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ABSTRACT

With the application to weld defects in mind, the interaction problem bet-
ween a planar crack and a flat inclusion in an elastic solid is considered.
The elastic inclusion is assumed to be sufficiently thin so that the thickness
distribution of the stresses in the inclusion may be neglected. The problem
is reduced to a system of four integral equations having Cauchy type dominant
kernels. The stress intensity factors are calculated and tabulated for various
crack-inclusion geometries and the inclusion to matrix modulus ratios, and for
general homogeneous loading conditions away from the crack-inclusion region.

1. Introduction

In studying the strength and fracture of structural solids it is often
necessary to take into account, among other factors, the effect of the imper-
fections in the material. Generally such imperfections are in the form of
either geometric discontinuities or material inhomogeneities. For example,
in welded joints, various shapes of voids, cracks, notches and regions of lack
of fusion may be mentioned as examples for the former and variety of inclu-
sions for the latter. From a viewpoint of fracture mechanics two important
classes of imperfections are the planar flaws which may be idealized as cracks
and relatively thin inhomogeneities which may be represented by flat inclu- |
sions. .

The correct way of modeling an inclusion would perhaps be to consider
it as an elastic continuum fully bonded to the surrounding matrix. In this
case, however, the crack-inclusion problems are generally difficult and only
simple geometries and orientations can be treated analytically (see, for

*This study was supported by the U.S. Department of Transportation O0ffice of
University Research under the Contract DTRS 5682-C-00014 and by NASA-Langley
under the Grant NGR-39-007-011.
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example, [1], [2]). A simple feature of such crack-inclusion interaction
problems is that generally the stress intensity factors are magnified if the
stiffness of the inclusion is less than that of the matrix and are diminished
if the inclusion is stiffer than the matrix. For certain types of "flat"
inclusions a simpler way of modeling may be to represent them as either a
membrane with no bending stiffness or a perfectly rigid plane stiffener with
negligible thickness. In these probiems one may use the basic body force
solution as the Green's function to derive the related integral equations.
On the other hand, since the flat inclusion with an elastic modulus smaller
than that of the matrix would itself have a behavior similar to a crack, it
needs to be modeled basically as a "cavity" rather than a "stiffener".

Even though the technical Titerature on cracks, voids and inclusions
which exist in the material separately is quite extensive, the problems of
interaction between cracks and inclusions do not seem to be as widely studied.
Such problems may be important in studying, for example, the micromechanics
of fatigue and the fracture in welded joints. In this paper a simple model
for flat elastic inclusions is presented and the crack-inclusion interaction
problem is considered for various relative orientations.

2. Integral Equations of the Problem

The plane strain or the generalized plane stress interaction problem
under consideration is described in Fig. 1. It is assumed that the boundaries of
the medium are sufficiently far away from the crack-inclusion region so that
their effect on the stress state perturbed by the crack and the inclusion
may be neglected and the plane may be considered as being infinite.

Referring to Fig. 1 we define the following unknown functions

g,(x;) = % [vy(x]5+0)=v4(x1,-0)] , (a<xj<b) , (1)
ny(xq) = g Dug (xs#0)-uy (g om0) s (a<xq<b) 3 (2)
5%0) = 77 Walgr#0)-vplxpn-0)] » (enped) (3)
nplxg) = gy [Ug(xpo0)-uy(xp0-0)]  (ecnyed) (4)
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where u and v are, respectively, x and y components of the displacement vec-
tor in the coordinate systems shown in the figure. It is assumed that the
inclusion fills a flat cavity the initial thickness of which is ho(x) which
is "small" compared to its length Za]. It is also assumed that the thickness
variation of the stresses and the strain alx in the inclusion are negligible.
Thus, for the plane strain case, from the Hooke's Law we obtain the fu:1Towing

stress-strain relations in the inclusion

1-v -Zvoz

i - 0 i i N
Eyy<x1) = E;TTjggj—'ny(X1) s Exy(xl) = 2“0 ny(X]) s (5)
where EO, Vor Mo are the elastic constants of the inclusion. Now, by observing
that
i =
ny(x‘l) - [V](X] 5+O)'V'l(x'| a'o)]/ho(x1) s . (6)
i =
ZEX-Y(X-') = [U-I(X-' s+0)'u](x] a'o)]/ho(x) > (7)
and
EO = 2u0(1+\)0) s Ko = 3-4\)0 R (8)

from (1), (2) and (5)-(8) we find

e 41 u X1

ot (xg) = —S_TW%JL g (t)dt (9)
X

i ¥y 1

oty (%) = Wf h(t)dt (10)
) |

If we Tet the medium to be uniformly loaded away from the crack-inclusion
region as shown in Fig. 1, for the stress components along the X1 and Xy axes
we obtain

oyy(x1,0) Ty > ny(xl’o) Oy 2 (11)
2°° @« ) o« . o0 .
= < < 2 -
ayy(xz,o) 0,,C0s%¢ + o, sin%e ZGXy sinecoss , (12)



Do

o 2
Xy

[95)

) . (13)

(x2,0) = (oyy-cxx)s1necose + oxy(c0545—s1n

From the basic dislocation soiution given in, for example, [3], referred
to the coordinate system X15Y1 the stress state at a point (x],y]) in the plane
due to the displacement derivatives g],h] defined by (1) and (2) may be
expressed as

o1 1 (xy5¥7) = [b[exx(x1,y1,t)gl<t> + H, (%5975t (£)]dt (14)
:

cpyxaq) = [ T8y, (xpaypatdeg (£) + By (vt (0)Jat (15)

orgly¥y) = | T (xpya8)ay () + Hy (v B (£)1dE (16)
where a

G, (x.y,t) = A(t-x)[(t-x)2-y?] ,

G,y (:75t) = Alt=x)[3y24(£-x)2]

6, (xyst) = Ay[y2-(t-x)2] ,

Hoo(X5¥,t) = Ay[y2+3(t-x)2] , (17)

Hoy(yst) = Ayly2-(t-x)2]

Hyy (xay5t) = Alt=x) [(t-x)2-y2] ,

_2u 1
Alx,y,t) = +e) T(E=x)Z#y2]Z °

and ¢ and « are the elastic constants of the medium (u=E/2(1+v), x=3-4v for
plane strain and x=(3-v)/(1+v). for generalized plane stress). Similarly,
referred to the axes Xo Yo the stress state c%?, (i,j=x,y) in the plane due
to 92,h2 may be obtained from (14)-(17) by substituting (c,d) for (a,b) and
(XZ"YZ) for (X-ls.y1) and (92’h2) for (g] ah'l)-



The integral equations to determine the unknown functions g],h],gz,
and h2 may be obtained from the following traction boundary conditions along
(y]=0, a<x]<b) and (y2=0, c<x2<d):

oy (X750) + 512(x,0) + oyn(x.0) = of (%) & (asxyeb) (18)
Sy (X120) + 012(x1,0) + 05(x1,0) = o (%), (asxy<b) (19)
c§§(x2,0) + oi;(xz,c)) + 05;(x2,0) =0, (coxyed) (20)
022(49,0) + aay(45,0) + 0or(%5.0) = 0, (cexped) (21)

where all except the coupling stresses in the second column are given by

(9)-(17). The coupling stresses have the following meaning: c;s(x1,0) is
the normal stress on y1=0 plane due to the displacement derivatives gz(xz) and
h,(x,) and 02]

2' "2 yy
Thus, after making the necessary stress transformations similar to (12) and

(13), we obtain

(x2,0) is the normal stress on y2=0 plane due to 91> h1, etc.

d . .
12010 = [ [6120x1: 805, (£) + HZ0xp 0)hy(£) et (22)

na(xq:0) = [ [6120x1.1)g,(£) + H2x 0y () ]t (23)
b )
A (x:0) = [ [62)(xpt)ay(8) + HE) (xptdny (£)]et (24)
,
2 (xg:0) = [ 1620 0xgut)ay (8] + K] (xpu iy ()]t (25)
where from a
12 22 22

(x1,0) = o§§(x2,y2)cosze + oy sin2g + Iy sin2e (26)

yy X

calculated at X,=X{C€0S 8, y2=-x]sine we have
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G}i(x],t) = ny(x1cose,—x]sine,t)cosze + Gxx(xlcose,-xlsine,t)

+ ny(x1cosa, x]sins,t)sinZG . (27)
H;i(x],t) = Hyy(x]cose,-x]sine,t)cosza + Hxx(x]cose,-x1sine,t)

+ ny(x1cose,-x]sine,t)sinZG . (28)

Similar expressions for the remaining kernels in (23)-(25) are obtained
by using the stress transformations

Ol§(X1’O) = [oii(xz,yz)—o§§(x2,y2)]sinecosa
+ ciﬁ(xz,yz)(cosza-sinze) , (x2=x1cose, y2=-x]sine) , (29)
2 (xgs0) = a1 (xq,3q)cos28 + o1 (xg2y;)sin%e
- ol}(x1,y1)sin26, (x1=x2coss, y]=xzsine) . (30)
52y (%550) =.[o;;(x1 ¥1)=01 1 (x;,3,) Isinacose
ol;(x],y1)(cos2e-sin29), (x]=x2cose, y]=xzsine) . (31)

Thus, from (14)-(25) and (29)-(31) it follows that

12 _ .
ny(x],t) = [Gxx(x,y,t)—ny(x,y,t)]s1necosa

+ ny(x,y,t)c0329, (x=x]cose, y=—x]sine) . (32)

12 .
ny(x],t) [Hxx(x,y,t)-Hyy(x,y,t)]s1necose

+ ny(x,y,t)COSZe, (x=x1cose, y=-x1s1ne) . (33)



2.[ = 2 > 2
ny(xz,t) ny(x,y,t)cos 5 + Gxx(x,y,t)51n 8
- GXy(x,y,t)s1n26 » (x=x,c0s8, y=x251ne) , (34)
21 = 2 sn2a
H (xz,t) Hyy(x,y,t)cos 8 + HXX(x,y,t)s1n ]
- ny(x,y,t)s1n26 , (x=x2cose, y=xzs1ne) , | (35)
621(x t) = [G. (x,y,t)-G__(x,y,t)]sinecoss
Xy 23 yy 5 9 XX b b
+ ny(x,y,t)c0529 . (x=x2cose, y=x251n ) (36)
HZ]( t) = [H (x,y,t)-H__{x,y,t)]sinscoss
23 yy s 3 XX 3 b
+ ny(x,y,t)c0526 , (x=x2cose, y=xzsine) . (37)

From (18)-(21) the integral equations of the problem may then be obtained as

X d
1 r
1 1 12
;J Tx g¢(t)dt + f 6(x1)g,(t)dt + ¢, J ny(x],t)gz(t)dt
a a c
d
12 _ o
tc, J H ( 1,t)h (t)dt = =Cy0yy (a<x1<b) . (38)
c
b X ' d
1 1y (t)dt + 1H(x Yho(t)dt + ¢ Glz(x t)g,(t)dt
)ty 1M 0 xy \%12%792
a a c
d
+ CO J ]Z(X],t) 2(t)dt = -COO'::y, (a<x'l<b) s (39)
c
b b d
e [ 6 (x,t)g(t)dt + ¢ | HE (x,,t)h (t)dt + + | —— g (t)dt
0 yyth22 e ) yy 22t T t-x2 2
a a c
= —co(o;ycosze+oixsinze-oiysinZB), (cexy<d) , (40)
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b b d

o [ 6 (x,,t)a,(t)dt + ¢ [ HEl(x,,t)ns (t)at + & [ Lo (t)at
IR AR AR 0 A ARl R T ) Tx, 2
a a c
= -c, (cyy—cxx)sinecose + oxyc0529], (c<x2<d) , (41)
wnere ( Y )
polk+1)(x +1
%% ° %;5 ’ G(X]) = - = 2ulk -?) h gx )
H 0 01
) o (etl)
H(Xl) = = 2u ho(xl) . (42)

If there is no crack in the medium, 92=0=h2, the integral equations
uncouple and (38) and (39) give the unknown functions 9 and h1. For example,
if the inclusion has an elliptic cross-section given by

ho(x) = b /T-x% , (43)

(38) becomes

1 X

] g](t) cl o
— f =X dt - f 91(t)dt = -c_ o (44)
1 21 VT1-x2

. g (1) (T4 ) ’
1 Zubo(Ko-])

(45)

and without any loss in generality it is assumed that a=-1, b=1, Xq=Xe The
solution of (44) is found to be

Com
- . oyy _t . (-1<t<1 46
g;(t) TR, e (-1<t<T) (46)

which, for u0=0 reduces to the well-known crack solution. By using the follow-
ing definition of the stress intensity factor

k (t) = -Tim {%t JZTTT 9q(x) (47)

X1
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from (46) it follows that

oo

ky (1) 1ﬂ+c; : (48)

Siilarly, in the absence of a crack from (39), (42) and (43) it may be
shown that

=]

cgo
hi(t) = - 2B £ (L1cter) | (49)
€2 /-2
. n_(T+k)
- XY o
) = 1oy » @2 % ~amy (50)

As another special case if we assume that the stiffness of the inclusion
u0=0, then the functions G and H defined by (42) vanish and the integral equa-
tions (38)-(41) reduce to that of two arbitrarily oriented cracks shown in
Fig. 1.

3. Stress Intensity Factors

In the linearly elastic medium under consideration the intensity of the
stress state around the end points of the crack and the inclusion is governed
by the singular behavior of the displacement derivatives 915 9p> h] and h2
which are defined by (1)-(4). If we assume the following standard definition
of Modes I and II stress intensity factors

k,(a) = Tim /2{a=xq) o) (x,,0) , (51)

1 Xy 17 “yy'™1

kp(a) = Tim V2(a=x7T oy (x150) » (52)
x]+a yy

k1(c) = 1im /21c-x25 02 (x2,0) , etc. , (53)
X2+C Yy

and observe that the system of integral equations (38)-(41) which has simple
Cauchy type kernels has a solution of the form



G, (t) H.(t)
g.(t) = ———— , h.(t) = ——, (i=1,2) , (54)
1 Jb-t)(t-a) J(d-t)(t-¢)

from (38)-(41) and (51)-(54) it can be shown that

ki(a) = f&‘ 11m 2(x3=a) g97(x;) » (55)
X172
ky(b) = - E= Tim V2TBx;T gy(x) (56)
1 The T 1) 9145
X1
kp(a) = B2 1im V2Txy-a) hy(xq) » (57)
-l—>a
k(b) = - 2L Tim JZ(B=xLT hi(xs) . (58)
2 T TR T 1) i
1

The stress intensity factors ki(c) and ki(d), (i=1,2) may be expressed in
terms of g, and h, by means of equations similar to (55)-(58).

4. Results

The integral equations (38)-(41) are solved by using the technique
described in [4] and the stress intensity factors are calculated from (55)-
(58) and from similar expressions written for the crack. For various crack-
inclusion geometries and stiffness ratios uo/u (uo being the shear modulus of
the inclusion) the calculated results are given in Tables 1-6. The main
interest in this paper is in relatively "thin" and flat inclusions. Hence
in the numerical analysis it is assumed that the thickness h0 is constant.
Table 1 shows the normalized stress intensity factors in a plane which con-
tains a crack equal in size and coplanar with an inclusion and subjected to
uniform tension and shear away from the crack-inclusion region (Fig. 2a).
The inclusion model used in this analysis is basically a crack the surfaces
of which are held together by an elastic medium of shear modulus Mg Thus,
for u0=0 one recovers the two crack solution. It may be observed that for
“o>0 there is a significant reduction in the stress intensity factors around
the end points X172 and x]=b (Fig. 2a). In Table 1 the variables are the
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stiffness ratio uo/u and the thickness of the inclusion ho/a] with the
spacing a/a] = (.07 being constant, where 231 is the length of the inclusion
(Fig. 2a). Similar results calculated by assuming that ho/a1 = 1/20 and
a/a] is variable are shown in Table 2.

For various values of the stiffness ratio uo/u and fixed values of the
inclusion thickness (ho/a1=1/20) and the distance a (a/a1=0.1), the effect
of the angle 6 on the crack tip stress intensity factors are given in Table
3. The geometry and the loading condition away from the crack-inclusion
region are shown in Fig. 2b. In this example, too, it is assumed that the
inciusion and the crack are of equal length (a2=a]). For the special case
of u0=0, that is, for the case of two cracks of equal Tengths oriented at an
angle & the stress intensity factors are given in Table 4.

The stress intensity factors for the symmetric crack-inclusion geometries
shown in Figures 3a and 3b are given in Table 5, where the length ratio az/a1
is assumed to be the variable. In both examples the inclusion (half) length
34 is used as the normalizing length parameter and the relative distance
c/ay (Fig. 3a) or a/ay (Fig. 3b) is assumed to be constant.

Table 6 gives the stress intensity factors for a crack perpendicular
to the inclusion where, referring to Fig. 1, 8=n/2, a=0, u0=u/20 and c/ay=
0.05 are fixed and a, is variable.

It should be noted that since the superposition is valid, the tabies
give the stress intensity factors for the most general homogeneous loading
conditions away from the crack-inclusion region. Also, the tables give the
stress intensity factors which are normalized with respect to o?j/ﬁ;'where 231
is the length of the inclusion and (i,5)=(x,y), (Fig. 1). The notation used
in the tables is

) k1(a) _ kz(a) _ k](c)
k1a-mJa_,kZa-w/a_,k]c-mfa_,etc. (59)
955V 933" » 95"

where k] and k2 are, respectively, Modes I and 11 stress intensity factors
defined by equations such as (51)-(53) and calculated from the expressions
such as (55)-(58).
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Table 1. Modes I and II stress intensity factors for the case of a crack
Jocated in the plane of the inclusion in a medium subjected to
c; or c;y away from the crack-inclusion region (Fig. 2a); c=-a,

d=-b, a/a]'O 01, k ( )/c /5;, k ( )/c /__ LZC 2( )/c al,

1c

kZd k2(d)/o «”" S ( )/g /“ k2a kz(a)/o /“ Kqp ( )/o /"
Kop= 2(b)/o /“ a (b a)/2.

[ 2h0 uo/u
b-a 0 0.05 0.1 0.25 0.5 T.0 7.0 5.0
0.01 !1.2063 | .1578 | .1031 | .0535 | .0303 | .0163 | .0085 | .0035
kq, 10.02 ]1.2063 | .2320 .1578 | .0888 | .0535 | .0303 | .0163 | .0068
0.1 (1.2063 | .5146 | .3713 | .2320 | .1578 | .1031 | .0634 | .0303
0.2 1|1.2063 | .6836 | .5146 | .3323 | .2320 | .1578 | .1031 | .0535
0.01 [2.9642 | .5725 | .3908 | .2104 | .1207 | .0654 | .0342 | .0140
ki |0.02 |2.9642 | .7941 .5725 | .3404 | .2104 | .1207 | .0654 | .0276
0.1 12.9642 |1.5036 |1.1620 | .7941 | .5725 | .3908 | .2478 | .1207
0.2 12.9642 |1.8803 |1.5036 [1.0636 | .7941 | .5725 | .3908 | .2104
0.071 12.9642 [1.1795 [1.1045 [1.0479 |1.0255 |1.0132 |1.0067 [1.0027
kyo |0.02 |2.9642 11.2952 |1.1795 |1.0870 1.0480 [1.0255 |{1.0132 |1.0054
0.1 12.9642 |1.7825 11.5321 {1.2952 }1.1795 |1.1045 {1.0583 }1.0255
0.2 12.9642 |2.0764 |1.7825 [1.4645 {1.2952 {1.1795 |1.1045 |1.0479
0.071 11.2063 |1.0116 |1.0063 |1.0027 |1.0014 |[1.0007 |[1.0004 |1.0001
. |0.02 |1.2063 |1.0211 |1.0116 |1.0051 ;1.0027 |1.0014 1.0007 |{1.0003
1d 10.1 ]1.2063 |1.0693 {1.0432 |1.0211 {1.0116 {1.0063 {1.0033 }1.0014
0.2 11.2063 [1.1019 |1.0693 [1.0366 |1.0211 [1.0116 |1.0063 |1.0027
0.071 [1.2063 | .3106 | .2159 | .1275 | .0810 | .0482 | .0269 | .0117
koy |0.02 |1.2063 | .4368 .3106 | .1910 | .1275 | .0810 | .0482 | .0221
0.1 11.2063 | .8214 | .6500 | .4368 | .3106 | .2159 | .1459 | .0810
0.2 |1.2063 | .9673 | .8214 | .5946 | .4368 | .3106 | .2159 | .1275
0.07 12.9647 [T.0075 | .7480 | .4743 | .3122 | .1900 | .1076 | .0470
k,, |0.02 [2.9642 {1.3214 |1.0075 | .6747 .4743 | .3122 | .1900 | .0885
0.1 12.9642 {2.1749 |{1.8071 {1.3214 |1.0075 | .7480 | .5345 | .3122
0.2 12.9642 |2.4785 |2.1749 |1.6847 |1.3214 [1.0075 | .7480 | .4743
0.01 12.9642 [1.4272 |1.2691 |1.1366 |1.0778 [1.0425 |1.0225 ]1.0093
koo [0.02 |2.9642 |1.6463 |1.4272 1.2298 |1.1366 {1.0778 {1.0425 [1.0182
0.1 12.9642 12.3136 |2.0183 |1.6463 |1.4272 |1.2691 |1.1622 |1.0778
0.2 12.9642 |2.5619 {2.3136 [1.9221 |1.6463 [1.4272 |{1.2691 {1.1366
0.071 [1.2063 [1.0330 |1.0188 [1.0085 |1.0045 [1.0023 |1.0012 [1.0005
Koy [0-02 |1.2063 1.0549 11.0330 1.0156 |1.0085 {1.0045 {1.0023 {1.0010
0.1 11.2063 [1.1292 {1.0954 }1.0549 |1.0330 |1.0188 |1.0103 }1.0045
0.2 11.2063 {1.1583 |1.1292 |1.0846 |{1.0549 [1.0330 |1.0188 {1.0085
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Table 2. Modes I and II stress intensity factors for the case of a crack
located in the plane of the inclusion in a medium subjected to

oo co . . . .
Sy or o, away from the crack-inclusion region (Fig. 2a); c=-a,

d=-b, hO/a]=1/20.

2a Mo/ H

b-a 0 0.05 0.7 0.25 0.5 1.0 2.0 5.0
0.01 {1.2063 L3713 .2611 .1578 L1031 .0635 .0366 .0163
k]b 0.5 1.0517 . 3544 .2513 . 1527 .0998 .0615 .0354 .0158
1 171.0280 | .3493 | .2479 | .1508 | .0986 | .0607 | .0350 | .0156
2 11.0125 | .3453 | .2452 | .1492 | .0976 | .0601 | .0347 | .0154
0.01 {2.9642 [1.1620 .8751 .5725 . 3508 .2478 . 1454 .0654
k]a 0.5 1.1125 .3877 .2768 .1693 .1110 .0685 .0395 .0176
1 11.0480 | .3604 | .2564 | .1563 | .1023 | .0630 | .0364 | .0162
2 1.0176 . 3481 L2474 . 1506 .0985 .0607 .0350 .0156
0.07 12.9642 |1.5321 |1.3433 ]1.1795 {1.1045 }1.0583 }1.0313 {1.0132
k1C 0.5 |1.1125 [1.0229 {1.0130 |1.0057 |1.0030 {1.0015 |{1.0008 |1.0003
1 11.0480 {1.0096 |1.0054 {1.0024 [1.0012 [1.0006 |{1.0003 |{1.0001
2 11.0176 [1.0035 [1.0020 {1.0009 |1.0004 {1.0002 {1.0001 }{1.0000
0.07 |71.2063 [1.0432 |1.0253 |{1.0116 |1.0063 |1.0033 |1.0017 {1.0007

k.ld 0.5 |[1.0517 |1.0104 {1.0058 |{1.0026 {1.0013 }1.0007 |{1.0003 {1.0001
1 11.0280 |1.0056 |1.0031 |1.0014 {1.0007 {1.0004 {1.0002 {1.0001
2 1.0125 |1.0025 [1.0014 |1.0006 |1.0003 {1.0002 {1.0001 {1.0000

0.01 11.2063 .6500 .4845 .3106 .2159 . 1459 .0943 .0481
k2b 0.5 |1.0517 | .6031 | .4576 | .2979 | .2084 | .1412 | .0914 | .0467
1 1.0280 .5925 .4503 .2938 .2057 . 1395 .0903 .0461
2 1.0125 .5849 .4449 .2905 .2035 . 1380 .0893 .0456
0.01 |2.9642 {1.8071 [1.4340 {1.0075 .7480 .5345 .3601 . 1900
k2a 0.5 1.1125 .6498 L4971 .3272 .2302 . 1567 .1017 .0520
1 11.0480 | .6081 | .4636 | .3035 | .2129 | .1446 | .0937 | .0479

2 1.0176 .5889 .4483 .2930 .2053 .1393 .0902 .0461
0.01 |2.9642 |2.0183 |1.7299 |1.4272 |1.2691 {1.1623 |1.0937 |1.0425

k2C 0.5 {1.1125 {1.0523 {1.0344 {1.0172 |{1.0095 |1.0050 {1.0026 |1.0011
1 |1.0480 {1.0222 |1.0145 |1.0072 {1.0040 {1.0021 {1.0011 {1.0004
2 1{1.0176 |{1.0081 |1.0053 |1.0026 |1.0014 |1.0008 {1.0004 {1.0002
0.01 [1.2063 |1.0954 [1.0637 |1.0330 |1.0188 [1.0104 {1.0055 |1.0023
K 0.5 1.0517 11.0239 {1.0157 {1.0078 |{1.0043 {1.0023 {1.0012 |1.0005
2d T 11.0280 {1.0129 {1.0084 {1.0042 {1.0023 {1.0012 {1.0006 {1.0003
2 1.0125 |1.0057 |1.0038 [1.0019 {1.0010 [1.0005 [1.0003 {1.0001
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Table 3. The effect of angular orientation 3 and the modulus ratio
Ug/ﬂ on the stress intensity factors in a medium under general
in-plane loading (Fig. 1); c=a, d=b, ZhO/(b-a)=1/20, 2a/(b-2)=0.1.

o | % |Tm T80 90 T 120 T 150 [ 180 |
| w/u = o.os_t_ B
kic | 0.2624 | 0.8047 | 1.0961 | 0.8097 | 0.2654 0
= |k, |-0.4717 |-0.4636 | 0.0163 | 0.4737 | 0.4585 | O
XX lky4 | 0.2560 | 0.7618 | 1.0106 | 0.7562 | 0.2518 0
Koy |-0.4378 |-0.4253 | 0.0122 | 0.4432 | 0.4383 0
kyo | 0.6402 | 0.2232 |-0.0311 | 0.2749 | 0.8366 | 1.1094
o |Kpo | 0.4596 | 0.4217 [-0.0483 |-0.5019 |-0.4771 0
%y |kyq4 | 0.7052 | 0.2221 |-0.0109 | 0.2568 | 0.7702 | 1.0250
ko | 0.4105 | 0.3981 |-0.0386 |-0.4636 |-0.4493 0
ki, |-0-5020 |-0.5895 | 0.2839 | 1.1440 | 1.0302 | 0
= |k, | 0.3394 |-0.5681 |-1.0010 [-0.3793 | 0.7098 | 1.2367
X 1k, |-0.9072 |-0.8566 | 0.0354 | 0.9049 | 0.8903 0
kpq | 0-4353 |-0.5284 |-0.9911 |-0.4631 | 0.5521 | 1.0567
uo/u = 0.1
ki | 0.2552 | 0.7786 1.0613 | 0.7908 | 0.2608 | 0
. |ky |-0.4593 |-0.4546 | 0.0095 | 0.4610 | 0.4512 0
“xx |kyq4 | 0.2534 | 0.7570 | 1.0066 | 0.7540 | 0.2512 0
gy |-0-4366 |-0.4291 | 0.0072 | 0.4395 | 0.4366 0
koo | 0.6535 | 0.2334 |-0.0181 | 0.2628 | 0.8003 | 1.0643
o |k | 0.4533 | 0.4238 |-0.0293 |-0.4758 |-0.4605 0
%y |kqq | 0.7248 | 0.2350 |-0.0088 | 0.2540 | 0.7615 | 1.0143
kpq | 0-4219 | 0.4145 |-0.0215 |-0.4506 |-0.4425 0
ki |-0.6023 |-0.6717 | 0.1849 | 1.0482 | 0.9749 0
= |kyo | 0.3956 |-0.5401 |-0.9996 |-0.4197 | 0.6414 | 1.1599
% lk, 4 |-0.8892 |-0.8588 | 0.0230 | 0.8970 | 0.8817 0
Koy | 0-4617 |-0.5172 |-0.9943 |-0.4762 | 0.5343 | 1.0374
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Table 3 - cont.

ug/u = 0.5
k]C 0.2478 | £.7C037 | 1.0157 ] 0.7€22 | 0.2535 0
k2C -0.4414 {-0.4405 | 0.0019 | 0.4418 | 0.4391 0
k]d 0.2509 | 0.7517 | 1.0017 | 0.7511 0.2503 0
kZd -0.4341 |-0.4322 | 0.0017 | 0.4347 | 0.4341 0
k]C 0.7013 | 0.2427 {-0.0045 | 0.2523 | 0.7620 | 1.0158
k2C 0.4381 0.4288 {-0.0078 |-0.4448 |-0.4407 0
k.Id 0.7446 | 0.2469 |-0.0012 | 0.2510 | 0.7527 | 1.0033
k2d 0.4312 | 0.4292 {-0.0048 |-0.4371 {-0.4353 0
k]C -0.7657 {-0.8011 0.0517 | 0.9166 | 0.8971 0
k2C 0.4738 |-0.5057 |-0.9981 |-0.4766 | 0.5420 | 1.0479
k.ld -0.8712 |{-0.8639 | 0.0061 | 0.8726 | 0.8702 0
k2d 0.4910 1-0.5046 -0.9987 {-0.4938 | 0.5094 | 1.0105
ug/u = 2
k-IC 0.2484 | 0.7504 | 1.0041 | 0.7535 | 0.2510 0
k2C -0.4356 |-0.4354 | 0.0003 | 0.4356 | 0.4349 0
k]d 0.2503 | 0.7505 | 1.0004 | 0.7503 | 0.2501 0
k2d -0.4333 |-0.4328 | 0.0004 | 0.4335 | 0.4333 0
k1C 0.7317 | 0.2473 {-0.0012 | 0.2505 | 0.7531 1.0042
k2C 0.4330 | 0.4314 |-0.0022 |-0.4363 }-0.4352 0
k]d 0.7487 | 0.2492 |-0.0003 | 0.2503 | 0.7507 | 1.0009
k2d 0.4326 { 0.4321 |-0.0012 |-0.4341 |-0.4336 |° O
k]c -0.8318 [-0.8460 | 0.0146 | 0.8801 | 0.8748 0
k2c 0.4947 {-0.5001 |[-0.9989 |-0.4932 | 0.5122 | 1.0139
k]d -0.8674 {-0.8655 | 0.0016 | 0.8678 { 0.8672 0
k2d 0.4976 |-0.5013 |-0.9997 |-0.4983 | 0.5026 | 1.0029
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Table 4. Interaction of two cracks (Fig. 2b); ”o/“1=0’ c=a, d=b,

2a/(b-a) = 0.1.
50
30 60 90 120 150 180
Ky, 0.1834 | -0.0122 | -0.1604 | -0.1271 | -0.0361 0
Ko 0.1293 0.0928 | 0.2122 0.2877 | 0.1946 0
ky, | -0.1471 | -0.1373 | -0.0666 | -0.0113 | 0.0024 0
N Kop 0.1825 0.2323 | 0.2104 0.1371 | 0.0588 0
Txx Kic 0.3637 1.0032 | 1.2370 0.8684 | 0.2790 0
k,. | -0.8576 | -0.4950 | 0.0577 0.5191 | 0.4810 0
Kqg 0.3073 0.8057 | 1.0308 0.7633 | 0.2536 0
kog | -0.3956 | -0.3708 | 0.0477 0.4591 | 0.4441 0
K1 0.5843 0.9140 | 1.2370 1.3954 | 1.4643 | 1.4914
ko, | -0.1972 | -0.0242 | -0.0577 | -0.1080 | -0.0730 0
K1p 0.9210 1.0081 | 1.0308 1.0567 | 1.0994 | 1.1220
. Kop, 0.0215 | -0.0427 | -0.0477 | -0.0168 | 0.0054 0
vy | Kqe 0.4051 | -0.1004 | -0.1604 0.3999 | 1.1491 | 1.4914
Koe 0.6195 0.4264 | -0.2122 | -0.6987 | -0.6027 0
Ky g 0.4666 0.0652 | -0.0666 0.2821 | 0.8481 | 1.1220
Koy 0.1916 0.1811 | -0.2104 | -0.5795 | -0.5082 0
Kia 0.1842 0.7802 | 0.6381 0.3381 | 0.1384 0
Koy 1.1747 1.1315 | 1.0152 1.1777 | 1.4058 | 1.4914
Kip 0.4327 0.1938 | 0.0748 0.0610 | 0.0532 0
- Koy 0.5851 0.7960 | 0.9950 1.1104 | 1.1305 | 1.1220
Wl kg | -0.4402 | -0.4311 | 0.6381 1.4876 | 1.2302 0
Koe 0.3095 | -0.6671 | -1.0152 | -0.2462 | 0.9347 | 1.4914
kig | -1-1414 | -0.8951 | 0.0748 0.9554 | 0.9234 0
Koy 0.1531 | -0.6362 | -0.9950 | -0.4219 | 0.6115 | 1.1220
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Table 5. Stress intensity factors for the case of a crack perpendicular
to the inclusion, uo/u=1/20, ho/a]=1/20.

b K 3,/3,
0.1 0.5 1.0 5.0

ko=%, | -0.0088 | -0.0479 | -0.0938 | -0.1449

_ kéa=-é2b -0.0058 | -0.0820 | -0.1428 | -0.2729

Fig. 32 | X% | ki +1.0836 | 1.1611 1.1572 | 1.1256
a=-b=-a, k14 1.0320 1.0245 1.0109 1.0029
¢/ay=0.1 Kq2=K1p 0.3424 0.3441 0.3441 0.3438
. Kp,==kop | 0.0008 0.0039 0.0039 0.0033

Oyy Kyc -0.1220 | -0.0896 | -0.0632 | -0.0255

Kq g -0.0988 | -0.0116 0.0067 | 0.0021

ky,=-Kqp | -0-0004 | -0.0162 | -0.0850 | -0.5164

. Koa=Kop 0.5703 0.5162 0.4502 0.4199

Xy ko, -0.7288 | -0.9533 | -1.0730 | -1.2431

Ko g -0.7856 | -1.0338 | -1.0638 | -1.0200

Ky 0.0208 | -0.1238 | -0.2149 | -0.2773

= Kqp 0.0006 0.0100 0.023¢ | -0.1170

S XX K1c7k14 1.0037 1.0053 1.0101 1.0026
=_;=_a Kpe==Kpq | =0-0011 | -0.0074 | -0.0107 | -0.0045
a/a]=0.§ 1, 0.3476 | 0.3543 | 0.3764 | 0.3057
= Kqp 0.3416 0.3418 0.3416 0.3469

¥y k1c7K14 0.1584 | -0.0186 | -0.0324 | -0.0048

ky==Koy | -0-0353 0.0460 0.0406 0.0073

Koo 0.6514 0.5903 0.4304 0.0544

. Kop, 0.5808 0.6066 C.6315 0.3702

“xy | kyo=-kqq | -0-4813 | -0.2431 | -0.1012 | -0.0010

koe=koy | -1.3694 | -0.9632 | -0.9372 | -0.9946
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‘Table 6.

Stress intensity factors for a crack perpendicular to the
inclusion (Fig. 1); ¢==/2, a=0, 2c/(b-a)=0.05, uo/u=1/20,
2ho/(b-a)=0.05.

G k azfa]
0.1 0.5 1.0 5.0
K1 .0399 .2055 .3675 1.1277
Koa .0128 .0418 .0555 1125
K1p .0005 .0035 -.0081 -.0715
. Ko, .0021 .0402 .1107 .3050
Txx Kic 1.0762 1.1674 1.1729 1.1435
Koo .0162 -.0056 -.0311 -.0740
k4 1.0310 1.0274 1.0143 1.0018
Kog .0207 .0212 .0115 -.0015
K1 L3574 3776 L3791 . 3884
Koy .0092 .0283 .0390 .0533
Kqp .3414 L3417 .3418 .3456
. Kot .0001 -.0010 -.0036 -.0062
“yy K1 -. 0490 . 0607 -.0514 =, 0250
Koe -.3157 -.2298 -.1863 -.0933
k14 -.0468 -.0250 -.0084 -.0009
Ko g -.1943 -.0830 -.0464 -.0048
Kia .0887 L3231 .4957 1.1795
Koa .6265 .7947 .9710 1.9112
Ky .0002 .0001 .0079 .2709
. Kop 5805 .5910 .5713 4743
Ixy K. 1.1620 L6411 L4373 .1825
Koo -1.0423 -1.1380 -1.1889 -1.2670
Ky 4 .6504 .1454 .0426 .0045
Kog -.9292 -.9710 -1.0075 -1.0117
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Fig. 1 The geometry of the crack-inclusion problem



Fig. 2 Special crack-inclusion geometries used in numerical analysis
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Fig. 3 Special crack-inclusion geometries used in numerical analysis
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