwlk3)

Det B = 0 leads to o =+ = which reflects the fact that with these
becundary conditions the unsteady perturbations become zero after the finite

time it takes for all three characteristic waves to cross the domain once.

CONCLUSIONS

The calculation of the exponential decay rates of physical eigenmodes has
implications for the stahility and convergence rates of time-marching finite
difference computations. If the analytic problem has exponentially increasing
eizenmodes then for sufficiently fine grid resolution a time—-accurate

numerical solution will exhibit corresponding exponentfally 1increasing



eigenmodes. In a forthcoming paper, Trefethen [8] will prove that for a
linear constant coefficient system such as this the three conditions:

(i) Exponentially decaying physical eigenmodes,

(11) Dissipative interior numerical scheme,

(ii1) GKS-stable numerical boundary conditions,
are sufficient to ensure the P-stability of a time-marching method for a
sufficiently fine grid. P-stability was defined by Beam, Warming and Yee [2]
and corresponds to GKS-stability with the additional requirement that none of
the numerical eigenmodes increases exponentially. The precise definition of
the theorem and its proof are given in [8], but in essence the argument is
that condition (i) ensures that low frequency physical waves decay, while
conditions (ii) and (1i1i) ensure the decay of high frequency waves, both
phvsical and non-physical.

The exponential decay rates for the physical eigenmodes also provide a
useful lower 1limit on the spectral radius of the finite difference time-
marching procedure. If a physical eigenmode decays as exp(-7t) with
g > 0, then for a sufficiently fine grid the corresponding numerical
eizenmode decays approximately as exp(-7 r. At) where n 1Is the iteration
nu=ber and At 1is the time-step. As the grid is refined with At/ix held
constant, At » 0 and so the spectral radius is no less than
1 - odt + O(JCZ). If o =0, as in example (d), the physical eigenmodes are
neutrally stable and so the numerical convergence rate towards steady-state is

th

due solely tu numerical dissipation. If this dissipation is of n"" order then

the corresponding spectral radius is 1 - O(Ltn+1). Non-reflecting boundary
conditions as in example (e) clearly give a much faster rate of convergence,

but in two or three dimensions perfectly non-reflecting boundary conditions do

not exist and in general the best that can be achieved is that there is zero

13
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reflection for locally plane waves propagating in a particular chosen
direction [1].

It is not clear to what extent the conclusions for this model problem,
with linearized perturbations and constant coefficients, are valid for more
general flows such as transonic quasi-one-dimensional and two-dimensional
flows. Nonlinear mechanisms at sonic lines and shocks are und0ubt;d1y very
important. However the decay to steady-state of low frequency waves will

still depend on the physical boundary conditions and so this analysis should

provide insight into the effect of the boundary conditions.



(1]

(2]

(31

(4]

(5]

(6]

(7]

15

REFERENCES

A. Bayliss and E. Turkel, "Radiation Boundary Conditions for Wave-Like

Equations,” Comm. Pure Appl. Math., Vol. 33, 1980, pp. 707-725.

R. M. Beam, R. F. Warming, and H. C. Yee, "Stability Analysis of
Numerical Boundary Conditions and Implicit Difference Approximations for

Hyperbolic Equations,” Numerical Boundary Condition Procedures, NASA CP-

2201, 1981, pp. 257-282.

M. Giles and W. T. Thompkins, Jr., "Asymptotic Analysis of Numerical
Wave Propagation in Finite Difference Equations,” Gas Turbine and Plas=za

Dynamics Laboratory Report 171, Massachusetts Institute of Technoleccy,

1983.

H.-0. Kreiss, "Initial Boundary Value Problems for Hyperbolic Svsteas,”

Comm. Pure Appl. Math., Vol. 23, 1970, pp. 277-298.

J. Lighthill, Waves in Fluids, Cambridge University Press, 1978, pp.

137-152,

P. M. Morse and K. U. 1Ingard, Theoretical Acoustics, International

Series in Pure and Applied Physics, McGraw-Hill, 1968.

J. Oliger and A. Sundstrom , "Theoretical and Practical Aspects of Soze
Initial Boundary Value Problems in Fluid Dynamics,” SIAM, Vol. 25, No.

3, 1978, pp. 419-446.

e S wgo. . - . ‘;:

“




16

(8]

(9]

L. N. Trefethen, "Stability of Finite Difference Models Containing Two

Boundaries or Interfaces,” to appear.

S. F. Wornom and M. M. Hafez, "A Rule for Selecting Analytical Boundary

Conditions for the Conservative Quasi-One-Dimensional Nozzle Flow

in AIAA 22nd Aerospace Sciences Meeting, January 1984.

Equations,



SOLUTION OF 1-D EULER EQUATIONS
USING A BOX METHOD

M. Giles

CFDL-TR-84-1 February 1984

COMPUTATIONAL FLUID DYNAMICS LABORATORY

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139



SOLUTION OF 1-D EULER EQUATIONS
USING A BOX METHOD

M. Giles

CFDL-TR-84-1 February 1984

This work was supported by
NASA Grant No. NAG2-9,
super . " ;ed by Dr. R. V. Chima.

Department of Aercnautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139



Abstract

The unsteady quasi-one-dimensional Euler equations are solved
using a conservative box method which is second order accurate and
requires no non-physical boundary conditions. No artificial viscosity
is used and so the shock cells and sonic cells require special treatment
which is related to the behavior of the analytic characteristics.
Results are given for a converging-diverging channel with a moving shock

due to the periodic oscillation of the inlet boundary conditions.
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Notation

Variables

Cross-sectional area of duct
Speed of sound

Enthalpy

Flux vector

Pressure

Pressure vector

Velocity

Conservative state vector
Density

Ratio of specific heats

Subscripts

Spatial index for discrete variables
Stagnation quantity
Exit quantity

Superscript

Iteration number for discrete variables

= S -




1. Introduction

The box method was first proposed by Keller [1] for solving
parabolic equations in which the second order p.d.e. is first rewritten
as a coupled system of first order p.d.e.'s. It is now widely used for
solving the boundary layer equations. It also has several attractiv:
features for solving hyperbolic systems. It is second order accurate,
requires no non-physical boundary conditions (such as extrapolation of
characteristics as required by 3-point differencing schemes ) and for

the model problem ut+cux = 0 it gives the exact answer if cat/Ax=1.

The box method was first used to solve the 1-D Euler equations by
S. Wornom (2]. Since Wornom was interested in steady-state solutions he
used a Backward Euler version of the box method and assumed constant
stagnation enthalpy. For large At this converges rapidly to the steady
state solution. In supersonic regions artificial compressibilty was
introduced (as proposed by Eberle [4]) to achieve shock capturing and
prevent expansion shocks near the sonic point. As a consequence one
non-physical boundary condition was required at the supersonic outlet
and this produced a boundary-layer type behavior at the outlet. Wornom
has also used the time-accurate box method to solve the 1-D unsteady
Euler equations [(3]. 1In this paper he chose not to use artificial
comprassibilty and consequently did not require any non-physical bound-
ary conditions but did require special treatment of the sonic cell and

was unable to handle the shock cell.

In section 2 of this report the conservative equations are
derived for subsonic cells (cells for which both the inrlow and the
outflow are subsonic), and supersonic cells (cells for which both the
inflow and the outflow are supersonic). These equations are identical
to those used by Wornom [3). Section 3 derives the physical boundary
conditions and their numerical implementation. Section 4 diascusses the

Acifficulties with sonic cells (cells for which the inflow is subsonic

but the outflow is supersonic), and shock cells (cells for which the




inflow is supersonic but the outflow is subsonic), and their relation to
the behavior of the analytic charcteristics. For the sonic cell the
difficulties are resolved by imposing an additional characteristic
equation. For the shock cell a natural form of shock fitting is derived
with the shock position being an additional variable. Section 5
presents a computational example of a convergent-divergent channel with
a shock which oscillates due to a periodic oscillation in the inlet
stagnation pressure. Finally section 6 discusses the results and the
difficulties and current achievements in extensions to the

two-dimensional Euler equations.

[(ﬂ




2., Equations for Subsonic and Supersonic Cells

The unsteady quasi-one-dimensional Euler equations for a

variable area nozzle are,

9 9 P .
——(AU) ¢+ =—(AF) + A— ~ 0 (1)
at ax ax
where
[} pu 0
Us=|opu F = pn? P=|p (2-4)
pE (pE+p)u 0
An integral form of Eq. (1) for any computational cell is,
xj+1 xj+1 xj¢1
3—[ AU dx + AF «f A2 ax =0 (5)
it ax
P xj x
J b]

This equation remains valid even when there is a shock in the
interval (xj.xj+‘] (provided %% is correctly represented by a Dirac

delta function) and is the basis of the finite difference equations.

As illustrated in figure 1 the approximations which are
introduced are that A is piecewise linear between xj and xj*‘ and U is
piecewise constant between x. and x . With these approximations

i-4 i+d

eq.(5) becomes,

3 (1 1
(xj*1-xj) 71 :\j*‘2 Uj + 2 Aj*! Uj+1 + Aj#1 Fj#l - Aj Fj
+ qu (Pjﬂ-Pj) =0 (6)

B N e - iy




) 1 n+l n
= -A. ). Now —U { ted —(U -U
wvhere Aj*Aj 53’63(53,1 j) ow TN s approximated by At( 3 j)
and the flux term F, (and similarly P,) is approximated at time level

3

b
+ +1
n+6 by a linearized expansion Fn °-Fn¢oar(un -Un). =1 corresponds to

3 3 "au 3 3

the Backward Euler version while 6=1/2 corresponds to the time-accurate

box scheme used by Wornom in [3]. Thus the finite difference equations

which are used are,
ax | 1 n 1 n
-—|=A U, + = A
st [2 g 8y T2 Aj¢= Jj¢1] *

n JF n n aF n
+ Aj#l [Fj¢14o-a-at\uj’1] -Aj[Fjoo-a—AUj)

U
n 32 n n ] - 0 (7)

P n
+ P, + AU - P - - AU
Ay [ ger T 050 A 37 % utY

In matrix form the equations are,

n

n n n n
B, AU, + C, aU. . = =R (8)
b b IS R bRd
where,
n AX aF P
- =—— A I1 -9A <=— -9A s 9
Bj 25t j+} v j au . I+ v K
n AX oF P
cj - 35t Aj‘l I + ¢ )uj‘_1 U + 0 Aj#’ 30 (10)
A (ew)™ . - A, (pw)" }
3+1 P ge § Py
- 2 n - n 2 n n - n
Rj*i Aj+1 (pu )jH Aj (pu )j + Aj¢§(pj*l pj) (11)
n n
A (pE+p)u - A, (pE+p)u
je1 PRIy . e )
0 1 0
F i 2u 0 (12)

3
-yEu+(y=-1)u? YE"Z‘(V—HU’ Y




y=1

-

(13)



3. Boundary Conditions

a) Supersonic Inlet and Outlet

At supersonic inlets there are three boundary conditions which
together totally specify the flow variables at the inlet. At supersonic
outlets there are no physical boundary conditions, and no boundary

conditions are required for the numerical solution.

b) Subsonic Inlet

At subsonic inlets two boundary conditons are required and they
are chosen to be specified stagnation pressure and density. For

programming simplicity these are implemented through the following

equivalent two conditions.
n+1

o)

which when linearized becomes,

-1 LA | n n n n
[1’-5- u=-c=)1 8o, = (y=1)u, a(pu)] + (y=1) A(pE)] = =P, + p,(p,/p,)" (15)

n+1
(l_l u? + c?) = o2 (16}

which when linearized becomes,

-1)2 n
((131) u? - c:). by - (y=1)2u] alpw)] + y(y=1) a(pE)]

-9 n
= - p? (15— u? + c? - c:)x (17)

c) Subsonic Outlet
At subsonic outlets one boundary condition is required which is

chosen to be specified exit pressure.



which when linearized becomes,

[

;‘uz

2

n n n n
JJ AoJ - (y-1)uJ A(pu)J

10

n
+ (y=1) A(pE)J =p S®

n
J

(18)

(19)

)
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4. Equations for Sonic and Shock Cells

In a case ir which the flow is supersonic in the entire domain,
the inlet flow is specified and the matrix equation (7) can be solved

to obtain AU, and then the other AUj by marching downstream. In a case
in which the flow is subsonic in the entire domain, there are 3J

variables, (the AU at 1<j<J), 3(J-1) cell equations and 3 boundary
conditions, two at the inlet and one at the outlet. Thus the number of
equations equals the number of variables. The system can be written as
a block tridiagonal set of equations with 3x3 blocks and solved by
standard methods. Tf ¢=0.5 the equations reduce in both cases to those

used by Wornom [3].

Solutions for the above two flow problems are straightforward.
The difficulties arise with shocks and sonic points. Consider the case
in which the flow is supersonic at the inlet and subsonic at the outlet.
There are still 3J flow variables and 3(J-1) cell equations, but now
there are 4 boundary conditions so there is one more equation than
variable. This can be understood by considering the behavior of the
analytic characteristics. The characteristic velocities are u,u*c so
there are four characteristics entering the shock cell, three on the
supersonic inflow side of the cell and one on the subsonic outflow side.
For a steady-state problem the "characteristic information" from the u-c
characteristics entering the cell on each side must match, but in an
unsteady problem the mismatch determines the shock velocity. This
suggests that some form of shock fitting is neccessary. The procedure
chosen was to define one additional variable, xs, the shock position.

In the shock cell it is assumed that,

U X, < x <€ x
U = 3 j # (20)

< <
Uj#l xs X xj+1

as illustated in figure 2, and so defining xn by



xg(t ) = x, + Aix, L -x,) (21)

3 *1 3

the conservation equation with spatial discretization is,

3 |1 1
(%;,7%,) H(E A2 U3t 2 Meian22 ”jﬂ) YR Bl T A Ey

+ A P -P = 0 22
J*+A ( j+1 j) ke2)
and the fully discretized finite difference equation is,
Ax | . n n n n n . n n
— (A A, AU+ (1=-2) A AU, + A (U -U ) AX
at { /2 ) *(1+x)/2 3+ b2 S I L8
+ A Fn + et Un A Fn + as Un
j#1 [ Fye1 * 037 Y54 153" 308y
n P n n 3P n n n, 23A n
. ) - AU, - P, - — AU, + P, ,-P.) — =0
AJ*X [PJ+1 + 0 23U A 341 j ] 3U A J] o ( j+1 J) 23 AX
(23)

Note the two terms involving Axn, the movement in the shock

position. The first comes from the contribution to

X
j+1
2 AU dx
at

X,
J

due to the movement of the shock, and the other is because the pressure

junp acts across the shock ares which changes in size when the shock

moves.

Now that the number of variables equals the number of equations
the system is well-posed and can be solved. If the shock moves upstream
past the supersonic node, U at the supersonic node is replaced by U at
the subsonic node. If the shock moves downstream past the subsonic node
the opposite is done. One feature of this procedure is that it cor-
rectly calculates the velocity of a uniform moving shock in a constant
area duct. Another is that in steady-state solutions the error in the

shock position is 0(Ax?) and so the global second order accuracy of the

box scheme is preserved by this shock treatment.
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In the case in which the flow is subsonic at the inlet, becomes
sonic at a throat and is supersonic at the outlet, there are 3J vari-
ables, 3(J-1) cell equations and 2 boundary conditions. Thus there are
one too few equations. An explanation of this is that at the sonic line
two characteristics emerge with characteristic velocity u-c, one travel-
ling upstream and one travelling downstream. In the Navier-Stokes
equations the value propagated along these two characteristics would be
determined by viscous forces in the neighborhood of the sonic point, but
in the inviscid Euler equations an extra equation is required to set the
characteristic value at the sonic point. By diagonalizing the Euler

equations it can be shown [6] that the equation satisfied at the sonic

point by the characteristic variable J. with characteristic velocity

u-c=0 is
ﬂ- = .3-2 - cuﬂ = (0 (24)
at T at ot

Thus the numerical condition which is imposed is that AJ_=0
on the subsonic side of the sonic cell. When expressed in terms of

conservation variables this becomes,

(1+_‘ uan o™ = v alpu)® + (y=1) atpE)™ = 0 (25)
2 : P 3 J 3

One other problem was found in actual computations near sonic
points. A negative shock from subsonic to supersonic flow is a valid
solution of the steady state Euler equations, and in practice small
negative shocks often occurred. According to an inviscid isentropic
analysis using Riemann invariants [5] these negative shocks should be
unstable to small perturbations and should become expansion fans.
Therefore the problem was solved by identifying negative shocks at the
sonic point, and when they occurred smoothing the two points on either
side of the shock. The shock then turned into an expansion fan and
quickly the solution at the thrnat became an almost linear expansion

from subsonic to supersonic flow.
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5. Example

The test example 13 the unsteady problem of the flow through a
choked converging-divergina nozzle with subsonic inflow and outflow,
constant exit pressure and stagnation entropy and oscillating stagnation

pressure. The nozzle area was defined by,

AX) Ly, 4 (x-0.5)? (26)
A
with 0<x<1 . 50 node points were used with xj defined by,
o1 ("1 1 1 112
ik ‘J_'_)-_l-[J'_)-_
5 (49)'6 29 2|2 49)” 2 ]

which gives slightly greater resolution near the throat. The

stagnation pressure was defined by,

1 1 2mn
= - + + - - cos(— 28
Py 2 (pmax pmin) 2 (pmax pmin) (200) kel
with,
Prax /pexit = A=A Pnin /pexit = x4 123439

For reference steady flow is choked for p,/p > 1.235 , and

exit
figures 3,4 show the steady-state solutions corresponding to pmin and
pmax with the former bteing unchoked and the latter choked. Figure 5

shows the unsteady solution which remains choked at all times. The

throat remains close to sonic throughout the oscillation and so there is
little oscillation in Mach number between the inlet and the shock. The
shock position varies greatly and so the outflow Mach number oscillates
considerably. One interesting feature is the "wiggles" in the solution
near the sonic line. The spatial wavelength of the induced oscillations
is proportional to the local characteristic velocity. Near the sonic

line u-c is small, so the wavelength of oscillations of the correspond-

ing characteristic is small.
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This problem has a time-step stability limit of approximately,
u.At/Ax<0.2 where ug is the shock speed. The instability occurs when

the shock is moving downstream. On the subsonic side of the shock cell

U is defined to be constaut n xg<x<x « In the worst case x:- x_, and

I+ a)
1
so if Axg>(xj+1-xj)/2 tn s j* is constant on a negative length. This
justifies a stabi imit of ugAt/ax<0.5 . In practice the block

inversion in the sul- ic solver becomes nearly singular at a lower At.
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6. Conclusions

The most important conclusion is that it is possible to solve
the Euler equations using a truly inviscid numerical method with no
artificial viscosity and no spurious numerical boundary conditions.
However this requires shock tracking and special treatment at sonic
points to replace viscous mechanisms with appropriate inviscid
conditions. In 1-D it is relatively easy to produce an efficient
time-accurate scheme, but in 2-D the problems are much greater. In [3]
Wornom develops a numerical scheme for steady-state two-dimensional
Euler flow and presents an example of a supersonic shock reflection
problem. Unfortunately the method is severely limited by a requirement
.hat each of the characteristic velocities u,utc,v,v:c must not change
in sijn in the domain. 1In [7] Drela and Giles also develop methods for
steady-state two-dimensional Euler flow using a conservative streamtube
formulation. In supersonic applications the solution can be marched
downstream, and accurately captures shocks without the introduction of
artificial viscosity. In subsonic applications a very efficient
relaxation procedure, similar to potential solvers, is used. 1In
transonic applications artificial compressibility (very similar to that
in [(2]) is used to capture shocks. Further work is being done to
improve the performance of the transonic solver. One possibility is a
special treatment of sonic and shock cells in a manner analogous to that
used in this paper. However at present no procedure for doing this has
been found and, looking further ahead to 3-D calculations, it seems

probable that a shock-capturing scheme will be much easier.
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Figure 1. Illustration of piecewise l.near definition of A and
piecewise constant definition of U.
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Figure 2. Illustration of piecewise constant definitic.a ot U in
a shock cell with shock movement.
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