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CHAPTER 2
RADIATIVE TRANSFER THROUGH THE ATMOSPHERE

In this chapter the numeric solution to the transfer of visible
and near infrared energy within the atmosphere 1 discussed. Models of
the atmosphere are included. Particular empbasis is given to Rayleigh aund
Mie theories of scattering, as well as absorption due to atmospheric
ozone and water.

The fundamental mathematics for the theory of radlative traonsfer
were developed by Chendrasekhar (1950), He was first to formalize the
problem of radiative .transfer in a solar i1lluminated plane~parallel
atmosphere, and present a solution In the form of a set of nowlinear
equations. He accounted for pelarization by aJopting the four Stokes
parameters to characterize the field, However, even with this framework
the golution to these equations remaived unsolved for several years., This
can be attributed to the fact that the radiance, for a given altitude
within the atmosphere and directed in a given direction, is expressed in
terms of the radiances incoming from all directions, for that altitude.
In practice, the clogsed form solution, which expresses the field in terms
of the knowe boundary values, cannot be written. The number of equations
involved would be overwhelming. Approximations, such as that of single
gcattering, are often made, This 1s acceptable provided high accuracy is
not a criteria. The LOWTRAN 6 code (Kneizys and associates, 1983),
available through the Air Force Geopbysics Laboratory, is one such

approximate code that 18 based ou the assumptiou of single scattering.



Uging the Gauss-Seidel iterative tecbnique, Herman (1963; Herman
and Browning, 1965; Herman, Browning, and Curran, 1971) developed the
software required to solve the Chandrasekhar equations. In his method an
initial guess 1g made of the field present after passing through one
layer. A solution for successive layers is made usging quantities that
bave been calculated in the previous layer. At the ground a reflectance
model, usually lambertian, is used to compute the upwelllng radiance.
Radiances are then traced moving back up to the top of the atmosphere.
Once the radiances at all atmospberic levels have been solved, the
process is repeated utilizing updated values of the assumed radiances.
All unkvowns are changed from their previously calculated values, as the
value of the initial unknowns are changed. After several iterations the
unknowns converge to a unique solution. This solution is exact in the
genge that all orders of multiple scattering are accounted for.
Computational accuracy is thougbt to be limited only by the atmospheric
models and ioput parameters required to run the code.

We use this radiative trausfer program for use in the absolute
radiometric calibration of Landsat's Thematic Mapper. In the following it

is referred to as the Herman Code.

The Equation of Traunsfer

‘The attenuation of radiation through some distance ds cav be

described by the equation
dL, = -kT, p Ly ds. (2.1)
Here kr) is the total mass extinction coefficieut (in unite of area per

mass, such as cm?/gm), p is the density of the medium (mass/volume, or

gm/cm*), and L is the radiance (W/cm? sr ym) at point s within the medium.



The distance ds is a positive quantity, irreepective of coordinate system.
Due to this attenuation, and due to scattering Into the beam, radiance
varies with distance s. Extivection and density may also vary spatially.
In addition, the radiance and mass extinction coefficient vary with
wavelength. Ir {s common to identify spectral concentfations with a
subscript A {such as Ly) and spectrasl functione as (a), but for simplicity
these notations will not be used further.

The mass extinction coefficient i3 composed of a scattering term,
kg, and an absorption term, ky. Thus,

kr = kg + kg (2.2)

A related parameter 1is the volume extinction coefficient, Bp=p kp, which
has units of inverse lemgth. Usually one prefers to describe the
variation of extinction within the atmosphere 1o terms of the particle or
molecular density. Thus, the radiative transfer equatiouns most often use
the mass extinction coefficient, as opposed to the volume extinction
coefficient. The former Is usually assumed constant throughout the
atmosphere. It will ouly vary spatially with altitude if effects such as
presgure broadening, variations of aerosel refractive Index, or variations
in aerosol radial size distribution occur. Conversely, the parameter Brp
varies dramatically with altitude due to its proportionality to density.

To describe the distribution of radiance, normalized to the
incoming irradiance, that is scattered from a beam, the phase function
P(g) 1s introduced. Here g is the angle between the incident and
scattered beams. Equivalently, P(g,¢;08',¢"') describes that wradiance
scattered from a differential solid angle centered about (8,¢) into a

differential solid angle about (e',4'). In this chapter, the first angles



within parenthesis will be those of the incident beam; the angles which
follow the semi-colon are those of the scattered beam., When P(9) is used
within an integrand, the integration will be with respect to the primed
angles. For example, by iIntegrating the phase function over all outgoing
angles, duw', the total energy lost from a beam through scattering can be
computed. This is given by

ALg(8,4) = -kg p L(8,¢) ds (2.3)

2w
= "kT g ds I [ P(a:¢;e':¢') L(Bs¢) sin 9' de' d¢"
01J0

L(6,¢) 18 .ot a function of the scattered angles, and may be placed

outside the integral. Using the above equality, the identity

Zmw kg
j J P(6,9;08',4"') ain o' do' dy' = T 2 Yo (2.4)
040 T

is made. The ratic kg/ky is known as the single scattering albedo, 4,,
It is that fractionm of the total attenuation due to scattering for =
single collision, and 18 equal to the Integral of the phase function over
the scattered angles. A conservative scattering atmosphere 1s ove 1n
which w,=1.

The euergy balance equation, which summarizes the sources and

siuks actiong on a beam, can be written

dL{8,4) = kp p ds [ P(e',¢';8,9) L(8",¢") du' (2.5)
ba

+ kT p ds P(30)¢o;e’¢) E +epds = kT p L(es‘t‘) ds.

The first term is that energy scattered into dw due to incoming fields

from all directions duw', where dw'=sing' dg' d¢'. Note how this integral



over the phase function differs from before. The evergy into L(6,4) from
L{6',4') 18 computed here, as opposed to the energy out of L(6,4) 1nto all
L(e',¢') as In Equation (2.3). The second term accounts for single
scattering out of the solar heam. The incident solar beam bhas an
irradiance E at distance 8 and propagates along (6,,¢,) where g,>90°,
8,282+90° and 8, is the solar zenith angle. The third term accounts for
emission within the atmosphere, The spectral parameter ej (here demoted
only as e) is the emitted spectral radiant flux propagating in an
infinitisimal cone containing that direction of propagation, divided by the
salid angle of the come, and normalized with respect to the deunsity of
the medium. The final term represents that energy lost due to scattering
and absorption processes.

The sources can be readily grouped together by introducing the

source function

J(e,¢) = { P(8',4';0,¢) L(8',¢') du' + Py(B8y,0,:08,4) E + e/kps  (2.6)
b

This i the radiance added to the incident beam from a unit mass of the
medium and for a mass extinction coefficient of umity. Throughout the
visible and near infrared reglions of the spectrum, emission is considered
to be negligible. For our application, therefore, the source function
will only bave contributions from scattering. After dividing both sgides
by (-kr p ds), and Introducing the source function, Equation (2.5) becomes

L8 < 1(s,0) - (0, 0). (2.7)



The derivative with reagpect to 8 is now expanded in terme of
derivatives with respect to the x, y, and z axes, Here a cartesian
coordinate 1g deflned guch that the z-axis is directed upward and the x-
axlg ie directed such that the sun falls within the x-z plane. In
addition, the zenith angle o 18 defined with respect to anm outward normal
directed along the z-axis. A beam propagating along 0=0° is propagating
out towards space; a beam directed ifnto the sun will have an azimuth
angle of ¢=0°% Tbis coordinate system is depicted in Figure 2.1l.

Several assumptions are placed ou tne atmosphere to be modeled.
The atmosphere 1s assumed (a)to be in steady-state (no variations with
time), and (b)borizontally bomogeneous, which implies a flat earth, (As
the following equations use the steady-state assumption, they cannot be
vsed to describe the propagatioo of & pulsed lidar beam. Here significant
changes occur within the atmosphere as the beam travels.) Theae
assumptions imply that there will be no variations in the field or source
function along a horizontal plane, and there will be no variations with
time, Thus if the generalized function f lhere represents either L or J,
the derivatives df/dx, df/dy, and df/dt will be zero and df/ds =
(df/dz)(dz/ds) = (df/dz) cos8,

A few definitions may be coonveniently introduced here. First let
uz|cose|. With the sun at a solar zenith angle of g,, rays propagating
downward from the sun are associated with -y =lcos(9z+90°)|., While g
iteelf is always positive, the angle -y will be associated with downward

propagating beamg and y will be associated with upward directed beams.

Secondly, let the optical depth at any bhelght z within the atmasphere be

defined as




L(e,2)

Figure 2.1 Coordinate system uged to represent beam directionality.
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Figure 2,2 Layer nomenclature for beams propagating
through the atmosphere.



1(z) = [ k p dz, (2,.8)
z

The optical depth between two altitudes is given as
Z;

At(z,,z,) = [ k p dz (2.9)

Z)
= 1(z,) = 1(z,).

As 1 is a positive quantity wbich monotonically decreases with increas
altitude z, the Integration within Equation (2.9) will always be set up
such that z,>z; and hence Ar(zl,zz) will be positive. If z is at ground
elevation, and k=kr the optical depth defined by (2.8) 18 Texe, the
extinction optical thickness, or total optical depth of the atmosphere.

The attenuation of radisnce can now be written in terms of
optical depth

dL(8,4) = =k p L(98,4) dz/cosd = dv L(8,¢)/cos8 . (2.10)

Here the substitution dr=-ke p da and de=dz/ces? have been wmade wichio
Equation (2.1), Note ds=dz/cos® is again a posgitive quantity. For
downward directed beams both dz and cos@ are negative; for upward
directed beams both are positive. This is necessary to assure that dL, as
given by Equation (2.10), is always negative. (The beam is attenuated by
this term.) Two separate equations are, however, required to express ds
as a function of p, as p in itself carries uwo sign. For downward directed
beams ds=-dz/y, while for upward directed beams ds=dz/y.

The emergy balance equation, Equation (2.7), may likewilse Ue

rewritteun:




doewoward

=u dL(v,=u, $)/d7 = L(t,~p,9) = J(1,~1,4) (2.11a)

upward
g dL(t,n,4)/dt = L{v,u,4) =~ J(t,1,4) . (2.11b)

For the time being it will be convenient to write separate equations for
downward and upward directed beaws. Note the radiance end soures terms
are a function of both altitude z (hence a function of t) and direction
(uy¢)e The parameters withiv parenthesis serve as a reminder of thie
dependence. The equation 1s a nounlinear, first order differeutial
equation, subject tn the following boundary value conditiony, The diffuse
radiance fncident at the top of the atmosgphere is zero, there are no
contributions to radliance from below the earth's surface, and the exo~
atmespheric golar irradiance is known. That is,

L(0,~y, $) = 0 (2.12)

LOTexg,u,0) = 0

Eg(~Ugr9,) = known

The parameter vext is the total optical depth at the earth's surface.

Multiplylng both sides of Equation (2.1la) by exp(t/u) and both
sides of Equation (2.11b) by exp{-t/u) we obtain
for downward propagation

d(L et/n) (2.138)

-n et/ W dL(t,~p, ¢)/dr = L{t,~p,9) e /¥ = -y -

= ~J(t,=n,¢) e t/u
and for upward propagation
W e=t/u dLCt,u, 0)/dT = Lit,u,¢) emt/u =y KL eZv/W) (2.13)

= =J(t,u,¢) E_T/u

—1]~



Cousider a ray as 1t traverses the layer structure shown in Figu;e 2.2,
The top of the layer is denoted by ty and the bottom by tp4,. These
layers are also denoted with t4 (initial) and v¢ (final), where 74 can be
either tp or 1p4,, depending on the direction of propagation,
Inéermediate altitudes are identified by some t'. The radiance after
propagation 1s determined by integrating Equation (2.13) between the

initial and final v values. Thus,

downward
=4 [L{Tp1,=n,9) etn+ /¥ - LTy~ $) e tn/n] (2.14a)
Tatt
- - [ J(7',-n, $) e"-"/l-l dt!
Tn
upward
M [L(T0,H,8) e=To/¥ = L(taey,u,¢) e~ Tot1/¥] (2.14b)

Tn
T J J(t',u,0) €77 /8 e’
To+1

bividing Equation (2.14a) by (~M exp{Ty4+1/u)) and Equation (2.14b) by (1
exp(=T1g/®)), the above can be rewritten:
downward

L(Ty1,=H, 8) = L(Tg,-h,$) e~(Ta+1~Tn) /¥ (2.15a)

To+:
+ ' J0t',i,¢) e~(To+1=T' MK do'/n

T

-12




upward

L{vn,1,9) = L(Tn+1:Ks9) e~(Tn+1=0)/u (2.15b)

Todt
+ J J(t',1,4) e=(T=to)/u do'/y
Tn

These equationg can be combined 1f t{ and tf are introduced.

To4l
LTg tn, 0) = L(Ty,kH,8) e~d7/1 + I J(t',tu, 4) e~dr /M do' /y (2.16a)

n

where

JCr' i, 9) = E(p',$'5tn,4) L(n',¢") d(~u') dé + P(u,s,90306,9) E « (2.16b)
b

Here At=Typ4,=1y 80d Atv'=|t'~tg|. The solid angle du'=sin®' deo' d¢' =
d(cosd')d¢' has been written in terms of pu, or dw'=d(~pu') d¢', Each of the
above equations state that the radiance asfter passing through a layer can
be expressed as the initial radiance attenuated by exp(~4t/u), plus a
contribution from the source function, The s¢urce function adds a
cootribution at each altitude t', but 1s attenuated due to the At' between

7' and the final layer.

Numeric Solutiomn

To evaluate the ahove radiative transfer equation, the integrals
within Equatiouns (2.16a) and {2.16b) are replaced with an equivalent sum
of integrals with smaller differences between the limits of Integrationm,
The new limits are defloed suchb that the parameters J, P, and-L can be
approximated as constants within the At, A6, aod A¢ intervals, They are
put outside the integrals, an evaluation is made, and a solution is

obtained.

-13-



INTRODUCTION

This is the eighth quarterly report on Contract NAS5-27382 entitled
"Spectroradiometric Calibration of the Thematic Mapper and the

Hultispectral Scanner System',

On 26 -~ 28 October 1984, we made a successful trip to White Sands,
New Mexico, and took a variety of radiometric measurements on the
morning of the Landsat 5 Thematic Mapper overpass. The sky that morning
was c¢loud free, our sites were dry although many other areau at White
Sands were covered by several centimeters of water due to the unusually

rainy Fall.

Barnes multiband radiometer data were collected for a 4 X 4 pixel
area and two fractional pixel areags of slightly higher and lower
reflectances than the larger area. Helicopter color photography was
obtained of all the ground areas. This photography will allow us to
make a detailed reflectance map of the 4 X 4 pixel area and we will be
able tc register it te the TM imagery to an accuracy of better than half
a pixel. Spectropolarimeter data were also collected of the 4 X 4 pixel
area from the helicopter., In addition, ground based solar radiometer
data were collected to provide spectral extinction optical thickness
values. The uncorrected Thematic Mapper image, in CCT form, of White
Sands for that date is expected in a few days. The completion of the
calibration of the TM for that date awaits receipt of the CCT. A
description of the data reduction and calibration will be given in the

next quarterly report.

The remainder of this report consists of a description of the
radiative transfer theory used in the development of the Herman cede
which we use in predicting the TM entrance pupil spectral radlances from
the ground based measurements just mentioned. The theory is then
fundamental to the measurement program we are conducting at White
Sands. It has been written up by C.J. Kastner and is also to be included
as a chapter in her Ph.D. dissertation.

[pimpte g | e gaiamrpt PR S e P U
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In evaluating the integral over optical depth, Equation (2.16a),
the radiative transfer between layers T, and Ty, 18 considered. This
allows the average value of the suurce term to be taken as that at the
midpoint of the intervsl, namely that at Tnp4,. After factorin out thils

.

n+2

constant value and evaluating J(Tp+4,%n,¢) { e=87'/M g1'/u, Equation
T

n
{2.16a) becomes
L{Tg,tu, ¢) = L(t{,%u,4) e=2AT/U 4 J(Tgiy,tn, ) (1—e™? At/wy  (2.17)
where the interval At is still defined as that between Tp and Tp41, and

Tf and T{ are separated by a 24T thickness.
In turn, J(Tp4;,tu,4) is evaluated by replacing the iutegrals

withio (2.16b) with sums over the finite'differences Ap and A¢, That is,

(2.18)
2n/Ad | w/An
Irgantn®) = 2 [ X BUU,8NGEL 8) L(Ta,n'f6 ') (aut)s) (867
k=l | 3=l

As an example, let 49=10° and A¢=30° (actually their radian equivalents).

Then,

J = L, eee,lB (2.19)
'y = jae - a8/2 = [5°, 15%, ... 175°]
u'j = cos @'
(=an')y = cos((3-1)49) ~ cos(jae)
= [cos(%-co8l0%, ..., cos8l70%-cosl807]
kK = 1, eee, 12
¢’ = kAo - A4/2 = [15°, 45°, ..., 345°]
(A¢')x = A¢ = 30° * 7 rad/180°

Note P and L have been taken out of the integral over the finite limits
46 and A¢, and replaced with their values at the midpeints of these finite

differences.
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At the beginning of each iteration through the atmsophere, the
radiances at level 1, are required, This is achleved by counsidering the

transfer of radiation through only a single At layer,

2n/aé m/A®
L(t,,mme) = Q-e=d%/W) [ Y % BQu'y,915-1,0) (2,20)
k=l =l

L(O,u'y,¢'k) (=au')y A4 + P(~Ho, 051,49 Ee]

On the first pass all upwelling radiances L(O,u'y,$'y), or that
energy being reflected out of the atmosphere and into space, are assumed
zero. On successive passes, those values computed io previous iteratious
are assumed. At all times the downwelling radiances L(O,M'y,$')), at the
top of the atmosphere, are assumed zero. This 1s a statement that the
only eunergy entering the atmosphere 18 from the solar irradiance E,.
Similarly, at the bottcm of the atmosphere tbe radiances at Teypr-; are
computed from those at a siogle At layer below. At texe the radiances
are those reflected from the surface. They are computed by multiplying
the sum of the diffuse and direct downwelling irradiances by p/w.

In choosing a vwumeric value for the layer thickness, At, Herman
(1963) used a statistical analysis to compute the probability that
gcattering within a layer would be due to siugle scattexing alone. The
At laterval mugt be small enough to neglect variations of the source
term, which 1s equivalent to requiring that L and E remain approximately
congtant over the ioterval. Thie is likely if a photouw has a small
probabilicy of undergoing two or more scattering events. Counversely, A<t

must not be so siall as to make the computation time excessive. A value

of A1=0.02 was chosen. Here, approximately 96% of the scattered

radiation is assoclated with a single collision. Since the effective depth

-15-



of the atmosphere is Atu, 8 greater percentage of multiple scattering
occurs at larger zenith angles. As 9 approaches 90°, this error builds up
rapidly, Calculations down to 85° can, however, be made without

introdusdng any serjous errors.

Polarization

The Herman Code which we have used to date does not account for
changes in polarization as a ray propagates through the atmosphere. The
code can, however, be easily modified to do so. Preliminary studies have
indicated that the noupolarizaticon code 1s accurate enough, given the
atmospheric conditions we have encountered at White Sands to date, for
our calibration work. For this reason the studies within this
disgertativn have been made using the original Herman code, which !s both
easier and faster to run, For completeness, the theory behind the
polarization code 1s discussed here.

To be as accurate as possible, the radiative transfer equation
must describe the state of polarization of a scattered fleld, as this
field generally has undergome a change 1o polarization compared to that
of the incident field. To describe this state, the amplitude of the
electric fleld components along two orthogonal directions, as well as the
phase difference between these components, are required, For example,
let E; and E; be the parallel and perpendicular compoueuts, defined with
respect to a reference plene. This reference plane is chosen as that

contailuing the i1ncideot aund scattered beams. Then,

E] = a) exp(—-i81) exp(i{wt-k. (2.21)
Er = a1 exp(-i8y) exp(i(ut-kz),
§ =61 ~ 6p

As an altermative to requiring that the amplitudes A1 and Ap, and the




phase difference § be known, the state of polarization may be represented
by the four Stokes parameters iutroduced by Sir George Stokes in 1852,
These have the advantage of all baving the same dimension, that of an
jrradiance. The four parameters are

I} = E3E* = a3? (2.22)

Ir = ExBp® = ay?

U= 2 Re(E1E;™) = 2 a1ay coss

V = 2 In(E{E;™) = 2 a1a; sind
where the asterisk demotes the complex conjugate has been taken.

Re ferring to Figure 2.3, the state of polarization can be
represented by aon ellipse, which 1n turnm is described by the Stokes
parameters. Let ¥ be the angle between the direction of the major axis
and the 1 direction. Konowing ¥y is equivalent to knowing the plaue of
polarization, or that plane through the direction of propagation and ray
containing the maeximum electric field vector. Also, let the ellipticity
be represented by the angle B whose tangent is the ratio of the lengths
of the major and minor axes. It cam be shown, as in Chandrasekhar (1950),
that

I=11 + I (2.23)

Q=101 - Ir

tan2y = U/Q

sin2g = V/I
Therefore, the parameters Iy, Iy, U, and V re.-esent the irradiances 1o
two perpendicular directions within a plane transverse to the direction of
propagation, the plane of polarization, aud the ellipticity of the
electromagnetic wave. With these, all quantities relevant to the
description of the state of polarization are determined. In addition, the

percentage polarization 1s glven as

P = yQ#a+U%VE/I (2.24)

-17-
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For unpolarized light U=V=0, as the time average over sind and cosé are
zero, and I}=Iry. The polarization P equals zero, as expected. One
example of unpolarized light ie that which 1s inftially from the sun,
although the light becomes partially polarized after scattering within the
atmosphere, Conversely, for a completely polarized beam I*=Q¥+U%+V?, and
P=1,

The expressiouns

Bl = 51 Eol (2.25)
Ey = Sy Eor
are wvext utilized to ﬁetermine the four Stokes parameters of the
gscattered fleld, S; snd Sy relate the magnitude of the scattered fields
Ejand E; to that of the incident fields Es7 and Eor. They are functions
of the angle between the ilncideut and scattered directioms of propagation,
and, as will be shown later, differ amongst the Rayleigh aund Mie
particles. By substituting Equation (2.25) into (2.22), the four Stokes
parameters are determined
I] = 518" I (2.26)
Iy = SpSp” Loy
U = Uy Re(S38.%) + Vo Im(S15,%)
V = Us Im(S15.%) + Vo Re(815;%)

In much the same way as Equatious (2.16a,b) represeuts the
trangfer of radiant flux within the atmosphere, they likewige caun
represent the transformation of the Stokes parameters as the beam they
repregent undergoes scattering within the atmosphere. A few
modifications are, however, required. First, from Equation (2.26) it can

be shown that not all the scattered Stokes parameters are iudepewndent of
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each other. To account for this, the radiative transfer equation is

rewritten in matrix form. That is,

To+AT
Lp(Tfitu’ ¢) = Lp(Ti l:tu’¢) E-AT/u + J Jpq(‘l".tu, ¢) @-AT'/u d'("/’.l (2-278)
To
and
Jpq(T’niu:‘#) = [ qu(l-l':'#';ilh $) Lq(T':U')‘b') dow' (2.271)
47

+ Ppql=Ho,4032h,8) Eoq €T /Mo .

Here p and g are related to one of the four Stokes parameters; and Ppq 18
a 4x4 matrix., Thus, the pth component of radiance is determined by
summing the source function over the four {ncoming Stokes compouents, 1i.e.
q=1,2,3,4,

The matrix Ppq cannot be written directly from Equation (2.26).
As the equation of radiative transfer traces components relative to a
vertical plane within the atmosphere, vnot the scattering plame, a
coordinate transformation must be performed. The most general such
gcattering phase matrix has been given by Sekera (1955). It takes the

form
A1|A11: A:anz: RE(A:xsz:) -Im(A;;A;zz)
Ppg = Az2Aa an Aazfg, . R‘?(Az:ﬁzz ) *—Im(A“A“ )* (2-29;‘)
2 Re(Ay Az, ) 2 Re(A),4,,7) lsle(A12 Ay ¥A AL, ) ~Im(A, A, A LAy,
*
2 Im(A:xAz:*) 2 Im(A:zAzz*) Im(A:xAzz*"sz*Azx) Re(Ay,A,, 'Azlez*)
The quantities Apq are given by
Ap,
Ay,

T, cospa¢ + T, cosy (2.29)
(H'Tx + ﬂTz) gind¢

21 (uT, + u'T,) sinag

Aaz Tl Cos\p + T2 cos A¢-

LI T (O |
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Here 4 and ' are directional cosines of the incident and scattered beams
(measured, as bhefore, from the local vertical), The angle A¢ 1g defined
as the difference between the azimuth angles of the {iucident and
gscattered beams, Furtbermore,

cog § = (L=p*)}/2(1-u'2)1/2 4 yy' cos ap (2.30)

T, = (81 = XSp)/(1-X*)

T, = (8¢ - X81)/(1-X2)

X = cogg = yyu' + (l—u“)1/=l(l---u'=)l/2 COs A4
and S, Sy are the proportionality constants defined in Equation (2.25).
It 1s to be woted that all the functions within Equations (2.28) through

(2.30) are defined with respect to the angles 8, 8', and Aé.

Rayleigh Scattering by Molecules

Both molecules, whose size are ou the order of 104 um, and
aerosols, ranging from 0,01 to 10 wm, are responsible for scatteriog
within the atmosphere. Molecular scattering in the vigible aund near ir,
where 27r{<i, can be characterized by a simple scattering law due to lLord
Rayleigh (J.W. Strutt, tbird Baron of Rayleigh). 1In 1872 be derived the
gcattering law, which vow bears his name, using the elastic-solid ether
theory. He predicted that scattering varies inversely as the fourth power
of the wavelength, and so explained the blue color of the sky. In 1899
Rayleigh revised bis derivatioo to use the electromagnetic thbeories of
Maxwell and Hertz. Thus, the depeundauce of scatteriug on refractive
index was determined. The scattering law has since undergone one slight
revigion, to account for molecular avisotropy. This was dooe in the
1920's, shortly after some scattering experiments made by Rayleigh's son
demonstrated the need for this modification. A complete development of

the Rayleigh scattering law is given in texts such as McCartoney (1976).
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Highlights of its developmeot are given here.

Dipele Scattering

To begin with, the mechanical oscillator model of the atom is
used. A biodiog force is characterized by a spring which induces a livear
restoring force to the electron as it is displaced. Such a displacement
cccurs when a molecule ig subject to av applied electric field, E,. Av
induced dipole moment pmex 18 created, where e is the charge on an
electron, and x is the displacement. This electric dipole oscillates
synchronously with the field, aud in turv preduces the scattered wave,
The new field {s proportional to (1)the acceleration of the electron,
(2)sing, where © is the angle between the dipole moment and direction of
obgervation, and it is inversely proportional to R, the distance from the

dipole. It has av amplictude

w? py siné sinw(t-R/c)
4TE, T R

E = . (2031)

Because of the sin® dependance, the dipole cannot radiate along the axis

of the dipole. The maximum dipole moment p, is found by solving the

equation of motion for the maximum electron displacement:

e E, _ (n-1) 3 ¢, E,

po = a xn ™ ;(_mﬂz-mz) (nz+l) i . (2-32)

Here, w, 18 the resonavt frequency of oscillation, equal to (k/m)I/z where
k 1s the restoring force oo the electron.

The latter equality within Equation (2.32) vutilizes the Loreuz-
Lorentz expression to substitute for thbe molecular parameters, Now n,
the refractive index of the gas in bulk form, aud N, the number of dipole

oscillators per woit volume, sre used., The refractive index of air




molecules considered here are found to be pearly 1, real, and vary as a
function of wavelength. This wavelength dependance is given by Edlen

(1953) as

) } 2,049,810 _ 25,540
(o=1) % 10°® = 6432.8 + e + 4111_3 . (2.33)

For example, 0=1,000293 at A=0,55 pm. Both the Lorenz-Lorentz and Edlen
expressions are derived in many discussions on the dispersion of

electromagnetic waves, ag in Liou (1980).

The Rayleigh expressions assume that scatterers have resomant
frequencles far above the visible and infrared spectral regioms. Thus
they are pure scatterers, and absorb no energy. Such an assumption is
valid for nitrogeu and oxygen molecules, which are respousible for 997% of
molecular scattering, There are, however, molecules that do have an
imaginary compounent to their refractive index at those wavelengths of
interest (i.e., they have resomant frequencies near those frequencies
corresponding to visible light). The effects of scattering from these
specles can be overlooked without loss of accuracy, as they compose such
a small fraction of the atmospheric gases. Ozone and water vapor are two
such abgorbers. (The columnar amount of ozone is typically oo the order
of 0.35 cm—atm, This implies that there will be only 0.35 cm of o=zone
within a 1 cm?® atmosphberic column of afr, in which there are several
kilometers of atmospberic scatterers.)

The irradiance produced at a distaont poiut R from the dipole is
given by the Poyning vector S5,

S =c ey <ED> (2.34)
The mean of E? 1s found by substituting a factor of 1/2 for sin?w(t-R/c),

and using Bquations {2.31) and (2.32) for the electric field strength. To
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remove the dependence of scattering on distance R, the intensity, I
(Wattse/er), 18 computed jnstead., The Intensity at distaonce R is found by
multiplying the {rradiance S by R* (since I~dé/duw=dé/dA x dA/dw, and dA=RZ

dw). Hence,

1?2 ¢4 ¢ sin?d (n?-1)? E,?
I = . .
(o) RT3 (2.35)

In addition to the previous equations, the substitution w=2wc/XA and

(0+2)2=9 (gince n=l) have been made in writing Equation (2.35).

Cross Section

The scattering cross section of a gos molecule is defined as that
crogs section of an incident wave, acted oo by the molecule, having an
area such that the irradiance flowing across it 1s equal to the total

irradiance scattered in all directions. Thus,

I I(e') du'
4m
a=

e eo E°!/2 . (2-36)
n
Using Equations (2.35), duw'=2% sfnb' d0', and ’ gin’e' de'=4/3, the cross
0

section {s obtained. To this, the correction factor (6-+35)/(6~74) must be
added. This is doue to account for molecular anisotropy, which prevents
the dipole moment from aligoing itself exactly with the electric vector

of the primary wave. Thus,

- 8n’(n?-1)? 6+38
URay 3 Ng 1" 6-76 [ (2-37)

Gucker and Basu (1953) have determined that 6=0,035.
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Rayleigh Optiecul Depth

The volume scattering coefficient for molecules, BRgy» §ives the
fractional amount of flux scattered in all directions, for a unit voiume
of gas. As the scattered field from 2 collection of dipoles add
Incoherently, the angular coefficient for a unit volume is just N
(moleculee/voiume) time¢ the cross section given by (2.37), or BRay=oRay
N. (Also, the mass extinction coefficient is found to be kRay'ORay
N/p-oRay /m, or crose section per unit mass, where m is the mass of the
molecule)., Uging the definition of optical depth, Equation (2.9), the

Rayleigh component of optical depth is determined

L-X)

TRay - aRay [ N(Z) dz. (2038)
2z

Model values of the molecular number density as a function of altitude
can be found in the U.S. Standard Atmosphere-1962 (see, for example,
Valley (1965), or Elterman (1968)), and are given here in Table 3.2.

The tabulated values of mass deunsity, p, or number density, N,
refer to alr at sea~level temperature and pressure., It is desirable to
compute the scattering coefficlents at noustaundard values of temperature,
pressure, and altitude. This I8 done using the equation of state for an
ideal gas (P=pRT, P being atmospheric pressure, R the universal gas
congtant, and T the temperature on the Kelvin scale). Thus,

T
b= b, o 2, | (2.39)

where p,, P,, and T, are defioed at standard atmosphere conditions.
In using the Herman code to model the atmosphere, tRay is
determined using measured wvalues of atmospheric pressure. At ground

level, .
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8ni(n3=-1)2 6+3s P
oy = BFeRe §55 M 10 (2.40)

where
n = ;»fractive {ndex as given by Equation (2.33)
A = Liveleogeh {n m

Ng %« molecular number deueity at sea level for a standard
atmosphere
= 2,547 x 10'? cn™?
No = columnar number density
= 2,154 % 10** cm~?
s = 0,035
Py = 1013,25 mbar, or 29,92 in Hg
P = measured atmospheric pressure, same units as Py.

Using this formulism at A=0,55 um, for example, TRay=.098,

Phage Function

The angular dependsnce on scattering is expressged in terms of the
phagse function P(0)., This funetion is defined as the ratio of the radiance
into a given direction, to the average radiance in a2ll directions, Thus,
the iIntegral of the phase fuvction must be normaslized to unity, as there

is no absorption by Rayleigh molecules, and

[ P(B) dw' = wy = 1 , (2.41)
bw

To derive the phase function for the scattering of unpolarized
light by Rayleigh particles, the iucideut electric field vector is
decomposed into two orthogonal compowents. As before, let E] and Er
represent those scattered components parallel and perpendicular to a
reference plavne, and let E,;1 and Eor be the corresponding incident

components. The reference plane 1s taken as that containing the 1ncident.

and scattered waves, and the scattered wave 1t deviated from the incident

wave by an angle 8. For each of thege two components (i=1 or r), the
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gscattered radiance 1e found using

L(84) = I(0) (6+36)/(6~76) N ds = 3/8% oRyy N de sln?éy Syy . (2.42)
In arriviog at this expression, it is noted that as I(0) glves the
{ntensity scattered from a single molecule, I(6)N do gives the radfance
scattered from a volume of gas, After accounting for anisotropy, the
intensity 1e expressed in terms of ORgy by using (2.37), The incident
irradiance ce,E,*/2 18 then expressed as S,4.

The angles 01 and 0y can readily be expressed {n terms of the
scattering angle, 6. With reference to Figure 2.4, 1t 1is shown that
01=n/2~6, and @y=m/2, Hence, the total scattered radiance 1s given as

L =1L 4+ L) = 3/87 0 Nds Ly + 3/8r o N de cos?e S,r . (2.43)
But, as the incoming field {ie unpolarized, Lgp=L.1=L,/2. Equation (2.43)
becomes
L =0 Nds 3/167 (1 + coe?d) g, » (2.44)
Removing the angular depevndence and multiplying by 2 scaling fsctor to
satiafy (2.41), the phase function for Rayleigh scaitering of unpolarized
light 1s found to be
P(8) = 3/167 (1 + cos?s) . (2.45)
Ttis expression is the Rayleigh component of the phbase function used
witbin Equation (2.16). It 1s thus au important parameter in the
calculations of the transfer of radiant flux within the 2 mosphere.

Becauge the perpendicular and parallel compovents are not
gcattered equally, the resulting radiance will be partially polarized.
Although the scattered perpendicular compovent is independent of the
angle 0, the parallel component follows a cos?® depeudance. Thus, 1f the

obgervation direction 1s at 90° to the incoming beam, the scattered light
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will be completely polarized. The scattered evnergy is symmetric ahout
the Incident beam, and equal amount of energy are sent into the forward
and backward bemispheres. If there were only eingle scattering within
the atmosphere, aud the atmosphere was composed purely of Rayleigh
particles, the skylight everywhere from a 90? angle from the earth-sun
line would be cowmpletely polarized. This perfecily polarized light is
never observed in practice, as the scattering from aerosols, the reflected
light from the surface, and the anisotrophy of air molecules themselves
cannot be neglected,

If these polarizastion changes are to be traced through the

atmosphere, the matrix form of the phase function is required. For

Rayleigh scattering, this becomes (2,46)
cos?y p?sinzpg pcosy sina¢ 0
Ppq = 3/87) u'?ein?ag cos2Ad -u'sinA¢ cosd¢ O
~2u'cosy sina¢ 2Zusinad cosdd —up'sin?aétcosy cosag O
Lo 0 0 cosy cosAaptuy'sin2ag

Mie Scattering
To describe scattering by particles of arbitrary size the

equations developed by Mie (1908) are universally used. In developing
this tbeory {t was necessary to make the simplifying assumption that the
gcattering particles were isotropic spheres. Even so, the derivation is
complex, using Maxwell's equations, a boundary value analysis, and
expansion of the emerging wave in terms of a series of Bessel and
Legendre polynomials., The equations can be approximated by the first
term of the Mie series for small particles. For this case, bhowever,
Rayleigh theory yields anm equivalent result with significantly fewer

computaticus. Thus, the term Mie scattering is loosely used to refer to




the scattering by larger particles which do not lie within the Rayleigh
regime.

A complete development of Mie theory is given by Stratton (1941)
and van de Hulst (1957). The scattered light is again found by breaking
the incident beam into components perpendicula. and parallel to the
scattering plane. The scattered intensities Ip(0) and I3(®) are

proportional to the functions

-3
ip = {27/X 8|2 = | by ;‘%2—'-:-%-5 (anﬂn+bnrn)|’ (2.472a)
n=l
11 = 2173 51 = | ¥ s (anTotbao) |2 (2.47b)
n=l .

Each function is found as the sum of an infinite series. Defining the size
parameter as a=27nr/A where r is the the radius of the particle, it is
found that the number of terms required for convergence is somewhat
greater than a, for adl. The amplitudes of the nth electric partial wave
and the oth pagnetic wave are given by the complex coefficients ap and

bp., These are

jofmadla jnlad]l' - Jnle)ma jp{mal)’
ag = - (2.48&)

ja(ma)a bp(2Xa)]' - by(2i(a)ima jo(me)]’

joledne jn(ma)]’ - m? jp(madle joladl'
by = - . (2.48b)

a2 aXne jg(ma)l' - m? jo(madla bg(2)(a)l

With air as the incideat medium, the parameter m=npe(l-niml) i related to
both the teal and imaginary compouents of the refractive index within the

ephere. Spherical Bessel and Hankel functions are deumoted by jp and bhg

respectively, and primes dencte derivatives with respect to the indicated
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arguments, Thus the coefficients ay sud by are determined from the
particle characteristics, but are independent of the scattering augle 6.
This latter depeundance Ig expressed through the funetions w1y and 1 and
favolve the first and second derivatives of Legendre polynomials:

d(Py(coep))

ﬂn(COBB) ) W (2.498)
d{m(cos0))
1n{cosB) = cogd my{cose) - sins TR (2.49b)

When the particle is 1lluminated by plavne-polarized light, the

intensity of the scattered light is given by
I{e) = E A? 2 2
e v (1y sin?y + 11 cos?y) . (2.50)
Here E, ig the irradiance of the incoming beam, y is the angle of the

electric vector from the scattering plawe, and iy and i1 sre as defimed iu
(2.47). For a particle {lluminated with a wave whose electric vector is
perpendicular to the plane of observation, ¥=90° and the scattered beam

is polarized in the perpendicular direction. Couversely, an incident beam
degcribed by ¢=0 {s polarized parallel to the scattered plane, as is the
geattered beam. For illumivnation by au unpolarized beam, the scattered

intensity 1s given by

A2 2?2
I(e) = Eop ot ir + Egl it i1 (2.51)
12
= EO 811'! (11" + il)

where E p=E,1=E,/2 .

The angular distribution of the scattered field is depicted 1in
Figure 2,5. Here the solid lines refer to 3cattering from a perpeundicular
compovnent of the electric vector, and the dashed lines wepresent

scatteriog from a parallel compouent. For o<0.l the distribution is
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Figure 2.5 Mie scattering from particles of fixed size

(from Grams, 1978).
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identical to that predicted from Rayleigh theory. There is a cos?e
dependance in the scattered parallel compoment but no angular variation
in the perpendicular component. As a increases (or particle size for a
given wavelength), a larger portion of the emergy is scattered iuto the
forward direction. If the particle size approaches the wavelength of
light, eide lobes begin to appear. The frequency of this structure
increases with & and the width decreases.

The crosg section of 2 Mie scatterer can now be definmed. Unlike
scattering from a Rayleigh particle, some energy is lcat due to absorption
ag 3 beam Impinges upon a Mie scatterer. The cross section gMje must
include the effects of this loss. Defining oge as the component which
accounts for the energy scattered into all directious, and ogpg the
companent which accounts for absorption, we have

IMie = Uge t Tabs - (2.52)
Using Equation (2.50) and assuming unpolarized 1llumination, oge is

computed from

Uge = f I(8) du/E, = A*/8r? [ (iy + 11)sing do d¢ (2.53)
ba

= A%/2n ¥ (2o+1)(Tapt? + thoi) .
n=1

The total cross section can likewise be expressed iv terms of the Mie

coefficlents,

oMie = A%/2n z (20+41) Re(ap + by) . (2.54)
n=1

In the above the expavelons in terms of ap and by do net easily follow.
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Reference is given to van de Hulst (1957, section 9.32) for more details,
It ig ooted tbat the sbove cross sections are defined for o
particle of fixed radius r. Absorption and gcattering within the
atmosphere are, however, processeg which depend on the cumulative effects
of maoy particles within 3 large size range., This distribution 1is
expreggsed o terms of a size distribution o(r). It 1s the normelized

number of particles per unit interval of radius per unit volume, hence

f o{y) dr = 1 ., (2.55)
0

To determine the properties of light scattered from a polydispersion
(collection of particles of different radii), tbe functions i, and i1
within (2.53) are integrated over the size distribution. The scattered
energy from such a distribution of particles is very different from that
depicted above. The most obvious difference is that the scattered
distribution is a much smoother function of wavelength., A few examples
of this are given io Figure 2.6. To compute these curves a log-normal
particle distribution was assumed. A mean radius of ry=1 ym, standard
deviation 2 um, wavelength A=0,633 um, and real refractive index npe=1.525
were assumed. Curves (a) and (b) give the the results for a parallel and
perpendicular ioncident electric vector, respectively. In curves {c¢) and
(d) the molecular scattering contributions bave been added. Each example
has been computed at several values of the imaginary component of
refractive index. As nyy increases the light scattered into angles

greater than 9=15% decreases. The most gignificant result of increasiung

the Imaginary refractive index, however, is the increase in absorption.

This change can be expressed through the parameters o,3g or wg, the
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single scatter albedo.
By integrating the cross section over the sgize distribution
function, the optical depth of the atmospbere can be determined. Defining

N(z) as the tota: number of particles per uwnit volume at altitude z,

TMie = [ I N(z) ogie(r) olx) dr dz . (2.56)

Note that the size distribution is taken as couvstant with respect to
altitude. This 1e usually assumed the case, for lack of better data.
More will be said about the radial size distribution function n(r) and the
vertical distribution N(z) in the sections to follow.

By integrating the cross section over the size distribution, the
phage function for Mie scattering cam also be found. To most readily see
tbis, let us define the angular scattering cross section gge(8) as the
crogs section of the incident wave acted on by the particle, having an
area such that the irradiance flowilog across it is equal to the intensgity
scattered ifnto angle 8. The cross section oge defived earlier is equal to
the angular cross gection integrated over all outgoing angles. With this,

the phase function is defined as

[ gge(@,r) u(r) dr
P(g) = . (2.57)

I oMie(r) u(r) dr

From this definition it is apparent that the iutegral of the phase
funetion over sll solid aogles will not necessarily be equal to ome. It

will be equal to w,, the single scatter albedo, and equal to oove only if
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there 18 no absorption of enmergy by the particle (in such a case
OMie~Uge)s The greater the imaginary component of refractive index, the
smaller w, will be, hence a smaller fraction of energy will be scattered,
a greater fraction ebsorbed.,

For 1llumination by umpolarized light

22/8q2 ( n(r){{y + 11) dr
P(g) = (2.58)

I oMie(r) u(r) dr

To run that version of the Herman Code which accounts for pelarization,
the phagse funetiou must be written {n matrix form. This 1s dove by using
Sy and 51, a8 defived {n (2.47), within Equations (2.28)-(2.30).

Another parameter, closely related to the cross section, that is
commonly referred to fn the literature is the efficiency factor Q, defined
as the croes section of a particle divided by the geometric cross-
gsectional area of that particle, wr?., If the scattering efficiency factor
ig ploted versus the gize paramter a, Qge obtalos a maximum value of 2
and converges In an oscillatory fashion to a value of one for high o.
Thig implies that the particle can, at times, interact with an incident
wavefrout greater than its own geometric area, This is explaivned through
diffraction effects, in which diffracted flux is directed iuto a small

angle centered about the forward direction of the {fncident flux.

Dave Code

To compute the Mie parameters discussed above, a Fortran computer

program written by Dave (1969) i1s used. This program 1s incorporated
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into one of the subroutines within the Herman Code., Two similiar Dave
codes exist, oune using an upward recurrence relationship (starting with a
value of as(ma), successgively bigher values are computed), and one a:iog &
downward recurrence relationsbip., In the code whiech uses an upward
recurrvence algorithm, any error {n the first term will propagate and for

large enough & the results oscillate wildly around the correct value.
For this reasou the downward recurrence routine Is preferred. It does,
however, more storage, and required 10-207% more run time. Both codes
require double precision aritbmetic, and output results accurate to 6

significant figures (with the one exception mentioned above, where

ogcillations occur).
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