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I. INTRODUCTION

With the introduction of the latest class of supercomputers, e.g., the

Cray XMP and Cyber 205, it has begun to be feasible to solve the Euler and

Navier-Stokes equations for three-dimensional configurations. The major added

difficulty in solving the Navier-Stokes equations is in the need to resolve

the boundary layers. This is especially difficult for turbulent flow. Most

codes rely on algebraic turbulence models, but even these require an extremely

fine mesh to resolve the sublayers. The use of one or two equation turbulence

models requires even finer meshes [15]. Hence, a Navier-Stokes code about a

wlng-body configuration requires a mesh that the new computers can just meet

both in terms of speed and memory. Even with the new generation of

supercomputers, it is not feasible to routinely run three-dimensional codes.

It is therefore necessary to introduce new algorithms that will reduce the

storage requirements and the running time compared with present schemes.

Since several sophisticated schemes already exist, it would be advantageous if

the new algorithms could be incorporated within the presently existing codes.

In this paper we will only consider steady state problems. This will

enable us to change the time-dependent equations in any way that does not

change the steady state. Thus, the approach that we use can be classified as

a pseudo-unsteady approach to the steady state [19]. In addition we shall

only consider conservation equations as this gives us greater flexibility in

the problems that can be solved.
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2. PRECONDITIONING

We now consider two-dimensional equations in conservation form

fx + gy = 0 in D (i)

with appropriate boundary conditions. We consider schemes that are pseudo-

time dependent. This approach allows the same code to treat true time-

dependent problems by removing the pseudo-time elements. In addition the

pseudo-time changes can all be done locally. The present analysis is based on

constant coefficient equations. However, both the Euler and Navier-Stokes

equations are nonlinear equations. Hence, the preconditioners that will be

developed will, in practice, vary at each mesh point. It will also be

necessary to blend different regions together, which will not be discussed in

this paper. As a result when we consider subsonic flow there is no need for

the flow to be subsonic everywhere. Hence, even when discussing very slow

flow we wish the equations to be in conservation form since there may be

shocks in other regions of the domain. Similarly, when we consider supersonic

flow one cannot march in space as there may be regions of subsonic flow.

According to our philosophy of having the applications as general as

possible, the analysis will be done at the differential equation level.

Hence, the results are scheme independent and apply to both explicit and

implicit methods. Though we are interested in the steady state, we shall use

a time-like approach. Hence, we consider the system

wt + fx + gy = 0 (2)
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where (x,y) represent general curvilinear coordinates. Since we are only

interested in the steady state, we replace (2) with the system

E-I wt + fx + gy = 0. (3)

The minimum requirements on E are that E be nonsingular and that (3) be a

well-posed problem with boundary conditions that are consistent with those

imposed on (I). It is straightforward to solve (3) with an explicit method.

Using an implicit method only the diagonal block of the matrix to be inverted

is changed compared with (2). We first consider the case that (2) is a

hyperbolic system. Though the code solves (2) we will only consider the

constant coefficient problem. Thus (2) is replaced by

wt + Awx + BWy = 0 (4)

while the preconditioned system (3) is replaced by

E-I wt + Awx + BWy = 0 (5)

where A and B are the Jacobians of f and g with respect to w

respectively. Also A, B and E are frozen at constant values. Let w = Tv

then (4) becomes

Tvt + ATv x + BTVy = 0.

Multiplying this equation by S we find that (4) is equivaient to
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STv t + Ao vx + Bo Vy = 0 (6)

with Ao = SAT and Bo = SBT. We will choose S and T to be nonsingular

and such that Ao and Bo are "nice" matrices. We stress that there is no

need for the transformation from (4) to (6) to be an equivalence

transformation. Since (4) can be transformed into (6) it is sufficient to

analyze (6). We now precondition the system (6) and consider

E-I v + A v + B v = 0 (7)
o t o x o y

with an appropriate Eo. Returning to the original w variables we find that

(7) can be transformed into (5) and hence (3) with E-I = S-I E-I T-I oro

E = TE o S. Using an explicit scheme we wish to find the matrix E in (3)

while for an implicit scheme we wish to construct E-I. We thus wish

Objective No. i:

Choose Eo so that

i. Eo is invertible;

2. (7) is well-posed with appropriate boundary conditions;

3. (7) approaches the steady state as rapidly as possible.

We really wish to analyze (3) rather than (7) but we ignore nonlinear

effects in this paper. The first property is straightforward. Implementation

of the second and third properties will be discussed in the coming sections.
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3. BOUNDARY CONDITIONS

Though the question of well-posedness is not the objective of this paper,

nevertheless, we wish to point out several difficulties. By well-posed we

mean that the solution exists, is unique, and depends continuously on the

data. In discussing appropriate boundary conditions, we must distinguish

between three systems. First is the transformed steady state system,

Ao vx + Bo Vy = 0. (8)

Next there is the transformed time-dependent system (6) and finally there is

the preconditioned system given by (7). We assume that the matrices Ao

and Bo are symmetric and that ST and Eo are symmetric positive

definite. Then both (6) and (7) form a symmetric hyperbolic system as

considered by Friedrichs [7]; hence both are well-posed for appropriate

boundary data. If the boundary data are dissipative for (6) in L2 with

weight ST, then the same data will be dissipative and hence well-posed for

(7) in L2 with weight Eo. For more general boundary data it is not clear

that data which make (6) well-posed will also make (7) well-posed.

Furthermore, it is not known if data that make (6) well-posed will also

make (8) well-posed when a steady state is achieved. Thus, for example, one

must rule out the possibility that the Helmholtz equation can be the steady

state solution of a hyperbolic system. Even though the Helmholtz equation is

well-posed in the sense of Lopatinski, this is not enough to yield uniqueness.

When the system (6) is strictly hyperbolic then one only needs analyze

solutions to (6) of the form
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_t
v(x,y,t) = e f(x,y).

Since we assume that a steady state is reached we must have that Re m < 0.

Hence, all the eigenvalues of (8) are in the left half plane. This is enough

to ensure well-posedness in the sense of Lopatinski [17]. When the steady

state equation is elliptic this guarantees regularity but not uniqueness. To

show well-posedness in the sense of Hadamard one must also get uniform bounds

on how close to the imaginary axis the eigenvalues can be. In particular (8)

may have a zero eigenvalue so that there are solutions to (8) that cannot be

achieved by a time-dependent process in addition to the solutions that are

steady states of (6). Hence, we conclude that steady state solutions to (6)

or (7) are solutions to (8), but we have no guarantee, even for constant

coefficients, that these are the only solutions to (8) or that (8) is well-

posed in the sense of Hadamard under the same boundary conditions.

We also wish to point out that if one begins with the steady state

equations (8) then there are many possible boundary conditions that yield

solutions, but not all of them are physically relevant boundary conditions.

One way of choosing the relevant boundary conditions is to demand that the

solution be the limit of an appropriate time-dependent problem. An

alternative approach is to demand that the solution to (8) be the smooth limit

of an appropriate viscous problem. As an example we consider the simple

steady state

u = f 0 < x < I. (9)

The differential equation (9) is well-posed if we impose
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u(0) = given (10a)

or if we impose

u(1) = given. (10b)

To decide which boundary condition is physically relevant we must determine;

physically, whether (9) is the limit of

ut + uX = f (lla)

or

-u t + ux = f (llb)

as t goes to infinity. Equivalently, we can choose (lla) and decide whether

(9) is the limit as the time goes to plus infinity or backwards to minus

infinity. Since a hyperbolic equation is reversible in time both

possibilities are legitimate. For a nonlinear problem reversing time will

reverse the entropy inequality.

An alternative method to choose between the boundary conditions (10a) and

(10b) is to claim that (9) is the smooth limit of a viscous system. Hence,

(9) is the limit of either

u = gu + f s > 0 (12a)
x xx

or

u = -gu + f _ > 0. (12b)
x xx

Equation (12a) will have a boundary layer near x = i. By eliminating the

boundary condition at x = i for g = 0 the boundary layer does not appear
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in the limiting solution. Equivalently we can eliminate the boundary layer

for (12a) by specifying a Neumann type boundary condition rather than a

Dirichlet condition. In the limit of small s the Dirichlet condition at

x = 0 remains while the boundary condition at x = I disappears. Of course,

the roles of the two boundaries are interchanged when we choose (12b) instead

of (12a).

In this case everything is obvious. A physically more relevant case is

to consider flow through a nozzle. If the flow is subsonic then one should

specify two conditions at inflow and one boundary condition at outflow.

However, the steady state is unique if one specifies the total mass, the total

enthalpy, and the entropy. It makes no difference where these quantities are

specified [26]. Thus, for example, one could specify two of these quantities

at outflow and only one at inflow. Nevertheless, the physically appropriate

conditions are to specify two at inflow and one at outflow. This follows from

the time-dependent Euler equations or the steady Navier-Stokes equations.

We hence conclude that the matrix Eo in (7) must be chosen as positive

definite whenever Ao and Bo are symmetric and ST is positive definite.

This guarantees that we do not change the direction of the characteristics, so

information flows in the same direction as before. Therefore, the number of

boundary conditions is not changed.

4. ACCELERATION TO A STEADY STATE

We wish to choose Eo in (7) so that we reach a steady state as fast as

possible. When the equation is parabolic we can choose the free parameters so

as to maximize the rate of decay to the steady state. This was first done by
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Garabedian [8] in analyzing SOR. For a hyperbolic equation with constant

coefficients, energy is conserved except for boundary effects. Hence, the

only way to introduce dissipation is through the artificial surfaces [i]. We

shall therefore ignore dissipative mechanisms. Instead we consider explicit

schemes, and then we reach a steady state faster by choosing a larger time

step within the stability limits. The methods to be developed are also

effective for implicit methods using space factorization such as A.D.I. type

methods. In order to compare different preconditionings we must normalize the

time. Consider

ut + ux = f. (13)

Let T = at; then (13) becomes

+ u = f. (14)aUr X

When a is less than one, then we reach a steady state faster in terms of

absolute quantities. However, we do not achieve the steady state faster in

terms of physical time scales. For example, using a typical explicit scheme

one requires that AT/Ax < a. Thus, the smaller a is the less time it takes

to reach a steady state, but at the same time the time steps are

correspondingly smaller. The number of time iterations to reach a steady

state is independent of a.

We therefore conclude that we cannot compare the absolute time step

allowed by different preconditioners. Instead we must scale all speeds by a

given reference speed. Hence, we rephrase the third condition of Objective

No. 1 as



-i0-

Objective No. 2:

Choose Eo so that we minimize the ratio of the fastest speed to the

slowest speed of (7). Equivalently, choose Eo, positive definite, to

minimize the condition number of

We now consider the question of minimizing (15) when (6) has different

time scales. Kreiss [14] has developed a normal form for symmetric hyperbolic

systems with three equations. The two-dimensional Euler equations has four

equations. However, since the entropy equation essentially decouples from the

other three equations the two-dimensional Euler equations are included in the

theory. Tadmor [21] has extended the normal form to systems with more

equations. Browning and Kreiss [3] have also analyzed nonlinear equations.

In this study we wish to do the opposite of what Kreiss did. Instead of

treating the initial conditions to filter the fast waves, we wish to

precondition the equations so that there is only one time scale. We shall

choose Eo so as to equilibrate the time scales for the Euler equations. The

normal form of Kreiss demonstrates that once we have accomplished this for the

Euler equations, we have done the general two-dimensional symmetric hyperbolic

system with three equations.

It also follows from [14] that this approach will work only if the two

time scales separate uniformly in the Fourier variables (ml,m2). The

simplest case where the time scales are uniform in the Fourier variables is

one-dimensional flow, since there is only one Fourier variable,
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ut + Ao ux = f. (16)

In this case (15) becomes: find Eo, positive definite, so that _IEo A-i)o

is minimum. The obvious choice is Eo = IA-II where the absolute value of a

matrix is found by going to diagonal form in an equivalence transformation,

taking absolute values and then transforming back. Thus, the optimal

preconditioned form for (16) is

IAol ut + Ao ux = f. (17)

All the speeds of (17) are ±i and so the condition number is equal to i.

In two space dimensions this recipe doesn't work since Eo = Iml Ao + m2 Bol

implies that Eo is a pseudodifferential operator. Furthermore, since

neither ml nor m2 is small, in general, there are no obvious expansions.

One possibility is to minimize this quantity in a root mean square sense over

all ml and m2"

Another possibility is to minimize the condition number in physical space

rather than in Fourier space. If we replace the derivatives in space by

central differences on a uniform periodic mesh, then we wish to choose a

(4n) x (4n) matrix so as to minimize the condition number of
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E 0 A 0 .... B 0 .... 0
o o o

-A 0 A B .
o O o

0 -A . . . 0
o

E . . B
o o

• • • • 0

• 0 .

• -B 0 . . .
o

E 0 -B . .
o o

• • • 0

• . A
O

E 0 .... 0 -B 0 . .0 -A 0
o o o

m u --

This is similar to the preconditioning that appears in the use of the

conjugate gradient method [6]. However, now Ao and Bo are themselves

matrices. Furthermore, the matrix to be conditioned is not symmetric but

antisymmetric. Hence, this approach is not very useful for general Ao and

Bo. We therefore abandon the attempt to find a general solution to Objective

No. 2. Instead we shall consider specific cases for the Euler equations•

5. LOW SPEED FLOWS

2 v 2 2When u + << c standard explicit schemes are inefficient• The time

step is governed by I/c while most important phenomena move at the

convective speed• Implicit methods, especially A.D.I. type methods, also slow
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down due to the presence of different time scales. One possibility is to use

a semi-implicit method, but this is hard to implement in a conservative

manner. If one is interested in time accuracy then one also needs to filter

the high frequency content and then use an implicit method on the

incompressible portion [i0]. We shall instead precondition the Euler

equations to remove the dependence on the sound speed, c. Viviand [25], and

Briley, McDonald, and Shamroth [2] have considered similar problems for the

reduced isoenergetic equations. We shall also discuss this case in a later

section. We now consider the full Euler equations so that we can easily

extend the results to both the compressible and incompressible Navier-Stokes

equations. The conservative Euler equations in curvilinear coordinates

(x,y) can be symmetrized by an equivalence transform with S T-I= , [22],

[23]. We then recover (6) with ST = I and

q Y c -X c 0
Y Y

Y c q 0 0
Y

A =
o

-X c 0 q 0
Y

0 0 0 q

r -Y c X c 0
x x

-Y c r 0 0
x

B -- (18)
o

X c 0 r 0
x

0 0 0 r

p/c 0 0 -i/c

u/c p 0 -u/c
T =

o v/c 0 p -v/e

h/c u v (u2 + v2)/2c
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where (X,Y) are the Cartesian coordinates and q and r are the

contravariant components of velocity given by

q = Yy u - Xy v r = XX v - Yx u. (19)

We then choose the preconditioner Eo in (7) as

z2/c 2 0 0 0

0 1 0 0

= (20)
E° 0 0 1 0

0 0 0 i

2 2
where z = max(g2,u + v2) is introduced so that Eo is nonsingular at

stagnation points. Typically _ is chosen as .001c so that z2/c2 > .001.

Transforming back to (3) we find that [24]

-i
E = I + dQ E = I + eQ

d = (y - l)(z2/c 2 - l)/c e = hd

where h is the enthalpy, h = c2/(y - i) + s2, s2 = (u2 + v2)/2 and

2
s -u -v 1

2 2
US --U --UV U

2 " (21)Q
VS --UV --V V

hs 2 -uh -vh h
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We note that the lower three rows of Q are obtained by multiplying the first

row of Q by u, v, and h respectively. Hence, Q times a vector can be

computed using six multiplies.

Let M be the Mach number defined by M2 = z2/c 2. Then the largest

eigenvalue of D = A_1 + Bm2 is given by

2X = lwl (i + M21 + 42(1 - M21 + 4(a 2 + b21z 2 (221

where

w = qml + r_2' a = Y ml - Y m2' b = X m2 - X ml"y x x y

Hence, near a stagnation point M = 0(g) and X = 0(€). It follows that at

low speeds At/Ax = K/max(!u 2 + v2,_) and so At is independent of c.

Briley et al. [2] present results for the Navier-Stokes equations with

turbulence using an implicit method. They show the advantages for a similar

preconditioning for the isoenergetic equations.

6. ISOENERGETIC EQUATIONS

The steady state Euler equations have the property that the total

specific enthalpy, h = (E + p)/p is constant along streamlines. Hence, when

the flow comes from a common reservoir the total enthalpy is constant

throughout the entire field. Thus, various authors have replaced the energy

equation in the inviscid equations by the algebraic condition that h = ho-

This system is no longer time consistent but gives the correct solution in the

steady state.
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In two space dimensions the isoenergetic equations form a 3 × 3

hyperbolic system. The theory of these equations was first discussed in

[9]. Since there are several errors in that paper we shall derive the

pertinent results. The nondimensional isentropic equations can be written in

the form (4), [9], with

 vll0 1A = c2 yp (i - 2R)u -2 B = 0 v 0 (23)

0 c2/yp -2Ru (I - 2R)v

2
where R = (y - l)/2y and c = yp/p.

Note, that the definition given for c differs slightly from that given in

[9]. We now define

a± = Ru ± !R2 u2 + c2/y •

It is easily seen that a+ is always positive while a_ is always

negative. Using the technique described in [9] we let

D

c ¢ 0

y(y 1) a_ y(y - i) -- a_

2

T = 0 0 c I_(_- l) .

2 !a+.-a__-a 2 _-aa+

-pc -0c 2vR
- a

y(y- l)a+ _ T(Y- l)a__ + _
m
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It can then be verified that

[U0T-I AT= 0 u- a_

0 0

and "

a - _Rva+ Rvc/6y +(a+ a )cY

(24)
c

T-I BT = vl a+ -2a_ Rvc/_y -Rva_ !-a_ (a+y- a_)

c -a_(a+ a ) -_- 0- a_)_ - _
v y y

m

and so A and B can be simultaneously symmetrized. This property is also

necessary if we wish to construct any entropy function [16]. Since the

isoenergetic equations are a symmetric hyperbolic system, we can use energy

methods to determine well-posed boundary conditions as well as the normal mode

approach used in [9]. Furthermore, we define a state as supersonic if numbers

ml and _2 exist such that _i A + m2 B is positive definite. It can then

be shown that the isoenergetic equations are supersonic if and only if

2 v2 2u + >c.

Since the isoenergetic equations are symmetrizable we can use the theory

developed in the previous sections. If we choose Eo as

iz21c20E° = 0 I z as in (20), (25)

0 0
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-i

then the condition number of E (_i Ao + m2 B2) is independent of c. This

is similar to the preconditioning previously considered and also similar to

that considered in [2].

7. INCOMPRESSIBLE FLOW

We next consider the steady state, inviscid, incompressible fluid dynamic

equations. Klainerman and Majda [12] have proven that these equations are the

asymptotic reduced equations of the Euler equations. Hence, one method of

solving the incompressible equations is to numerically solve the homentropic

Euler equations or Navier-Stokes equations, e.g., [20] with a small Mach

number and then use the preconditioning of Section 5 to remove the stiffness

of the equations. In this section we shall consider ways to directly

integrate the incompressible equations. With both approaches the introduction

of viscous terms does not introduce any fundamental difficulties especially

with a high Reynolds number. Since we are interested in a pseudo-time

approach, we consider the artificial density algorithm [5].

In conservation form the time-dependent equations are

u + v = 0 (26a)
x y

ut + (u2 + P)x + (UV)y = 0 (26b)

vt + (UV)x + (v2 + p)y = 0. (26c)

Using the artificial density approach [18] we replace (26a)
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Pt/C + ux + Vy = 0. (26a')

It is easy to verify that the resultant system is hyperbolic but not

symmetrizable. Instead we replace (26) by

+v = 0
Pt/C + uX y

auPt/¢ + ut + (u2 + P)x + (uv) = 0 (27)Y

avPt/e + vt + vt + (UV)x + (v2 + p)y = 0

with a to be defined. Equivalently,

E-I wt + Aw + Bw = O, w = (p,u,v)x y

and so (27) can be considered as a preconditioning of the system (26). c is

an artificial sound speed which need not be constant. We shall later discuss

how to choose c.

When a = 1 in (27) then this system is equivalent to a symmetric

hyperbolic system. In this case the eigenvalues of E(Am I + Bm2) are

It thus follows that this system is always subsonic independent of the value

we choose for c. This is to be expected as we do not wish an incompressible

fluid to behave like a supersonic flow with shocks even in the nonphysical
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time-dependent phase. When a differs from 1 the system is no longer

symmetrizable though still hyperbolic. In this case the eigenvalues of (27)

are

q ; ((2 - a)q ± /(2 -a)2 q + 4(_o_ + m22)c2)/2. (29)

P. Roe (private communication) has noted that for a = 2 the eigenvalues have

the simple form

q ; ±c. (30)

Hence, in this case the speed of the sound waves is independent of the

convective speed, and hence the sound waves spread isotropically even in the

presence of a flow. We shall later see that this allows a more optimal

selection for the artificial speed of sound c. We therefore rewrite (27)

with a = 2 in nonconservative form

Pt/C 2 + u +v = 0x y

uPt/C 2 =+ ut + uu + vu + Px 0 (31)x y

vPt/C 2 =+ vv + py 0+ vt + uvX y

or equivalently

Pt + c2(Ux + v ) = 0Y

ut + vu - uv + Px 0 (32)Y Y

vt + UVx - VUx + py = 0.
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The eigenvalues of this new artificial density equation are given by

(30). The improvement in the sound speed is achieved at the expense of the

loss of symmetry. It is not clear that this loss of symmetry is of any

importance since all the coefficients that appear are well-behaved and the

system is strictly hyperbolic. The original pseudo-density equations in

nonconservative form are

Pt/C 2 + u + v = 0x y

ut + uu + vu + Px 0 (33)x y

vt + UVx + VVy + py = 0.

This is equivalent to (27) with a = i, and so is symmetric.

The question of how to choose the artificial sound speed c remains. As

we have stressed, for inviscid flow we wish to reduce the ratio of the largest

eigenvalue to the smallest eigenvalue. For the system (31), (32), or (27)

with a = 2, the eigenvalues are given by (30). Hence, we would like to

choose c = q = ml u + _2 v. This choice would give us a condition number of

one. However, we cannot allow c to depend on the Fourier variables ml and

m2" Hence, an alternate choice is to set c2 = u2 + v2.

For the original equations (33) or else, (27) with a = i, we wish to

minimize both

(i + /I + 4c2/q2)/(i - 71 + 4c2/q 2) and i + /i + 4c2/q 2 .
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If we choose c small we enlarge the first ratio while if we choose c small

we increase the second ratio. It is easy to calculate that the minimum of the

maximum of both ratios is reached when c2 = 3q2/4. In that case the

condition number is three. Hence, if we could choose this value for c the

original pseudo-density system (33) would be three times slower than the new

version given by (31) or (32). As before, this choice for c is not

legitimate since it depends on the Fourier variables (ml,m2). As before, an

alternative is to choose c2 = 3(u 2 + v2)/4. In this analysis we have only

considered the effect of the inviscid time step on c. In [4] the effect of

the viscous terms is considered.

When the incompressible Navier-Stokes equations are considered, the

pseudo-density approach can be easily modified to include these terms. When

the Reynolds number is sufficiently large, for a given mesh, the time step is

only governed by the inviscid part and the previous analysis is valid. For

lower cell Reynolds number one can treat the viscous terms implicitly. Since

the coefficients are constant for the viscous portion, a backward Euler method

even in several space dimensions is feasible.
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