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TECHNICAL MEMORANDUM

ACTIVE CONTROL OF LARGE SPACE STRUCTURES:
AN INTRODUCTION AND OVERVIEW

INTRODUCTION

Although large distributed systems are familiar to all, for example, highway
bridges and roofs on houses, the need to consider this class of structure as a prin-
ciple (or perhaps only) ingredient of a "plant" in a control system is just now emerg-
ing on a grand scale. This impetus comes from large aerospace structures intended
for orbital use. The cost of orbiting anything is relatively large and, coupled with
the fact of virtually free fall, i.e., near zero "g" conditions, produces an economic
set of circumstances conducive to large-in-dimension yet extremely lightweight and,
hence, limber structures. When this type c structure is limber enough so that it
may not sensibly be characterized as a rigid body and, therefore, has to be modeled
as an extended flexible body whose multitudinous vibration frequencies occur closely
or densely packed and at least a good number of which fall within the range of
control frequencies or required controller bandwidth, then the plant is classified as
a Large Space Structure (LSS) for control purposes. Note that this latter definition
tends to remove any absolute correlation with physical extent (although physical size
was a pow%rlul initial investigat ; ve motivator) and has moved the definition into the
character of the plant dynamics and to the interaction of the plant dynamics with
those of the controller.

DYNAMIC MGDELING OF STRUCTURES

The authors' experience indicates that almost all the practitioners of the control
design art spring from backgrounds other than those of the structural dynamicist.
This being the case, there is the usual difficulty in communication between the two
groups of practitioners. This difficulty appears to stem not only from differences in
jargon but also from the type of mathematical modeling employed. We assume here that
the general reader's background is not in structural dynamics. Thus, we will in the
paragraphs below sketch soi„e typical structural dynamical approaches to modeling.

Whereas control designers tend to start their design process with equations of
the form, x = Ax + Bu or Y(s)/X(s) = G(s), depending upon whether a time or fre-
quency domain approach is to be used, these equations, in the case of a LSS,
typically represent the end of much travail on the part of the structural dynamicist.
Indeed, left entirely to their own devices, they may never put the dynamical equations
in quite this form although there is seldom a real problem in so doing.

The dynamicists' problems stem from consideration of extended material bodies
characterized by non-lumped mass and stiffness properties and by generally little
known energy dissipation characteristics. Indeed, the damping or energy dissipation
of most structures is so ill defined that ad hoc damping additions to the equations of
motion are often used after the equations are derived neglecting damping.

Two analytical approaches are in general use to produce the desired equations
of motion, i.e., those equations casually relating actuators and sensors mounted on
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the structure in question. For those who have not considered this arena we warn
that questions of observability and controllability are crucial in structural control
work. The two approaches in use are: (1) to model the extended body with partial
differential equations (pde) and, (2) to model the extended body as a large collection
of lumped masses and springs, i.e., finite element approaches as typified by the
computer software package, NASTRAN . Whichever viewpoint is involved ( and the
choice is often arbitrary) the equations of motion are most often generated by use of
energy methods, typically by use of Hamilton 's Principle of La Grange's equations as
contrasted to direct application of Newton's dynamical laws.

An example of the pde approach is the long slender beam, an oft -used extended
.ructural element. Its homogeneous equation of motion may be shown to be

2	 2	 2
2 m(x) y(x,t) = a 

2 [EI(x) a	 2 x't)
at	 ax	 ax

where m ( x) describes `	 mass distribution along the beam, E and I are material
and geometric properties, and y(x,t) is the transverse deflection of the beam as a
function of displacement along the beam and as a function of time. Noting the
absence of damping, one is led to try the Method of Separation of Variables to break
the solution down into separate temporal and spatial descriptions. Letting y(x,t)
Y(x)f(t) and plugging away at the indicated operations yields

2	 2
d E I W d Y(x) _ w 2m(x)Y(x) = 0
dx 2 	dx2

and

2
d f 	 + w 2f(t) = 0
dt2

Clearly the method yielded the correct results here a^, it does in various
similar mathematical circumstances arising in elect rom agneti-- theory, fluid and heat
flow, etc. The solution of these equations gives rise to an infinite number of
possible frequencies, i.e. , w's (solved numerically from a transcendental equation
and well tabulated [ 1]) . Simultaneously for each w there corresponds a Y(x) or
transverse deflection curve envelope along the beam. This procedure is a form of the
linear systems. In this case Y(x) is the eigenvector or mode shape for a given
frequency or eigeniialue, w. The total deflection is the sum of all the Y(x). Having
achieved the homogeneous solution, several approaches are available for determining
forced responses. Space prohibits further exposition, but the reader is directed to
the methods associated with Green's Function [ 2] for one approach. However, the
reader is cautioned to return to the formulation of the pde in order to include any
external forces acting on the beam.

The finite or lumped element approach may appeal conceptually to some in that
it is analogous to limped electric circuit theory. Just as distributed lead capacitance
and inductance are often neglected and all such elements assumed lumped at one
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physical spot in a circuit, so the beam, in this case, is modeled as a series of masses
interconnected by flexures (springs). Depending upon the fidelity of the model, the
masses may be modeled to rotate as well as translate. Conceptually, of course, one
could apply D'Alemberts' Principle to each mass in turn to generate the equations of
motion. In actuality, La Orange's equation is most often used to produce a vector
matrix total differential eq iation of the form

[m] z + [k] x = Q

where [m] is called the mass matrix, [k] the stiffness matrix and Q represents some
generalized force input to the system. The transformation of this equation into the
state variable form, i.e., x = Ax + Bu, is straightforward.

Solution of the homogeneous equation k = Ax is, of course, another "eigenvalue"
problem from which one discovers the eigenvalues (roots of the characteristic equa-
tion) or vibrational frequencies and the eigenvectors or ratios of the displacements of
the masses relative to one another for any given eigenvalue. The absolute values of
the displacements depend upon the fairly arbitrary initial conditions applied to the
beam.

From whichever approach the equations are obtained, the equation of dimen-
sionality looms large. Inherent in the pde formulation are an infinite number of
degrees of freedom. In the lumped approach the number of states (in the control
sense) is the sum of the number of generalized masses and springs. In a "realistic"
model either number is often formidable. Indeed, this is a research issue at this time.
One strives to use just enough but no more degrees of freedom in the design process
than are required. Then one uses a proof model for validation incorporating a
greater number of states than were used for controller design. (More on this later.)
Of course the question arises, "How many degrees of freedom should be used in the
proo : model vis-a-vis the design model?" One approach for design is to use a model
incorporating all structural frequencies anywhere near to and/or encompassing the
controller bandwidth. Another approach is to retain all modes substantively causally
relating the control system actuator(s) and sensor(s). A little reflection shows that
this approach specifically neglects uncontrollable and/or unobservable modes regardless
of frequency or amplitude. And why not? The control system can do nothing with
them.

Another elegant but not widely used approach is due to Skelton [ 3] . In his
Modal Cost Analysis (MCA) approach 9 scalar cost

J = t E [Y T QY + uTRul

is established (where E denotes the expected value, y TQy the "output cost" and uTRu
the "i:.put cost") and the methodology of modern control techniques used to minimize
J in si,ch a way as to identify the major contributors to J regardless of their fre-
quency or mode shape. As is generally the case, the choice of Q and R is arcane
and especially so for this problem. As indicated earlier, this remains a research area.

3
1



LSS CONTROL SYSTEM DESIGN

Discussion of the LSS control system design problem begins with the various
models used for design and evaluation of performance in the controls area. Certain
important LSS control system design objectives are put forth and finally a brief
discussion is given concerning control law design techniques.

LSS Models

The control system designer almost always begi s the design process with a
model of the plant to be controlled. Often this model is a simplified version of a
more complicated one which has been reduced to make the design problem more tenahle.
Examples of this are the use cf linearized models for design and the practice of
neglecting the dynamics of certain system components which have high bandwidth
compared to the system to be controlled. The simplification of models is carried to
new lengths in LSS control system design.

As stated above, the exact description of a structure (or any distributed
parameter system) in terms of linear ordinary differential equations requires infinite
order of the model. This is obviously unreasonable for analysis and design purposes,
so a so-called physical model [4] is produced. The physical model is the largest
finite order model available. In the case of finite element modeling, the physical
model is the untrimmed output of the modeling process. The size of the model
depends upon the number of elements modeled in the structure. In the case of the
beam described above in which an essentially infinite number of modes may be deter-
mined, engineering judgement must be used to determine how many are necessary to
constitute the physical model. This is similar to the type of judgement which must be
made to determine how many elements must be used in the finite element modeling
process.

The physical model provides a starting point from which reasonable models may
be chosen for control system design and evaluation. The evaluation or proof model is
a subset of the physical model which maintains adequate fidelity (enough modes) for
the testing of control concepts in simulation. This implies that it must also be small
enough to be handled in a computer simulation. Of course, "adequate fidelity,"
depends upon the particular system requirements and, "small enough to handle,"
depends on the computer and the amount of CPU time available.

From the evaluation model comes the design model. The design model must
include all modes which are expected to interact heavily with the control system.
The maximum allowable size of the model is affected by the particular design tech-
ninue(s) to be used and the "tools" available to carry out the design process.

The dynamical model, whether physical, proof, or design, is often presented
to the controls engineer in the form

ri+n2n=LF

where n is a vector of generalized modal coordinates, Q 2 is a Lliagonal matrix of the
squares of the modal frequencies, and L is a matrix of eigenva'ues which relate tl.e
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inputs, F, to the modes. Transformation of this system into the state variable form
results in a block diagonal A matrix composed of second order blocks. Another useful
form of this model is that of a set of underdamped second order pole pairs having
common inputs and summed outputs. This form is particularly useful for frequency
domain design techniques. Typically, some arbitrary damping (e.g., zeta = 0.005)
is added to the modal system when it is transformed for control use.

Design Objectives

Once the designer has the appropriate model in hand, he must consider what is
to be accomplished by the control system. One area which concerns the LSS control
system designer is that of vibration suppression. As has already been pointed out,
LSS's exhibit very low damping, i.e., a considerable amount of time may be required
for a particular motion of the vehicle to damp out o:ice it is excited. In the case of
a precision pointing structure (such as a telescope) , this may be a great design
concern. In this case, the designer may choose to determine which motion of the
structure is causing problems and place rate sensors (accelerometers or rate gyros)
and force (or torque) actuators (proof mass forcers or control moment gyros) so as
to damp this motion.

Shape control is another area of interest in the study of LSS's. Large orbiting
antennae provide an application of shape control. Forces as small as those imposed
by the gravity gradient field and thermal stress are adequate to deform such struc-
tures beyond the limits of their performance requirements. Shape control systems
employ position sensors (often optical devices) and position actuators such as cord
pullers or piezoelectric pushers &nd are usually of relatively low bandwidth.

A third area of great concern to the LSS control system designer is disturbance
isolation. This area involves isolating certain sensitive parts of a structure (the
optics of a telescope, for instance) from disturbances transmitted into them from other
more "noisy" parts of the vehicle. This is among the most challenging of LSS control
problems.

Design Techniques

Many techniques are proposed for control law design for LSS's but few are
proven. Many of these are based on the familiar state variable approach to the
problem. This is inviting because LSS control systems are almost always m,ilti-.put/
multi-output (MIMO) . Among these schemes are pole placement techniques, optimal
output feedback schemes and others. Various frequency domain techniques are also
proposed which surmount some of the problems involved with applying classical tech-
niques to MIMO systems [ 5] .

PROBLEM AREAS

The problem areas in LSS control system design are many and challenging.
Foremost among these is model uncertainty. Assuming that a very good physical
model is available to the designer, it is likely that the design model will be in sig-
nificant error because of the model reduction process. This is, of course, a function
of how well the design model was chosen. At any rate, the use of a truncated model
demands robustness from the control system.
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In addition to the error incurred because of model reduction, there may be
significant error in the physical model from which the design model was generated.
Error In modal frequency values of 20 to 100 percent is not unusual, but the error is
typically less for the lower modal frequencies than for the higher ones which usually
presents an advantage for the control designer. This uncertainty of high frequency
modes leads the designer to gain stabilize them in most cases where the lower fre-
quency modes may be phase stabilized.

The error incurred due to the use of truncated models reveals itself as control
and observation spillover.	 Control spillover is structural reaction due to the excite-
ment of modes by the control system which were not included in the design model
while observation spillover is sensor output due tr excitement of such modes.	 Spillover
is a major motivator in the use of the proof model for control system verification.

A final problem in the study of LSS's which lies along quite different lines to
those already discussed, but concerns all facets of the modeling and design areas, is
that of verification of the theory on actual LSS hardware. The very nature of LSS's
makes them very difficult to study in the one "g" environment of earth. Indeed,
many LSS designs would fail to support themselves on earth, were they actually con-
structed and deployed here without extensive extra support mechanisms. Orbital
tests, on the other hand, are very expensive for any full scale LSS and the risks
for the payoff seem quite high. Eventually, a careful blend of on orbit tests, pre-
ceded and supported by carefully contrived ground based tests, most likely will
produce the most efficient results in the proof of LSS control and modeling concepts.
To this end, work is currently being carried out to develop a full scale LSS test
facility at the NASA Marshall Space Flight Center [ 6] .

CONCLUSIONS

A brief overview of the Large Space Structure (LSS) modeling and control
problem has been presented from the control engineering point of view. The LSS
has bee-n defined and techniques for developing dynamical nodels of such systems
discussed. It is clear that reduced order models must be used in LSS control system
design while the matter of how to choose such models remains a research issue at
this time. Typical LSS control system objectives are: vibration suppression, vibra-
tion isolation, and shape control. Many promising LSS control law design techniques
have been proposed by the research community, including candidates from both the
time and frequency domains. A discussion of such LSS p°_tfalls as model uncertainty,
model truncation, and spillover has been presented and finally a case has been made
for the development of ground based testing facilities for LSS's.
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