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ABSTRACT

Consider an (n,k) linear code with symbols from GF(2 m ). If each code

symbol is represented by a m-tuple over GF(2) using certain basis for

GF(2 m ), we obtain a binary (nm,km) linear code. In this paper, we investi-

gate the weight distribution of a binary linear code obtained in this manner.

Weight enumerators for binary linear codes obtained from Reed-Solomon codes

over GF(2m ) generated by polynomials, (X-a), (X-1)(X-a), (X-a)(X-a2) and

(X-1)(X-0L)(X-n '4) and their extended codes arc presented, where a is a

primitive element of GF(2m ). Binary codes de-ived from Reed-Solomon codes

a:e often used for correcting multiple bursts of errors.
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1. Introduction

Let {B1'B2'...,Bm} be a basis of the Galois field GF(2 m ). Then

each element z in GF(2 m ) can be expressed as a linear sum of R1,B2,...,Bm as

follows:

Z - c1B1 + c2B2 + ... + cmBm,

where c 
1
.EGF(2) for 1<i<m. There is a one-to-one correspondence b y ween the

- -

element z and the m-tuple (c 1,c2,...,cm) over GF(2). Thus z can b repre-

sented by the m-tuple (c l ,c 2" "' cm ) over GF(2).

Let C be an (n,k) linear block code with symbols from the Galois field

GF(2 m ). If each code symbol of C is represented by a m-tuple over the

binary field GF(2) using the basis {B1162,...,Bm} for GF(2 m ), we obtain a

binary (mn,mk) linear block code C b . If code C is capable of correcting t

or fewer random symbol errors, then C  is capable of correcting any

combination of

X -	 r_

1+((Q+m-2)/mi

or fewer bursts of errors of length Z [1].

In this paper, we investigate the weight distributions of binary codes

deriv I from codes with symbols from GF(2m ). Weight enumerators for binary

codes obtained from Reed-Solomon codes over GF(2 m ) generated by polynomials,

(X-a), (X-1)(X-0), (X-0)(X-a2) and (X-l)(X-a)(X- a2 ) and their extended

codes are presented, where a is a primitive element of GF(2m).

2. Binary Weight Distributions of Linear Block Codes over GF(2m)

Let C be an (n,k) Linear code with symbols from GF(2 m ). Let C 

denote the binary (nm,km) linear code obtained from C by representing each

code symbol by a m-tuple over GF(2) using the basis 16 1,a 2, ... ,Bm } f,-r

GF(2 m ). Let H be an (n-k)xn parity-check matrix of C. By rearranging the
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bit positions, a parity-check matrix for the binary code C  can be repre-

sented in the following form:

b	
(1)H	 lH:B2H: ... :s mH) .

which is an (n-k)xmn matrix over GF(2 m ). For convenience, we will use the

order of bit positions given by (1). Let v-(vl,v2, ... ,vm ) be a binary vector

of mn components, where 
v
i (vil'vi2" .. 'vin) is a binary n-tuple for

1<i<m. Then, v is a codeword in C b if and only if

M
T

^ i Hv i = 0	 (2)
i=1

A.	 1
Let C denote the dual code of C. We assume that C does not contair.

the all-one vector (1,1,...,1). Let C e denote the linear code over GF(2m)

whose parity-check matrix is of the following form:

1 1	 1

H 
e 

=

	

	 (3)

H

Clearly C  is a subcode of C. Let C  and C e,b denote the binary sub-

field subcodes of C and C  respectively. Then C e b is the even-weight

subcode of Cb.

Let A,,(X) = AO_^+AO1 X+A02 X 2 +...+A O n X n be the weight enumerator of

C b . Then, AO i is the number of codewords of weight i in C b . Note that

A00-1' Ascuii ,e that there are k types of cosets modulo C  including C 

itself, and cosets of type-j have the same weight enumerator A A X) for

0<j<Z. Let Y be a (n-k)-tuple over GF(2m ). Then Y is said of 'type-j' if

and only if Y is the syndrome of a coset of type-j. Since C e b is the even-

weight subcode of C b . Each coset of C  can be partitioned into two cosets

of Ce,b , an even-weight coset and an odd-weight coset. Hence there are U

-3-
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types of cosets modulo 
Ce,b' 

Let A. (X) and A 
j,o 

(X) denote the evenA. ,e 

part and odd part of A j (X) respectively, for 0<j<i.
^-1

For nonnegative integers s 1 , s 2" "' s k-1 such that ^ s < m, letj_l j —

Ns 
1 ,s 2

 „'s	 denote the number of (^1,y2,...,Ym)'s such that
R-1

(i) y, is an (n-k)-tuple over GF(2 m ) for 1<i<m;

(ii) the number of components Y i of type-j is s  for 1<j<T; and

(iii) the following equality holds

M

6 i'Y = 0
i=1

Then,	 .ollows from (2), (4) and the definition of N	 that we
sl,s2,... ► sq,-1

have Theorem 1.

Theorem 1: The wei g ht enumerator of Cb , denoted Ab (X), is given by

b	 m-^
S.

? (X) _	
Ns ,s ,...,s	

[AO(X))	 Ajl(X)	 (5)

S 	 2	 R-1	 3-1

where S.
m
 = ((s1,s2,...,s^-1): s.^0(1<j.-O and L s . < m) and	 _	 S.

	

j=1	 j=1 J Al^

Let V=(v 1 ,v21" " v m ) be a binary vector of mn components where

v 
-(v il l v i2''" ' v

i n) is a binary n-tuple for 1<i<m. Let C  be the bina*y

code of length mn derived from C by representing each code symbol of C

	

e	 e

by a binary m-tuple using the basis 
{B1'e2""' 

5 m ). Then v is a codeword in

C  if and only if
e

m	 n

L Bi L vij = 0	 (7)
	i=1	 j=1

M

L ^.HGT = 0	 (8)
i=1

Since ^1,e2,...,Bm are linearly independent over GF(2), we have that

n

	

Lv.. = 0,	 for 1<i<m .	 (9)
j=I

Hence we have Theorem 2.

(4)
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b
Theorem 2: The binary Code C  is an even-weight code and its weight enu-

merator Ab (X) is given by

Z-1	 S.

Ab (X) _	 N	 [A(X)
]m-^ E A. 3 M ,

e	
S	 s1,s2, ... 1sk-1	

0,e	
j-

	

-1	
(10)

	

Z-1	 Z-1
where S Z'm	 {( s l , s 2 ,

 
.... s '-1 ): s an for 1<j<Z and	 I s , < m) and a = I S.

	

J	 j=1 J	 j=1 J
A6

Let 
Cex 

denote the extended code obtained from C by adcing an overall

parity-check symbol. Hence C
ex 

is a code of length n+1 with symbols from

GF(2m ) and parity-check matrix

1 1	 1 1

0
	 ,M

H	 =	 H	 (11)
ex

0

Let 
Cex,b 

be the subfield subcode of CeX . Then 
`
ex b is the extended

code of Cb . It follows from Theorem 1 that we have Theorem 3.

Theorem 3: The weight enumerator A eX (X) of Cex is given by

Q-1 S.
A  M _
	 Ns ,s ,...,s	 [AO,ex(X)]m-^ 

T( A]^ex(X)	
(12)

SZ'm	 Q-1	 j=1

R-1	 Q-1
where S^ 'm = {(sl,s2....,sR-1):s >0 for 1<j<Q and 	 s <m),	 _ I s . , and

	

J	 j=1 J	 j =1 J
A.	 (X) = A.	 (X) + XA.	 (X)	 (13)
J, eX	 J,e	 J'o

for 0<j<Q.	
AA

From Theorems 1, 2 anO 3, we see that, if we know the weight enumerators

of cosets of the binary subfield subcode C  and coefficients Ns ,s 	 ..,s	 '
1 2	 Q-1

we can obtain the binary weight enumerators Ab (X), Ab (X) and AeX (X). weight
e

enumerators of cosets for some classes of codes are known, e.g., the Hamming

codes (2]. Let A  M denote the weight enumerator of a Hamming code which

is known (1-4]. Let C  be a Hamming code of length n=2 m-1. Then the

weight enumerator ACi of a coset of C  (other than C b ) is given by

ACH (X) = n {(X+1) n - A H (X))	 (14)

-5-
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If C  has minimum weight at least 2t+1 and all cosets of C  with

minimum weight t have the same weight enumerator A t (X), then it follows from

Macwilliams equation (2,51 that

n

At (X) = (n) -1 2- (n-k)	 L 
AJ pt (j) (1+X) n-j (1-X) j

j =0

where A: is the number of codewords of weight j in the dual of C b and
J

P t (j) is a Krawtchouk polynomial. Theorem 4 provides a sufficient condition

for all cosets with the same minimum weight to have the same weight enumerator.

Theorem 4: If C  has minimum weight at least 2t+1 and the number of non-

zero weight w's such that there exists a codeword of weight w in the dual code

of C  is not greater than t+l, then the minimum weight of a coset other than

C  is at most t and all cosets of C  with the same minimum weight have :he

same weight enumerator.

Proof: In a coset of C b , there is at most one vector whose weight is not

greater than t. Hence this theorem follows immediately from Theorem 20 in

(p. 169;21.	 M

For example, the condition of Theorem 4 holds for primitive BCH codes of

minimum distance 5 and code length 2 m-1 with odd m A .

3. Binary ei g ht Enumerators for Some Reed-Solomon Codes

In this section we will derive the weiyht entunerators for the binary codes

obtained from some Reed-Solomon codes with symbols from GF(2 m ). Let C be a

Reed-Solomon code of length n=2 m-1 with generator polynomial g(X). Let u be

a primitive element of GF(2m).

Case 1 •	g(X) = X-C(.

In this case, the parity-check matrix for C is

-6-
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The binary subfield subcode C  of C is the ramming code of length 2m-1.

There are two types of cosets of C  with weight enumerators A H (X) and

ACH (X) respectively. AH (X) is the weight enumerator of C b . ACH (X) is

the weight enumerator for the cosets with minimum weight equal to 1, and is

given by (14).

For v=(v 11v21 ... ,vm )EC b , v i belongs to a coset with weight enumerator

ACH if and only if 'Y = Hv110. Then. Ns with 0<s<m is equal to the

number of (Y1,Y2,•••,Ym)'s with s nonzero components for which

m

i=1
S iYi =0 .

Hence, N
s 

is the -ame as the number of codewords of weight s in a maximum

distance separable code of length m and minimum distance 2 with symbols from

GF(2m ). Consequently, we have (1,2)

s- 2

	

Ns = (5)	 (-1) 3 (s) (
2m(s-j-1)-1)

j=0

Case 2:	 g(X) = (X-1)(X -a).

In this case, C
e 

has minimum distance 3. It follows from Theorem 2 that

m

A b M = I Ns[AH^eWIM-s[ACH^eWIs

S=O

where Ny is given by (16), AH a and ACH e are the even parts of A  an;)

ACH respectively. From Theorem 3, A 	 can be obtained.

Case 3:	 g(X) = (X- n)(X _OL

In this case, C has minimum distance 3 and

1 a a
2 	 an-1

H	 1	 a2 Cc	 C(
 2(n - 1)

	 (18)

The binary subfield subcode C  is the Hamming code of lenqth 2 m-1. For

v=(v ,v,,,...,v ), let
1	 m

-7-
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Yi1	
-T

Hv.	 1<i<m

Y i 2

Since v 
i 

is binary, we have

2

Y i 2	 Yi 1 .

Then v is a codeword in C b if and only if

Cm
L ^iYil	

0

i=1

M	 2

^.Y•	 = 0 ,
i it

i=1

Note that v i is in a coset with weight enunerator ACH W if and only if

Y1l ^0. Since

cm

L ^Jil = 0

if and only if

M
C 2 2

L aiYil
i=1

N s is equal to the number of m-tuples, H1,S2,...,dm), over GF(2m ) with s

nonzero components for which
m

0
i=1
	

(22)
M 2	

0 .

i=1

Since, for 1<i<j<m,

1 ^0,

a2 B2
i j

-8-
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A	 ,

Ns is equal to the number of codewords of weight s in a maximum distance

separable code of length m and minimum weight 3, and is given by (1,21,

Ns = (S) 513 (-1)3(.) (2m(s-j-2)-1) . 	 (23)

j=0

Then it follows from Theorem 1 that

m

Ab (X) = ^ N s [AH (X)]
m-s

[ACH (X)] s	(24)
S=O

4here Ns is given by (23).

Case 4: g(X) = (X-1)(X-a)(X-a2)

In this case, C
e 

has minimum distance 4. It follows from Theorem 2 that

m

A (b) (X) _ ^ Ns[AH,e(X)]m-s(ACH,e(X)1s
S=O

where Ns is given by (23). Also, it follows from Theorem 3 Oat A  (X)

can be obtained.

For all the cases considered above, the binary weight distribution is

independent of the choice of the basis 
{6 1 ,B2'" ''Sm)'

Case 5: g(X) = (X-a)( X -a3), or (X-a)(X-a2)(X-a2)(X -a3) or

(X-00(X-a2)(X-a3)(X-a4)

In either case, C  is the primitive BCH code of length 2 m-1 and min-

imum distance 5. Hence C  is quasi-perfect (2-41. For odd m. C  satis-

fies the conditions of Theorem 5, and there are three types of cosets of C 

other than C  with minimum weights 1, 2, and 3 respectively. The weight

enumerator A R (X) for 1<Z,<2 can be obtained by MacWilliam's equation given by

(15), and A 3 (X) is given by the following equation:

A
3
 (X)= [2n - 2k(1+n+(2))]-1{(X+1)n - A 0

 (X)

nA l (X) - 
(n

2 )A2
(26)

(25)

-9-
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Consider the case for which g(X)-(X -a)(X -0( 3).	 For v-(vl,v2,...,vm)

with v i as a binary n-tuple for 1<i em, lot

FY:1

	

Ly	
Hv i.

13

Then, v is a codeword in C b if and only if

c
m	 m

iL1SiYil - 0
	 and	

1Z1aiYi3 = 0 .

For 1<i<m, v i is a codeword in C  if and only if Yil:.Yi3-0; v i is in

a coset with minimum weight 1 if and only if 'i3 Ii1A0; v i is in a coset

with minimum weight 2 if and only if (il00 and trace (l+Y 13/)il)70; and

otherwise v 
i 
is in a coset with mini mum weight 3. A closed formula for

N	 is under study.
sl,s20s3

	

cases are:	
-1	 2	 -1	 -2

Other interesting	 g(x)=(x-a)(x-a ) or(x-a)(x-a )(X-a )(X-a ).

There exists a cyclic code with the

those of the extended code C eX . For

the binary subfield subcode C 	 of
ex,h

Zetterberg's code [2,5) f r even m.

same n, k and the minimum distance as

the case with g(X) _ (X-a)(X-a 1),

the cyclic version of C eX is a

However, the weight distribution of a

coset of Cex b is unknown.

4. Conclusion

In this paper, we have investigated the weight distribution of binary

linear block codes derived from codes with symbols from GF(2m ). We'ght

enumerators for binar y codes derived from some Reed-Solomon codes over GF(2m)

have been obtained.

Reed-Solomon codes with syinrols from GF(2 m ) are widely used as the

outer coder in a concatenated coding scheme for error control in data communi-

cation. Recently, we are investigating a concatenated coding scheme for

NASA's Telecommand System. Two possible outer ;odes are considered, one is

the X.25 standard code with generator polynomial g(X) = X 16+X 12 +X 5 +1 and

-10-
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the other is the Reed-Solomon code with symbols from GF(2 8 ) and generator

polynomial g W ={X-1)(X-o). The case with X.25 standard code as the outercode

has been analyzed. Now we are analyzing the case with the a')ove Reed-Solomon

code as the outer code. Knowing the binary weight distribution of the

Reed-Solomon code, we should be able to analyze the performance of the

propose9 concatenated coding .scheme for NASA's Telecommand System.

-11-
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