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Abstracl 

A tt'chlllque I~ shown whereby II IS pos~lble 10 lelate a particular JlJultlgnd pro

ce~~ 10 cychc reductIOn uSllIg purely malhematlcal algumenls TIlls techlllqut' suggest~ 
met hods for solvllIg POisson '5 equat IOn 111 I -, 2-, or 3-dlJnenslOns with DIrIchlet OJ Neu

mann boundary conditIOns In one dllllenslOn t he method I~ exact and, 1lI fact reduces 

to rychr [(-dllctlOn TIIJ~ provlde~ a valuahlt- lefelellce pomt for ullderstalldmg multlgrId 

techlllqlle<. The Il.Irll(ular lIlultlgnd pJ()ce~;: alldlyzed IS refened to here as ApprOXimate 

C'ych( Hedu(tlOn (AC'H) alld I~ olle of a class known a~ Mu ItlgrId R eductlOlI met hods IJl 

t lie hI erdt Ule II lJIvolve~ olle approxlIllatJOII with d kllOWll ell or teflll It I~ po~slble to 

relate the error term 1JI tlll~ approxlJnatlOn with certam elgenveclor components of the 

en 01 The~t' al e "hal ply reduct'd 1lI amphl udt' by ctl~slcal relax.!1 1011 It'chlllque~ Th(' 

,lpproxlIlIal lOll (all I hll~ 1)(' III,ld{' a velY good olle 

I Illtioductioll 

III the I.I~I d{'(,l(l(, ,I llP\\< CI.I~S of lelaxallOll schemes kllOWII ,IS multlgJld IIIethod~ h.1\'1' appe.lled 

JIl the hlt'r,1 t Ult' TI1<'~( "dll'l1le~ ::-olv(' 1.11 ge, ~parse, wlde-h,lI1ded IIIIPar equat lOllS They haw' 

mall, pol ellt I.d lH'lleht" IIIr1udJllg I emarJ..,lhlt· convergellCt' speed Willdl I~ "ll<.h 1 Iial the IIl1mht'1 of 

opelatlOlI~ requlJI·d fOI a ~OIUtlOlI I~ proporlJOllal to the IIUlllhC'1 of ullkllOWII~ (Icf 1 ) 

M 1111 Ignd I t'ChIlHJlH'~ appeal to be Ideal for 1 he >-olllt IOn of man) eqllat lon~ ell( oUIII eled III 

(OJIIIHllatlOlI,t1 flUId dYlldnll(~ today In .. d(hllOll to thell speed th('y h,IV( ,I potellll,d fOl ~lInpler 

IIl1plelllenlatloll of COJllpOllellt and <-olullOlI adaptIve gnd" .. " Wl'\1 a~ a llumbel of olh('1 ,1(IVaIlLIge, 

deLllled 111 (ref I) alld (rC'f 2) Although Widely eXpellllll'lIt('d wllh, tlH'V do 1101 appe,lr to hl' 

111 wHle"pread usp for pract Ical pJObleJlls Thl' 1101 ahle ex(l'pt IOn I~ t hC' WOI k of AlllollY Jameson 

(Ief 3) The purpo~e of tIllS papel IS to prov)(le a clear alld cohelt'llt explanatlOll of a partlcul'lI 

mullJgnd strategy when appht'd to a model plOhlt'J11 and to ~ho\\< Ih .. t mllltlgJld call he thought of 
a~ all apprOxlIllatlOn to cych( reduction 

Mulllgnd st rategle~ (,III 1lI0st easJly be allalyzed whell Illey are used to solve POls~on 's equa

tlOll TIllS IS because the mat nx wllIch approxImate, the LaplaCIan operatOJ has analyt Ically known 

t'lgenvt'ctol ~ and elgenva lue~ SJllce tile elgenvect OIS ale 8l11e fUllct lOllS, a Von Neumann st ablhty 

all,t1ysIS will usually ,Iglee «llIlt· well With an allalysis wluch u~t'~ the clgcllv,·ctors of the LapLlcJan ,IS 

errol components One exceptIOn occurs 111 the neighborhood of a boundary where the perIodiCity 

assumptIOn" 111 a Von Neumanll allalysls break down 

It I" pOSSIble 111 0111' dlJllenSlOn to show a llllk between cychc leducllOn and JJlultlgnd Although 
the analogy does not carry ovel exactly 1JI two dlJllenSlOns, II docs prOVIde some IlIslght The 

analysl<; extellds to two and three dlJllenSlOns, and allows at le .. ~t Neumann and Dlnchlet boundary 

conditIOns 



Von Neumann stabilIty analysIs WIll usually agree qUIte well wIth an analysIs whIch uses the 
eIgenvectors of the LaplacIan a~ error components One exceptIOn occurs In the neIghbor
hood of a boundary where the perIodicity assumptIOns In a Von Neumann analysIs break 
dowlJ 

It IS possIble In one dimensIOn to sho\\ a lInk between cyclic reductIOn and multIgnd 
Although the analogy does not carryover exactly In two dImensIOns, It does provIde some 
UlSIght The analysIs extends to two and three dImensIOns, and allows at least Neumann 
and DIrIchlet boundary condItIOns 

Results are presented comparIng the convergence rate of ACR WIth that of other cla'i
SIcdl methods WhIle the convergence of ACR IS qUIte good compared to some methods lU, 

pnncipal value lIe'i In the InsIghts It prOVIdes 

2 General Idea 

We assume some 'iuIt.able dIscretIzatIOn of the locally lInearIzed goverIllng equatIOns 
1'111" results In th(· syst ern of Illlear equatIOns 

(1) 

where A J IS a mdt rIX, cP J IS d ve<.tor of unknowns, and I J I" d v('d or rontdllllng bounddry 
ronditlOns and a forcIng function 

With multIgnd tpchTllques as 'WIth cychc. rpdurtJOTl the' Idea I" to dedur(' the ~olutlOJI 
to equat.lOn (]) from the solutIOn of a Simpler eqllatlOJI 

(2) 

Cychr redurtlOn IS dille' to eXdctly holve for cP J from rPe but muIt.lgnd can do thih only 
ITI an dpprOXlTlldt P "£'11"1' Trddlt JOnally, edch elpmpnt of cPe IS approxlTnat ely or exartly equal 
to a partlrllldr (')PnIPnt of ¢ J Also, for mult Ignd method'i, Ac Ih u'illally chosen to be of 
thl' 'iaml' form d~ A J ITI 'iorne SI'Jlse, v. hlch allows the solutIOn of equat.lOn (2) to be derIved 
from that of d "tIll '>lTllpler I'quatlOn In thl" paper we rhoose to examlTl(' only those scheme" 
where A c and rPe drf' df'finC'd ITI thiS way 

SInre both Ac and cP, have been chosen there must lw d UlllqllP "alue of Ie for whl<.h 
equdtIOn (2) I~ satl'ihed TIllS paper Will address the problem of how to fInd Ie from the 
gl ven In formatIOn, A J, A c, and I J 

We begIn by r('orderIng the scalar equatIOns and unknown~ In equatIOn (1) and per
formIng the appropnate row and column permutatIOns on A J 
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ThIS can be WrItten as a set of two matrIX equatIOns wIth two vector unknowns 

AI<Pe -t A 2<po = Ie 

A31>e -t A4<Po = 105 

If WP solvp equatIOn (5) for 1>" we get 

Sub<;tltutmg thlf> mto equdtlOn (4) glvp<; 

NotIce thdt thIs has the form of equatIOn (2) where 

Ar = (AI - A2A~1 A {) 

<Pr= 1>. 

Ie = Ie - A2A~1 I .. 

(3) 

(4) 

(6) 

(7) 

(8a) 

(8b) 

(8c) 

By construrtlOn 1>, IS a subf>pt of <P f In general Ie IS not Ie The nature of Ar wIll dppend 
on the ndture of A f and on whlrh unknowns we choose to call 1>. We' would lIke' Ac dnd 
A f to be IdentIcal dlscretlzatlOn~ of the same PDE on dIfferent sIzed meshps We' wIll f>how 
that thIs IS possIble for POIsson's equatIOn 

3 One-DImensIOnal Example 

We WIll now focus on the partIcular set of equatIOns whIch arIse from dlscretlzmg 
POIsson's equatIOn wIth thp standard central dIfferenCIng In one dImenSIOn thIs IS, for 
Dmchlet boundary condItIOns 
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-2 1 1>1 It 
1 -2 1>2 h 

X = (9) 

-2 1 1>N-l IN-l 
1 -2 1>N IN 

Here we have absorbed the boundary condItIOn InformatIOn lllto It and IN 

In thIS case an elegant chOIce IS to let 1>e be the even numbered dependent varIables 
When thIs IS done equatIOn (3) becomes 

-2 1 1>2 /2 
-2 1>4 14 

-2 1 1>N-3 IN-3 
-2 1 1>N-I IN-I 

X. =- (10) 
-2 1>1 It 

-2 1>3 Is 
-2 1>5 15 

-2 
-2 1>N-2 IN-2 

-2 4>N IN 

For thIS example A41 IS Just -1/2 where 1 1'3 the IdentIty matm.. llsIng thIs and multlplymg 
by 21, equatIOn (7) becomes 

-2 1 (P2 11 + 2/2 -t Is 
-2 4>4 fa + 2/4 + Is 

x ( 11) 

-2 1 1>N-3 IN-4 + 2/N-3 + IN-2 
1 -2 4>N-I IN-2 + 2/N-I + IN 

whIch IS the deSIred result Note that Ac In equatIOn (11) has the same trIdIagonal structure 
that A f had In equatIOn (9) and therefore can be reduced In the same way If N IS one 
less than a power of two the reductIOn process can be contInued recursIvely untIl only one 
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equatIOn remaInS Once tPo IS known tPo can be found by direct applicatIOn of equatIOn (6) 
This proces!:> IS well known and IS one of a class known as cyclic reductIOn (ref 4) It also 
represents a multlgnd process where the restnctlOn, sometimes known as the fine to coarse 
mterpolatlOn, IS Just ' 

(12) 

and the coarse to fine gnd InterpolatIOn stencIl 1<; Just 

(tPf)2, = (tPe), (13a) 

(tPf)2t+1 = ~ [(tPe). + (tPe),-t I - (fJ)2'+I] (13b) 

where thp reqUired values at 0 and (N + 1) /2 arc 

(13c) 

In thl<; way the re<;tnctJOn and InterpolatIOn arp accomplished uSing the onglnal dlffprence 
equdtlOn<; By USIng the analYSIS tpchmques of cycliC reductIOn we are able to find an exact 
InterpolatIOn and restrictIOn In one dimenSIOn 

4 Two DimenSIOns (RestnctlOn and InterpolatIOn) 

In two dlmenslOn~ the multlgnd processes defined by Brandt and others depart from 
standard cyclic reductIOn for the Cd<;e of POIsson's equatIOn on a rec-tanglp ThiS comps 
mostly from the chOIce of tPe 

If we Index the unknowns as tP']' corrpspondlng to thplr :r and y locatIOns on thp 
computatIOnal mesh, we spe that cyclic reductIOn chooses tPe to be tho!:>e tP'] for which f I!:> 
even Thp mdtnx A4 IS then block dldgonal With each bloc-k a t ndJagonal The InverSIOn of 
such a matnx IS Just a senes of one-dimensIOnal problpms, which IS whdt makes It possible 
to compute Ie In thiS case the matnx Ae does not have the same form dS Af but may be 
factored Into a senes of one-dimensIOnal problems ThiS approach IS sevprely hmlted by the 
reqUirement that Ae factor exactly 

On the other hand conventIOnal multlgnd, gUided by phYSical IntUitIOn and a deSire to 
reduce the number of unknowns faster, defines tPo dS those tPt] for which t and J are both 
even For thiS chOIce 'all that can be said about A4 In g(>neral IS that It IS Wide banded 
and Without any convement structure An example Will he shown In the next sectIOn The 
matnx A e , computed usmg equatIOn (Ba), IS much more difficult to solve than A f and does 
not have the same form Some sort of approXimatIOn seems In order 
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One such approximatIOn Involves the standard decompositIOn 

(14) 

were D,L,and U are diagonal, lower triangular, and upper triangular matrixes respectively 
USIng this definitIOn (5), (6), and (7) b£'come 

A3</>e + ID + (L + U)l </>0 = 10 
</>0 = D- 1 [fo - A3</>. - (L + U)</>o] 

(AI - A2 D- 1 A3)</>. = Ie - A2 D- 1
/ o + A2 D- 1(L + U)</>o 

respectively 

It IS often possible to exprebs A2 D-l(L + U}</>o In terms of </>e and Ie> That IS 

(15) 

(16) 

( 17) 

( 18) 

where G and H are matrices willch ar£' chosen to mmlmlze the error term and simplIfy Ac 
The approximatIOn IS n£'cebsary for It allows us to £'lImmate </>0 from <'quatlOn (17) It IS 
made posblble by the fact that Ie, </>" and </>0 are related by a dIff£'rentIaI £'quatlOn as well 
dS by difference equatIOns Substltutmg equatIOn (18) mto equatIOn (17) gives 

As a convenience wp may left multIply equatIOn (19) by an arbItrary dIagonal matrix 

D In this ca<;e the' t.wo-dlmenslOnal eqUivalents of equatIOns (8) are 

A -I 
Ac = D(AI - A2D AJ - G) 

</>c = </>e 

Ie = b [Ie - (A 2 D- 1 
- H)lu + (] 

(20d) 

(20b) 

(20c) 

DerivatIOn of the matrices G, H, and b as well a& th<' size of the resultIng error term, 
(, depends on the particular problem and boundary conditIOns The coarse to fine grid 
InterpolatIOn mvolves approXimatIOns to the dIffer£'ntJaI equatIOn and IS problem dependent 
The nature of these approximatIOns IS best Illustrated by dn £'xample Such an example, 
that of a two dimensIOnal POIsson problem IS given here 
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5 Two DImensIOnal Example 

As a specIfic two-dImensIOnal example let us take 

wIth boundary condItIOns 

¢xx + ¢yy = I{x, y) 

¢ (0, y) = Idy) 

¢x(£,Y) = Jz{y) 

¢" (T.O) = h{x) 
¢ (x, £) -- f4(T) 

(21a) 

(21b) 

(21c) 

(21d) 

(21e) 

dlqrretlzed on a 4 /4 equally sPdced CartesIan gnd so thdt ~;r =-- ~y::- f Agam we abhorb 

the buunddry datd and a factor ofAx2 Into the nght hand hHle Also we adopt. the double 
slIb'>cnpt notatIOn where for examplf>, ¢(I",,,_l IS pXJHes,>pd a'> ¢22 

Tlll~ dl~cretlzatlOn Iq 

-4 
I 
I 1>" /JJ 

I -4 I 1_J hJ 

I -4 1 I 
4>0 J IOJ 

2 -4 
j 1'. J I.J 
I 

------- ~---.-----
o-

j -4 I l' J ~ IJ';, 
I 
I I -4 I l' __ I" 
I 1 

I I -4 I I l' '" J ~ 

I I 2 -4 I 1'.0 1.2 
x (22) 

I -4 I 1JJ IJ 

I I -4 I l' _ , 1-" 

I I -4 I I " I. .1 

I I 2 -4 I 1 •• I. 
--- - ------- -

2 I -4 1, 14 IJ. 
2 I I -4 4'0. 1_. 

2 I I -4 " .. J •• 
2 I 2 -4 1'44 144 
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We permute thIs, choosing ¢>. to be those ¢>'J for whIch, and J are both even 

-4 I 4'22 In 

-4 I 2 4>42 142 

-4 I 2 4>24 124 

-4 I 2 2 4> .. I .. 

I -4 4>11 III 
I I -4 4>21 hi 

I 1 -4 4>31 hi 

I 2 -4 )( 4>41 141 (23) 

I -4 4>12 f12 
I -4 4>32 h2 

I -4 4>13 113 

I I -4 4>23 h3 

I I -4 4>33 133 
I I 2 -4 4>43 J.3 

I 2 -4 <1>14 114 
I I 2 -4 <1>34 h4 

Consequently equatIOn (17) becomes 

-3 1 1 
4" 4" 

[~22 ] I -3 1 
2 4 Y ¢>42 
I -3 ! ¢>24 
2 4 ¢>44 I 1 -3 2 2 

(24) 

where the term A 2 D- I (L + U)¢>o IS gIven by 

A,D"'(L+ U)~. ~ [~ I 
( ¢>ll + ¢>31 + ¢>13 + ~33) ] ( + ¢>31 + ¢>33) 

(25) 
( + ¢>13 + ¢>33) 
( + 2¢>33) 

Wp must relate thIs term to ¢>e and fe, usmg the fact that ¢>e IS not mdependent of ¢>" 
The two are related both through the dIfference equatIOns and through the underlymg 
dIfferentIal equatIOn (21) Use of the former would lead to an exact solutIOn but would not 
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be much cheaper than solvmg equatlOn (22) dIrectly Usmg the latter allows us to represent 
each Ime of equatlOn (25) as a local dlscretizatlOn of equatlOn (21) that IS different from that 
used m equatIOn (22) While this IS cheap enough It WI)) mvolve an approxlmatlOn due to 
different truncatlOn errors between the two dlscretlzatlOns of equatlOn (21) We will show 
that It IS possible to make the approxlmatlOn a very good one by means of an appropnate 
relaxatIOn process ThiS IS the nature of multlgnd methods 

Lookmg at the first Ime of equatlOn (25) we have 

(26) 

Smre w~ must. use the differential equatlOns to make our approxlmatlOn we must know 
the phYSIcal locatlOn of these pomts m the domam We find them to be th~ four diagonal 
neIghbors of the pOInt ¢22 If w~ expand each of them III x and y denvatlves of ¢ about the 
pomt ¢22 we find 

The numerIcal LaplaCIan 122 may be relat~d to th(' phYSIcal LaplacIan t:l.x2\l2¢ at the pomt. 
(T 2, Y2) u~mg the Taylor senes analY~ls used m equdtlOn (26) TillS glve~ 

(28) 

Addmg equatIOn (28) to equatlOn (27) gives 

(29) 

One can make a similar argument for each Ime of equatIOn (25) (s~e figure 1) 

We see that G lJnd H are now fully determm~d smce no term~ mvolvmg ¢o remam The 
matrIX b IS then determmed from the constramt that Ac represents the same discretizatIOn 
of the problem as A f but on a coarser mesh In this case It IS Just 41 

For thIS ~xample equatIOn (19), after multlphcatlOn by iJ, IS given by 
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-4 ] 

2 -4 

2 -4 

2 2 -1 

2 
I 

1--4-1 

FIgure] - EqUIvalent ddrerenclng~ 
Ils('d In approxlTTldtlng A 2 D- I (L+ U)¢o 

(30) 

whIch IS Indeed what we would hke NotIce that a restrictIOn operator has been suggested 
by the mathematics This was arrived at by uSing all of the available informatIOn about 
the dIfferential equatIOns and the boundary conditIOns It. IS applicable at the boundaries 
as well as In the center of the grid Also of Interest IS that the expressIOn for the error term 
IS the same at the boundaries as It IS In the interior of the grid ThiS turns out to be very 
helpful 

10 



We now wIsh to recover <Po from the now known <Pe ThIS may be done USIng the 
dIfference equatIOns and an approximatIOn If, for example, we wIsh to find <P1I we may 
use the now known <P22, the boundary condItIOns, and the mterpolatlOn formula gIven In 
equatIOn (29) centered around the POInt (1,1) Instead ofthe POInt (2,2) SImIlarly, all of the 
unknowns wIth two odd subscnpts may be found by thIs formula The remammg unknowns 
may now be found dIrectly from the InItIal dIfference equatIOns ThIs InterpolatIOn strategy, 
USIng the ongInal dIfference equatIOns as much as possIble, IS charactenstlc ofMGR methods 
In general 

6 SmoothIng 

Ideally the error term 2!:J.x4rPxXlIY III equatIOn (30) would be zero In practIce It seldom 
IS In general there IS very httle that can be saId a prwn about this term One escape from 
this dilemma IS to use the correctIOn formulatIOn of equatIOn (1) For this we add A f<Pi to 
both Sides of the negative of equatIOn (1) 

(31 ) 

(32) 

The vector <Pjls thp current guess for <P f (The more conventIOnal notatIOn,' <PI' ha'3 

not been used here SInce n IS u~ed elsewhere) The quantity Tj I'> called the residual and 

may be formed exphcltly from known quantities Smce <P f = <Pi - et, f>olvmg for ej Will 

Yield <P f Also smce equatIOn (32) has the form of equdtlOn (1) dll of the dnalysls developed 
for equatIOn (1) will apply to equatIOn (32) We adopt the notatlOll that rPc IS a subset of 
ej and Ie comes from T}, t e from equatIOn (30), 

(32a) 

This notatIOnal conveHlPnce frees us from havmg to refer to t}1<' "error of thp error" as thp 
grIds become succes~lvely coarser 

It IS pOSSible to ~olve equatIOn (1) by means of the nonstatlOnary POInt-Jacobi relax
atIOn scheme (rpf 5) 

(33) 

where II IS a scalar IterdtlOll parameter For claSSical Pomt-J acobl II = 1/4 

In thiS case It can be shown (ref 5 ), that the exact solutIOn to equatIOn (32) as a 
functIOn of space and IteratIOn number may be wntten as the double sum 
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M N t 

e
t = L L TI(I+hTAmn)CmnXmn (34) 

m=l n=l T=I 

where for this problem (Neumann boundary conditIOns) 

(34a) 

(34b) 

where' as before 1 and J are space coordInates and t IS the IteratIOn number The coefficients 
Cmn are de'termIned from the' InitIal guess ThIS IS sImply a decomposItIOn of the error mto 
the eIgenvectors of A f 

For thlb example the domaIn IS a square of sIde £ USIng the IdentItIeS £ = M ~X = 
N !;;.y, T = l!;;.X, and y == J~y equatIOn equatIOn (34b) may be' written 

_ (m - ~)ITT (n - ~)ITY 
Xmn - SIn £ sm £ (34c) 

We define the attenuatIOn factor U mn as 

t 

U mn = 11 (1 + hT Amn) (35) 
T=I 

We mdY now dIfferentIate equatIOn (34) dIrectly to cVdluate the error term of equatIOn 
(30) when the process IS applIed to the' correctIOn E.'quatlOn equatIOn (32) These are the 
sanw for eadl lIne of equatIOn (32), ndmely 

4 (£)2(£)2 N M (1)2( ])2 IT 4 2~T exxy'l -= 2 M N ~].;;1 UmnC mn Tn - 2" n - 2" (I) Xmn (36) 

whIch we refE.'r to collectIvely as the error In Ie We define the E.'rror In an element of ¢e as 
the' dIfference between that element and the correspondIng E.'lement of ¢ f We may see the 
relatIOn between the errors In Ie and those In ¢e by lookIng at one eIgenvector at a tIme 
The error In Ie due to X 11 IS 
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1(11'")2(11'")2 8 M N C11 l1 ll X 11 (37) 

We observe that the error m f c IS exactly an eigenvector of A f mterpolated to the 
coarse mesh It IS also an eigenvector of Ac We may therefore divide It by the correspondmg 
coarse-grId eigenvalue to find thE' error m 4>c due to X 11 ThiS eigenvalue IS exactly 

(1 - ~)211'" (] - ~)211'" 
(). c) 11 = - 4 + 2 cos N + 2 cos M (38) 

Expandmg the cosme terms about zero With a Taylor senes and Ignormg higher order 
terms gives 

(39) 

For thiS example M =- N DIVIdmg equatIOn (37) by equatIOn (39) gives the error m 
¢>c due to X II as 

1(11'")2 - - - l1IIC11X 11 
16 N 

(40) 

Thus the eigenvector X II IS transferred to the coarse grId With second order accuracy 
In a SimIlar manner one can show that for n ~ (N/2) - I, m ~ (M/2) - 1 the error m 

¢>c due to the eigenvector X mn IS 

2(11'"/M).l(7r/N)2I n - (1/2W[m - (1/2)JZl1mnCmnXmn 
-4 + 2cos[(2n - ])11'"/N] + 2cos[(2m - l)11'"/M] 

(41 ) 

Of thIS group the worst cas(' IS when n =- (N/2) - 1, m = (M/2) -] If M and N 
are large thiS error approaches 

TI}(' eigenvector X mn shows the shape of the error The coeffiCIent C mn depends on 
the InItIal guess The factor -11'"4/64 IS roughly -] 5 Therefore, the dttenuatlOn factor l1rrm 

had bet.ter be less than 64/11'"4 m absolut.e value for thiS mode If It IS to damp ThiS IS easily 
done As we wIll see m the next sectIOn, a much smaller value of l1 IS reqUIred for certain 
other modes because of alIaSing 
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7 AlIasmg 

While there are Af N fine gnd eigenvectors therE' arE' only M N / 4 coarse gnd eigen
vectors Therefore some of the fine gnd eigenvectors are not accurately represented on the 
coarse gnd When m > M /2, or n > N /2 or both we find that there IS no eigenvector on 
thp coarse grId correspondmg to X rnn on the fine gnd Thp error CXI'IY IS not free from 
these components however, and when brought to the coarse grId, they appear as hnear 
combmatlOns of the coarse-grId eigenvectors More specifically, the error appears as the 
eigenvector Xrn'n' on the coarse grId where 

for m s: M/2 
n'= 

for m > M/2, { 
n 

N +] - n 

for n s: N /2 
for n > N/2 

( 43) 

We now attempt to tailor a rnn m such a way as to makp a rnn small for all values of m 
and n where X rnn makes a large contrIbutIOn to errors m cPc RE'call that 

(m-I)7r (n-I)7r 
A :.: - 4 + 2 cos 2 + 2 cos 2 rnn M N (34a) 

and 

arnn = Il (1 + h' Arnn) (35) 
,=1 

The parameters that determme a mn are h' For the moment, let us allow Amn to 
have any value allowed by the range of the cosme terms ThiS gives a two-dimensIOnal 
space of Arnn which may be plotted as a square of side 2 centf'fed at the OrIgm The actual 
boundarIes of the square are not mcluded m the regIOn (See figure 2 ) 

We see that on thiS diagram lmes of constant Amn have a slope of -] The attenuatIOn 
factor a Tnn will be constant along such lInes as IS eVident from equatIOn (35) Furthermore 
a mn will be zero when h' = -1/ ATnn Any value of h < ~ IS strongly stable m the sense that 
lamnl < ] for all m, n even If all the h' have thl" value One can also reprE'sent alIa'3mg on 
thiS diagram by drawmg contours of the fine grId Amn associated With eigenvectors which 
aliaS mto coarse grId eigenvectors that all have t he ~ame value of Amn These contours are 
diamond shaped as shown m figure 3 

Before makmg a parameter chOIce, we briefly review the two major sources of er
ror First there IS the term 2Dox 4 c XXY li EqudtlOn (36) shows that thiS term IS largest for 
the eigenvector X MN In thiS case, the term 2Dox4Cxxyyfor small Dox, would evaluate to, 
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-cos (m-%hr 
-M-
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N 
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FIgure 3 - Ahasmg Contours 

15 



271" 4a MNCMNXMN The shape of this mode IS preserved but the amphtude IS off by about 
a factor of 200 Actually this IS only half of the story 

The second source of error IS alIasIng The largest alIasIng errors occur on eigenvec
tors which alIas Into the coarse-grId eigenvector associated with the smallest coarse-grId 
eigenvalue From equatIOn (39) this IS, 

( 44) 

Eigenvectors which alIas mto the eigenvector X 11 on the coarse grId have their error 
term multiplIed by the Inverse of this quantity and deposited In X II The fine grId eigen
values III questIOn are X MN , XMl, X 1N , and Xu (The fine grId eigenvector X 11 IS In fact 
what we would lIke to transfer to the coarse grId eigenvector X II It therefore can not be 
saId to alIas but IS meluded here for comparIson purposes) Evaluatmg equatIOn (41) by 
replaCIng m and n In the denomInator With N' gives errors In ¢c of 

_71"2 N2aMNCMNXMN 

71"2 
- -aMlcMIXMI 4 

71"2 
- -aINcINXIN 

4 

- (4~) 2 allCUXll 

(44a) 

(44b) 

(44c) 

(44d) 

respectively Th(' first of these I" unbounded If aM N I~] Clearly thiS can't, be tolerated 
We would lIke to pick h T such that aM N IS proportIOnal to N- 4 By ChoOSlllg h (1) =- h (2) = ~ 
we are led to aMN = C,14)(N)4 USIng equatIOn (44a) thIS leads to an error on tht' coarse 
grId dut' t.o thIS modp of (] / N 2 )( 7I"G /64) whIch goes to zero In a ~econd order way Thus we 
have completely neutralIled t.he threat of alIaSIng from X M N Errors from thiS source are 
of the same order as errors from X II 

The error" represented by equatIOn (44b) and equatIOn (44c) must also be attenuated 
or they wIll dorm nate We are gUIded by a deSIre to preserve the acrurary of the eigenvector 
X II smce thiS Will be repres('nted on even the coarsest mesh The relaxatIOn selected m 
the prevIous paragraph abo works on eigenvectors X IM and X NI , but not as well The 
dttenudtlOn rartor for edch st.ep IS a 1M = aNI = ~ SInCP there wpre two steps, thp total 
attenuatIOn for these terms IS one fourth The coefficlCnts are then reduced from 71"2 to 
71"2/4 We would lIke them to be proportIOnal to N- 2 so that errors In each of these modes 
declIne' In d serond order way To do thiS WP select h(3) = ~ Thl'> results In aNI and aIM 

Loth beIng pqual to zero 

FInally, we look bdck to the errors In the components that. don't alIas At the end 
of sectIOn 6 t.hese were determIned to be greatest In the eIgenvector X M, N, which has a 
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correspondmg eIgenvalue approachmg 4 ThIs IS the same eIgenvalue as XMI and X IN No 
further smoothmg IS reqUIred to reduce errors m component.s that don't ahas 

The questIOn of smoothmg parameters can be resolved for the model problem The 
coarse grId error component correspondmg to the eIgenvalue of smallest modulus IS the one 
to protect All modes whIch ahas onto thIS mode should be attenuated untIl the resultmg 
coarse grId error decreases WIth N TheIr correspondmg eIgenvalues may often be estImated 
usmg Gerschgorm's theorem (Ref 6) On problems whIch are wlthm a perturbatIOn of the 
model problem one mIght use the parameters gIven here scaled accordmg to the largest 
eIgenvalue 

For the three-step relaxatIOn Just dIscussed, lT mn = [1 + {Amn/8)J2[1 + (Amn/4)], whIch 
IS plotted m figure 4 Thus, all of the eIgenvectors whIch ahas are severely reduced m 
amplItude and those whICh alIas most are reduced most The eIgenvectors whIch don't ahas 
are dbo reduced m amplItude 

1.00 

.75 

.50 
b 

.25 

0 

- 25 
0 2 4 6 8 

-"A 

FIgure 4 - 2-D smoothmg profil(' 
----------------' 

8 Coarse To Fme InterpolatIOn 

The errors mcurred dUrIng the mterpolatlOn po!>e less of a problem than those mcurred 
durmg the restrIctIOn process ThIS IS because the relevant error terms appear m the 
unknowns rather than m the rIght hand sIde Furthermore, alIasmg does not occur SInce 
all the coarse grId eIgenvectors are representable on the fine grId 

In what follows, we WIll explore and analyze one possIble mterpolatlOn strategy ThIS 
strategy IS motIvated by the same geometrIcal arguments used m formmg the restrIctIOn 
operator 
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(1) 

(2) 

(3) 

If t and J are even 

If t and J arp odd 

1 
(ef),J = 4" [(ef)t+lJ+l + (ef).-lJ+l 

+ (ef).+lJ-l + (ef).-IJ-I 

-2(rf)'J 1 

] 
(ef),J = 4 [(ef).+IJ+J + (ef)'J+J 

+ (ef).-IJ + (ef)'J-J 

- (rf)'J 1 

for all t and J 
POInts 

T}ll~ comes dIrectly form the orIgInal dIfference equatIOns for these 

(4) Improve the' pstlmate of 1> f by subtactIng (' f 

An expldndtlon of the above strategy follows In step] we sImply a'>slgn coarse grid 
values to the' fine grid at those pOints where the two grId,> cOInnde In step 2, WP agaIn use 
the rot.ated dIfference equatIOns used durmg the derIvatIOn of the restrIctIOn operator ThIS 
carrIes WIth It a fourth order error term whIch causes IndCCUraCles In all of the elgenvcctor 
componenb of (f In step 3, WP use the dIfference equatIOns t.o fill In all the TTIISSIng values 
FInally, In sl ep 4, WP uSP our knowledge of the finp grId error to Improve the fine grid 
solutIOn OptlOndlly aile can do some more smoothIng to remove the errors mcurred durmg 
thIS mterpolatlOn process Though thIS Improves the convergencp per step It was found not 
to be cost effectIve See the dISCUSSIOn of operatIOn count for more detaIls 

9 A Three-DImensIOnal Example 

Thc example chosen In three dImenSIOns IS agam POIsson's equatIOn usmg purely 
DIrlchlct bounddry condItIOns Agam we use an equally spaced CartesIan mesh and the 
standard ~£'ven-p0Int dlfferencmg star The domaIn IS a cube of SIde f. The analYSIS I~ 

pxactly th£' same as for thp two-dImensIOnal problem although the matrIce~ ar£' much larger 
Only the results of the analYSIS WIll be gIven here 

We are led to the follOWing approxImatIOn In arrIving at the restrIctIOn operator 
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1 
4(cP,+1 J k+l+cP.-l J k+l + cP,+1 J k-l + cP,-1 J k-l 

+cP'J+l k+l+cP'J+1 k-1 + cP'J-1 k+1 + cP'J-1 k-1 

+cP,+1 J+1 k+cP,-1 J+1 k + cP.+1 J-1 k + cP,-l J-l k) 

Ax4 
= 3cP'Jk+ f'Jk + -4-(cPxxyy + cPY1/ZZ + cPzzxx) 

ThIS YIelds the restrictIOn operator 

(fc)'Jk = (r f ht+ 1 2J 2k + (r f h,-1 2J 2k + (r f h, 2J+ 12k 

+ (rfh.2J-I 2k + (rfh,2J2k+1 + (rfh,2J2k-l - 2(rf}z'2J2k 

In analyzmg the smoothmg, the three-dImensIOnal analog of figure 2 IS a cube Instead of a 
square ReaSOning, as III sectIOn 7, we choose four relaxatIOn sweeps wIth values of h T = -h, 
rl!, ~, and ~ The last IS not strongly stable but the sequence IS stable NotIce the slmllanty 
to the two-dlmensIOndl cast' where the worst error IS smoothed t.\\,lce and the other errors 
are smoothed once 

The coarse t.o hne-gnd mterpolatlOn IS SImIlar to that. for two dImenSIOns although one 
more apprOXImatIOn IS reqUIred 

(2) 

(3) 

for t,J,k, even 

] 
(ef)'Jk= S[(ef).-IIJ-IIk+I-t (ef),+1J-Ilk-1 

Ift,J, and k are odd 

+ (t'f)ttIJ-1k+1 + (ef),-IIJ-Ik I 

-t (ef),+IJ+lk+1 + (ef).+I]-I 1k-1 

-t (efk~ l]-lk+1 + (ef),-I1J- Ik 1 

-4(r J).]k 1 

1 
+8 [(ef).]+1k+1 + (ef).]+1k-1 

+ (ef).]-1k+1 + (ef)'J-1k-1] 
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(4) 

for l odd, J and k even and for k off, l, and J even 

1 
(ef)'Jk = 6 [(ef).+lJk + (ef).-IJk 

+ (ef)'J+lk + (ef)'J-lk 

+ (ef)'Jk+l + (ef)'Jk-l 
(rf),Jk 1 

for all mdIces ThIS IS Just USIng the angInal dIfference equatIOns 

5) Improve the estImate of <Pf by subtractIng ef 

10 Summary 

Thp process Just descnbed IS summarized as follow'3 

I) SmoothIng to reduce the error Incurred durIng restncton ThIS IS done usmg nonstatlOn
ary POInt JacobI relaxatIOn wIth the ht selected above 

2) ComputatIOn of the reqUIred fine gnd resIduals 

3) Transferrmg the problem to a coarser mesh USIng the restrIctIOn opprator derIved above 

4) EXdct solutIOn of the problpm on the roarser mesh If th<' roarbPst mesh ha'l more 

than I unknown, "exact" solutIOn may be the result of some sUItable relaxatIOn process 
ThIS will b<' cheap SInre the roars est mesh has very few unknowns On other than the 
roarsest mesh "exdct" solutIOn means two IteratIOns of thIs multIgnd procesb (ThIs IS 
the so called W -cycle) 

5) TrdnsferrIng thp <,olutlOn back to the fine mesh USIng the coarse t.o fin£' lllt.erpolatlOTI 
gIven above 

6) Hep<'tItlOTI of steps I through 5 untIl convergence IS obtaIned There wIll be further 
dI'3CUSSlOn of whdt. IS meant by convergence 

II OperatIOn Count 

In thIS sectIOn we address the total cost of ACR In two dImensIOns, a nonstatlOnary POInt 
JacobI relaxatIOn for the five POInt LaplaCIan requIres 7 operdtlOns per pomt where mul
tIplIcatIOns and addItIOns are both counted InterpolatIOns account for about 30% of the 
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Table 1 ACR OperatIon Count 

2-D DescriptIOn Of Process Segment 3-D 

21 finest mesh smoothlllg 36 

3 computatIOn of resldunls 4 

1 restrictIOn operator 1 
8 

4 lIlterpolatlOn operator 6 1 
8 

2') total for finest mesh 47 ~ 

7'2 factor for W -cycle x 1 
3 

58 total for all meshes 63~ 
3 

total For three dimensIOns the relaxatIOn sweeps reqUire 9 operatIOns/pomt InterpolatIOn~ 

reqUire only ahout 25% of the total The operatIOn count for both IS given m table 1 

In both of the above operatIOn counts we have taken mto account the fdct that restnctlOn 
only occurs at fine mesh pomts With all even 'iubscnpt~ ThiS me'ans that we do not need 
the residuals everywhere' Thl.' count for hoth of thesl.' reRect'i the' fdct. that they are not 
done at e've'ry pomt The fdctor for the W-cycle' assume'i dn mfimte' numher of gnd~ In the 
two-dimensIOnal case for example, each gnd reqUlrl.'s one-fourth the number of operatIOns 
of the next finer gnd, but mU'it be VISited tWice for each time the finer gnd IS VISited Thl~ 

lead" to the' senes 

1 1 1 
1+-t-+--t =2 

248 

willch IS 'Whl.'f(' that factor of two comes from In thre£' dlTTlenslOns I.'arh gnd reqUires only 
one-eighth thl.' number of operatIOns of the next hrH'r gnd TillS leads to a factor of four 
thirds Notlre, thdt bl.'cause' tlH' numhl.'r of operation" on coar~e grid" I~ proportIOnately 
les~ m three dimenSIOns than m two dimenSIOns, the rost of an additIOnal relaxatIOn sweep 
IS al'io less even though the dlffPrence stencli IS Idrger 

ThiS 'icheme wa'3 devlspd for ease of explanatIOn rather than for speed Pos'ilble spepd 
Improvements mclude 

]) Improved relaxdtlOn schemes surh as checkerboard Gau,>s-Seldel or mcompi<>te LU de'
compOSitIOn The..,e schemes are morC' efficlCnt at removmg all the restnctlOn errors and 
reqUire no parameter chOICe, but are more difficult to analyze 

2) Configunng the srheml.' as an FMG cycle (ref 1) In tim, case, til(' mpthod would start 
With an exact. solutIOn on the coarsest mesh It would then proceed a" descnbed above 
but startmg at the pomt where the coar~est gnd exact solutIOn IS computed ThiS can be 
thought of as producmg a better mitIaI guess on the finest gnd at mlmmal cost Some' 
lIlvestlgators have found that only one addltlondl cycle IS reqUired to reduce the errors 
to the level allowed by our filllte difference approXimatIOn It rarely makes sense to 
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reduce the errors to a shlilower level All the cases run here were converged to mdchIne 
accuracy however, SInce our mtent was to test the convergence properties of thE' method 

3) VIsItIng each mesh only once mstead of tWIce ThIs IS the so callE'd V-cycle ThIs gIves a 
savmgs of one-thIrd In the operatIOn count per step (one-seventh In 3-D) but weaken~ the 
bounds on the spE'ctral norm of the method because the 'exact' solutIOn on Intermedlat e 
grIds I'> not as good Consequently more steps may be reqUIred There IS some practlcdl 
experIence to the contrary (ref 7) 

] 2 InvarIant Subspace AnalysIs 

The questIOn of errors mtroduced durIng the mterpolatlOn ",as only t.ouchE'd on brIefly In 
fact It IS the'iE' E'rrors that allo\\ reIntroductIOn of hIgh-frequency error on the finest grId 
\Vlthout them the troublesome components would soon dI~appear and the restnctlOn would 
becorT](' nearly E'xact WIth pxact InterpolatIOn and restnctlOn Illllltlgnd }wcome'i a dIrect 
method SInce these errors lImIt convergence, It IS necessary to take them Into dccount whell 
analyzIng multlgnd method~ The best (perhaps only) quantItatIve analysl~ of InterpolatIOn 
error'i for the model problem I'> thE' method of InvarIant ~ub'ipace~ TIll'" I'> explalIJed In some 
detaJlllJ (ref 7) 

In tilt, sectIOn on restrIctIOn It was shown that III two dJrllensJOn.., t he four fw(' gnd eIgenvec
tor'> X mr" Xm'n, X mn" and Xm'n' dll dppE'dr on the COdrSE' gnd d~ til(' X mf1 eIgenvector III 
thp sectIOn on InterpolatIOn we brIefly outlmE'd a way of trPdt mg error~ that only occur on 
certdllJ pomb If we pursue tIllS, we find t hdt when the COdr~f' gnd f'lgf'JJvector X mH I~ lTltPf
polated to the fmp grId, error~ arc Introduced lTl onl} thp four E'lgenvectors Just mpntIollPd 
TIllS lllce property IS pre~('fved through the ~rnoot hllJg rest rJctJUn, dnd computdtlOn of 
reSIduals dS well Thu~ the error In the'if' four compoJJent'i at the end of d stpp depf'nd,> 
only on their errors at the begInIng of that Sl,('p We' can andlyt]( dlly form the 4 > 4 matnx 
wlllch represents thiS SIt uatlOn To fllld thE' error dt t II<' end of T step~ we SImply multIply 
thp IllltJaI error by the Ttl! powpr of thl'> matnx Thp 'iPl'( trdl rddlll'i of (lIP rTIe'thod I~ JU'it 
the large'it of thp speet ral rddll of these 4 y 4 matrICP'i dnd t lip SIH'ct rdl norm IS t hp larg('~t 
of thplr sp('ctral norms tJSIng thl'i method we' have nUlllerlcdlly comrmtpd the..,p qUdlltlt IP'i 
for the methods advocatpd hf'fe Also wp computpd the~(' qlldlltlt]('" for dIffprent amount" 
of hmoothlTl g Add lIlg a smooth Ing sweep can decrea"f' thp spec! ral rd(lius dJJd norm but 
will lTlcrease the co~t A functlOll which follow,> thl~ tradf'off I~ 

F = _ log of spectral norm 

number of operatloJJ'> 

Loosely, tIllS IS the number of base t dIgitS per multlpl) 

In tablps 2 and 3 Wf' show the' performance of ACH WIth dlffprent. dmount~ of smoothllJg 
For completeness we Includ(' the pO~Slblhty of post lTIterpoldtlOn smoot,}lIng The nurnbf'r'> 
are IImltmg values as Ax -4 0 

The three-dImensIOnal case IS complE'tely analogou'i although the InvarIant subspacP'i Pdch 
con tam eIght components mstead of four Conspquf'nt Iy there are t hrpp elgf'nvaluf's cor-
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Table2 2-D Convergencf.' Results 

Smoothmg Spectral Spectral F 

t Pre-Re<trlctlOn Post -In t erp RadIUs Norm 

0 1 255 (X) -(X) 

1 I 0500 1 250 -007 "8 

2 1 1 0249 0390 021 
8 8 

~ 1 I I 0114 0118 037 " 8 8 4 

4 1 1 1 1 0074 0092 033 
8 8 4 (; 

5 I I I I I u 072 0073 030 8 "8 4 (\ '2 

Table 3 3-D Convergence Rpsuit< 

Smoothmg 'p"",,1 i-
t Pre- RestrictIOn Post-Interp ___ RadlUf _ 

0 1= '123 
1 ..L ---1--1188- --

12 

-(X) 

Spect ral F 

Norm 
---- --r------4 

exl 

00 -exl 

-------
I I 2 12 12 112CJ7 1 001 -0 (lUO 

----
I ..L ) 3 12 12 8 

(J 22u 0302 0017 

4 I I ) 1 (1148 12 12 M 4 
(I )<)2 (1023 

--I-------- -
5 I I I 1 1 11))(, 

12 12 8 4 (; 

G ..L I 1 I I drl(lll<J 12 12 ~ 4 (3 _2-__________ ---

IllbU 0022 

II 132 U u21 

respondmg to error componpllt~ ahasmg mto the smallest elgenvalU(, mstead of two (and 
seven eIgenvectors mst.ead of three) 

The 2-D results are for til(' eXdrnple III sectIOn 5 EIght mesh ~IZt''> vdrylllg bet \wen N = 2 
and N = 256 wert' tm·d All thp te~t cases were reduclbJc. to onp unknown We chose the 
homogeneous casp when' f f =-- 4> f = 0 Tills WdS chosen to sImplify computatIOn of the 
error (whIch for tlll~ casp I~ Just the current estlmdte for 4> f) and do('~ not. Imply that the 
process IS restncted to hornogenpous bounddry condltlOn'3 (ref 8) Thp Initial gupss wa'3 
chosen so that all the roefflClent~ 'mn wen' equal and of such d nldgTllt ude dS to make the 
L2 norm of thp error pqual to I Th£' complet p convergPTlce hlst ory I~ gIven III table 4, for 
a 256 x 256 gnd usmg the thrpp step smuothlIlg suggestpd m ,>pctlOn 7 

Each complete cycle reduced the L2 norm of the error by d fact or of 27 or more The 
spectrdl norm guarantees a fdctur of 8 5 per step but tIll'> I~ overly r)(,~<;lmlstlc Like dny 
linear Iterative scheme, ACR starts out fast dnd then slows dowll t.o some convergence rate 
which dppends on the spectral norm or radiUS Its advantdge IS twofold, fIrst, the asymptotic 
rate IS Independent of N, qUicker than any other expliCit method and serond, the problpm 
may well bp converged before this lImIt IS reached The mdppendenre of the spectral norm 
on N has been shown for other multlgnd methods (ref 7) Our expenence has shown no 
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Table 4 2-D Convergence Hlstory-256 X 256 Gnd 

Step II e 112 II e 1100 
0 I X 10° 53 X 10 4 

1 1 3 X 10-2 3 1 X 102 

2 23 X 10-4 69 X 10° 

3 2 6 X 10-6 50 X 10- 2 

4 63 X 10-8 79 X 10-4 

5 23 X 10-9 46 X 10- 5 

degradatIOn of convergence over a wide range of values for N 

The 3-D results are for the example In sectIOn 9 Four mesh sizes varymg between N =- 3 
and N = 31 were trIed All the test cases were reducible to one unknown We again chose 
the' homogeneou'i case whe're f f =- ¢ f = 0 The inItIal guess WdS chosen so that dll the 
coefficients c71lno were equal and of such a magmtud(' as to make the L2 norm of the error 
equdl to 1 The com pI pte 3-D convergencp history IS given In tdblP 5 for d 31 ;< 31 y 31 gnd 
USIng the' four step relaxatIOn sugge'sted ITJ sectIOn 9 

- -~ -----------------------~ 

Thble 5 3D Co"""me H«,o'Y-" , " < " ""d :==-=-=1 -~-. 

Step II t 112 II t 1100 
--

0 lOy 10° 2 ,~ >- 10 4 
- ------------------- -- --- -- --------- --

1 2 n x 10-2 J q y ](I.! 

2 (, 6 X W- 4 92 y lO" 
---

3 2 6 Y ]I)-f. 34x1O- 1 

-

4 29 x 10-(1 1 h y 10- 2 

5 73)(10-8 !i 5 Y W- 4 I 

Edch complete cycle reduced the L2 norm of the error by d fdctor of 9 or more The spectral 
norm guarantees a fdctor of 5 2 per step 

Thu'i we see that the remarkdble results claimed by the dnaIY!:>I" an' act uall) redlIzed In 

practice No other type of explICit met hod allow!:> dn e'ntlre (onv('rg<'ncp ~1I..,t.ory of tlll~ 
problem to be WrItten down In a short t.able FurthennoTl', 3-D problem') t.dkp only about 
1 5 tunes as much work per pOlllt a!:> 2-D problpm", all Import dllt fedt ure of rnult Ignd 
me'thods 

In comparIng ACR With other explICit nwthods dlld Wit h cycliC rpductlon ] wIll u~e table 
6 prepared by Dorr (ref 9) ThiS IS for POIssun'~ equatIOn dl~cre'tlz(>d on d square With 
N 2 unknowns The direct method'i are compdre'd With the It.pratlve ones by a!:>sumIng that 
a reductIOn of the error by a fdctor of N 2 IS reqUIred ThiS eaITH'S from the fact thdt 
the truncatIOn error IS proportlOndl to ~2 For purpo~e'i of comparIson all acceleratIOn 
parameters are optimally chosen 

The factor of log2 N In ACR and MGR-CH 2 ,1 docs not come from any speCific featurp 
of the algOrIthm but from the fact that the deslr£'d accuracy InCredSes WIth the number 
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Table 6 Method ComparIson 
I Method OperatIOn Count 
I -

I Block (pOI}nOmlal form) GN~ 

r Block (Schecter) ~N1 

Block (Froehlich) (¥ + 4r)N 3 

--
Odd-even reductIOn (Buzbe(' et al) ~N21og2 N 

Ten<;or product (Lynch et al ) 8N J 

---
FourIer SerIes (Hockney) f,N 2 log2 N 

SOR ~N: log2 N 

ADI 4N2(log2 N)2 
1--

ACR ~ 3hN 2 1og 2 N 

MGR-CH 2 ,1 ~ J7N 2 1og2 N 
------ -------- ----------

of unknown,> Llmll ed pr(>('lslon on a gIven compul cr may ImBI t.he dt.tdlIlablc dccurary 

UndN <;uch condlt.lOns t h(' mPi hod reqlllrE'S ordPT N 2 opcratlOn<; to dchH'vc t.hls hmll ('d 
pr(,ClSlon III any cH'nt, gIven thp r('st.nctlOnc; on memory sIze common In today's compu\'E'r<;, 

log2 N .-- 10 III prdctlcP multlgnd mcthod!> can be mad(' t.o be of ordE'r N 2 by use of the' 
FMC cyclE' ollt.llnpd pr('\ low.,l)' III n,ferclI( (' ] but th(' cocfTic)('nls \\ III IncrE'dSP from :~H dlld 

]7 to <)6 and 50 for ACR dlld MGH-CII2,1 n'''p('ctlvcly The FMC cvck I" u"udlly good If 
t he Initial gup,>" I!> Idrgply rdndom If, on tlIP oth('r hdTld I bere IS a n'd"oTlahl(' gues" from 
SOHl£, Tlc'arby problem th(' ba'm W -cyeIP will probdbly COli verge In 011(' or I wo ':01 epto 

TIl(' Ill1r)fov('d pprformallC (' of M G H-Cll z ,I ov('r ACR 1<; dup Idrg£'l) 10 11<, Ih(' of chcckerbodrd 

Gauto,,-Seldel for I hp remo\dl of hIgh fn'qllPT)() ('rror (OIllIH)])(,llt" 'fh(' opNal lOll count for 

thl" J1)C'lbod 1<; much 1e"3<; thall for dIP lIoTl-total,lOlldry pOlIlI-.Jdeobl rdd"dlloJlu"ed mACH 

] 4 COTl( IU'ilOns 

For thc lIlult Ignd proc<";" JUst. pr('"eTltf'd II IS pO~<;lblp 10 forrndll) dllah I£' ('rror.., nJild(' In I h(' 

Inl prpolal IOn dnd f('!>t.nctlUn proc('%f''> OTI th(,'ic model problPm<; It I h('11 Iw( Ofllf''' PO'>'>I hl(' 

10 I dllor 11)(' smoot bmg dccordlJlg t.o thpto(, <'fror'> 'I'll!' dlldlYSI" YIPld-. 1111 C'rpol,lt IOn" and 

retotnct,lOlI<; thdl df(' vahd at Neumann boundancs a'i well d-' m the' 1111 <'rlor of th(' domdlTl 

W(> have shown thdt cychc reductIOn can bf' thought of as a l>drtlcular Hlultlgnd mel hod that 

ha" e"det. mt.erpolatlOn and restrictIOn Thl!> IS partlculdrly ('vldellt III one' dlmE'n~lOn where 

t.hp t.wo methods comclde Although the two TllPthod!> dIffer m hIgher dImenSIOn:" they are 

equlvdlent up to a known dpproxlmatlOn ThIS approXImatIOn can be Improved WIth an 

appropnatp reldxatlOn Usmg the difference equal,lOns 10 do the mterpoldtlOTI C'\mllndt e" 
the nC'ed for post-mterpolatlOn smoothmg An cfflclCnt expbclt mf'thod results 

The real valuE' of multlgnd techlllquec; comes from apphcat.lon'i to problems whIch cannot 
be solved WIth cychc reductIOn 8mce ACR can hp vlf'wC'd m terms of pomt operatorc; It 

may prove easIer to adapt to comphcated gnd structurps thdn cychc reductIOn 
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