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invariant systems defined on Hilbert spaces using a functional analytic

technique. An important consequence of this is that the solution to the

evolutional Riccati equation is strongly differentiable in time and one can

define a "strong" solution of the Riccati differential equation. A detailed
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differential systems is also included.
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I. Introduction

The Chandrasekhar equations [12] are an alternative form to the Riccati

equations from which the optimal feedback gain operator may be calculated

directly. If the system has a small number of inputs and outputs, the

Chandrasekhar algorithm offers significant reduction in the computational

complexity for determining the optimal feedback gain. As observed in [18],

this is much more evident in the infinite dimensional case if the optimal

feedback gain operator is calculated numerically using some approximation

method. In this case, the number of states grows linearly to the order of

approximation.

The purpose of this paper is to derive Chandrasekhar equations for

systems defined by evolution equations on Hilbert spaces in which the input

and output operators are assumed to be bounded. The form of the Chandrasekhar

equations derived immediately implies that the solution of the associated

Riccati equation is strongly differentiable in time, and it allows us to

define a "strong" solution of the Riccati equation. Another important

consequence of this is that the optimal control for the linear quadratic

regulator (LQR) problem is continuously differentiable if the initial datum is

sufficiently smooth.

The Chandrasekhar equations for infinite dimensional systems have been

discussed in [4] and [6] using a Lions-type framework [15]. However, the

equations derived in [4] and [6] are satisfied in the distributional sense.

In [19], Sorine derived a set of Chandrasekhar equations satisfied in a strong

sense for parabolic systems. Sorine's derivation relied on the analyticity of

the semigroup and thus does not apply to general systems. Our approach

differs from those above in that it uses an approximation technique. A
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sequence of approximating optimal control problems is chosen for which the

Chandrasekhar equations may be derived as in the finite dimensional case (see

[5], [12], and [14]). Convergence is then established and the appropriate

equations are shown to be satisfied. In this paper, our considerations are

restricted to the LQR problem, but the results are also applicable to the

Kalman filtering problem [7].

The contents of the paper are as follows. Section 2 briefly recalls the

linear quadratic problem and characterizes the optimal control (see [2], [8],

and [15] for a survey of the literature). In Section 3 a characterization of

the Riccati operator is derived and used to obtain the Chandrasekhar

equations. Regularity results for the Riccati operator and optimal control

are discussed in Section 4. As a specific example we discuss in Section 5 the

linear quadratic optimal control problem for hereditary differential systems

in which the input and output spaces are finite dimensional. Because of the

smoothing property of the solution semigroup, results stronger than those of

the general problem are obtained.

The notation used in this paper is standard. The symbol <.,.> stands

for the inner product in a Hilbert space where the underlying space will be

understood from the context. Also, II.U denotes the norm for elements of a

Banach space and for operators between Banach spaces, while I'I denotes the

Euclidean norm. The adjolnt of a densely defined operator A from one

Hilbert space to another is denoted by A*.



-3-

2. Riccati Equations

Let Z, U, and Y be Hilbertspaces. We consider the evolutionequation

on Z

d z(t) =Az(t) + BU(t) t > 0
dt ' --

(2.1)

z(0) --z_ Z

where u(.) is a U-valued, square integrable (control) function and A is

the infinitesimal generator of a strongly continuous semlgroup S(t) on Z.

The Y-valued (observation) function y is given by

(2.2) y(t) = Cz(t), t _ 0.

We assume that B EL(U,Z) and CE!(Z,Y).

For any T > 0, if u is differentlable almost everywhere on

[0,T], uELI(0,T;U) and zED(A), then the initial value problem (2.1) has a

unique "strong" solution [17, Corollary 2.10] in the sense that z is

differentiable almost everywhere (a.e.) on [0,T] with zELI(0,T;Z) and

(2.1) holds a.e. on [0,T]. It follows from Corollary 2.2 in [17] that (2.1)

has at most one solution and if it has a solution, this solution is given by

t

(2.3) z(t) = S(t)z + f S(t - s)Bu(s)ds
0

which we shall call the mild solution of (2.1). Moreover, the mild solution

satisfies the "weak" differential equation:
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d__ <z(t),x> = <z(t),A* x> + <Bu(t),x> for all x_D(A*)dt

Consider the linear quadratic optimal control problem on a finite time

interval: for given initial data z € Z, choose the control u E L2(0,T;_m)

that minimizes the cost functional

T

(2.4) J(u,[0,T]) = f (lly(t)_2 + llu(t)_Z)dt+ <Gz(T),z(T)>z0

where G is a nonnegative (definite), self-adjoint operator on Z and z is

the mild solution to (2.1). The next theorem, which characterizes the optimal

control, follows from [2], [8] and [20].

Theorem 2.1: The optimal control u0 of (2.4) is given by

(2.5) u0(t)---B n(t)z0(t), t > 0

where H(t), t _ T, is strongly continuous on Z. Moreover, n(t) is the

unique solution within the class of nonnegative self-adjoint operators for

which <H(t)z,z> is absolutely continuous for z E_(A), and satisfies the

"weak differential" Riccati equation

(2.6) d---<H(t)z,z> + 2<Az,H(t)z> - <B* H(t)z,B* H(t)z> + <Cz,Cz> = 0dt

for all z ED(A)

n(T) = G.
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If U(" ,') denotes the perturbed evolution operator of the semigroup

S(t) by -BB* 11, then for zEZ

S

(2.7) U(s,t)z= S(s - t)z - f S(s - _)BB* _(_)U(_,t)zd_,
t

E(t) satisfies

, T , ,
(2.8) _(t)z = S (T - t)GU(T,t)z + f S (_ - t)C CU(_,t)zd_,

t

and

0
z (t) = U(t,0)z.

3. _nandrasekhar Equations

From here on, we assume that Gz E D(A*) for all z € Z. By the closed

graph theorem A* G is then a bounded operator on Z. Let us define a

bounded self-adjoint operator Q on z by

<Qx,y> = <A* Gx,y> + <x,A* Gy> - <B* Gx,B* Gy>

(3.1)

+ <Cx,Cy> for all x,yE Z.

The main result of this paper is given in the following theorem.

Theorem 3.1: If _(t), t < T is the solution to the Riccati equation

(2.6), then for zE Z
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T

(3.2) H(t)z = Gz + f U*(T,s)QU(T,s)zds.
t

Proof: If A is a bounded linear operator on Z, then

At _ (At)n
S(t) = e = n!

n=0

and t -+ S(t) is differentiable in norm. Hence the same arguments as given

in [12] for the finite dimensional system allow us to show that the theorem

holds for such a case. Consider the Yoslda approximation of A given by

Al = IA(_l - A)-l for l _ _+f'_p(A).

Then A is a bounded linear operator on Z and from Theorem 5.5 in [17]

Akt
e z -+ S(t)z as % + _ (strongly), zCZ

uniformly on bounded t-intervals. Note that

A_ _A*(_I- A*)-I.

Indeed, for xcD(A) and yCZ

<ALx,y>= <l(_I- A)-IAx,y>= <x,LA*(II- A*)-Iy>.

* %A*(%I- A*)-I ThusBut since D(A) is dense in Z, this shows that Ak =

Theorem 5.5 in [17] again implies that
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AX t ,
e z -+ S (t)z, zE Z

uniformly on bounded t-lntervals.

Consider the approximate problem (AI,B,C) for which the theorem

holds. If El(t) and U%(.,.) denote the solution of the Riccati equation

and the perturbated evolution operator corresponding to the perturbation of

A_t ,
e by -BB _(t), respectively, then

T

Kl(t)z = Gz + f UI(T,s)QI Ul(T,s)zds for zEZ
t

where

Qx= AxG + G_- GBB G + C C.

It follows from Theorem 6.1 in Gibson [ii] that El(t) converges strongly to

E(t) for t _ T, and the convergence is uniform on bounded t-lntervals.

Moreover, statement (6.14) in [II] implies that

_(t,s)z -+ U(t,s)z, zEZ, 0 is ! t ! T

where the convergence is uniform in t and s. Hence, for all xE Z

T

<E(t)x,x> = lim <_l(t)x,x> = <Gx,x> + lim f <QI U%(T,s)x,Ul(T,s)x>ds

T

(3.3) = <Gx,x> + lim f {2<A GUI(T,s)x,JxUx(T,s)x>
_._ t

+ <(C C - GBB G)Ul(T,s)x,Ul(T,s)x>}ds
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where J% = _(_I - A)-I, _ _ _(A). Note that

J% U%(T,s)x = (J% - I)U(T,s)x + J%(U%(T,s) - U(T,s))x + U(T,s)x

converges strongly to U(T,s)x for s _ T since J% converges strongly to

the identity operator I on Z (see, [17]). Since the integrand appearing

in equation (3.3) is uniformly bounded in _ and s, the dominated

convergence theorem allows us to obtain that for x E Z

T

<_(t)x,x> = <Gx,x> + f {2<A* GU(T,s)x,U(T,s)x>
t

+ <(C'C- GBB*G)U(T,s)x,U(T,s)x>}ds

r ,

= <(G + f U (T,s)QU(T,s)ds)x,x>
t

which completes the proof since the operators appearing in both sides of this

equation are self-adjolnt.

(Q.E.D.)

Remark 3.2: Important in applications is the case G 5 0. If this

occurs, then Q = C* C and

T

]l(t)z= _ L (s)L(s)zds, zEZ
t

where L(s) 5 CU(T,s). Define the gain operator by K(t) = B* E(t). Then

(see, Gibson [i0])
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T

U(T,t)T = S(T - t)z - f U(T,s)BK(s)S(s - t)zds, zEZ
t

and the operators K(t) and L(t) jointly satisfy

T
K(t)z = f BL (s)L(s)zds

t

T

L(t)z = CS(T - t)z - f L(s)BK(s)S(s - t)zds,
t

for all z E Z, which are the infinite dimensional Chandrasekhar equations in

integral form. Since K(t)z and L(t)x are dlfferentlable for z E Z and

xED(A), K(t) and L(t) also satisfy

d K(t)z = -B* L*(t)L(t)z zEZdt ' '

K(T) --0,

d---L(t)x = -L(t)[A - BK(t)]x, x € D(A)dt

L(t) = C.

Note that these Chandrasekhar differential equations correspond to those

derived for finite dimensional systems [12].



-10-

4. Strong Differential P_ccati Equation

An important consequence of (3.2) is the following theorem.

Theorem 4.1: If GZ C D(A*) and _(t), t < T, is the solution to the

Riccati equation (2.6), then for z EZ _(t)z is continuously differentiable

on [0,T] and

__d H(t)z = L (t)L(t)z.
dt

The following two lemmas are essential to the derivation of the "strong

differential" Riccati equation.

Le--,_ 4.2: Suppose that B(t) is an operator on Z such that for

zEZ, B(t)z is continuously differentiable on [0,T]. Then n + B(t)

generates a perturbed evolution operator V(t,s), of the semigroup S(t) on

Z and for zED(A) V(t,s)zED(A), 0 < s < t < T, V(t,x)z is strongly

differentiable in t, and

(4.1) _---V(t,s)z = _ + B(t))V(t,s)z_t

V(t,s)z foris satisfied for 0 _ s _ t _ T. Moreover, the derivative -_

z E D(A) is jointly continuous in t and s.

Proof: Consider a class _ of evolution operators on Z as follows:

consists of bounded linear operators V(t,s), 0 < s < t < T on Z such

that

(i) V(s,s) = I, V(t,r)V(r,s) = V(t,s) for 0 < s < r < t < T
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(ll) (t,s) -+ V(t,s) is strongly continuous for 0 < s < t < T

(iii) for z cD(A), V(t,s)zE D(A) is strongly differentiable in t and

V(t,s)z is strongly continuous in t and s forthe derivative

O<s < t < T.

Note that v(O)(t,s)z = S(t -s)z, zEZ belongs to _. Define a sequence of

evolution operators v(k)(t,s) by

t

(4.2) v(k+l)(t,s)z = S(t - s)z + f S(t - o)B(o)v(k)(o,s)zdo
S

for zEZ and 0 < s < t < T.

It then follows from [8], [17] that

v(k)(t,s)z -. V(t,s)z for zEZ and 0 < s < t < T

where the convergence is uniform in t and s. If v(k)(t,s) belongs to the

class _, then for z ED(A), B(t)v(k)(t,s)z is continuously differentiable

in t and

v(k)(t,s)z_---_t(B(t)v(k)(t's)z) = B(t)v(k)(t's)z + B(t) -_

It now follows from (4.2) and [13, p. 487] that for zED(A), v(k+l)(t,s)z is

continuously differentiable in t and satisfies

_---v(k+l)(t,s)z = Av(k+l)(t,s)z + B(t)v(k)(t,s)z_t

or
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t

vCk+l)Ct,s)z = SCt - s)CA + BCt))z + f SCt - _)iBC_)vCk)C_,s)zd__t
s

t

(4.3) + f S(t - o)B(o) _-_ v(k)(o,s)zd_,
S

for 0 < s < t < T.

Hence by induction, v(k)(t,x)z belongs to _ for k > O. From (4.3)

_ 8 v(k)
_-_-v(k+l)(t's)zst _-{ (t,s)z

t

(4.4) = _ S(t - o)B(o)(v(k)(o,s) - v(k-l)(o,s))zd_
s

t

+ I S(t - o)B(o)(_ v(k)(o,s)z - 8 v(k-l)-_ (o,s)z)do.
s

By induction on k one easily verifies the estimate:

nv(k)(t's)- v(k-1)(t's)II! CI <t Is)k
where

C1 = max gS(s)fl and M1 = max itS(t - s)B(s)il.
O<s<T 0<s<t<T

Since B(t)z is continuous for each z € Z, fl_(t)tl is uniformly bounded on

[O,T]. Thus, from (4.4)

_l(t - s)k+lv(k)(t s)zil < C1M 2 Hz,fl_---v(k+l)(t's)zst--_ ' -- (k + I)!

t fl___v(k)(o,s)z _+ M1 f 8o _ v(k-l)(a's)zgdo
S
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where

M2 = max qS(t - s)_(s)ll.
0<s<t<T

By induction on k one obtains

(t - s)k M2 k-I C1 nztl"_---v(k)(t's)z 8 v(k-l)(t's)z_ < (k i)!8t --_ -- M1

(t _!s) k k
+

M I C1 RAzlI.

Hence, -__ v(k)(t,s)z converges to a function of C(s,T;Z) for 0 _< s _< t _< T

and z E D(A) where the convergence is uniform in t and s. Note that the

differential operator [_) on C(s,T;Z) is closed. These facts, when

combined with the convergence of v(k)(t,s)z to V(t,s)z in C(s,T;Z), show

that for z ED(A) V(t,s)z is continuously dlfferentlable in t, and the

derivative is jointly continuous in t and s. Since

t

V(t,s)z = S(t - s)z + f S(t - _)B(_)V(a,s)zda
s

for zEZ and 0 < s < t < T,

it now follows from [13, p. 487] that for z ED(A), V(t,s)zE_(A) and

v(t,s)z= (A+ B(t))V(t,s)z

for 0 < s < t < T.

(Q.E .D)
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Lemma 4.3: If GZCD(A*), then for z E D(A) and t < T, _(t)z ED(A*)m

and t -+ H(t)z is strongly continuous in the Hilbert space D(A*) equipped

with the graph norm.

Proof: As a result of Theorem 2.1 it is only necessary to show that

A* _(t)z is continuous for z ED(A). Recall that for z € Z

(4.5) _(t)z S*(T t)GU(T,t)z + fT , ,= - S (o - t)C CU(_,t)zd_.
t

From Theorem 4.1 and Lemma 4.2, for z E D(A) U(_,t)z is continuously

dlfferentlable in _. Thus it again follows from [13, p. 487] that

H(t)zED(A), t < T

and

A* _(t)z = s (T - t)(A* G + C C)U(T,t)z

T

_' * * _ -. -. -tt(a,t_zdg.-C Cz- f s (o- t)C C_
t

From Lemma 4.2, _ -+_U(o,t)z is strongly continuous for 0 _ t _ a_ T

and zED(A). Hence t -+ A* _(t)z is strongly continuous for zED(A).

(Q.E.D)

We are now ready to state the main result of this section.
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Theorem 4.4: For zcD(A), _(t)z is a unique strong solution to the

Riccati equation in the sense that _(t)z is continuously differentiable on

[O,T], _(t)zED(A*) for 0 < t < T and the strong differential Riccati

equation:

(4.6) (d _(t) + A* _(t) + R(t)A- R(t)BB* _(t) + C* C)z = 0

for all z CD(A)

n(t)= G

is satisfied on [O,T].

Proof: We only need to prove that (4.6) holds for 0 _ t _ T. From

(2.6), we have for all x,y € D(A)

d <_(t)x,y> + <Ax,H(t)y> + <_(t)x, Ay> - <B* _(t)x,B* _(t)y> + < x, y> = O.dt

It then follows from Theorem 4.1 and Lemma 4.3 that

(4.7) <Id _(t) + A* _(t) + _(t)A - R(t)BB* _(t) + C* C)x,y> = 0

for all x,y_E D(A).

Since D(A) is dense in Z, (4.7) holds for all y E Z, which completes the

proof.

(Q.E.D)
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Corollary 4.5: If GZCD(A*) and the initial data z E D(A), then the

optimal control u0 to (2.4) is continuously dlfferentiable on [0,T].

Proof: From Theorem 4.1 and Lemma 4.2, z0(t) = U(t,0)z is continuously

dlfferentlable for zE_(A). Therefore, the continuous dlfferentiability of

u0 follows from (2.5) and Theorem 4.1.

Remark: From Lemma 4.2 and Theorem 4.1, if z E_(A), then z(t)cD(A),

t > 0 and

d u0(t) * d = C*(4.8) _-_ = -B [_-_H(t)z(t) + H(t)_(t)) _(_ _(t) + C)z(t).

5. Hereditary Differential System

In this section we discuss the hereditary differential system:

0

d x(t) = f dB(e)x(t + e) + Bu(t) t > to_-_ , _
-r

(5.1)

x(t 0) = n and x(t 0 + 8) = _(8), -r _< e < 0,

where _(.) is an nxn matrix valued function of bounded variation which

vanishes at 0 = 0 and is left continuous on (-r,0). Without loss of

generality we can assume that for e > o, _(e) = 0 and for e < -r,

B(8) = _(-r). B is an nxm matrix. The observation y is given by

(5.2) y(t) = Cx(t)
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where C is a pxn matrix. We will denote by Z, the product space

]in x L2(-r,0;]Rn) in this section. Given an element z E Z, n E I_n and

E L2 denote the two coordinates of z : z = (n,#). It is well known [3],

[9] that for (n,_) EZ and u locally square integrable, (5.1) admits a

unique solution xEL2(t 0 - r,T;_n)_-_Hl(t0,T;_ n) for any T _ to . If

to = 0, then (5.1) can be formulated as an evolution equation on Z.

(5.3) d z(t) = Az(t) + Bu(t) t > 0
dt ' --

where z(t) = (x(t),x(t + .))€Z, t > 0 and Bu = (Bu,0)€ Z for uE_ m.

The infinitesimal generator A is then defined by

_(A) = {(n,@)EZ I n = @(0) and $€L2}

and for (_(0),_)E D(A)

0

A(.(0),¢)= [J d_(e)_(e),$),
-r

and generates the strong continuous semlgroup S(t):

S(t)(_,@) = (x(t),x(t + .)), t > 0 where x is the solution of (5.1) with

to = 0 and u _ 0. Within this framework, the observation equation (5.2) is

written as

(5.4) y(t) = Cz(t), t > 0

where C(n,_) = Cn E _ for (n,@) E Z. Thus the system (5.1)-(5.2) is

formulated as the model system (2.1)-(2.2) in which Z = I<n x L2, U = I_n

and Y = _.
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The following lemma gives two important properties of the hereditary

differential system which shall be used extensively in the subsequent

development.

Le_ma 5.1:

(i) l__f X denotes the Hilbert space D (A) equipped with the graph norm,

t

then f S(t - s)Bu(s)ds is an X-valued function continuous in t
0

for each uEL2(0;T;]Rm) and continuous in u for each t E [O,T].

(li) If y is a pxn matrlx-valued function of bounded variation on

0

[-r,0] and H denotes an operator defined by H(n,_) = f dy(8)_(8)
-r

fo___/_r(n,_) E Z, then there exists a nondecreasing function

M(.) : [0,_] --. _ such that for zEZ

T

IHs(t)zI2 dt <__M(T)IIzTI2.
0

Remark: The proof of (1) makes explicit use of the hereditary structure

and is straightforward (though tedious). In (5.5) the expression HS(t)z

only makes sense when z E_(A). However, because of (li), we will use the

expression HS(t)z, 0 _ t _ T to denote the function in L2(0,T;_ ) which

is obtained by a continuous extension of the operator:

zE_(A) -+ HS(t)zEL2(0,T; _).

Let us consider the linear quadratic optimal control problem: for given

(n,_)€ Z choose the control uCL2(t0,T;_m) that minimizes the cost

functional
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T

(5.6) J(u,[t0,T]) = f (ICx(t)l2 + lu(t)12)dt + <GO x(T),x(T)>_
t o

where GO is a nonnegative, symmetric matrix on I_n and x(.) is the

solution to (5.1). Note that (5.6) can be equivalently written as

T

J(u,[t0,T]) --f (ICz(t)l2 + [u(t)12)dt + <Gz(T),z(T)>Z
t o

where G is a nonnegative, self-adjoint operator on Z defined by G(n,_)

= (GO n,0) EZ for (_,_) EZ and z(.) is given by

t

z(t) = S(t - t0)(n,_) + _ S(t - s)Bu(s)ds, t _> to .

t o

Hence Theorem 2.1 applies to the minimization problem (5.6).

It follows from [II], [21] that if (y,¢)ED(A*) then

¢(8) - (_(8) - _(-r)) T yEHl(-r,0)

and

¢(-r) = (_((-r) +) - B(-r)) r y.

Obviously Gz _ D(A*) in general. So, Theorem 3.1 does not apply for (5.6)

unless GO = 0. However, as a result of Lemma 5.1 one can extend the results

in Sections 3 and 4 to this case. We will discuss such an extension later and

for the present consider the case GO = 0.

If GO = 0, then the solution H(t) to the Riccati equation (2.6) is

given by

T , ,
(5.7) H(t)z = _ S (o - t)C CU(o,t)zdc.

t
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Let _ be the infinitesimal generator on Z defined by D(AT) = D(A) and

for _ E HI,
0

_(,(0),@)= (J" duT(0),(S),_)
-r

and let ST(t) denote the C0-semlgroup generated by _. Define the

structural operator F on Z by

em

FCn,_) = IB,f d_(_)_(_- 8)) for (n,_)EZ.
-r

Then, the following result has been proven by Manltlus [16].

'l_eorem 5.2:

(l) FS(t) = ST(t)F , F* ST(t) = S*(t)_, t _ O.

(ll) If z E _(A), then Fz€ _IAT) and AT Fz = FAz.

(ill) l__fzE_(_), then _ z E_(A*) and A* _ z = _ _ z.

Since C* = F* _, it follows from (5.7) and Theorem 5.2 that

T

K(t)z = F* f ST(_- t)C* CU(_,t)zdo.
t

Note that C* = CTy ( y,O) E Z for y €_P Thus from (1) of Lemma 5.1 and

(ill) of Theorem (5.2), _(t)z E_(A*) for z EZ. Moreover, since the

evolution operator U(ff,t) is jointly continuous for 0 < t < o < T, A* H(t)z

is strongly continuous in Z for z E Z, and hence _(t)A has a bounded
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extension to all of Z. The next result now follows from Theorem 4.4 and

Corollary 4.5.

Theorem 5.3: l__f GO = 0, then for z E Z, _(t)z is a unique strong

solution to the Riccati equation in the sense that _(t)z is continuously

differentiable on [0,T), K(t)z ED(A*) for 0 < t < T, and the strong

differential Riccatl equation:

h_ 9:

[_t _(t) + A _(t) + _(t)A- H(t)BB E(t) + C C) z = 0

for all z E Z

is satisfied on [0,T). Moreover, the optimal control u0(.) to (5.6) is

continuously dlfferentiable on (0,T] for (n,@) EZ.

Proof: From (4.8), if z = (n,@)E D(A), then u0 is continuously

dlfferentiable and

•0 *u(t)=B*(A*H(t)+ C C)z°(t)

z°(t)= u(t,0)(n,+).

It has been proven that A* _(t)z is strongly continuous in Z for z E Z.

So, the theorem follows since D(A) is dense in Z and U(t,0) is

continuous on Z for t > 0.

(Q.E.D.)
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Let us turn to the case GO _ 0. Consider the %th approximate problem

to (5.6) in which the cost functional is given by

T

(5.8) J%(u,[t0,T]) --f (ICz(t)[2 + Iu(t)i2)dt + <G% z(T),z(T)>Z
t o

where G% = J% GJ% and J% = %(%1 - A)-I for % E p(A). Note that

G%ZC_(A*) and G% -+ G in trace norm since G has a finite rank. If

_%(t), t _ T denotes the solution of the Riccati equation associated with the

problem (5.8), then it follows from Theorem 3.1 that

t

_%(t)z = G% z + f U%(T,s)Q% U%(T,s)zds, zEZ
t

where Q% is a self-adjoint operator on Z defined by

Q_ = A G_ + G% A - G_ BB G_ + C C.

Such a representation for Q% exists since G% A can be extended to all Z

via (3.1). If we denote the optimal control for the original problem (5.6)

by u0 and the optimal control for the %th approximate problem (5.8) by

u%, it follows from [ii, pp. I14-I15] that u% converges strongly to u0

in L2(t0,T;_m), and the convergence is uniform in to for 0 _ to _ T.

The following three results are essential to discuss the extension of

Theorem 3.1 and Corollary 4.5 to the case when GO # 0.

Lemma 5.4: GA has a bounded extension to all elements z E Z of the

form z = (_(0),_) with _EC(-r,0;_ n) and there exists a nondecreasing

function M(.) : [0,=) --+ _+ such that for zEZ
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T

(5.9) f [GAS(t)zl2 dt _ M(T) Uz_2.
0

Proof: For z = (_(0),_)cD(A)

0 0

IGAzl= IGCJdB(O)_(0),_)l = IE0 _ d_(8)_(O)l
-r -r

0

< [G01 J Id_l 'l@"C(_r,0;]Rn)"-r

Since Hl(-r,0;_) is dense in C(-r,0;_), GA has the prescribed

extension. Upon identifying GA with H of Lemma 5.1, (5.9) follows.

(Q.E.D)

Lemma 5.5: For x,y E Z

<GI AUI(T,t)x,U%(T,t)y> -+ <GAU(T,t)x,U(T,t)y> i__n_nL2(t0,T).

Remark: To be precise, Lemma 5.4 only extends GI A and GA to

x = (@(0),@) such that @EC(-r,0;_). However, as functions in L2(to,T),

the inner products may be extended to all Z.

Proof: First note that Ul(T,t)z converges strongly to U(T,t)z for

z EZ and the convergence is uniform in t, and that

T

u_(z,t)z= s(T- t)z+ f s(T- s)Su_(s)ds
t
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where u%(.) is the optimal control for the %th approximate (5.8) on the

time interval [t,T] with given initial condition z E Z. Since J%

converges strongly to I as % -+ _ on X = D(A), it follows from (1) of

Lemma 5.1 and the fact that u% -+ u0 in L2(t,T:_m) that for t _ T

T

f%(t) = Jl f S(T - s)Bu%(s)ds
t

converges strongly to

T

f0(t) = f S(T - s)Bu0(s)ds
t

in X. Since IIf%(t)HX is uniformly bounded in _ and t E [t0,T], by the

dominated convergence theorem, f_(t) converges strongly to f0(t) in

L2(t0,T;X). Hence <GAfl(t),Jl Ul(T,t)y> converges strongly to

<GAf0(t),U(T,t)y> in L2(t0,T ) for y E Z. The remainder of the proof is to

show that for z,yEZ

(5.10) <GAJI S(T - t)z,Jl Ul(T,t)y> -+ <GAS(T - t)z,U(T,t)y> in L2(to,T ).

As in Lemma 5.4, it can be shown that

T

f IGAJxS(T t)zl2 dt ! M"z"2- zEZ,

t 0

since llJ%, is bounded uniformly in _. The desired result follows from

direct applications of the triangle inequality and the dominated convergence

theorem.
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Lemma 5.6: There exist a finite rank (p) operator H on Z and a

nonslngular diagonal matrix A on _ such that

2<GAz,z>+ <(C*C - GBB*G)z,z>= <AHz,Hz>~ for zcD(A)

and H can be continuously extended to all elements z € Z of the form

z = (_(0),_) with _ EC(-r,0;_n).

Proof: Let X" denote the strong dual space of X. We identify Z

with its dual, so that XCZCX'. If j is the canonical injection from X

into Z: j_ -- (_(0),_)€Z, _€X, then j is an embedding from X into Z;

i.e., j is injectlve and j(X) is dense in Z; thus it follows from

Proposition 4 in [i, p. 65] that j" from Z to V" and j'j from X to

X" are embeddlngs :

j j"
X ---+Z ---+X"

and the bilinear form (x,Y)x.,x on X" x X is the unique extension by

continuityof the scalar product (x,y) of Z restrictedto Z x X. Here

(') stands for dual operators. Let us define an operator QEL(X,X') by

Q = A'G+ j'GA- J'GBB*Gj + J'C*Cj.

If i is thenorm-preservingcanonicalmap from X" into X, then iQ is a

self-adjolntoperatoron X. Indeed,

<iQx,y>x = <Qx,Y>x.,x= <x,QY>x,x. = <x,iQy>x.
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Since G and C have finite rank, Q has a finite rank, and so iQ does

also. Suppose rank (iQ) = p. Then there exist an operator H on X and a

nonsingular diagonal matrix A on _ such that

iQz = H AHz for all z EX = D(A).

It now follows that for z E X

<Qz,z>x.,x = <iQz,z> X = <H*AHz,z> X = <^Hz,Hz>

The proof is completed if we note that

<Qz,z>x. X = 2<GAz,z> Z + <(C* C - GBB* G)z,z> Z

and that from Lemma 5.4 the right-hand-slde of this equality is continuous on

.€c(-r,o;

(Q.E.D.)

The next theorem gives the extension of Remark 3.2 and Theorem 3.1 to the

case GO # 0.

Theorem 5.7: If H(t), t < T is the solution of the Riccati equation

(2.6) with G(n,_) = (GO n,0) fo___r(n,@) EZ, then for zEZ

T

E(t)z = Gz + f (HU(T,s))*hHi_T,s)zds
t

where H and A are definedin Lemma 5.6.



-27-

Proof: Recall that for t < T and z€ Z

T

_%(t)z = G% z + f U%(T,s)Q% U%(T,s)zds.
t

Since H%(t), t _ T converges strongly to _(t), uniformly on bounded

t-intervals, for t < T and x,y E Z

<_(t)x,y> = lim <_(t)x,y>
%._

T

= lira I<G% x,y> + f [<A*G% U%(T,s)x,U%(T,s)y>
_._ t

+ <U%(T,s)x,A G% U%(T,s)y> + <(C C- G% BB G%)

U%(T,s)x, U%(T,s)y>}ds).

Hence from Lemma 5.5 and the fact that U%(T,s)z converges strongly

to U(T,s)z for z E Z and the convergence is uniform in s, the dominated

convergence theorem allows us to show that for t ! T and x,y € Z

T

<H(t)x,y> = <Gx,y> + _ {<GAU(T,s)x,U(T,s)y> + <U(T,x)x,GAU(T,s)y>
t

+ <(C C- GBB G)U(T,s)x,U(T,s)y>}ds.

Since U(T,t)z E D(A) for z E D(A), it follows from Lemma 5.6 that for

x,y E D(A)
T

<_(t)x,y> = <Gx,y> + _ <AHU(T,s)x,HU(T,s)y>ds.
t



28

But since H can be continuously extended to all elements z of the form

z = (_(0),_) with _ EC(-r,0;l_n), it follows from (ii)of Lemma 5.1 and the

arguments in the proof of Lemma 5.5 that (5.11) holds for all x,y € Z.

(Q.E .D)

The following results are concerned with the differentiability of the

optimal control u0(.) of (5.8).

Theorem 5.8: For z € Z the optimal control u0(.) of (5.8) is

.0
differentiable a.e. on [t0,T] with u EL2[t0,T;_m).

Proof: It follows from Corollary 4.5 and (4.8) that if z = (B,_)E_(A),

then ul(.) is continuously dlfferentiable on [t0,T] and is given by

d * * *

_-t-u_(t) = B (A Hx(t) + C ¢)Ux(t,t0)z.

From (2.8)

. T , ,

Hx(t)z = S (T - t)G x ux(r,t)z + ] S (o - t)C CUX(_,t)zd_ for z EZ.
t

Note that GI ZC_(A ). Hence using the same arguments as those in the proof

of Lemma 4.3, one can show that Kl(t)z E D(A*) for z € Z and t _ T, and

moreover, A El(t) is strongly continuous on [t0,T]. Since Ul(t,.) is

strongly continuous on Z, this fact along with the closedness of the

differential operator [_t) on C(t0,T;_m) , shows that for z €Z ul(t) is

continuously differentiable on [t0,T]. We now note that for t _ T
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B A* S*(T - t)G% B* A* S (T - t)J% GJ%

= B* A* S*(T- t)J_ _ GJ% (using _ G = G)

= B A* S (T - t)_ 1% GJ%

= B* _ AT ST(T - t)l% GJ%

= B AT ST(T- t)l% GJ% (using B* _ = [3*)

where 1% = %(%1 - AT)-I , % € p(A) and we have used Theorem 5.2

successively. Since B*(n,_) = BT _, the arguments, as in the proof of Lemma

5.4, yield that B* AT has a bounded extension to all elements z € Z of the

form z = (_(0),_) with _€C(-r,0;_) and

T

(5.12) f IB* _ ST(T- t)zl2 dt <__M(T)'Iz_2
0

for M(.) : [0,=) --. _+ nondecreaslng. Hence one obtains

m
d u%(t) = B* A*{S (T- t)G% U%(T,t)dt

T

+ f S (o- t)C* C_(o,t)do}Ux(t,to)Z + _ _ C_(t,t0)z
t

= B _ ST(T - t)l% GJ% _(T,to)Z

T
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+ B C CUl(t,to)Z.

Note that %(t,t0)z converges strongly to U(t,t0)z for zEZ, and the

convergence is uniform on [t0,T ]. Since 1% and J% converge strongly to

the identity operator on Z, 1% GJ% _(T,t0)z converges strongly to

GU(T,t0)z for zEZ. It now follows from (i) of Lemma 5.1 and (5.12) that

{_u%(.)l is a convergence sequence in Lm(t0,T;_m) , which completes the

proof when combined with the closedness of the differential operator [_t)

on L2(t0,T;]im).

(Q.E.D.)

This last corollary establishes the Chandrasekhar equations for

hereditary differential systems.

Corollary 5.9 Define the operator L(.) o__n_nz b__y_yL(t)z = HU(T,t)z,

0 < t < T for all z € Z, and the gain operator K(t) = B* K(t), t < T.

Then K(t)z and L(t)x are differentiable on "[0,T] for zCZ and

xCD(A), and they also satisfy

N * *
d K(t)z = -B L (t)AL(t)z, zEZdt

K(t) = B G

and

d

_-{ L(t)x = -L(t)(A - BK(t))x, xED(A)

L(T)x = Hx.
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Proof: From (2.7),

T

L(t)Bv = HS(T - t)Bv - H f S(T - s)BK(s)U(s,t)Bvds for v E]km.
t

Here note that HS(T)Bv = H(x(T),x(T + -)), • > 0 where x is the

homogeneous solution of (5.1) with initial condition Bv and x EBV(-r,T;I_ n)

_{xmfor any T > 0. This means that L(t)B E exists for each t, and it is

not difficult to show that L(t)B is of bounded variation on [O,T]. So

B* * *L (') = (L(')B) E I_x_. It then follows from Theorem 5.7 that for zCZ

T

K(t)z = B* BeGz + f L*(s)AL(s)zds;
t

and hence K(t)z is differentlable on [0,T].

Note that for x € D(A), U(T,t)x is continuously differentiable with

respect to t and

T

U(T,t)x - x = _ U(T,s)(A -BK(s))xds.
t

Since HU(T,t)B= L(t)B is integrable,

T

L(t)x - Hx = HU(T,t)x - Hx = _ HU(T,s)(A - BK(s))xds
t

T

= _ L(s)(A -BK(s))x for xcD(A).
t

(Q.E.D)
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