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CHAPTER 2

RADIATIVE TRANSFER THROUGH THE ATMOSPHERE

In this chapter the numeric solution to the transfer of visible

and near infrared energy within the atmosphere is discussed. Models of

the atmosphere are included. Particular emphasis is given to Rayleigh and

Mie theories of scattering, as well as absorption due to atmospheric

ozone and water.

The fundamental mathematics for the theory of radiative transfer

were developed by Chandrasekhar (1950). He was first to formalize the

problem of radiative transfer in a solar illuminated plane—parallel

atmosphere, and present a solution in the form of a set of nonlinear

equations. He accounted for polarization by adopting the four Stokes

parameters to characterize the field. However, even with this framework

the solution to these equations remained unsolved for several ,years. This

can be attributed to the fact that the radiance, for a given altitude

within the atmosphere and directed in a given direction, is expressed in

terms of the radiances incoming from all directions, for that altitude.

In practice, the closed form solution, which expresses the field in terms

of the known boundary values, cannot be written. The number of equations

Involved would be overwhelming. Approximations, such as that of single

scattering, are often made. This is acceptable provided high accuracy is

not a criteria. The LOWTRAN 6 code (Kneizys and associates, 1983),

available through the Air. Force Geophysics Laboratory, is one such

approximate code that is based on the assumption of single scattering.



Using the Gauss—Seidel iterative technique, Herman (1963; Herman

and Browning, 1965; Herman, Browning, and Curran, 1971) developed the

software required to solve the Cbandrasekbar equations. In his method an

Initial guess is made of the field present after passing through one

layer. A solution for successive layers is made using quantities that

have been calculated in the previous layer. At the g.cund a reflectance

model, usually lambertian, is used to compute the upwelling radiance.

Radiances are then traced moving back up to the top of the atmosphere.

Once the radiances at all atmospheric levels have been solved, the

process is repeated utilizing updated values of the assumed radiances.
k

All unknowns are changed from their previously calculated values, as the

value of the initial unknowns are changed. After several iterations the o;
r

unknowns converge to a unique solution. This solution is exact in the
r

sense that all orders of multiple scattering are accounted for..	 I
F
i

Computational accuracy is thought to be limited only by the atmospheric

models and input parameters required to run the code.

We use this radiative transfer program for use in the absolute

radiometric calibration of Landsat's Thematic Mapper.. In the following it

Is referred to as the Herman Code.

f
The Equation of Transfer 	 j

The attenuation of radiation through some distance ds can be 	 ([

described by the equation

dLa - —kTa p La ds.	 (2.1)

Here kTa is the total mass extinction coefficient (in units of area per

mass, such as cm 1 /gm), p is the density of the medium (mass/volume, or

gm/cm a ), and L is the radiance (W/cm = at pm) at point s within the medium.
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The distance ds is a positive quantity, irrespective of coordinate system.

Due to this attenuation, and due to scattering into the beam, radiance

varies with distance a. Extinction and density may also vary spatially.

In addition, the radiance and mass extinction coefficient vary with

wavelength. It, is common to identify spectral concentrations with a

subscript a (such as L 1) and spectral functions as (a), but for simplicity

these notations will not be used further.

The mass extinction coefficient is composed of a scattering term,

ks, and an absorption term, Ica. Thus,

kT = ks + Ica.
	 (2.2)

A related parameter is the volume extinction coefficient, 9T=P kT, which

has units of inverse length. 	 Usually one prefers to describe the

variation of extinction within the atmosphere in terms of the particle or

molecular density. Thus, the radiative transfer equations most often use

the mass extinction coefficient, as opposed to the volume extinction

coefficient. The former is usually assumed constant throughout the

atmosphere. It will only vary spatially with altitude if effects such as

pressure broadening, variations of aerosol refractive index, or variations

In aerosol radial size distribution occur.. Conversely, the parameter ST

varies dramatically with altitude due to its proportionality to density.

To describe tbs distribution of radiance, normalized to the

Incoming irradiance, that is scattered from a beam, the phase function

P(e) is introduced. Here g is the angle between the incident and

scattered beams.	 Equivalently, P(g,^;g',^') describes that radiance

scattered from a differential solid angle centered about (0,^) into a

differential solid angle about (g',m'). In this chapter, the first angles

1
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within parenthesis will be those of the incident beam; the angles which

follow the semi-colon are those of the scattered beam. When P(e) is used

within an integrand, the integration will be with respect to the primed

angles. For example, by integrating the phase function over all outgoing

angles, dw', the total energy lost from a beam through scattering can be

computed. This Is given by

ALa(B,o) = —ko p L(0,0) de	 (2.3)

2n n
—kT p de 

to 0 
P(B,o;B',o') L(B,¢) sin e' dB' d$'.

L(B 4 O) is . :ot a function of the scattered angles, and may be placed

outside the integral. Using the above equality, the identity

2" n	 k
P(0,0;0 , 09 sin B' dB' do'	 kT	 wo	

(2.4)

0 0

Is made. The ratio ka/kT is known as the single scattering albedo, wo.

It is that fraction of the total attenuation due to scattering for a

single collision, and is equal to the integral of the phase function over

the scattered angles. A conservative scattering atmosphere is one in

which w0=1.

The energy balance equation, which summarizes the sources and

sinks acting on a beam, can be written

dL(B,o) = kT p de J	 P(B',^';8,^) L(B',O') dw' 	 (2.5)

4n

+ kT p de P ( Bo,0 0 ;e , O) E + ep ds — kT p L(e,¢) ds.

The first term is that energy scattered into dw due to incoming fields

from all directions dw', where dw' =sine' dB' d o'. Note how this integral

^I

I
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over the phase function differs from before. The energy into L(6,$) from

L(6 1 ,^') is computed here, as opposed to the energy out of L(9,p) into all

L(0',m') as in Equation (2.3).	 The second term accounts for single

scattering out of the solar beam. The incident solar beam has an

irradiance E at distance a and propagates along (ea,¢o) where 00>900,

0 0 = 0z+90 0 , and 0z is the solar zenith angle. The third term accounts for

emission within the atmosphere. The spectral parameter. e l (here denoted

only as e) is the emitted spectral radiant flux propagating in an

infinitisimal cone containing that direction of propagation, divided by the

solid angle of the cone, and normalized with respect to the density of

the medium. The final term represents that energy lost due to scattering

and absorption processes.

The sources can be readily grouped together by introducing the

source function

J(0,^)	 P( 01r01i0 .$) L(0 1 ,0 1 ) dw' + P p(Oa,0 0 i0 ,$) E + a/kT.	 (2.6)

4n

This is the radiance added to the incident beam from a unit mass of the

medium and for a mass extinction coefficient of unity. Throughout the

visible and near infrared regions of the spectrum, emission is considered

to be negligible. For our application, therefore, the source function

will only have contributions from scattering. After dividing both aides

by (—kT p de), and introducing the source function, Equation (2.5) becomes

dL	
= L(0,$) - J(0,^).	 (2.7)

-kT P d 
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The derivative with respect to s is now expanded in terms of

derivatives with respect to the x, ,y, and z axes. Here a cartesian

coordinate is defined such that the z —axis is directed upward and the x —

axis is directed such that the sun falls within the x —z plane. In

addition, the zenith angle 9 is defined with respect to an outward normal

directed along the z—axis. A beam propagating along 0-0 0 is propagating

out towards space; a beam directed into the sun will have an azimuth

angle of 0-0 0 . This coordinate system is depicted in Figure 2.1.

Several assumptions are placed on the atmosphere to be modeled.

The atmosphere is assumed (a)to be in steady—state (no variations witF.

time), and (b)horizontally homogeneous, which implies a flat earth. (As

the following equations use the steady—state assumption, they cannot be

used to describe the propagation of a pulsed lidar beam. Here significant

changes occur within the atmosphere as the beam travels.) These

assumptions imply that there will be no variations in the field or source

function along a horizontal plane, and there will be no variations with

time. Thus if the generalized function f here represents either L or J,

the derivatives df/dx, df/dy, and df/dt will be zero and df/da =

(df/dz)(dz/de) = (df/dz) cosO.

A few definitions may be conveniently introduced here. First let

ue Icose1. With the sun at a solar zenith angle of ez i rays propagating

downward from the sun are associated with — p o=1cos(ez+90 0 )j. While µ

Itself is always positive, the angle —u will be associated with downward

propagating beams and u will be associated with upward directed beams.

Secondly, let the optical depth at any height z within the atmosphere be

defined as

-8-
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x

Figure 2.1 Coordinate system used to represent beam directionality.

T-0
	

T=0

^L(Tn,—µD)	
Tn=Tt	 Tn—Tf

nTj ^,L(Tn+1,—u,a) 	nT	 L(Tn,N,O)
Tn+1 -TfT n+1-TI

L(Tn+1,u,e)
Tmrfext	 # ... eosrrrrrrr M77 T=Text

Figure 2.2 Layer nomenclature for beams propagating
through the atmosphere.
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T(z) - f m k p dz.	 (2.8)
z

The optical depth between two altitudes is given as

z

	

AT(z l ,z 2) - jk p dz	 (2.9)
zl

T(z,) - T(zt).

As T is a positive quantity which monotonically decreases with increas

altitude z, the integration within Equation (2.9) will always be set up

such that z=>z l and hence A T(z l) z = ) will be positive. If z is at ground

elevation, and k=kT the optical depth defined by (2.8) is Text, the

extinction optical thickness, or total optical depth of the atmosphere.

The attenuation of radiance can now be written in terms of

optical depth

dL(0,^) _ -kT p L(B,¢) dz/cosh - dT L(B,^)/cosO 	 (2.10)

Here the substitution dr =-kT p ds and dsadz/coaB have been made within

Equation (2.1). Note ds=dz/cose is again a positive quantity. For

downward directed beams both dz and cos y are negative; for upward

directed beams both are positive. This is necessary to assure that dL, as

given by Equation (2.10), is always negative. (The beam is attenuated by

this term.) Two separate equations are, however, required to express da

as a function of u, as a in itself carries no sign. For downward directed

beams ds=-dz/u, while for upward directed beams ds=dz/N.

The energy balance equation, Equation (2.7), may likewise be

rewritten:

-10-



downward

	

—p dL(T, )i3O)/ d T - L(T, —p,$) — J(T, —p,A)	 (2.11s)

upward

	

p dL(T,p,p)/dT - L(T,p,^) — J(T,p,0 .	 (2.11b)

For the time being it will be convenient to write separate equations for

downward and upward directed beaus. Note the radiance and source terms

are a function of both altitude z (hence a function of T) and direction

(p,^). The parameters within parenthesis serve as a reminder of this

dependence.	 The equation is a nonlinear, first order differential

equation, subject tq the following boundary value conditions. The diffuse

radiance incident at the top of the atmosphere is zero, there are no

contributions to radiance from below the earth ' s surface, and the exo -

atmospheric solar irradiance is known. That is,

L(0,— p, m)	 = 0	 (2.12)

L(>Text,p,$) - 0

ED(—pe,00)	 - known

The parameter Text is the total optical depth at the earth ' s surface.

Multiplying both sides of Equation (2.11a) by exp(T/p) and both

sides of Equation (2.11b) by exp( — T /4) we obtain

for downward propagation

—p eT /p dL(r,—)j,4)/dT	 d(L deT/p)	
(2.13a)

-J(T,—)1,4) a T/p

and for upward propagation

p e - T/ p dL( T, p,4)/dT - L(r. p .m) a - T/ p = p d(L^—T^p)	 (2.13b)

—J(T,p,O) e—T /p

—11—



Consider a ray as it traverses the layer structure shown in Figure 2.2.

The top of the layer is denoted by Tn an d the bottom by to+,. These

layers are also denoted with Ti (initial) and Tf (final), where Ti can be

either To or to+t, depending on the direction of propagation.

Intermediate altitudes are identified by some T'. The radiance after

propagation is determined by integrating Equation (2.13) between the

Initial and final T values. Thus,

downward

	

— u (L(Tn+:, —u,4) a T n+i /u — L( Tn,—u,4) a Tn/)']	 (2.14x)

rTn+:

— 
1

J( T ',—u, O) a T'/u dT'

Tn

upward

P IL(Tn ,uM a Tn /)' — L(Tn+:,P,O) e —Tn+:/u ]	 (2.14b)

Tn

	

'	 ,

Tn+,

Dividing Equation (2.14x) by (—u exp(Tn+,/u)) and Equation (2.14b) by (u

exp(—Tn/u)), the above can be rewritten:

downward

L(Tn+:,—P,0 ° L(Tn, —u,$) e—(Tn+,—Tn) /u 	(2.15a)

Tn+1
+	 J(T',u,^) e —( Tn+l T ')/u dT'/u

Tn

—12—



upward

L( Tnj p ,O) - L(Tn+i>p,A) e-(Tn+'—Tn)/p	 (2.15b)

j
'"'+ 	J(T'rp,^) e-(T I-Tn)/ p dT'/p

To

These equations can be combined if Ti and Tf are introduced.

`  Tn+^
a-AT /u

 + JTn	

-AT` / p dT'/ p	 (2.16x) J(T ^tu^^) e

where

J(T',fpr4) - I

	

	 P(p',^'itpr^) L ( 10 ,$') d (—p ' ) d 4'+ P(poo^o;O,^) E . (2.16b)

4n

Here AT-Tn+,—Tn and AT'-1T'- T f 1. The solid angle dw'-sin0' d0' dO' a

d(cos0')do' has been written in terms of p, or dw'-d( —p') dp'. Each of the

above equations state that the radiance after passing through a layer can

be expressed as the initial radiance attenuated by exp( — AT/ p), plus a

contribution from the source function. The source function adds a

contribution at each altitude T', but is attenuated due to the AT' between

T' and the final layer.

Numeric Solution

To evaluate the above radiative transfer equation, the integrals

within Equations (2.16a) and (2 . 16b) are replaced with an equivalent sum

of integrals with smaller differences between the limits of integration.

The new limits are defined sucb that the parameters J, P, and L can be

approximated as constants within the AT, A0, and AQ intervals. They are

put outside the integrals, an evaluation is made, and a solution is

obtained.

-1.3-
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This is the eighth quarterly report on Contract NAS5-27382 entitled

"Spec troradiome tric Calibration of the Thematic Mapper and the
Multispectral Scanner System".

On 26 - 28 October 1984, we made a successful trip to White Sands,

New Mexico, and took a variety of radiometric measurements on the

morning of the Landsat 5 Thematic Mapper overpass. The sky that morning

was cloud free our sites were d 	 although man other areau at Whiter	 d ry	 g	 Y	 !

Sands were covered by several centimeters of water due to the unusually

rainy Fall.

Barnes multiband radiometer data were collected for a 4 X 4 pixel

area and two fractional pixel areas of slightly higher and lower

reflectances than the larger area. Helicopter color photography was

obtained of all the ground areas. This photography will allow us to

make a detailed reflectance map of the 4 X 4 pixel area and we will be

able to register it to the TM imagery to an accuracy of better than half

a pixel. Spec tropoIs rime ter data were also collected of the 4 X 4 pixel

area from the helicopter. In addition, ground based solar radiometer

data were collected to provide spectral extinction optical thickness

values. The uncorrected Thematic Mapper image, in CCT form, of White

Sands for that date is expected in a few days. * The completion of the 	 i

calibration of the TM for that date awaits receipt of the CCT. A
i

description of the data reduction and calibration will be given in the

next quarterly report.

The remainder of this report consists of a description of the

radiative transfer theory used in the development of the Herman code

which we use in predicting the TM entrance pupil spectral radiances from

the ground based measurements just mentioned. The theory is then

fundamental to the measurement program we are conducting at White

Sands. It has been written up by C.J. Kastner and is also to be included

as a chapter in her Ph.D. dissertation.	 ^`f
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In evaluating the integral over optical depth, Equation ( 2.16x),

the radiative transfer between layers Tn and Tn+: is considered. This
allows the average value of the suurce term to be taken as that at the

midpoint of the interval, namely that at Tn+ l . After factorin out this
( Tn+2

constant value and evaluating J( Tn+1, fi,,0 ;	 e—ATE/1' dT'/p, Equation
Tn

(2.16x) becomes

L( Tf,tu , ^) =	 a-2AT / u + J( Tn+„ fp ,4) (1—e-7 AT /v)	 (2.17)

where the interval AT is still defined as that between Tn and Tn+,, and

Tf and Ti are separated by a 26T thickness.

In turn, J(Tn+1,4,^) is evaluated by replacing the integrals

within (2.16b) with sums over the finite differences Ayt and 4Q. That is,

(2.18)

2x//Ao n/A0

J(T n ,, +p , ^)	 L	 P(u'j , 4'k,±p,0 L(Tn+„p'j,O'k) (—AP' )j 00')k
k=1	 j=1

As an example, let Ae =10' and A^=30' (actually their radian equivalents).

Then,J M, 1, ...,18	 (2.19)0 I - JAB — Ae/2 - [5', 15 0 , .... 17503u'j = cos 61 1
( — AP )J = coe((j-1)A0) — cos(jA0)

- (cos0' —coa10 c , ..., cosl70'--cos18011
k = 1, ..., 12

4'k = kAO — A$/2	 [15', 45', ..., 345 '1

(W )k = A^ = 30' * n rad/180'

Note P and L have been taken out of the integral over the finite limits

AB and A^, and replaced with their values at the midpoints of these finite

differences.

—14—



At the beginning of each iteration through the stmoophere, the

radiances at level T 1 are required. This is achieved by considering the

transfer of radiation through only a single AT layer,

2a/A^ ,r/AB

L ( T „—p , ^)	 (1—a—AT / p ) [ E	 E	 P(Y'j,Vki—VM 	(2.20)
	k-1	 jal

L(O,u' ,jWk) (-AU')j Am + P(—Po,Oo;—u,O) ED] .

On the first pass all upwelling radiances L(0,11'j,O'k), or that

energy being reflected out of the atmosphere and into space, are assumed

zero. On successive passes, those values computed in previous iterations

are assumed. At all times the downwelling radiances L(O,u'j,$'k), at the

top of the atmosphere, are assumed zero. This is a statement that the

only energy entering the atmosphere is from the solar irradiance ED.

Similarly, at the bottom of the atmosphere the radiances at Text—, are

computed from those at a single AT layer below. At Text the radiances

are those reflected from the surface. They are computed by multiplying

the sum of the diffuse and direct downwelling irradiances by p/n.

In choosing a numeric value for the layer thickness, AT, Berman

(1963) used a statistical analysis to compute the probability that

scattering within a layer would be due to single scattering alone. The

AT interval must be small enough to neglect variations of the source

term, which is equivalent to requiring that L and E remain approximately

constant over the interval. This is likely if a photon has a small

probability of undergoing two or more scattering events. Conversely, AT

must not be so small as to make the computation time excessive. A value

of ATy0.02 was chosen. Here, approximately 96% of the scattered

radiation is associated with a single collision. Since the effective depth

—15—



of the atmosphere is Atµ, a greater percentage of multiple scattering

occurs at larger zenith angles. As 8 approaches 90% this error builds up

rapidly. Calculations down to 85 0 can, however, be made without

Introducing any serious errors.

Polarization

The Herman Code which we have used to date does not account for

changes in polarization as a ray propagates through the atmosphere. The

code can, however, be easily modified to do so. Preliminary studies have

Indicated that the nonpolarization code is accurate enough, given the

atmospheric conditions we have encountered at White Sands to date, for

our calibration work.	 For this reason the studies within this

dissertation have been made using the original Herman code, which is both

easier and faster to run. For completeness, the theory behind the

polarization code is discussed here.

To be as accurate as possible, the radiative transfer equation

must describe the state of polarization of a scattered field, as this

field generally has undergone a change in polarization compared to that

of the incident field. To describe this state, the amplitude of the

electric field components along two orthogonal directions, as well as the

phase difference between these components, are required. For example,

let El and Er be the parallel and perpendicular components, defined with

respect to a reference plane. This reference plane is chosen as that

containing the incident and scattered beams. Then,

El = al exp(-161) exp(i(wt—k_,	 (2.21)
Er = al exp( —idr) exp(i(wt—kz),
5=d1—ar

As an alternative to requiring that the amplitudes Al and Ar, and the

—16—
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phase difference 6 be known, the state of polarization may be represented

by the four Stokes parameters introduced by Sir. George Stokes in 1852,

These have the advantage of all having the some dimension, that of an

Irradiance. The four parameters are

Il a EIEI * = al l 	(2.22)
Ir - Er Er* ears
U e 2 Re(EIEr*) = 2 afar coed
V - 2 Im(EIEr*) e 2 alar sand

where the asterisk denotes the complex conjugate has been taken.

Referring to Figure 2.3, the state of polarization can be

represented by an ellipse, which in turn is described by the Stokes

parameters. Let X be the angle between the direction of the major axis

and the 1 direction. Knowing X is equivalent to knowing the plane of

polarization, or that plane through the direction of propagation and ray

containing the maximum electric field vector. Also, let the ellipticity

be represented by the angle 9 whose tangent is the ratio of the lengths

of the major and minor axes. It can be shown, as in Cbandrasekhar (1950),

that

I=II+Ir	 (2.23)
Q = Il — It
tan2X	 U/Q
sin2s	 V/I

Therefore, the parameters II, Ir, U, and V rer:esent the irradiances in

two perpendicular directions within a plane transverse to the direction of

propagation, the plane of polarization, and the ellipticity of the

electromagnetic wave. 	 With these, all quantities relevant to the

description of the state of polarization are determined. In addition, the

percentage polarization is given as

P = 3 Q 2+U s+V 2 /I
	

(2.24)

1.1
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Figure 2.3 Representation- of elliptical polarization

(from Liou, 1980).
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Figure 2.4 Dipole scattering.
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For unpolarized light U=V-O, as the time average over sinb and coed are

zero, and Il-Ir. The polarization P equals zero, as expected. One

example of unpolarized light is that which is Initially from the sun,

although the light becomes partially polarized after scattering within the

atmosphere. Conversely, for a completely polarized beam I2=Q=+U=+V=, and

P=1.

The expressions

El ° Sl Eol	 (2.25)

Er = Sr For

are next utilized to determine the four Stokes parameters of the

scattered field. Sl and Sr relate the magnitude of the scattered fields

Eland Er to that of the incident fields Eol and Eor. They are functions

of the angle between the incident and scattered directions of propagation,

and, as will be shown later, differ amongst the Rayleigh and Mie

particles. By aubstituting Equation (2.25) into (2.2.2), the four Stokes

parameters are determined

Il R SISIk Iol
Ir= Sr Sr Ior
U = Uo Re ( S1 Sr*) + Vo Im ( SlSr*)
V = Uo Im ( SlSr * ) + Vo Re ( SISr*)

(2.26)

In much the same wa y as Equations (2.16a ,b) represents the

transfer of radiant flux within the atmosphere, they likewise can

represent the transformation of the Stokes parameters as the beam they

represent undergoes scattering within the atmosphere. 	 A few

modifications are, however, required. First, from Equation (2.26) it can

be shown that not all the scattered Stokes parameters are independent of

—19—



each other.	 To account for this, the radiative transfer equation is

rewritten in matrix form. That is,

(Tn+AT
Lp(Tf,±p,O) - Lp ( TIs±U ,$) a —AT/p + I	 Jpq(T',t11 , 0) a—AT'/p dT'/p	 (2.27a)

Tn

and

Jpq(T 1,1:10) = 
J 

Ppq (N'W; ±119 $) Lq(T'O',^') dW'	 (2.27b)

4n

+ Ppq(-11oP0oi ±p r 0) Eoq a
-T p o .

Here p and q are related to one of the four Stokes parameters, and Ppq is

a 4x4 matrix. Thus, the p tb component of radiance is determined by

summing the source function over the four incoming Stokes components, i.e.

q=1,2,3,4.

The matrix Ppq cannot be written directly from Equation ( 2.26).

As the equation of radiative transfer traces components relative to a

vertical plane within the atmosphere, not the scattering plane, a

coordinate transformation must be performed. The most general such

scattering phase matrix has been given by Sekera (1955). It takes the

form

AIIA ii * A^zA>x* Re(AlIA1z*) —Im(Aj A,,*)

Ppq =	 A,jA zi * AxxAxz* Be(AxiAzx*) —Im(AxiAxx*)	 (2.28)
2 Re(A,,iAzi*) 2 Re (A,xAxx *) ,e(Alx*A21+.AI A xz* ) —Im(Az1A1z*+A>.Axx*

2 Im(AIIAxi*) 2 Im(A,,xAxx *) Im (A11A 22*—Aix*A21) Re(A11A22.*—A2,Ai2*)

The quantities Apq are given by

All = I, cosA^ + Tx cosy (2.29)
A >x = (p'T1 + pTz) sinA^

A21 = (pT l + p'Tx) G'"A
Axx = T, cos* + Tz cos A0.

r!	 4
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Here µ and p' are directional cosines of the incident and scattered beams

(measured, as before, from the local vertical). The auglr; A$ is defined

as the difference between the azimuth angles of the incident and

scattered beams. Furthermore,

cos	 + µµ' coo A^	 (2.30)
T 1 a (S1 - XSr)/(1-X')
T x a	

a
° (Sr	 XS1)/(1—Xx) 

1/x	 ^: 1 xX	 cos9	 µµ + (1 —µ )	 (1 —µ ) / coa AO

and S1, Sr are the proportionality constants defined in Equotion (2.25).

It is to be noted that all the functions within Equations (2.28) through

(2.30) are defined with respect to the angles e, 0 1 , and 40.
i

i

Rayleigh Scattering by Molecules

Both molecules, whose size are on the order of 10 -4 um, and

aerosols, ranging from 0.01 to 10 µm, are responsible for scattering

within the atmosphere. 	 Molecular scattering in the visible and near ir,

where 21rr<<a, can be characterized by a simple scattering law due to Lord

Rayleigh (J.W. Strutt, third Baron of Rayleigh). In 1872 be derived the

scattering law, which now bears his name, using the elastic-solid ether

theory. He predicted that scattering varies inversely as the fourth power

of the wavelength, and so explained the blue color of the sky. In 1899

Rayleigh revised his derivation to use the electromagnetic theories of

Maxwell and Hertz. Thus, the dependance of scattering on refractive

Index was determined. The scattering law has since undergone one slight

revision, to account for molecular anisotropy. This was done in the

1920'x, shortly after some scattering experiments made by Ra,yleigh's son

demonstrated the need for this modification. A complete development of

the Rayleigh scattering law is given in texts such as McCartney (1976).
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Highlights of its development are given here.

Dipole Scattering

To begin with, the mechanical oscillator model of the atom is

used. A binding force Is characterized by a spring which induces a linear

restoring force to the electron as it is displaced. Such a displacement

occurs when a molecule is subject to an applied electric field, E ° . An

Induced dipole moment p-ex is created, where a is the charge on an

electron, and x is the displacement. This electric dipole oscillates

synchronously with the field, and in turn produces the scattered wave.

The new field is proportional to (1)the acceleration of the electron,

(2)ein9, where a is the angle between the dipole moment and direction of

observation, and it is inversely proportional to R, the distance from the

dipole. It has an amplitude

E _ w 2 p0 sine einw(t -R/c)

'T c 0 c R (2.31)

Because of the sine dependence, the dipole cannot radiate along the axle

of the dipole. The maximum dipole moment p ° is found by solving the

equation of motion for the maximum electron displacement:

Po s 
e x0	 m(w°2w2	

(n2-1

n) 1 EN E°

	
(2.32)

Here, w ° is the resonant frequency of oscillation, equal to (k/m) 1/2 where

k is the restoring force on the electron.

The latter equality within Equation (2.32) utilizes the Lorenz-

Lorentz expression to substitute for the molecular parameters.	 Now n,

the refractive index of the gas in bulk form, and N, the number of dipole

oscillators per unit volume, are used. The refractive index of air
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molecules considered here are found to be nearly 1, real, and vary as a

function of wavelength. This wavelength dependence is given by Edlen

(1953) as

	

0-1) x 10 0 - 6432.8 + 2.949,810 + 25,540	 (2,33)
146 — a —=	41—a—=

For example, n- 1.000293 at a-0.55 pm. Both the Lorenz—Lorentz and Edlen

expressions are derived in many discussions on the dispersion of

electromagnetic waves, as in Liou (1980).

The Rayleigli expressions assume that scatterers have resonant

frequencies far above the visible and infrared spectral regions. Thus

they are pure scatterers, and absorb no energy. Such an assumption is

valid for nitrogen and oxygen molecules, which are responsible for 99% of

molecular scattering. There are, however., molecules that do have an

Imaginary component to their refractive index at those wavelengths of

Interest (i.e., they have resonant frequencies near those frequencies

corresponding to visible light). The effects of scattering from these

species can be overlooked without loss of accuracy, as they compose such

a small fraction of the atmospheric gases. Ozone and water vapor are two

such absorbers. (The columnar amount of ozone is typically on the order

of 0.35 cm—atm. This implies that there will be only 0.35 cm of ozone

within a 1 cm = atmospheric column of air., in which there are several

kilometers of atmospheric scatterers.)

The irradiance produced at a distant point R from the dipole is

given by the Poyning vector

S = c C O <E_)	 (2.34)

The mean of E' is found by substituting a factor of 1/2 for sinzm(t—R/0,

and using Equations (2.31) and (2.32) for the electric field strength. To

.
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J
remove the dependence of scattering on distance R, the intensity, I

(Watts / sr.), is computed instead. The intensity at distance R is found by

multiplying the irradiance S by R 2 (since I-d^ /dw-d^ /dA x dA/dw, and dA-R=

dw). Hence,

I(0) - a = " c sin = e (0-1) = Eo=	
(2.35)

2 Nz X4

In addition to the previous equations, the substitution w-2ac/% and

(n+2) = -9 ( since n-1) have been made in writing Equation ( 2.35).

Cross Section

The scattering cross section of a gas molecule is defined as that

cross section of an incident wave, acted on by the molecule, having an

area such that the Irradiance flowing across it is equal to the total

Irradiance scattered in all directions. Thus,

I(0') dw'
4n

a cc c'E T 2	 (2.36)

it
Using Equations ( 2.35), dw' =2n sine' d0', and	 sin c e' d0' =4/3, the cross

0

section is obtained. To this, the correction factor ( 6+36)/(6-76) must be

added. This is done to account for molecular anisotropy, which prevents

the dipole moment from aligning itself exactly with the electric vector

of the primar y wave. Thus,

Ray 870(
r 0-01 6+36	 (2.37)

o	 = 3 Nz X 4	 6-76

Gucker and Basu (1953) have determined that 6=0.035.

3
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Rayleigh Optical Depth

The volume scattering coefficient for molecules, 9Ray, gives the

fractional amount of flux scattered in all directions, for a unit volume

of gas. As the scattered field from a collection of dipoles add

Incoherently, the angular coefficient for a unit volume is just N

(molecules/volume) times the cross section given by (2.37), or $Ray'aRay

N. (Also, the me ga extinction coefficient is found to be kRay`oRay

N/p-oRay /m, or cross section per unit mass, where m is the mass of the

molecule). Using the definition of optical depth, Equation (2.9), the

Rayleigh component of optical depth is determined

TRay ° oRa•y ^o NW dz. 	 ( '1.38)
z

Model values of the molecular number density as a function of altitude

can be found in the U.S. Standard Atmosphere-1962 (see, for example,

Valley (1965), or Elterman (1968)), and are given here in Table 3.2.

The tabulated values of mass density, p, or number. density, N,

refer to air at sea-level temperature and pressure. It is desirable to

compute the scattering coefficients at nonstandard values of temperature,

pressure, and altitude. This is done using the equation of state for an

Ideal gas (P-pRT, P being atmospheric pressure, R the universal gas

constant, and T the temperature on the Kelvin scale). Thus,

T
P ^ PO P	 T '	

(2.39)
0

where pp 1 Po t and T O are defiued at standard atmosphere conditions.

In using the Herman code to model the atmosphere, TRay is

determined using measured values of atmospheric pressure. At ground

level,,
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80'(0-i : 6+36 N 10" P	 (2.40)Ray	 3 a N	 66=76 a	 Po I

where

n . i)-fractive index as given by Equation (2.33)
X - "Velongth in pm	 t
Ns - molecular number deusity at sea level for a standard
atmosphere

2.547 x 10" cm-'
Nc 0 columnar number density

2.154 x 10 = ' cm-'
6 . 0.035
Po - 1013.25 mbar, or 29.92 in Hg
P . measured atmospheric pressure, some unite as Po.

r
Using this for.muliem at a-0.55 um, for example, 'rRay-.098.

Phase Function

The angular dependence on scattering is expressed in terms of the

phase function P(6). Me function is defined as the ratio of the radiance

Into a given direction, to the average radiance in all directions. Thus,

the integral of the phase function must be normalized to unity, as there

Is no absorption by Rayleigh molecules, and

	

P(6) dw l = wo ® 1	 (2.41)
4n

To derive the phase function for the scattering of unpolarized

light by Rayleigh particles, the incident electric field vector is

decomposed into two orthogonal components. As before, let El and Er

represent those scattered components paralle l and perpendicular to a

reference plane, and let Eol and Eor, be the corresponding incident

components. The reference -lane is taken as that containing the incident.p	 p	 g

and scattered waves, and the scattered wave is deviated from the incident

wave by an angle e. For each of these two components (1=1 or r.), the
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scattered radiance is found using

L(91) - 1(0) (6+36)/(6-76) N de - 3 /8ir allay N de sin ' e 1 Sol	 (2.42)

In arriving at this expression, it is noted that as I(e) gives the

Intensity scattered from a single molecule, I(0)N do gives the radiance

scattered from a volume of gas. After accounting for anisotropy, the

Intensity is expressed in terms of aRay by using (2.37). The incident

Irradiance ccoE, 1/2 is then expressed as S ol-

The angles el and Or can readily be expressed in terms of the

scattering angle, e. With reference to Figure 2.4, it is shown thot

0 1° n /2 —e , and Or-n/2. Hence, the total scattered radiance is given as

L - Lr + Ll - 3 /8ir a N de Lor + 3/8,r o N de cost s Sir	 (2.43)

But, as the incoming field is unpolarized, L,r-Lol-Lo/2. Eq uation (2.43)

becomes

L - a N de 3/16n (1 + cos = e) so .	 (2.44)

Removing the angular dependence and multiplying by a scaling factor to

satisfy (2.41), the pbase function for Rayleigh scattering of unpolarized

light is found to be

P(e) - 3/16n (1 + cos 2 e) .	 (2.45)

Tbis expression is the Rayleigb component of the phase function used

witbin Equation (2.16). 	 It is thus an important parameter in the

calculations of the transfer of radiant flux within the vCmospbere.

Because the perpendicular and parallel components are not

scattered equally, the resulting radiance will be partially polarized.

Althougb the scattered perpendicular component is independent of the

angle e, the parallel component follows a cos = e dependence. Thus, if the

observation direction is at 90° to the incoming beam, the scattered light
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will be completely polarized. The scattered energy is symmetric about

the incident beam, and equal amount of energy are sent into the forward

and backward hemispheres. If there were only single scattering within
i

the atmosphere, and the atmosphere was composed purely of Rayleigh
i

particles, the skylight everywhere from a 90 0 angle from the earth—sun

line would be completely polarized. This perfectly polarized light is

never observed in practice, as the scattering from aerosols, the reflected

light from the surface, and the anisotrophy of air molecules themselves

cannot be neglected.

If these polarization changes are to be traced through the

atmosphere, the matrix form of the phase function is required. For

Rayleigh scattering, this becomes	 (2,46)

cos = y	 Plain 'a0	 ucosy sinAo	 0

Ppq = 3/8n µ' = sin 2 Aq	 Cos = Ay	 —N'sinAq cosAp	 0
—21i'cosy sluAp 2psinA^ cos=y —uu'sin = Ay+cosy cosA^ 0
0	 0	 0	 cosy cosA0+up'sin2Ay

Hie Scattering

To describe scattering by particles of arbitrary size the
i

equations developed by Hie (1908) are universally used. In developing

this theory it was necessary to make the simplifying assumption that the
r

scattering particles were isotropic spheres. Even so, the derivation is

complex, using Maxwell's equations, a boundary value analysis, and

expansion of the emerging wave in terms of a series of Bessel and

Legendre polynomials. The equations can be approximated by the first

term of the Hie series for small particles. For this case, however,

Ra yyleigb theory ,yields an equivalent result with significantly fewer

r
computations. Thus, the term Hie scattering is loosely used to refer to
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the scattering by larger particles which do not lie within the Rayleigh

regime.

A complete development of Hie theory is given by Stratton (1941)

and van de Hulst ( 1957). The scattered light is again found by breaking

the incident beam into components perpendicula _ and parallel to the

scattering plane.	 The scattered intensities Ir(e) and II(e) are

proportional to the functions

W

it' ]2'R/I Srl2 = ( _ in(n+l (
annn+bnin)I:
	 (2.47a)

W

it ' ^2 n / I SI' =I"E 2
n+1

1 (an t n+bn n n)1 2 	(2.47b)

n-1

Each function is found as the sum of an infinite series. Defining the size

parameter as a-2nr / a where r. is the the radius of the particle, it is

found that the number of terms required for convergence is somewhat

greater than a, for a>l. The amplitudes of the n th electric partial wave

and the n th magnetic wave are given by the complex coefficients an and

bn. These are

Jn(ma)[a jn(a)]' - 9n(a)[ma Jn(ma)]'
an - -	 (2.48a)

3n(ma)[a hn( 2 )(a)1' - hn( 2 )(a)[ma 9n(ma)1'

jn(a)[ma 9n( ma)]' - m 2 Jn(ma)[a 3n(a)]'
bn	 -	 (2.48b)

hn (2) (a )Goa 3n(ma ) 1' - m 2 Jn(ma)[a hn(2)(a)]'

With air as the incident medium, the parameter m-nre ( 1-nimi) is related to

both the real and imaginary components of the refractive index within the

sphere. Spherical Sessel and Henkel functions are denoted by jn and bn

respectively, and primes denote derivatives with respect to the indicated
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arguments. Thus the coefficients an aad bn are determined from the

Particle characteristics, but are independent of the scattering angle e.

This latter. dependance is expressed through the functions nn and Tn and

Involve the first and second derivatives of Legendre polynomials:

d(Pn(cose))
irn(cose) =	 coact	 (2.49a)

ro(cose) = cose nn(cose) - sin's 
d(xn(cose))	

(2.49b)dcas^—
When the particle is illuminated by plane-polarized light, the

Intensity of the scattered light is given by

I(e) = E a	(ir ein'^ + i t cosz y) 	 (2.50)

Here E o is the irradiance of the incoming beam, y is the angle of the

electric vector from the scattering plane, and i t and i t are as defined in

(2.47). For a particle illuminated with a wave whose electric vector is

perpendicular to the plane of observation, i =90° and the scattered beam

Is polarized in the perpendicular. direction. Conversely, an incident beam

described by y=0 is polarized parallel to the scattered plane, as is the

scattered beam. For illumination by an unpolar.ized beam, the scattered

Intensity is given by

'
I(B)	 Ear.	

ax^

4n' i
t + Eol ^ it	 (2.51)

Ea 8n
x

z Or + 11)

where E or =Eo1 =E a/2 .

The angular distribution of the scattered field is depicted in

Figure 2 .5. Here the solid lines refer to scattering from a perpendicular

component of the electric vector., and the dashed lines represent

scattering from a parallel component. For o<0 . 1 the distribution is
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Figure 2.5 Mie scattering from particles of fixed size
(from Grams, 1978).
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Identical to that predicted from Rayleigh theory. There is a cos=e

dependence in the scattered parallel component but no angular variation

In the perpendicular. component. As a increases (or particle size for a

given wavelength), a larger portion of the energy is scattered into the

forward direction. If the particle size approaches the wavelength of

light, side lobes begin to appear.. The frequency of this structure

Increases with a and the width decreases.

The cross section of a Mie scatterer can now be defined. Unlike

scattering from a Rayleigh particle, some energy is lc.t due to absorption

as a beam impinges upon a Mie scatterer. The cross section oMie must

Include the effects of this loss: Defining osc as the component which
r

accounts for the energy scattered into all directions, and cabs the

component which accounts for absorption, we have

oMie = osc + Gabs •	 (2.52)

Using Equation (2.50) and assuming unpolar.ized illumination, osc is

computed from

(Tsc = ( I(9) dw/Eo = X 1 /8+r 2 I Or + il)sine de do	 (2.53)
f	 y4n

m

= a 2 /2a	 (2n+i)(1an12 + 1bn12)

n=1

The total cross section can likewise be expressed in terms of the We

coefficients,

M

GMie = 1 2 /2n 2: (2n+1) Re(an + bn)	 (2.54)
n=1

In the above the expansions in terms of an and bn do not easily follow.
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Reference is given to van de Hulot (1957, section 9.32) for more details.

It is noted that the above cross sections are defined for a

Particle of fixed radius r..	 Absorption and scattering within the

atmosphere are, however., processes which depend on the cumulative effects

of many particles within a large size range.	 This distribution is

expressed in terms of a size distribution n(r.). It is the normalized

number of particles per unit interval of radius per unit volume, hence

1
n(r) dr - 1 .	 (2.55)

0

To determine the properties of light scattered from a polydispersion

(collection of particles of different radii), the functions i t and it

within (2.53) are integrated over the size distribution. The scattered

energy from such a distribution of particles is very different from that

depicted above.	 The most obvious difference is that the scattered

distribution is a much smoother function of wavelength. A few examples

of this are given in Figure 2.6. To compute these curves a log—normal

particle distribution was assumed. A mean radius of r.m=1 pm, standard

deviation 2 pm, wavelength X=0.633 pm, and real refractive index nTe=1.525

were assumed. Curves (a) and (b) give the the results for a parallel and

perpendicular incident electric vector., respectively. In curves (c) and

(d) the molecular scattering contributions have been added. Each example

has been computed at several values of the imaginary component of

refractive index. As nim increases the light scattered into angles

greater than 9=15 0 decreases. The most significant result of increasing

the Imaginary refractive index, however., is the increase in absorption.

This change can be expressed through the parameters cabs or wo, the
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single scatter albedo.

By integrating the cross section over the size distribution

function, the optical depth of the atmospbere can be determined. Defining

N(z) as the totac number of particles per unit volume at altitude z,

TMie	
J J 

N(z ) omie( r) n(r.) dr dz	 (2.56)

Note that the size distribution is taken as constant with respect to

i
altitude. This is usually assumed the case, for lack of better data.

r
More will be said about the radial size distribution function n(r) and the

vertical distribution N(z) in the sections to follow.

By integrating the cross section over the size distribution, the

phase function for Mie scattering can also be found. To most readily see

this, let us define the angular scattering cross section asc(e) as the

cross section of the incident wave acted on by the particle, having an

area such that the Irradiance flowing across it is equal to the intensity

scattered into angle 9. The cross section asc defined earlier is equal to

the angular cross section integrated over all outgoing angles. With this,

the phase function is defined as

osc(9,r) n(r) dr

P(e) =	 (2.57)

J

aMie(r) n(r.) dr

From this definition it is apparent that the integral of the phase

function over all solid angles will not necessarily be e qual to one. It

will be equal to w o , the single scatter albedo, and equal to. one only if
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there is no absorption of energy by the particle (in such a case

oMie' osc) • The greater the imaginary component of refractive index, the

smaller w, will be, hence a smaller fraction of energy will be scattered,

a greater fraction absorbed.

For illumination by unpolarized light

a = /8ir 2 I n(r)(ir + 11) dr.

P(0) -
	

(2.58)

J

aMie(r.) n(r) dr.

To run that version of the Herman Code which accounts for polarization,

the phase function must be written in matrix form. This is done by using

Sr and S1, as defined in (2.47), within Equations (2.28)—(2.30).

Another parameter, closely related to the cross section, that is

commonly referred to in the literature is the efficiency factor Q, defined

as the cross section of a particle divided by the geometric cross—

sectional area of that particle, irr'. If the scattering efficiency factor

Is ploted versus the size paramter a, Qsc obtains a maximum value of 2

and converges in an oscillatary fashion to a value of one for high a.

This implies that the particle can, at times, interact with an incident

wavefr.ont greater than its own geometric area. This is explained through

diffraction effects, in which diffracted flux is directed into a small

angle centered about the forward direction of the incident flux.

Dave Code

To compute the Me parameters discussed above, a Fortran computer

program written by Dave (1969) is used. This program is incorporated
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Into one of the subroutines witbin the Herman Code. Two similiar Dave

i
	 codes exist, one using an upward recurrence r.elationsb1p (starting with a

value of ao(ma), successively bigber values are computed), and one wing a
i

downward recurrence relationahip. In the code which uses an upward

recurrence algorithm, any error in the first term will propagate and for

large enougb a the results oscillate wildly around the correct value.

For this reason the downward recurrence routine is preferred. It does,

i
	 however., more storage, and required 10-20% more run time. Botb codes

require double precision arithmetic, and output results accurate to 6

significant figures (with the one exception mentioned above, where

oscillations occur).
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