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Abstract

A techmque 1s shown whereby 1t 15 possible to 1elate a particular multignd pro-
cess to cyche reduction using purely mathematical arguments This technique suggests
methods for solving Poisson’s equation 1 1-, 2-, or 3-dimensions with Dirichlet or Neu-
mann boundary conditions In one dimension the method 1s exact and, i fact reduces
to cychc reduction This provides a valuable 1eference pomt for understanding multignd
techmque« The particular multignd process analyzed 1s referted to here as Approximate
Cyclic Reduction (ACR) and 1s one of a class known as Multigrid Reduction methods
the hiteratute It mvolves one approximation with a known error term It 1= possible to
relate the error term 1 this approximation with certain eigenvector components of the
ertot These are shaiply reduced m amphtude by classical relaxation techmques The
approximation can thus be made a very good one

1 Introduction

In the last decade a new class of relaxation schemes known as multigrid methods have appeared
w the hterature  These ~chemes solve large, sparse, wide-banded limear equations  They have
many potential beneht= including 1emarkable convergence speed which 1= <uch that the number of
operations required for a <olution 1= proportional to the number of unknowns {1ef 1)

Multigrid techniques appear to be ideal for the solution of many equations encountered m
computational fluid dynamics today In addition to then speed they have a potential for simpler
implementation of component and solution adaptive grids as well as a number of other advantages
detmled m (ref 1) and (ref 2) Although widely expernmented with, they do not appear to be
1 widespread use for practical problems The notable exception 15 the work of Antony Jameson
(ref 3) The purpose of this paper 1s to provide a clear and coherent explanation of a particula
multignid strategy when apphed to a model problem and to show that multignid can bhe thought of
as an approximation to cyche reduction

Multignd strategies can most easily be analyzed wlien they are used to solve Poisson’s equa-
tion This 1s because the matrix which approximates the Laplacian operator has analytically known
eigenvectors and eigenvalues Since the eigenvectors are sme functions, a Von Neumann stability
analysis will usually agree quite well with an analysis which use~ the eigenvectors of the Laplacian as
erro1 components One exception occurs in the neighborhood of a boundary where the periodiaity
assumptions i a Von Neumann analysis break down

It 15 possible 1 one dimension to show a ink between cychc 1eduction and multignd Although

the analogy does not carry over exactly i two dimensions, it does provide some insight The
analysis extends to two and three dimensions, and allows at least Neumann and Dinichlet boundary
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Von Neumann stability analysis will usually agree quite well with an analysis which uses the
eigenvectors of the Laplacian as error components One exception occurs n the neighbor-
hood of a boundary where the periodicity assumptions 1n a Von Neumann analysis break
down

1t 1s possible 1n one dimension to show a link between cyclic reduction and multigrid
Although the analogy does not carry over exactly 1n two dimensions, 1t does provide some
insight The analysis extends to two and three dimensions, and allows at least Neumann
and Dirichlet boundary conditions

Results are presented comparing the convergence rate of ACR with that of other clas-
sical methods While the convergence of ACR 1s quite good compared to some methods its
principal value lies 1n the insights 1t provides

2 General Idea

We assume some suitable discretization of the locally hnearized goverming equations
This results in the system of hnear equations

Ardr=fy (1)

where Ay 1s a matrix, ¢ 1s a vector of unknowns, and f; 15 a vector contaimng boundary
conditions and a forcing function

With multigrid techniques as with cychic reduction the 1dea 15 to deduce the solution
to equation (1) from the solution of a simpler equation

Acoe = . (2)

Cyclic reduction 1s able to exactly solve for ¢, from &, but multigrid can do this only
m an approximate sense  Traditionally, each element of ¢, 1s approximately or exactly equal
to a particular element of ¢4 Also, for multignid methods, A, 1s usunally chosen to be of
the same form as A 1n some sense, which allows the solution of equation (2) to be derived
from that of a still simpler equation In this paper we choose to examine only those schemes
where A, and &, are defined 1n this way

Since both A. and ¢, have been chosen there must be a unique value of f. for which
equation (2) 15 satisfied This paper will address the problem of how to find f. from the
given mformation, Ay, A, and f;

We begin by reordering the scalar equations and unknowns 1n equation (1) and per-
forming the appropriate row and column permutations on Ay
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This can be written as a set of two matrix equations with two vector unknowns

A1¢c + A2¢o = fz (4)
A3¢e -+ A4¢n - fo's

If we solve equation (5) for ¢, we get

¢’o = A;I(fo - A3¢e) (6)

Substituting this into equation (4) gives

(A1 - A2A3 A6 = f.— A2AY ], (7)

Notice that this has the form of equation (2) where

Ar = (A] - AgA;]A{) (83)
b= @ (8b)
fc: fe_A2A:1]fu (SC)

By construction ¢, 1s a subset of ¢, In gencral f. 1s not f. The nature of A, will depend
on the nature of A; and on which unknowns we choose to call ¢, We would hke A, and
Aj to be identical discretizations of the same PDE on different sized meshes We will show
that this 1s possible for Poisson’s equation

3 One-Dimensional Example

We will now focus on the particular set of equations which arise from discretizing
Poisson’s equation with the standard central differencing In one dimension this 1s, for
Dirichlet boundary conditions
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Here we have absorbed the boundary condition information mto f; and fy

In this case an elegant choice 1s to let ¢, be the even numbered dependent variables
When this 1s done equation (3) becomes

-2

'2J

(62 [f2 ]
?q fa
ON-3 IN-3
dN-1 IN-1
¢ | |n
3 fa
et Is
ON-2 fn-2
K2 | /v

(10)

For this example A" 1s just — /2 where I 1s the 1dentity matrix  Using this and multiplying
by 21, equation (7) becomes

[ ¢,
b4

PN-3

| #N-1 ]

-fl +
I3 +
fn-a +
LfN-Z +

2/2
2/

2fNn-3
2fn-1

-

1 3
+ fs
+  fn-2
+ IN

which 1s the desired result Note that A, 1n equation (11) has the same tridiagonal structure
that As had n equation (9) and therefore can be reduced in the same way If N 1s one
less than a power of two the reduction process can be continued recursively until only one
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equation remains Once ¢, 1s known ¢, can be found by direct apphication of equation (6)
This process 1s well known and 1s one of a class known as cychic reduction (ref 4) It also
represents a multigrid process where the restriction, sometimes known as the fine to coarse
interpolation, 1s just '

(f6)1 = (ff)z,-l'*_2(ff)21+(ff)2,+1 (12)

and the coarse to fine grid interpolation stencil 1s just

(¢7)s, = (2), (13a)
(20, + (8)ss = U1)aus] (13b)

DO |

(¢f)21+l =

where the required values at 0 and (N -+ 1)/2 are

(¢c), = (¢C)(N—q 12 =0 (13¢)

In this way the restriction and interpolation are accomplished using the original difference
equations By using the analysis techniques of cychic reduction we are able to find an exact
interpolation and restriction 1n one dimension

4 Two Dimensions (Restriction and Interpolation)

In two dimensions the multigrid processes defined by Brandt and others depart from
standard cyclic reduction for the case of Poisson’s equation on a rectangle This comes
mostly from the choice of ¢,

If we index the unknowns as ¢,,, corresponding to their r and y locations on the
computational mesh, we see that cychc reduction chooses ¢, to be those ¢,, for which 215
even The matrix A4 1s then block diagonal with each block a tridiagonal The mversion of
such a matrix 1s just a series of one-dimensional problems, which 1s what makes 1t possible
to compute f. In this case the matrix A, does not have the same form as A; but may be
factored into a series of one-dimensional problems This approach 1s severely limited by the
requirement that A, factor exactly

On the other hand conventional multigrid, guided by physical intuition and a desire to
reduce the number of unknowns faster, defines ¢, as those ¢,; for which 1 and j are both
even For this choice all that can be said about A4 1n general 1s that 1t 1s wide banded
and without any convenmient structure An example will be shown in the next section The
matrix A., computed using equation (8a), 1s much more difficult to solve than Ay and does
not have the same form Some sort of approximation seems 1n order
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One such approximation involves the standard decomposition

Ag=D+(L+U) (14)

were D,L,and U are diagonal, lower tnangular, and upper triangular matrixes respectively
Using this defimtion (5), (6), and (7) become

A3¢e+ID+(L+U)]¢o:fo 615)
¢o = D_l [fo - A3¢r - (L+ U)¢o] (16)
(A; ~ AsDA3)¢, = fo— A;D ' f, + Ay DY (L + U)é, (17)

respectively

It 1s often possible to express A2 D"Y(L + U)é, n terms of ¢, and f, That s

A DY L+ U)po= G+ Hf, +¢ (18)

where G and H are matrices which are chosen to minimize the error term and simphfy A,
The approximation 1s necessary for it allows us to ehminate ¢, from equation (17) It 1s
made possible by the fact that f,, ¢., and ¢, are related by a differential equation as well
as by difference equations Substituting equation (18) into equation (17) gives

(A1 - A;D A2 - G)pe = fe = (A2D' = H)f, + ¢ (19)

As a convenience we may left multiply equation (19) by an arbitrary diagonal matrix
D In this case the two-dimensional equivalents of equations (8) are

A.= D(A; - A,D A5 - G) (204)
¢c = ¢e (20}))
fe=D[fe~ (AsD ~ H)fy + (] (20¢)

Derivation of the matrices G, H, and D as well as the size of the resulting error term,
¢, depends on the particular problem and boundary conditions The coarse to fine grid
interpolation mvolves approximations to the differential equation and 1s problem dependent
The nature of these approximations 1s best illustrated by an example Such an example,
that of a two dimensional Poisson problem 1s given here
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5 Two Dimensional Example

As a specific two-dimensional example let us take

¢1:r + d)yy = f(:c,y)

with boundary conditions

¢ (0,9) = f1(y)
¢2(L,y) = 2(y)
¢y (1.0) = [a(z)

(r)

(21a)

discretized on a 4 < 4 equally spaced Cartesian grid so that Ar — Ay = % Again we absorb
the boundary data and a factor of Az® into the right hand side Also we adopt the double

subscript notation where for example, ¢(,, , )15 expressed as ¢q2

This discretization 1s

a4 I |
141 | 1 }
RS I 1 ‘
2 -4 | 1|
1 . | ]
1 L1 4 | 1 |
1 | 141 | 1 |
1| 2 | 1|
| 1 | .4 | 1
| 1 | 1 1 | 1
| 1 ‘ 141 1
l 1| 2 |
| 2 | -4
| 2 | 1 -4 2
| 2 [ 1 -4
| 2 | 2

[
¢
[{F9)

(22)



We permute this, choosing ¢, to be those ¢,, for which : and 3 are both even

[ 4 | 1 1 1 1 i ¢z faz2
-4 I 1 2 1 $a2 faz
-4 | 2 1 1 ¢24 J24
-4 I 2 2 das Jaa
l 41 1 11 Jiy
! | 141 $21 J21
| 141 1 ¢31 Ia
1 l 2 -4 X bas - fat (23)
! | ! 4 ! $12 fiz
P I 1 4 ! ¢32 BETS
I 1 1+ 1 ! ¢is fis
! ! l 1 41 ¢23 Jas
I ! 141 ! ¢33 faz
1 1| 2 -4 s fas
! ’ 2 4 ¢1a fra
L 1 | 2 1] | #34 L SEY!

Consequently equation (17) becomes

3 1 1
1 % ; * b22 f22 for + f12+ faz + fa2
2 4 Pa2 fa2 1 fa+2[s2+ fas -1
x = + - 4 A DL+ U)o
1 l 3 1 P24 Ja4 4 S1a+2f23 1 [34 2D )
' | 1 3 bas fas 2f3s +2f4a
2 2

(24)

where the term A;D"'(L + U)¢, 1s given by

1 (¢ + du + ¢1a +  ¢3)
A DL+ U)p, = : % ot +  ¢1a : Z:z; (%)
_ ( +  2¢a33)

We must relate this term to ¢. and f,, using the fact that ¢, 1s not independent of ¢,
The two are related both through the difference equations and through the underlying
differential equation (21) Use of the former would lead to an exact solution but would not
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be much cheaper than solving equation (22) directly Using the latter allows us to represent
each line of equation (25) as a local discretization of equation (21) that 1s different from that
used 1n equation (22) While this 1s cheap enough 1t will involve an approximation due to
different truncation errors between the two discretizations of equation (21) We will show
that 1t 1s possible to make the approximation a very good one by means of an appropriate
relaxation process This 1s the nature of multigrid methods

Looking at the first ine of equation (25) we have

—% (@11 + b31 + P13 + ba3) (26)

Since we must use the differential equations to make our approximation we must know
the physical location of these points in the domain We find them to be the four diagonal
neighbors of the point ¢2, If we expand each of them 1n z and y derivatives of ¢ about the
point ¢q2 we find

Art

(#11 + @31 + d13 + da3) ~ =232 — [AI2V2¢ + F(d’zzzz + 6¢zryy + Dyyyu)
22

(27)

1
2

The numerical Laplacian f;; may be related to the physical Laplacian Az?*V?¢ at the point
(72,y2) using the Taylor series analysis used 1n equation (26) This gives

Art
f22 >~ [Azzvqu + T2 (f2z2z + byyyy) (28)
22

Adding equation (28) to equation (27) gives

Azt

- % (#11 + ¢a1 + d1a + d33) = —d22 — fa2 - 5 (zzyv) 2y (29)

One can make a similar argument for each line of equation (25) (see figure 1)

We see that G and H are now fully determined since no terms involving ¢, remain The
matrnix D 1s then determined from the constraint that A, represents the same discretization
of the problem as A; but on a coarser mesh In this case 1t 1s just 4]

For this example equation (19), after multiplication by D, 1s given by
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7 /f//ml/ 77777777777, .
Y
Z—'/z %— / - }
Vs _ / —a1 _ 4
2 -2 = 1 -I4 % AXY dyy
;L-'/z Yo / 1
L L 7 [
Ll L, g 7 Ll L,
7
4
A - A 4
2 ] = 7 - % X% gyuy
A—1——1 7 2
/[— A 1
/ l _2 I /1.._.1 ..._4_ —
lLLLLLLLLLLLL SLLLLLLLLLLL
T 7
j —
|
7 Lo - 2--4 -%axte
7 | 4 i xxyy
/] 1— 1
7 | |
SLLLLLLLLLLLL, ’/ CLLELLL LS,
A /)
A /]
A /]
/ = 7 -%axX g,y
7 2— / 2
4 | =2 4 2--4

Figure 1 - Equivalent differencings
used 1n approximating Ay D™ (L + U)gy

2 4 | : b2 J124 far + faa+ fae 1
i P42 Jar 4 2fa2 + [4a 4 1

x = + 2A1°¢,, 30

9 | 4 1 P2y J1a +2f23 4 [a4 Gzavy 1 (30)
9 ’ 2 4 Paa 2f34+ 2f42 1

which 1s indeed what we would Iike Notice that a restriction operator has been suggested
by the mathematics This was arrived at by using all of the available information about
the differential equations and the boundary conditions It 1s applicable at the boundaries
as well as 1n the center of the grid Also of interest 1s that the expression for the error term
1s the same at the boundaries as 1t 1s 1n the interior of the grid This turns out to be very

helpful
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We now wish to recover ¢, from the now known ¢, This may be done using the
difference equations and an approximation If, for example, we wish to find ¢;; we may
use the now known @2, the boundary conditions, and the mterpolation formula given 1n
equation (29) centered around the point (1,1) instead of the point (2,2) Simularly, all of the
unknowns with two odd subscripts may be found by this formula The remaining unknowns
may now be found directly from the imtial difference equations This interpolation strategy,
using the original difference equations as much as possible, is characteristic of MGR methods

in general

6 Smoothing

Ideally the error term 2Ar4¢,,,, 1n equation (30) would be zero In practice it seldom
1s In general there 1s very hittle that can be said a prior: about this term One escape from
this dilemma 1s to use the correction formulation of equation (1) For this we add Af¢>‘f to

both sides of the negative of equation (1)

Ap(d% —d5) = Asdh - Iy (31)
Afeff = 7‘5— (32)

The vector ¢}1s the current guess for ¢; (The more conventional notation, ¢7, has
not been used here since n 1s used elsewhere ) The quantity r‘, 15 called the residual and
may be formed exphcitly from known quantities Since ¢y = ¢)} - e'f, solving for % will
yield ¢ Also since equation (32) has the form of equation (1) all of the analysis developed
for equation (1) will apply to equation (32) We adopt the notation that @, 1s a subset of

e’ and f. comes from r%, 2 ¢ from equation (30),

(f)u =tz + (P2 4 (rh)2a + (rh)a: (32a)

This notational convenience frees us from having to refer to the “error of the error” as the
grids become successively coarser

It 1s possible to solve equation (1) by means of the nonstationary Point-Jacob: relax-
ation scheme (ref 5)

¢t+l — ¢t _ ht(f _ A(ﬁt) (33)

where h 1s a scalar iteration parameter For classical Point-Jacobr h = 1/4

In this case 1t can be shown (ref 5 ), that the exact solution to equation (32) as a
function of space and iteration number may be written as the double sum

11



M N i
et= > Y JIO+r rmn)emnXmn (34)
m=1n=1r=1

where for this problem (Neumann boundary conditions)

n- )

N

1
Amn = —4 + 2cos (_""‘Tzf + 2cos (34a)

-1 -1
(Xmn):y = sin 1(mM il sin i(n N 1) (34b)

where as before 1 and j are space coordinates and t 1s the 1teration number The coefficients
Cmn are determined from the imtial guess This 1s simply a decomposition of the error into
the ergenvectors of Ay

For this example the domain 1s a square of sstde £ Using the 1dentities £ = MAz =
NAy, r = 1Az, and y = jAy equation equation (34b) may be written

1 -1
Xmn = sIn (m = 5)m= sin (n = )y (34c)

L L

We define the attenuation factor om, as

t

Omn = [J(1+ 2" Amn) (35)

=1

We may now differentiate equation (34) directly to evaluate the error term of equation
(30) when the process 1s apphed to the correction equation equation (32) These are the
same for each hne of equation (32), namely

%
2Aa'4€uyu =2 (M) (

which we refer to collectively as the error in f. We define the error in an element of ¢, as
the difference between that element and the corresponding element of ¢; We may see the
relation between the errors 1n f. and those 1n ¢, by looking at one eigenvector at a time
The error 1n f. due to X, 1s

M

1\? 1\?/7\1
lamncmn(m— 5) (n— 5) (z) Xmn  (36)

2/

m=

>
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%(%)2 (%)2611011/\’11 (37)

We observe that the error 1n f. 1s exactly an eigenvector of A; interpolated to the
coarse mesh It 1s also an eigenvector of A, We may therefore divide 1t by the corresponding
coarse-grid eigenvalue to find the error 1n ¢, due to X;; This eigenvalue 1s exactly

1
)27
(=227 s

(Ae)11 = -4+ 2cos N v (38)

Expanding the cosine terms about zero with a Taylor series and 1gnoring higher order
terms gives

(A1 = =((x/M)* + (x/N)*) (39)

For this example M = N Dividing equation (37) by equation (39) gives the error in
¢, due to X, as

1 /72
__(N> o1renXn (40)

Thus the ergenvector X;; 1s transferred to the coarse grid with second order accuracy
In a similar manner one can show that for n < (N/2) -1, m < (M/2) - 1 the error in
¢. due to the eigenvector X,,,, 1s

2(r/M)*(n/N)?In — (1/2)]*[m ~ (1/2)]*FmnCmnXmn
-4+ 2cos|(2n - 1)x/N| + 2 cos[(2m — 1)x /M|

(41)

Of this group the worst case 1s when n = (N/2) -1, m=(M/2)-1 If M and N
are large this error approaches

4

_Z_llamncmnxmn (42)

The eigenvector X,,,, shows the shape of the error The coefficient c,,,, depends on
the imitial guess The factor —n*/64 1s roughly —1 5 Therefore, the attenuation factor o,.,
had better be less than 64/7% in absolute value for this mode 1f 1t 1s to damp This 1s easily
done As we will see 1n the next section, a much smaller value of ¢ 1s required for certain
other modes because of aliasing
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7 Alasing

While there are M N fine grnid eigenvectors there are only M N/4 coarse grid eigen-
vectors Therefore some of the fine grid eigenvectors are not accurately represented on the
coarse grid When m > M/2, or n > N/2 or both we find that there 1s no eigenvector on
the coarse grid corresponding to X,,,. on the fine gnd The error e;,,, 1s not free from
these components however, and when brought to the coarse gnid, they appear as linear
combinations of the coarse-grid eigenvectors More specifically, the error appears as the
eigenvector X,,, on the coarse grid where

(43)

' — m form< M2 n forn < N/2
T IM+1-m form>M/2,n— N+1-n for n > N/2

We now attempt to tailor o, 1n such a way as to make o,,,, small for all values of m
and n where X,,,, makes a large contnibution to errors in ¢. Recall that

_ 1 _ 1
Amn = —4+ 2cos (2—172—)1 + 2cos (Lﬁﬂ (34a)

and

t

Tmn = [J(1+ R Amn) (35)

=1

The parameters that determine o,,,, are h” For the moment, let us allow A, to
have any value allowed by the range of the cosine terms This gives a two-dimensional
space of A, which may be plotted as a square of side 2 centered at the origin The actual
boundaries of the square are not included in the region (See figure 2)

We see that on this diagram hines of constant A,,, have a slope of -1 The attenuation
factor o,,,, will be constant along such lines as 1s evident from equation (35) Furthermore
O mn Will be zero when h™ = —1/X,,,, Any valueof h < ;: 1s strongly stable 1n the sense that
|6mn| < 1 for all m,n even if all the h™ have this value One can also represent aliasing on
this diagram by drawing contours of the fine grid A,,,, associated with eigenvectors which
alias into coarse grid eigenvectors that all have the same value of A,,, These contours are
dramond shaped as shown 1n figure 3

Before making a parameter choice, we briefly review the two major sources of er-
ror First there 1s the term 2Az%,,,, Equation (36) shows that this term 1s largest for
the eigenvector Xpsn In this case, the term 2A:c4e“yyfor small Az, would evaluate to,

14
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2rtopnveamn Xmn  The shape of this mode 1s preserved but the amphtude 1s off by about
a factor of 200 Actually this 1s only half of the story

The second source of error 1s ahasing The largest aliasing errors occur on eigenvec-
tors which alias into the coarse-grid eigenvector associated with the smallest coarse-grid
eigenvalue From equation (39) this 1s,

(Ae) = = ((x/M)? + (z/N)?) (44)

Eigenvectors which alias into the eigenvector X;; on the coarse grid have their error
term multiphed by the inverse of this quantity and deposited in X;; The fine grid eigen-
values mn question are Xpsn, Xapr1, Xin, and X1 (The fine grid eigenvector X, 1s 1n fact
what we would hike to transfer to the coarse grid eigenvector X,; It therefore can not be
said to alias but 1s included here for comparnison purposes ) Evaluating equation (41) by
replacing m and n 1n the denomiator with N’ gives errors in ¢, of

~n*N2opynemMN X MmN (44a)

2

s
—TﬂMchIXMl (44b)

2

T
g owwanXin (44c)

2

- <&) o11c11 X 13 (44d)

respectively The first of these 1s unbounded 1f opqn 15 1 Clearly this can’t be tolerated
We would like to pick A" such that opsn 1s proportional to N™4 By choosing h(1) = p{2) = %

we are led to opy = (6—14) (ﬁ)4 Using equation (44a) this leads to an error on the coarse
grid due to this mode of (1/N2)(n®/64) which goes to zero 1n a second order way Thus we
have completely neutralized the threat of ahasing from Xpsn  Errors from this source are

of the same order as errors from Xy,

The errors represented by equation (44b) and equation (44c) must also be attenuated
or they will dominate We are guided by a desire to preserve the accuracy of the eigenvector
X11 since this will be represented on even the coarsest mesh The relaxation selected in
the previous paragraph also works on eigenvectors X;ps and Xy, but not as well The
attenuation factor for each step 1s o1py = oy = % Since there were two steps, the total
attenuation for these terms 1s one fourth The coefficients are then reduced from #2 to
m2/4 We would like them to be proportional to N™2 so that errors 1 each of these modes
dechine 1n a second order way To do this we select h(3) = % This results 1n o and o0

both bemng equal to zero

Finally, we look back to the errors in the components that don’t ahas At the end
of section 6 these were determined to be greatest i the eigenvector Xps ny, which has a
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corresponding eigenvalue approaching 4 This 1s the same eigenvalue as Xps; and X;5 No
further smoothing 1s required to reduce errors in components that don’t ahas

The question of smoothing parameters can be resolved for the model problem The
coarse grid error component corresponding to the eigenvalue of smallest modulus 1s the one
to protect All modes which ahas onto this mode should be attenuated until the resulting
coarse grid error decreases with N Their corresponding eigenvalues may often be estimated
using Gerschgorin’s theorem (Ref 6) On problems which are within a perturbation of the
model problem one might use the parameters given here scaled according to the largest
eigenvalue

For the three-step relaxation just discussed, 0y = [14+ (Amn/8)]2[1+ (Amn/4)], which
1s plotted mn figure 4 Thus, all of the eigenvectors which ahas are severely reduced 1n
amphtude and those which alias most are reduced most The eigenvectors which don’t ahas
are also reduced 1n amplhitude

1.00
75
50
S

25 |-

0 ——e e

.25 1 1 1 ]

0 2 4 6 8

A
Figure 4 - 2-D smoothing profile

8 Coarse To Fine Interpolation

The errors incurred during the interpolation pose less of a problem than those incurred
durmmg the restriction process This 1s because the relevant error terms appear in the
unknowns rather than in the right hand side Furthermore, aliasing does not occur since
all the coarse grid eigenvectors are representable on the fine grid

In what follows, we will explore and analyze one possible interpolation strategy This
strategy 1s motivated by the same geometrical arguments used in forming the restriction
operator
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(1) (es)s; = (4c)

)=

if 1 and j are even

[(ef)es1541 + {€5)i1541

(2 () =
+ (ef)isy—1+ (ef)i15-1
"2(7']')11 }

if ¢+ and 7 are odd

1
y [(ef)errs41 + (€5)ey41
+ (ef)i-1; + (€)1

(1) ]

for all 1+ and 3 This comes directly form the original difference equations for these
points

(3) (er)i; =

(4) Improve the estimate of ¢, by subtacting ¢

An explanation of the above strategy follows In step 1 we simply assign coarse gnd
values to the fine grid at those points where the two grids coincide In step 2, we again use
the rotated difference equations used during the derivation of the restriction operator This
carries with 1t a fourth order error term which causes 1naccuracies in all of the eigenvector
components of ¢ ; In step 3, we use the difference equations to fill 1n all the missing values
Finally, 1n step 4, we use our knowledge of the fine grid error to 1mprove the fine gnd
solution Optionally one can do some more smoothing to remove the errors incurred during
this interpolation process Though this improves the convergence per step 1t was found not
to be cost effective See the discussion of operation count for more details

9 A Three-Dimensional Example
The example chosen 1n three dimensions 1s again Poisson’s equation using purely
Dirichlet boundary conditions Again we use an equally spaced Cartesian mesh and the
standard seven-point differencing star The domain 1s a cube of side £ The analysis 1s

exactly the same as for the two-dimensional problem although the matrices are much larger
Only the results of the analysis will be given here

We are led to the following approximation 1n arriving at the restriction operator
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1
(b1 k1T Dot k41 T Pty k—1 F Prm1 k-1
4

s 41 kb1 TP gt1k—1+ g1 k41 T Day_1k-1
+Pir1g41kF o141k + P11k T Bem1so1k)

A
- 3¢1_7 k+f1]k + (¢zzyy + ¢yuzz + ¢zzzz)

This yields the restriction operator

(f)uk = (r5)ait12526 + (rf)as—12y26+ (rf) 202941 2k
+(r)aay—r2k+ (rf)2ay2et1 + (T5) 202y 26—1 — 2(r5) 202, 2k

In analyzing the smoothing, the three-dimensional analog of figure 2 1s a cube instead of a
square Reasoning, as 1n section 7, we choose four relaxation sweeps with values of A" = 1]2,
112, &> and l The last 1s not strongly stable but the sequence 1s stable Notice the similarity
to the two- dlmensmndl case where the worst error 1s smoothed twice and the other errors

are smoothed once

The coarse to fine-grid interpolation 1s similar to that for two dimensions although one

more approximation 1s required

1) (ef)ur=(9)3 33

for 1, 7,k, even

(2) (ef)ask = % [(er)st 154141 1 (€f)at154 1K1
+ ("f)z+1a—lk+1+(€f)z413—1k 1
1 (ef)1+1.7+1k+1+(ef)1+1_7-+lk 1
4 (er)az-1kt+1 + (ef)it15-1
_4(’f)11k]

[(ef)it1se +(ef)imryk ]
[(ef)sy+1041 + (€5)is41k-1
+ (ef)zj—lk-H + (ef)tj—lk—l ]
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1 (r5)esk
for 1 odd, 5 and k even and for k off, 1, and j even

(4) (ef)isk =

for all indices This 1s just using the original difterence equations

5) Improve the estimate of ¢; by subtracting e;

10 Suminary

The process just described 1s summarized as follows

1) Smoothing to reduce the error incurred during restricton This 1s done using nonstation-
ary Point Jacobi relaxation with the h! selected above

2) Computation of the required fine grid residuals

3) Transferring the problem to a coarser mesh using the restriction operator derived above

4) Exact solution of the problem on the coarser mesh If the coarsest mesh has more
than 1 unknown, “exact” solutton may be the result of some suitable relaxation process
This will be cheap since the coarsest mesh has very few unknowns On other than the
coarsest mesh “exact” solution means two 1terations of this multigrnd process (This 1s

the so called W-cycle)

5) Transferring the solution back to the fine mesh using the coarse to fine interpolation

given above

6) Repetition of steps 1 through 5 until convergence 1s obtained There will be further
discussion of what 1s meant by convergence

11 Operation Count
In this section we address the total cost of ACR In two dimensions, a nonstationary Point

Jacobi relaxation for the five point Laplacian requires 7 operations per point where mul-
tiplications and additions are both counted Interpolations account for about 30% of the
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Table 1 ACR Operation Count
2-D Description Of Process Segment 3-D
21 finest mesh smoothing 36
3 computation of residuals 4
1 restriction operator %
4 interpolation operator Gg
29 total for finest mesh 47%
»2 factor for W-cycle xg
58 total for all meshes 632

total For three dimensions the relaxation sweeps require 9 operations/point Interpolations
require only about 25% of the total The operation count for both 1s given 1n table 1

In both of the above operation counts we have taken into account the fact that restriction
only occurs at fine mesh points with all even subscripts This means that we do not need
the residuals everywhere The count for both of these reflects the fact that they are not
done at every pomnt The factor for the W-cycle assumes an infimte number of grids In the
two-dimensional case for example, each grid requires one-fourth the number of operations
of the next finer grid, but must be visited twice for each time the finer grid 1s visited This
leads to the series

[ SRR
| e
QO | ==

which 1s where that factor of two comes from In three dimensions each grid requires only
one-eighth the number of operations of the next finer grnid This leads to a factor of four
thirds Notice, that because the number of operations on coarse grids 1s proportionately
less 1n three dimensions than in two dimensions, the cost of an additional relaxation sweep
1s also less even though the difference stencil 1s larger

This scheme was devised for ease of explanation rather than for speed Possible speed
improvements include

1) Improved relaxation schemes such as checkerboard Gauss-Seidel or incomplete LU de-
composition These schemes are more efficient at removing all the restriction errors and
require no parameter choice, but are more difficult to analyze

2) Configuring the scheme as an FMG cycle (ref 1) In this case, the method would start
with an exact solution on the coarsest mesh It would then proceed as described above
but starting at the point where the coarsest grid exact solution 1s computed This can be
thought, of as producing a better inmtial guess on the finest grid at minimal cost Some
investigators have found that only one additional cycle 1s required to reduce the errors
to the level allowed by our fimte difference approximation 1t rarely makes sense to
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reduce the errors to a still lower level All the cases run here were converged to machine
accuracy however, since our intent was to test the convergence properties of the method

3) Visiting each mesh only once 1nstead of twice This 1s the so called V-cycle This gives a
savings of one-third 1n the operation count per step (one-seventh 1n 3-D) but weakens the
bounds on the spectral norm of the method because the ’exact’ solution on intermediate
grids 15 not as good Consequently more steps may be required There 1s some practical
experience to the contrary (ref 7)

12 Invariant Subspace Analysis

The question of errors introduced during the interpolation was only touched on briefly In
fact 1t 1s these errors that allow remtroduction of high-frequency error on the finest grid
Without them the troublesome components would soon disappear and the restriction would
become nearly exact With exact interpolation and restriction multigrid becomes a direct
method Since these errors imit convergence, 1t 1s necessary to take them into account when
analyzing multigridd methods The best (perhaps only) quantitative analysis of interpolation
errors for the model problem 15 the method of invariant subspaces This 1s explained 1n some
detatl 1n (ref 7)

In the section on restriction it was shown that in two dimensions the four fine grid eigenvec-
tors Xomn, Xmin, Xmnts and X0 all appear on the codrse grid as the X, eigenvector In
the section on mterpolation we briefly outlined a way of treating errors that only occur on
certain points If we pursue this, we find that when the coarse grid eigenvector X,p,,, 1s inter-
polated to the fine grid, errors are introduced 1 only the four eigenvectors just mentioned
This nice property 1s preserved through the smoothing restriction, and computation of
residuals as well Thus the error in these four components at the end of a step depends
only on their errors at the begining of that step  We can analytically form the 4 > 4 matrix
which represents this situation To find the error at the end of 7' steps we stmply multiply
the imtial error by the T'th power of this matrix  The spectral radius of the method 1s just
the largest of the spectral radn of these 4 ¥ 4 matrices and the spectral norm 1s the largest
of their spectral norms Using this method we have numerically computed these quantities
for the methods advocated here Also we computed these quantities for different amounts
of smoothing Adding a smoothing sweep can decrease the spectral radius and norm but
will increase the cost A function which follows this tradeofl 1s

P log of spectral norm

number of operations

Loosely, this 1s the number of base ¢ digits per multiply

In tables 2 and 3 we show the performance of ACR with different. amounts of smoothing
For completeness we imclude the possibility of post interpolation smoothing The numbers
are limiting values as Az — 0

The three-dimensional case 1s completely analogous although the ivariant subspaces each
contain eight components nstead of four Consequently there are three eigenvalues cor-
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Table2 2-D Convergence Results
Smoothing Spectral Spectral F
t Pre-Restriction Post-Interp Radius Norm
0 1255 oo —oo |
1 i 0 500 1250 -007
2 H H 0 249 0 390 0 21
3 5 - i 0114 0118 037
4 5 & 3 : 0074 0 092 033
5 3 3 i 3 : 0 072 0073 030
Table 3 3-D Convergence Results
Smoothing Spectral Spectral F
t Pre-Restriction Post-Interp Radius Norm
0 3723 oo —00
1 L 1188 | oo — o0
2 & 3 0297 100 —0 000
3 5 = : 0220 0302 0017
4 5 & : i 0148 0192 0023
5 | L | & | 1 | 1 ] @ 016 | oo 5 022
o L [ [ el v [ e ] 8 [ oo [ o | oo |

responding to error components ahasing mto the smallest eigenvalue nstead of two (and
seven eigenvectors mstead of three)

13 Results

The 2-D results are for the example 1n section 5 Eight mesh sizes varying between N = 2
and N = 256 were tried All the test cases were reducible to one unhnown We chose the
homogeneous case where f; = ¢y = 0 This was chosen to simphify computation of the
error (which for this case 15 just the current estimate for ¢ ) and does not imply that the
process 1s restricted to homogeneous boundary conditions (ref 8) The mitial guess was
chosen so that all the coeflicients ¢,,,, were equal and of such @ magnitude as to make the
L, norm of the error equal to 1 The complete convergence history 1s given n table 4, for
a 256 x 256 grid using the three step smoothing suggested 1n section 7

Each complete cycle reduced the Ly norm of the error by a factor of 27 or more The
spectral norm guarantees a factor of 8 5 per step but this 1s overly pessimistic  Like any
linear 1terative scheme, ACR starts out fast and then slows down to some convergence rate
which depends on the spectral norm or radius Its advantage 1s twofold, first, the asymptotic
rate 1s independent of IV, quicker than any other explicit method and second, the problem
may well be converged before this himit 1s reached The independence of the spectral norm
on N has been shown for other multigrid methods (ref 7) Our experience has shown no
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Table 4 2-D Convergence History—256 x 256 Gnid
Step flells e lloo
0 1 x10° 53 x 101
1 13x102 31 x102
2 23 %101 69 x10°
3 26 %106 50 x 1072
4 63x10°8 79 x 1071
5 23 x10° 46 x10°

degradation of convergence over a wide range of values for N

The 3-D results are for the example 1n section 9 Four mesh sizes varying between N = 3
and N = 31 were tried All the test cases were reducible to one unknown We again chose
the homogeneous case where f; = ¢; = 0 The imtial guess was chosen so that all the
coefficients c,,,,, were equal and of such a magmtude as to make the L, norm of the error
equal to 1 The complete 3-D convergence history 1s given 1n table 5 for a 31 x 31 ¥ 31 gnd
using the four step relaxation suggested 1 section 9

o Table 53D Convergence Hictory-31 x 31 x 31 Gnd
S 1 I o,
0 10> 10° 24> 108
- - ] 20 %102 T T
— 2 66 x 1074 92 x 10"
E 3 26> 10°f 34 x 10!
—- p 29 x 1070 1ox102
- : 73%10°¢ 85y 107

Each complete cycle reduced the Ls norm of the error by a factor of 9 or more The spectral
norm guarantees a factor of 5 2 per step

Thus we see that the remarkable results claimed by the analysis are actually realhized n
practice  No other type of expheit method allows an entire convergence history of this
problem to be written down 1n a short table Furthermore, 3-1 problems take only about
15 times as much work per point as 2-D problems, an important feature of multignd
methods

In comparing ACR with other exphcit, methods and with cychc reduction 1 will use table
6 prepared by Dorr (ref 9) This 1s for Poisson’s equation discretized on a square with
N? unknowns The direct methods are compared with the iterative ones by assurming that
a reduction of the error by a factor of N2 1s required This comes from the fact that
the truncation error 1s proportional to N’f For purposes of comparison all acceleration
parameters are optimally chosen

The factor of log; N in ACR and MGR-CH;; does not come from any specific feature
of the algorithm but from the fact that the desired accuracy increases with the number
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Table 6 Method Comparison

Method Operation Count
Block (polynomial {form) GN*® ]
Block (Schecter) %N”
Block (Froehlich) (%—6 + 4r)N3
Odd-even reduction (Buzbee et al) %Nz log, N
Tensor product (Lynch et al) 8N*
Fourier Series (Hockney) 5N2log, N
SOR N7 log; N
ADI 4N<(log, N)?
ACR ~ 3sN?log, N
MGR-CH, ; ~ 17N?log, N

of unknowns Limited precision on a given computer may hmit the attainable accuracy
Under such conditions the method requires order N2 operations to achieve this hmited
precision In any event, given the restrictions on memory size common 1n today s computers,
log, N < 10 In practice multigrid methods can be made to be of order N* by use of the
FMG cycle outhned previously in reference 1 but the coeflicients will increase from 38 and
17 to 96 and 50 for ACR and MGR-CH, ; respectively The FMG cycle 15 usually good 1f
the mmitial guess 1s largely random If, on the other hand there 1s a reasonable guess from
some nearby problem the basic W-cycle will probably converge 1 one or two steps

The mmproved performance of MGR-CHg ; over ACR 1s due largely toits use of checkerboard
Gauss-Seidel for the removal of high frequency error components The operation count for
this method 1s much less than for the non-stationary pomt-Jacobs relaxation used in ACR

14 Conclusions

For the multigrid process just presented 1t 1s possible to formally analyvze errors made 1n the
mterpolation and restriction processes on these model problems It then becomes possible
to tailor the smoothing according to these errors  The analysis yields mterpolations and
restrictions that are valid at Neumann boundaries as well as 1n the interior of the domain

We have shown that cyclic reduction can be thought of as a particular mulugrid method that
has exact interpolation and restriction This 1s particularly evident in one dimension where
the two methods coincide Although the two methods differ in higher dimensions, they are
equivalent up to a known approximation This approximation can be improved with an
appropriate relaxation Using the difference equations to do the interpolation ehnunates
the need for post-interpolation smoothing An efhicient exphat method results

The real value of multigrid techniques comes from applications to problems which cannot
be solved with cyclic reduction Since ACR can be viewed 1n terms of point operators 1t
may prove easler to adapt to complicated grid structures than cyclic reduction
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