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alloys than that in Al-base alloys, that the clustering or reversion

phenomena at the initial stage of aging could be detected.



INITIAL AGING PHENOMENA IN COPPER-CHROMIUM ALLOYS***

Hisashi Suzuki and Motohiro Kanno**

I. INTRODUCTION /13*

Recently the post-aging nature of Cu-Cr alloys [1-3], their

aging process [4-6], reversion phenomenon [7-8], structure of

aging [9], T-T-T curve, etc. [10,11] have become subjects of

investigation, and the behavior of this alloy has become fairly

clear. Knowledge concerning its initial aging, however, remains

incomplete. There are many studies of this type dealing with

alloys of aluminum, etc. For example, there has been much

discussion of the role of the point defect [12,13], but this has

not necessarily been the case with copper alloys. A report on

the aging process of Cu-Be alloy at 70-200°C represents the /14

extent of what has been done [14,15]. Accordingly, a study

focusing on the relation between heat treatment conditions and

the initial aging phenomena for this alloy, based on detailed

measurement of relative resistivity, will be presented here.

II. TEST MATERIALS AND EXPERIMENTAL METHODOLOGY

Specimens consisted of three kinds of alloy, Cu-0.24 wt3> Cr,

Cu-0.74 wt&, and Cu-1.0 wt% Cr, which were made by the method

*** Department of Metallurgy and Materials Science, Faculty of
Engineering, University of Tokyo; Tokyo

** Given at the October, 1972 Metallurgical Society Conference in
Nagoya.

* Numbers in the margin indicate pagination in the foreign text.



previously described [8,9] and then cold-extended into a plate

0.5-mm thick. Measurement of relative resistivity consisted of

putting the 0.5 x 10 x 170 mm speciment in a stream of argon gas

(950°-1050°C) for an hour, then quenching it with ice water,

aging it by taking it through the 300-500°C range, then measuring

it at 20°C, and repeatedly aging, quenching and measuring it.

Aging time was three hours*, but since after about an hour there

were no significantly large changes in the position of the aging

curve, only the comparison for the first 100 minutes is shown for

the sake of convenience. The initial aging curve for the first 5

minutes is given especially detailed attention.

In this study, aging at temperatures below 300°C was not

carried out, since at low temperatures like 250°C changes in

resistivity are so slight as to be almost unmeasurable.

III. RESULTS

Figure 1 shows the aging curve for Cu-0.24% Cr alloy at

solution temperature (T ) of 950°C. Figure 2 shows the initials
part of Figure 1. It shows that the changes in the initial aging

curve were more complex than anticipated: (1) When the aging

temperature (T.) was below 400°C, in the very first stage, there
A

was a marked drop in resistivity (p ) of a maximum of 0. 1/4.S? cm.

The extent of this reduction increased with the lowness of the

aging temperature. After the sudden drop of p , the change in

relative resistivity slowed. (2) When T = 450-500°C, the
A

opposite of (1), that is, an increase in , was seen, and the

increase was greatest around 500°C with a decrease beginning

The aging curve is the resistivity-change/time curve. Here the

value found just after quenching is used as the standard for

resistivity.



Fig 1. Changes in electric

resistivity during isother-

mal aging of Cu-0.24*Cr

alloy. Specimen was solu-

tion treated at 950°C,

water quenched and subse-

quently aged at indicated

temperatures.
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Fig 2. An illustration of

initial part of aging

curves of Cu-0.24%Cr alloy.

Refer to Fig 1.

within a relatively short period of time. When aging is carried

out, beyond the initial changes, the higher the aging

temperature, the more rapid the decline | in p , as shown in

Figure 1.

Figure 3 and Figure 4 show the aging curve for the same

alloy, Cu-0.24% Cr when T = 1000°C and 1050°C. Compared withs
T = 950°C in Figure 1, the general tendency of the curve as /15
S

a whole is about the same, though the longer term changes in />

are greater. For aging temperatures of 400°C and 450°C, the

long-term decrease in p was somewhat greater for T at 1000°C '
. . -



than for 1050°C./ Furthermore, at 300°C and 350°C, the time

within which the aging curve reversed was shorter as T became
s

higher.
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Fig. 3 Changes in electric

resistivity during isothermal

aging of Cu-0.24%Cr alloy,

solution-treated at 1000°C,

quenched and aged at indicated

temperatures.
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Fig. 4 Changes in electric

resistivity during isothermal

aging of Cu-0.24%Cr alloy, solu-

tion-treated at 1050°C, quenched

and aged at indicated

temperatures.

Figure 5 is a summary of the effects of T on initial phase
&

aging behavior at T = 300°C and 500°C.
cl

According to its

representation, the very first stage shows greater declines in

resistivity as T becomes higher, though there is no great

discrepancy at 1000°C and 1050°C. Next, observing the increase

in p, it is seen that "the respective increases for T = lOOO'C
s



and 950°C are the same, and the increase is of short duration,

reversing into a decline within a rather short period of time.

No increase is observable at 1050°C. Furthermore, even at a

relatively high aging temperature such as 500°C, when the rate of

decline in resistivity is observed, the higher T becomes, the
s

greater the rate of decline, and this, at first glance, appears

Fig. 5 Effects of quenching

temperatures on the initial

part of aging curves of

Cu-0.24*Cr alloy, aged at

300 and 500°C, respectively.

to be the effect of the vacancies left over from the quenching.-

* F-rom observation of Figures 1, 3 and 4 with T. of 500°C and
A

time up to about 30 min., such an effect is apparent. However,

taking 0.88 eV as the migration energy of the vacancies, at 500°C
-9 2the diffusion coefficient comes out as approximately 10 cm /sec.

o o
Now, with ̂  10 cm as the transposition density, attempting to

eliminate excess vacancies through transposition results in an

unusually short longevity of several mutliples of 10 seconds.

Accordingly, the result is that this is not thought to be the
/' '•

direct effect of excess vacancies, but the role these vacancies
, • ?

play in the formation of Cr clusters at the very beginning (30

seconds or less) of the aging process. This point will be

subject to revision and later- discussion.



The above deals with the results T produces in first phase
s

test material, while the alloys Cu-0,74% Cr and Cu-1.0% Cr are

the second phase test material. Since the melting point of Cr

combined with Cu at a level of 0.26-0.60 wt% is 950-1050°C [3],

in this case if T was raised, the supersaturation of the melted
&

material at the aging temperature would increase. Figure 6 shows

the effects of T on the aging curve at T. at 300°C and 500°C for
S A

Cu-l.0% Cr alloy, while Figure 7 shows details of the initial

part of this process. A comparison of Figure 7 with Figure 5

(Cu-0.24% Cr alloy) shows that when T = 950°C and T = 300°C,
S A

shows a slightly smaller decline during the initial aging stage

(under 30 seconds), while at T. = 500°C the decline in f> is less
A

within the first five minutes. Since supersaturation is almost

the same for both alloys, the lower rate of aging in this case

was attributed to the presence of diffused Cr particles, which

eliminated surface vacancies which are created mainly during

quenching. The phenomenon descibed above also occurs in Cu-0.74%

alloy.

At T = 1000°C, aging is somewhat faster than for the Cu-
S

0.24% Cr alloy, and at 1050°C, there is a marked accleleration,

and the change in P is large as well. In these cases, although

the elimination of vacancies could be thought of as due to

diffused Cr particles which were included in the alloy while it

was molten, it is thought, rather, that this result is due to the

major role played by the increase in supersaturation as T rises.
S

With Cu-0.24 Cr alloy, when T = 950-1000°C and T. = /16
S A

= 400-450°C, there was a rise in p at the initial stages, but for

Cu-1.0 Cr alloy, such a rise was observed only at T = 950°C.
S

Figure 8 gives a comparison of the aging curves of Cu-0.74%

Cr alloy and Cu-1.0% Cr alloy for T. = 400°C. It shows that for
A

each T the 1.0% Cr alloy ages slightly more slowly than the
S

0.74% Cr alloy, and both alloys show a marked accleleration in

aging in com

anticipated.

8

aging in comparison to the 0.24% Cr when T rises, which is as
S
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Figure 6. Effects of quenching

temperatures on aging curves of

Cu-1.0% Cr alloy, aged at 300

and 500°C, respectively

Figure 7. Effects of quenching

temperatures on the initial

part of aging curves of Cu-l.Ofc

Cr alloy, aged at 300 and

500°C, respectively
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Figure 8. Effects of

quenching temperatures on aging

curves of Cu-0.74% Cr and Cu-

1.0% Cr alloys, aged at 400°C
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IV. OBSERVATIONS

Results for the above results include: (1) In low

temperature aging at 300-400°C,the marked decline in resistivity

at the very beginning was more pronounced when T was higher, ors
when T was higher and Cr content larger, or when aging

temperature was lower. (2) At comparatively high temperatures of

450-500°C during the very first stages of aging, there was a

temporary increase in resistivity, which was greater as T. was

higher. Moreover, as TA was higher, the shorter the time within
A

which maximum value for resistivity appeared and the more quickly

it disappeared. This tendency was strong in the alloys with high

Cr content. (3) After the complex changes in the initial stages,

when aging time reached 0.5-1.5 hr., the amount of aging (amount

of decline in resistivity) was generally larger in proportion to
1 >

the elevation of T., forming aging curves which appeared normal.
A

(4) The effects of T on the amount of aging were stronger in
S

high-chromium alloys. These were the main findings, and among

them (1) and (2) were considered to be of special interest.

Accordingly, they will be focused upon in the discussion of

observations below.

First, concerning (1), the phenomenon of resistivity decline

in the initial stage of aging also occurs with Al-In alloys

[16,17], the reason being ascribed to the matching of solute

atoms and vacancies. The same observation can be seen in the

article [5] concerning Cu-Cr alloys by Nishikawa et al. However,

calculations for this case lead to the conclusion that the

matching of vacancies and solute atoms is not the main cause of

decline.in resistivity*. This alloy has no G.P.[expansion

With vacancy formation energy of 1.17 eV [18], at 950-1050°C
.. ... .'-. -." . -. _5

the vacancy concentration is approximately 10 . Calculations

made by assuming that 0.24% Cr (0.3 at % Cr) would fully capture

10



unknown] phase, and, moreover, since at temperatures under 400°C

resistivity declines along with aging temperature, the abrupt

i drop in resistivity at the very first stage is likely due to the

| formation of clusters related to the Cr molecules present

Rate of formation (N) of Cr clusters at the very first stage of

aging (the presence of clusters will be discussed belo.w). is

I expressed in the formula:

Footnote (p.10), continued:

—5 -
all the vacancies present at 10 concentration, since the

contribution of single vacancies in copper to relative

resistivity is 1.00 yft cm/at% [19], and further assuming the rate

of contribution of V-Cr pairing to resistivity is 70% of that for

V-In(Sn) pairing and single vacancies in aluminum alloys [16,

20], indicated that the reduction in resistivity caused by the
-3formation of vacancies and clusters was 1.00 yn • cm x 10 x (1-

0.7l). These calculated results could not explain the actual test

results of 10 yfl cm. The elimination of all single vacancies

and the formation of secondary faults both lead to the same

conclusion.

•& ' - *
.In the types of alloy that produce increased ' resistivity in the

primary stages, it is generally the case that the increase is

produced by the formation of a G.P. phase. With this particular

type of alloy, however, no G.P. phase has as yet been detected.

There is an article [4] stating that stable Cr phase is present

from the first part of aging on, while in the extremely early

stage of aging, Cr polymers exhibit a bcc structure. Such

polymers of Cr atoms are expressed here in terms of precipitates

or Cr clusters. It is thought that even with production of these

Cr clusters, the resistivity of the alloy will decline.

11



where Af*, E-, and E are the barrier energy of nuclear

formation, vacancy formation energy, and vacancy migration

energy, respectively. Here the first item is to establish that

since Af declines ,in accordance with how low T becomes, within
/ ^the scope of this experiment, the lower/T.\ becomes, the smaller

the value of (Af* + E )kT \, with the result that at the very /17
ID \

first stage of low temperature aging, N assumes an unusually

large value, and so it is thought that since the clusters are .

rapidly formed and the concentration of the matrix solute is

reduced,the resistivity undergoes an abrupt initial decline.

When T\is constant and T is higher, or if T is higher and the
•** \ S S

specimen has a larger amount of Cr in it, the decline in relative

resistivity and the rate of decline are both greater, which has

already been included in the observations above. Changes after

the abrupt decline in resistivity are such that, when T is
S

constant, the lower the aging temperature the slower the process

(e.g. Figure 1), and this reflects the smaller value for the rate

of migration of solute toward the clusters in accordance with

lower temperatures. The longevity of excess vacancies at 300-

400°C ranges between several hundred and a thousand seconds, as

mentioned before, and it is thought that whether the fact that

lower the temperatures prolong the effect of excess vacancies

depends ultimately upon the low rate of migration on the part of

the solute at low temperatures. Next, in cases where T changes,

for example when the precipitate from aging at 300°C is observed,

the case is the same as with the aging at 500°C mentioned

earlier, that is, the higher T became, the more precipitate
S

appeared over the long term (see Figure 5, Figure 7). This is

mainly due to there being more clusters formed at the initial

stages when T is High, and direct effects of the excess
S . %

vacancies cannot be observed. This is because once the stage of

abrupt decline is past, the slope of the curve is almost

independent of T ." The case of 500°C aging will be discussed
S

later.

12



Since the change in resistivity which was caused by cluster

formation was approximately 0.1 yfi ' cm higher than that of pure

copper, and using a ratio of resistivity to density for

calculations, the amount of precipitate accounted for by the

clusters was 6.5*. Using transmission electron micrographs on

the material aged at low temperature, finding a space between Cr

presence of approximately 100 A [8], and setting that equal.to

the distance between clusters, it was found that one cluster was

the combination of approximately ten Cr atoms..

Next, the phenomenon of increased resistivity described in

observation (2) is"thought not to depend upon the appearance of

the metastable phase, which was alluded to earlier. Considering

what is discussed next, this phenomenon is thought to be based

upon the reversion of the clusters formed during quenching. This

entails the facts 'that': (i) Resistivity rose in proportion to

the aging temperature, which is in conformity with results of

experiments [7,8] on reversion in Cu-Cr alloys; (ii) When T is* s
high, the maximum resistivity value was reached within a short

period. This is thought to be because as T rises, excess •

vacancies increase'and reversion accelerates. (iii) In high-Cr

alloys, when T becomes high the same tendency is shown, and it
S

there is speculation as to whether this is due to increases in

supersaturation, consequent decreases in the average size of

clusters, and an acceleration in reversion, etc. An initial rise

in resistivity can be explained in terms of the formation of

clusters during quenching, as set forth above. In this study,

the rate of quenching may be regarded as virtually constant, and

we wish to study cases where the rate changes at a future time.

Incidentally, when reversion of the clusters is complete, in

order to attribute some portion of the rise in resistivity to

them, the amount of precipitate was calculated in the same manner

as before, giving a figure of just below 1% at most, with each

cluster consisting of three to five Cr atoms. It goes without

saying that in the earlier account of the decline in resistivity

- 13



during low-temperature aging, quenched-in clusters (formed during

hardening) were present.

The rise in T causes an acceleration in the rate ofs
reversion and a reduction in the amount of reversion, which can

be explained as follows: The rise in T and accompanyings
acceleration in reversion cause the concentration of excess

vacancies to be high, and this encourages both reversion and the

formation and growth post-reversion clusters. Accordingly, it is

thought that the extent of apparent reversion is reduced due to

effects of the formation and growth of clusters, a process which

occupies less than 10 seconds in the aging process. Even at 400-

450°C when no reversion is apparent, small clusters are

undergoing reversion, but this may possibly be offset by the

formation of large clusters. Consequently, it is not yet

possible to determine the reversion ratio accurately.

However, when T is 950°C, as the 500°C curve passes its

maximum value at around 30 seconds, perhaps all immediate

reversion is in progress. If this is the case, then while

reversion was in progress, the excess vacancies were almost

extinguished, and, accordingly, the simultaneous formation of

clusters around the vacancies which were near thermal equilibrium

concentration had taken place. With 500°C aging, the effects of

T extend over a period of approximately 30 minutes, and the
S

reason it seems that the effects of the excess vacancies were

visible, is apparently because clusters formed by this method

increase in quantity as T increases. On this point, the effect
S

of T with respect to the aging curve is similar to the case of
S

aging at 300°C already mentioned. The fact that the aging curve

for the 400-450°C range declines steeply after the initial drop,

when compared to the curve for the 300-350°C range, is equal in

importance to such factors as the number of clusters, the high

temperature diffusion rate or the low-temperature effective

diffusion rate.

14



Next, we can get a reasonably good understanding of phenomena

(3) and (4) through the discussion of cluster formation and

reversion set forth above and the idea of supersaturation.

However, the Cu-0.24% Or alloy precipitates more rapidly at

1000°C than at 950°C, but there is no great discrepancy between

the rate at 1000°C and 1050°C. For example, at an aging

temperature of 300°C, at the very beginning the rate is more

rapid for 1050°C, but after 20 minutes the relative positions of

the rates have reversed (compare Figure 3 and Figure 4). Thus

there are, especially in the initial part of aging with T ofs
1050°C, a large number of secondary defects, with such results

probably due to the fact that concentration of effective

vacancies in the matrix is reduced. This was checked with

transmission electron micrographs with no detection of structural

flaws, but testing for secondary faults was not possible. There

exists an article [21] concerning voids in pure copper which

indicates that observation of vacancies is difficult.

The above has made it fairly clear that in order to shed

light on the aging processes, one must take into consideration

the formation of clusters during hardening, reversion of clusters

during the initial stage, formation of new clusters, behavior of

clusters in relation to excess vacancies in the first stages of

aging, the subsequent role of the vacancies, etc. This means

that the process of aging of this alloy is not as simple as

heretofore believed, but is considered extremely complex. The

strength, etc., of this alloy after aging and what such an aging

process will finally lead to are problems for future research.

Moreover, we are hoping for future research on two-stage aging of

this alloy focused on cluster formation in the initial stages of

aging at 300-400°C.

We would like to comment further on the initial stage /18

behavior of these alloys, the complexity of which distinguishes

this process from the normal aging found in aluminum alloys. The

15



reason for this is that for these alloys, resistivity decline in

the stage of cluster formation seems less important than E as am
factor. That is to say that with aluminum alloys, which have a

small E , it is thought that during the initial stages of aging,

when a large number of quenched-in clusters are formed, these

clusters are mainly involved in growth, though some new ones are

formed, and their interaction leads to increased resistivity,

which produces an ordinary low-temperature aging curve. With a

somewhat higher T. a decline in resistivity at the initial stage
^-_ \

due to reversion is expected, but to date no article dealing with

this topic is available. This decline would also be due to small

E . Since the E of copper alloys is large, the formation of

clusters by quenching is very limited, but during the first

stages of low-temperature aging, clusters are formed with the aid

of vacancies formed during hardening. However, afterwards the

growth of clusters is delayed because E is so large.m
Consequently, it "appears that the aging curve consists of the

formation and splitting up of nuclei. Such a curve is seen even

in the case of Cu-Co_alloys, and generally can be expected with

alloys having large E . If a large E occurs with a high T A it

is natural that the reversion phenomenon would show up eas~ily on

the aging curve.

f

.Moreover, with'alloys such as those with an aluminum base,

the aging curve can be analyzed to discover values for E-, E ,

and the combining energy, but with these alloys, reactions at the

initial stage of aging are so complex, as described above, that

in these reactions Af* is interrelated with T^, so that it is

considered difficult to get the actual value^lfor either, and for

that reason it was decided not to do such analysis. Aging curve

analysis is carried out for this stage with aluminum and similar

alloys considered as not forming new clusters in the initial

stage, but as mentioned before, even in the case of aluminum

alloys, where some of the phenomena which accompany initial-stage

16



cluster formation might be present, this type of aging curve

analysis cannot be made without reservations.

V. CONCLUSIONS

The results set forth below were obtained by studying the

resistivity, principally that of the phenomena of the initial

stage of aging for Cu-Cr alloys.

(1) At an aging temperature of 300-400°C during the initial

stage (30 sec. or less) a marked decline in resistivity was

observed. This decline became proportionately larger as low-

temperature aging, solution temperature (T ) was increased ands
supersaturation was increased. It is thought that this is due to

formation of Cr clusters in the initial stage of aging.

(2) At 450-5009C, a temporary increase in resistivity was

observed, and this was more defined as the aging temperature was

higher and T was lower. The probable reason for this was that
S

Cr clusters formed during hardening were undergoing reversion.

(3) Along with the initial stage changes discussed above, the

role of excess vacancies formed during hardening was studied.

When the initial changes were past, and over an hour of aging had

taken place, the amount of aging was observed from the ordinary

point of view, i.e., that the higher the aging temperature T ,
L. \

the more aging will have taken place. However, when T became
S

excessively high, precipitation no longer showed a commensurate

increase.

(4) As stated above, the initial stage behavior for these

alloys is not as simple as is generally thought, in fact, it is

considered extremely complex. The fact that the aging behavior

of aluminum alloys is generally not viewed as having that degree

of complexity is mainly because its vacancy migration energy is

less than that of copper alloys.

17
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